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A B S T R A C T

High-grade glioma (HGG), and particularly Glioblastoma (GBM), can exhibit pronounced intratumoral hetero-
geneity that confounds clinical diagnosis and management. While conventional contrast-enhanced MRI lacks the
capability to resolve this heterogeneity, advanced MRI techniques and PET imaging offer a spectrum of phy-
siologic and biophysical image features to improve the specificity of imaging diagnoses. Published studies have
shown how integrating these advanced techniques can help better define histologically distinct targets for
surgical and radiation treatment planning, and help evaluate the regional heterogeneity of tumor recurrence and
response assessment following standard adjuvant therapy. Application of texture analysis and machine learning
(ML) algorithms has also enabled the emerging field of radiogenomics, which can spatially resolve the regional
and genetically distinct subpopulations that coexist within a single GBM tumor. This review focuses on the latest
advances in neuro-oncologic imaging and their clinical applications for the assessment of intratumoral hetero-
geneity.

1. Introduction

High-grade glioma (HGG), and particularly Glioblastoma (GBM),
can exhibit pronounced intratumoral heterogeneity that confounds
clinical diagnosis and management. While conventional contrast-en-
hanced MRI lacks the capability to resolve this heterogeneity, advanced
imaging techniques offer a spectrum of physiologic and biophysical
image features to improve the specificity of imaging diagnoses. This
review covers the broad array of physiologic-based advanced imaging
techniques that are nearly universally available across imaging sites
and are most likely to be encountered in clinical practice. These include
Diffusion Weighted Imaging (DWI), Diffusion Tensor Imaging (DTI),
Dynamic Susceptibility Contrast (DSC)-MRI, Dynamic Contrast
Enhanced (DCE)-MRI, MR Spectroscopy (MRS), as well as Positron
Emission tomography (PET). Published studies have shown how in-
tegrating these advanced techniques can help better define histologi-
cally distinct targets for surgical and radiation treatment planning, and
help evaluate the regional heterogeneity of tumor recurrence and re-
sponse assessment following standard adjuvant therapy. Application of
texture analysis and machine learning (ML) algorithms has also enabled
the emerging field of radiogenomics, which can spatially resolve the
regional and genetically distinct subpopulations that coexist within a

single GBM tumor. This review discusses some of the most clinically
relevant challenges in diagnosis and treatment of HGG, and particularly
GBM, in the context of intratumoral heterogeneity. We describe the
latest advances in neuro-oncologic imaging and their clinical applica-
tions to address these challenges.

2. High-grade gliomas (HGG) and glioblastoma (GBM)

After meningiomas, cerebral gliomas represent the most common
primary brain tumor in adults overall, with an incidence of 5–6 per
100,000 persons annually [1]. The vast majority (> 75%) of gliomas
are high-grade (WHO grade III and IV), with the most common and
aggressive form of glioma being Glioblastoma (GBM) [115]. In fact,
GBM (WHO grade IV) accounts for over half (56.1%) of all gliomas.
These tumors result in a dismal prognosis, with median survival of ~15
months, despite best available multimodal therapies [2]. The clinical
challenges of treatment and diagnosis, coupled with high relative in-
cidence, have made high-grade gliomas (HGG), and GBM in particular,
the subject of tremendous interest in neuro-oncologic research. For
instance, GBM was the first tumor type studied by the foundational
work of the Cancer Genome Atlas (TCGA) initiative, which started over
a decade ago, and has since extended to other tumor types throughout
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the body [3]. Advances in genomic and molecular profiling have in-
troduced promising new therapeutic paradigms to combat this deadly
disease [4,5]. Yet, translating these discoveries to improve patient
outcomes will rely critically on methods to resolve the internal het-
erogeneity of these tumors, which exists at multiple levels (e.g., genetic,
molecular, histologic).

3. Clinical standard for imaging diagnosis and treatment planning
in high-grade gliomas

Conventional contrast-enhanced MRI serves as the clinical standard
for image-guided diagnosis and treatment planning, guiding essentially
every aspect of glioma care. This includes surgical neuronavigation for
biopsy and resection, as well as dosimetric radiation treatment plan-
ning. Contrast-enhanced MRI also guides response assessment after
standard adjuvant chemo-radiation therapy. Conventional contrast-en-
hanced MRI consists of two fundamental types of MRI sequences: T1W
contrast-enhanced (T1+C) and T2-Weighted and Fluid Attenuated
Inversion Recovery (T2W/FLAIR) imaging. T1-weighted contrast-en-
hanced imaging (T1+C): T1+C images are obtained following in-
travenous injection of Gadolinium-based contrast agent (GBCA), with
areas of brightness or increased signal on imaging corresponding with
tissue regions in which GBCA has extravasated due to vascular leakage
and blood-brain-barrier (BBB) disruption. This leakage generally relates
to Vascular Endothelial Growth Factor (VEGF) expression and/or
neoangiogenesis. Based on current convention, the volume of T1+C
enhancement serves as the clinical standard for defining HGG tumor
burden, which guides surgical targeting for biopsy and resection, as
well as dosimetric radiation treatment planning. Serial MRI and
changes in T1+C enhancing volumes also define response assessment
following standard adjuvant therapy, such that new or enlarging T1+C
lesion volumes indicate the burden of recurrent tumor, as a sign of
treatment failure. T2-Weighted and Fluid Attenuated Inversion
Recovery (T2W/FLAIR) imaging: In the context of tumor imaging,
T2W/FLAIR imaging provides information that generally relates to
tissue water content. The T2W signal or brightness is typically quali-
tatively assessed relative to reference tissues such as normal white
matter and gray matter. Particularly notable in low grade gliomas, bulk
tumor typically demonstrates T2W signal that is brighter than white
matter, and may be similar to slightly brighter than gray matter. In
high-grade tumors that demonstrate BBB disruption, there often exists
an even brighter, more peripheral “peritumoral” region of T2W signal,
surrounding the contrast enhancing volume, comprised predominantly
of non-tumoral vasogenic edema. This presumably results from hydro-
static efflux through highly permeable vessel walls, with fluid accu-
mulation within the extravascular extracellular space. This fluid often
tracts along white matter and spares cortical gray matter, resulting in a
classic “finger-like” pattern on imaging (Fig. 1).

4. Persisting challenges in imaging-based diagnosis and treatment
planning

The intratumoral heterogeneity of HGGs accounts for many per-
sisting clinical challenges in diagnosis and treatment planning. For in-
stance, while T1+C enhancement (i.e., BBB disruption) has classically
served as a surrogate of tumor burden, mounting evidence suggests that
MRI enhancement generally underestimates true tumor burden, parti-
cularly during first-line treatments, because of heterogeneity in the
imaging phenotype of these tumors. Namely, there are substantial
portions of each tumor that can express preserved BBB and therefore
lack enhancement [6–12]. These non-enhancing tumor populations
may be undertreated by surgery and radiation, which contributes to
recurrent disease and poor clinical outcomes. Even in completely non-
enhancing gliomas, the lack of MRI enhancing regions precludes the use
of MRI enhancement for conventional surgical targeting of high-grade
components. This creates challenges because low-grade and high-grade

components of tumor can demonstrate an identical appearance on
T2W/FLAIR imaging [13–15]. Studies using post-contrast T2W/FLAIR
imaging suggest increased conspicuity of areas of BBB disruption fol-
lowing contrast administration, suggesting improved delineation of
tumor extent. [16,17] However, further studies employing spatially
localized histologic correlations are likely needed to validate these as-
sertions. This also does not address the lack of specificity of BBB dis-
ruption for distinguishing different histologic entities (e.g., tumor re-
currence from post-treatment effects).

Non-contrast enhanced T2/FLAIR abnormalities surrounding areas
of T1+C enhancement have also been used to define extent of disease
in GBM. Yet, despite the predominance of non-tumoral vasogenic
edema within this peritumoral region, there can also exist a variable
degree of infiltrative and/or bulk tumor that can demonstrate an
identical T2 signal appearance to that of non-tumoral edema (Fig. 1).
Because visual qualitative assessment lacks the specificity to resolve
these tumor populations, dosimetric radiation planning must assume
that the entire peritumoral region is at risk for containing undetected,
non-enhancing tumor. As a result, this region typically receives uniform
sub-maximal radiation doses, which would unnecessarily expose
normal non-tumoral brain to radiation, while potentially undertreating
the non-enhancing infiltrative/bulk tumor populations [6,7]. Devel-
oping better methods to detect non-enhancing tumor, and to distinguish
these regions from non-tumoral vasogenic edema, would improve ra-
diation dosimetric strategies to minimize exposure risk to normal brain,
while optimizing therapeutic doses to non-enhancing tumor. In regards
to image-based response assessment, there are also challenges to using
T1+C MRI enhancement as a marker of recurrent tumor burden.
Namely, MRI enhancement fails to distinguish non-tumoral post-treat-
ment related inflammation - namely pseudoprogression (PsP) and

Fig. 1. Two separate treatment naive GBM patients undergoing image-
guided biopsy within the non-enhancing vasogenic edema. The location of
biopsy A (top row, green dot) in patient A is shown to originate from within the
T2 hyperintense region outside of the T1+C enhancing volume. This biopsy
revealed 80% tumor burden at the time of histologic analysis. The location of
biopsy B (bottom row, green dot) in patient B is also seen to originate from
within the T2 hyperintense region outside of T1+C enhancement. While the
imaging appearance appears identical to the previous patient case, biopsy B
showed predominance of non-tumoral edematous brain, with a minimal
amount (< 10%) of tumor.

L.S. Hu, et al. Cancer Letters 477 (2020) 97–106

98



radiation necrosis(RN) - from tumor recurrence [18,19]. While non-
tumoral related changes represent a positive response to treatment and
a good prognosis, their identical appearance to tumor regrowth can
misguide treatment decisions [18,19]. Intralesional heterogeneity and
admixture between tumor and post-treatment changes can also impact
surgical targeting when histologic confirmation of recurrent disease is
needed [20,21].

5. Goals of integrating advanced imaging for improved diagnosis
and treatment planning

The integration of advanced imaging techniques can help address a
variety of unmet clinical challenges in neuro-oncology. These include:
1) Increasing the specificity of biopsy targeting for differentiating high-
grade vs. low-grade glioma regions - particularly in non-enhancing
gliomas lacking conventional MRI targets for high-grade tumor; 2)
Increasing the specificity for differentiating regions of HGG vs. non-
tumoral edema within the non-enhancing T2W/FLAIR - to better define
extent of tumor beyond the MRI enhancing component; and 3)
Increasing the specificity for differentiating regions of HGG recurrence
vs. post-treatment radiation effects (e.g., PsP, RN) within MRI enhan-
cing lesions that are used for response assessment following standard
chemo-radiation therapy. In subsequent sections of this paper, we in-
troduce the major advanced imaging techniques, and their clinical ap-
plications in relation to intratumoral heterogeneity. We focus on the
most published and clinically accessible techniques that are commonly
available for most imaging practices. These include Diffusion Weighted
Imaging (DWI), Diffusion Tensor Imaging (DTI), Dynamic Susceptibility
Contrast (DSC)-MRI, Dynamic Contrast Enhanced (DCE)-MRI, MR
Spectroscopy (MRS), as well as Positron Emission tomography (PET).
We also discuss some of the advanced methods of imaging analysis,
including texture analysis, machine learning, and mechanistic mod-
eling, which have been used to develop predictive multi-parametric
image-based models, as part of the emerging field of radiomics/radio-
genomics. In particular, we discuss the role of radiogenomics in resol-
ving the intratumoral genetic heterogeneity of HGG, and how this can
potentially augment the paradigm of individualized oncology.

6. Dynamic Susceptibility Contrast (DSC) perfusion MRI

The DSC-MRI technique measures the transient decrease in brain
signal intensity - most commonly on T2*W images - after the in-
travenous bolus administration of gadolinium-based contrast agent
(GBCA) to compute relative cerebral blood volume (rCBV) for all image
voxels. Measures of rCBV correlate directly with microvessel volume
[22,23], which remains distinct from the information on BBB integrity
(and vessel leakage) from T1+C images. In other words, rCBV can be
measured for all parts of the tumor and surrounding brain, irrespective
of enhancement or non-enhancement on T1+C images. In general,
high-grade angiogenic tumors (e.g., GBM, anaplastic astrocytomas)
exhibit higher microvessel volume and corresponding higher rCBV on
DSC-MRI compared to low-grade tumors, normal brain, and non-tu-
moral processes like inflammation and post-treatment effect. This fun-
damental principle underlies a number of clinically impactful applica-
tions in neuro-oncology, which include distinction between high-grade
and low-grade gliomas [14,24–27], prediction of malignant degenera-
tion of low-grade tumors [28], distinction of tumor recurrence from
non-tumoral post-treatment effects (e.g., pseudoprogression, radiation
necrosis)[20–22,64,92–94], quantification of tumor cell density and
extent [12,29–31] [12,29–31], prediction of prognosis and overall
survival [27,32–35], and non-invasive characterization of molecular/
genomic profiles [36–40].

7. Dynamic Contrast Enhanced (DCE) perfusion MRI

The DCE-MRI technique measures the dynamic signal increases on

T1W images after intravenous GBCA administration to measure vas-
cular characteristics, most notably vessel permeability, through the
metric k-trans. While conventional T1+C images detect whether vas-
cular leakage (from BBB disruption) is present, DCE measures how
quickly the leakage occurs. Pharmacokinetic modeling (commonly
employing a 2-compartment approach) is used to calculate k-trans as a
quantitative measure of vascular permeability (from BBB disruption)
[41]. This provides a complement to the qualitative assessment of BBB
disruption on T1+C images, and has been correlated with tumor grade
and response assessment [42–44]. However, compared to DSC-MRI
(which can be applied to both non-enhancing and enhancing tumor),
the use of DCE-MRI is limited primarily to the enhancing tumor seg-
ment, due to the dependence on BBB disruption and vascular leakage.
As such, application of DCE-MRI for assessing the non-enhancing tumor
components remains limited. In clinical practice, DSC-MRI represents
the most common method for assessing tumor perfusion characteristics
[45].

8. Diffusion-weighted imaging (DWI)

DWI measures the random microscopic (Brownian) motion of water
molecules through the application of dephasing and rephasing gra-
dients (in 3 orthogonal planes) during MRI acquisition. Retention or
loss of tissue signal - which relates to the bulk movement of water
molecules - is used to calculate quantitative diffusion metrics, typically
either apparent diffusion coefficient (ADC) or mean diffusivity (MD)
[41]. In the context of tumor imaging, restricted diffusion (i.e., low
ADC and/or low MD) has been shown by some groups to correlate with
high tumor cellularity, presumably due to high cellular packing relative
to low volume of extracellular water [46,47]. However, other studies
have reported contradictory correlations, with high diffusion metrics
corresponding to high tumor cellularity [30,48]. As such, these studies
in total introduce uncertainty as to how DWI metrics should be used to
quantify tumor cellularity. Also, a number of other pathophysiologic
processes (e.g., infarct, hemorrhage, necrosis, infection, post-treatment
change) can also manifest as restricted diffusion, which can further
confound interpretation and applicability [41].

9. Diffusion Tensor Imaging (DTI)

DTI (like DWI) measures microscopic water diffusion in tissue, but
does so in a greater number of orthogonal planes compared to DWI.
Specifically, at least 6 planes (or directions) are required by DTI, to
allow the use of a mathematical second order diffusion tensor to cal-
culate the directionality (or anisotropy) of water diffusion, most com-
monly summarized through the metric fractional anisotropy (FA) [49].
While isotropic diffusion refers to the equal, unconstrained motion of
water in all directions, anisotropic diffusion refers to directionally de-
pendent movement of water, which will be relatively more restricted
perpendicular to (rather than parallel to) specific microstructural
boundaries [50]. In the brain, application of DTI and FA values relate to
the inherent, directionally-dependent flow of water molecules along
normal white matter fiber tracts. The white matter tracts, as re-
presented through FA values, can be deviated or disrupted by tumor,
depending on growth patterns and local infiltration [51]. A number of
studies have compared FA values with image-localized biopsies to
identify imaging correlates of regional tumor quantity and extent of
invasion [8,29,48,52].

10. Proton (H1) MR spectroscopy (MRS)

(H1) MRS measures specific tissue metabolites that can inform of
underlying pathophysiologic and molecular processes. For instance,
choline [Cho]-containing compounds are primarily located within cell
membranes, with elevated [Cho] levels (relative to internal controls)
suggesting high cell membrane turnover, indicative of cellular
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proliferation and tumor growth. Lactate [Lac] indicates the presence of
tissue necrosis, which can relate to either tumoral necrosis or post-
treatment effect (i.e., radiation necrosis). Despite the clinical utility of
MRS, its use in the setting of evaluating intratumoral heterogeneity can
be limited by the requirement of large volumes of interest (ide-
ally ~ 1 cc) to provide adequate signal to noise ratio (SNR) for the
metabolic spectra [53]. Even with multi-voxel techniques that can im-
prove spatial resolution, evaluation of intratumoral heterogeneity can
be challenging, such as distinguishing admixed regions of tumor re-
currence and post-treatment effect [54]. Despite this limitation, MRS
remains highly clinically applicable for evaluating more homogeneous
conditions and disease states. For instance, recent advances in MRS
have enabled non-invasive detection of molecular signatures, specifi-
cally mutations in Isocitrate dehydrogenase 1/2 (IDH), which are pre-
sumably homogeneously expressed across the entire tumor. This has
been accomplished through detection of increased levels of the meta-
bolite 2-hydroxyglutarate (2HG), which is elevated in the presence of
IDH-mutant tumors, but normal in IDH-wildtype tumors [55,56].

11. Positron Emission tomography (PET)

PET imaging is a nuclear medicine method that detects the anatomic
distribution of radiolabeled molecules based on tissue-specific meta-
bolic activity and/or accumulation. PET imaging requires the injection
of a particular metabolic substrate (e.g., amino acid, glucose analog)
which has been linked with a positron-emitting isotope (e.g.,11C, 18F).
The utility of PET imaging for neuro-oncology is impacted by the choice
of metabolic substrate as well as the PET radioisotope. For instance,
11C-MET (11C-methyl-L-methionine) has been widely studied in neuro-
oncology for its increased uptake in brain tumors; however, the short
half-life of 11C (~20 min) has restricted its use to only medical centers
with an onsite cyclotron [57]. For those reasons, 18F-based radiotracers
have gained greater clinical adoption due to the longer half-life
(~110 min), which increases clinical feasibility. 18F-FDG (2-18F-
fluorodeoxyglucose) is the most widely used clinical PET method for
evaluation of neoplasms outside of the CNS; however, 18F-FDG has
limited applicability to detect uptake in brain tumors due to the high
baseline levels of glucose metabolism in normal brain [57]. Radio-
tracers that combine 18F with amino acid analogs have to date shown
the greatest utility in neuro-oncology, including 18F-FDOPA (3,4-di-
hydroxy-6-18F fluoro-L-phenylalanine) and 18F-FET (O-(2-18F-fluor-
oethyl)- L-tyrosine) [7,58]. The advantages of these radiotracers in-
clude: 1) high accumulation within tumor cells, which has been linked
in part to plasma membrane transporters such as LAT1 [59]; 2) low
background activity in normal brain, which facilitates detection of tu-
moral tissue on imaging [60]; and 3) the ability to cross an intact BBB,
which aids evaluation of non-enhancing tumor [61]. While radiotracers
such as 18F-FLT (18F-3′-deoxy-3′-fluorothymidine) have shown high
correlation with tumor indices such as proliferation and grade [62],
18F-FLT has limited applicability for defining the extent of non-en-
hancing tumor due to the inability to cross an intact BBB [63]. While
PET requires separate image acquisition beyond that for MRI, the ad-
ditional complementary information on tumor metabolism likely pro-
vides an important adjunct to routine clinical imaging.

12. MRI image texture analysis

Classically, correlative studies comparing imaging features with
tissue benchmarks (e.g., histologic, molecular/genetic) have employed
either qualitative descriptions (e.g., presence or absence of MRI en-
hancement), or have compared individual quantitative metrics (e.g.,
rCBV, ADC) in univariate fashion. This has yielded robust correlations
for certain clinical scenarios, such as the use of DSC-MRI to distinguish
tumor from post-treatment effects (e.g., pseudoprogresion, radiation
necrosis) [64,65]. Yet, for other scenarios, such as the prediction of
genetic status, the imaging-tissue correlations may not be readily

evident by qualitative visual inspection, or may not be adequately re-
presented by simple statistical features (e.g., mean, standard deviation).
This has motivated imaging researchers to extract more sophisticated
quantitative imaging metrics through techniques such as texture ana-
lysis. Specifically, MRI spatially encodes signal intensity values for all
voxels comprising each image. The textural patterns between voxel
intensities and their surrounding neighbors can provide further insight
to tissue microstructure and phenotypic heterogeneity within the local
environment [12,37].

Some common texture algorithms include Gray Level Co-
Occurrence Matrix (GLCM), Local Binary Patterns (LBP), and Gabor
features (GF). Gray Level Co-Occurrence Matrix (GLCM) provides
detailed gray scale data by describing the angular relationships and
distances between neighboring image voxels with similar gray scale
intensities [66]. Commonly used in texture analysis, GLCM uses second
order statistics of the distribution of gray-scale intensity level within a
region of interest (ROI). Each element in the co-occurrence matrix
shows how often a pair of intensity levels is seen in a configuration
defined by a certain radius and angle. Local Binary Patterns (LBP)
provides highly discriminatory rotational and illumination invariant
structural information by labeling each image voxel (in binary fashion)
as higher or lower intensity compared with neighboring voxels [67].
Highly cited as a method for texture description, LBP evaluates the
intensity distribution of the set of points within a certain radius of each
voxel in an ROI. Gabor features (GF), originally introduced by Dennis
Gabor [68], are generated through a linear filter used for texture ana-
lysis. The technique employs multiplication of a cosine/sine wave with
a Gaussian window to identify specific frequencies in image voxel
patterns across a specific direction within an image. The methodology
has been extended to allow 2-dimensional (2-D) and 3-dimensional (3-
D) measurements [69,70].

Image-based modeling approaches: In this section, we introduce
common data-driven Machine-Learning (ML) approaches that support
radiomics/radiogenomics predictive modeling of intratumoral hetero-
geneity. We also describe alternative mechanistic modeling methods
that can complement data-driven ML.

13. Machine-learning (ML) models

With advances in imaging technology and molecular/genetic pro-
filing techniques, the complexity of clinical data will continue to rise.
Integrating these complementary sources of data often requires ad-
vanced modeling approaches (compared to more simplistic univariate
statistical correlations). Machine Learning (ML) represents a data-
driven approach to identifying meaningful patterns and correlations
from often complex data sources. ML models use training data as inputs
for the model to “learn” the patterns or associations between those data,
and subsequently predict on new instances using the learned patterns
from model training. The use of ML algorithms has enabled the emer-
ging field of radiogenomics, which utilizes inputs from image features
(often from texture analysis) and genetic profiles (e.g., EGFR amplifi-
cation status, PTEN deletion status), to train predictive models that
inform of genetic status using the image features alone. This same
concept can be applied to predict other clinical scenarios by modifying
the inputs and re-defining the predicted outputs (e.g., using MRI fea-
tures to predict tumor cell density). To build the input-output re-
lationships, many ML algorithms can be potentially used. Here, we have
highlighted several common choices.

13.1. Support vector machines (SVM)

SVM was originally developed as a binary classification model,
which constructs a hyperplane in a high- or infinite-dimensional feature
space to separate samples belonging to two classes [71]. SVM exploits a
kernel approach such that samples do not actually need to be projected
to the high- or infinite-dimensional feature space but the computation
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can be done in the original feature space. Different kernels can be
chosen for optimizing performance. SVM has been extended for multi-
class classification and regression problems. SVM can identify both
linear and non-linear relationships between image features and ge-
netic/cellular markers, depending on the choice of the kernel.

13.2. Tree ensembles

This usually refers to a class of methods based on trees, such as
decision tree [72], bagging [73], boosting [74], and random forest
[75]. A decision tree is constructed by recursively partitioning the
sample space using image features. The feature used for each partition
and the splitting point of the feature for partitioning the present tree
into a left and a right branch are determined by optimizing a criterion
such as the Gini index [76]. Because using a single tree is ambitious and
has the risk of missing the optimal predictive model, more advanced
methods introduce randomness through bootstrapping the samples or
using subspaces of features for improved performance such as bagging,
boosting, and random forest. Because more than one predictive model is
built in these methods, there is an ensemble of models for which the
predictive result for a sample needs to be combined by approaches such
as majority vote. Tree ensembles are non-linear models and provide
greater interpretability for the reasoning process of how the prediction
result is reached through involving a series of features.

13.3. Sparse regressions

This refers to a class of regression-based models that are particularly
crafted to handle high-dimensional image features. Different from or-
dinary regression, sparse regression models include penalties of various
forms on the regression coefficients to reduce the model complexity.
The most well-known model is lasso [77], which uses a L1-penalty
whose effect is to make small coefficients to be exactly zero and
therefore to only keep coefficients representing strong relationship
between image features and the genetic/cellular marker. Other penal-
ties such as L2 and L21 are also commonly used, leading to popular
models such as elastic net [78], fused lasso [79], and graph-regularized
lasso [80].

14. Mechanistic modeling

Mechanistic models offer a valuable complement to the data-driven
approach of machine learning (ML), by providing biological principles
and constraints that can improve clinical interpretability. In contrast to
ML approaches, mechanistic models begin by making assumptions
about the physical system of interest, writing equations capturing these
assumptions, and then fitting parameters of these equations to the ob-
served system. Mechanistic models have been used to study gliomas
since the mid 1990s. The most dominant model, still in use today,
captures the diffuse infiltration and proliferation of the glioma cells and

is referred to as the Proliferation-Invasion (PI) model [81,82]. This is a
relatively simple partial differential equation model with two key
parameters D, the diffusion rate, and rho, the proliferation rate. The
solution of this model is a traveling wave that travels at some velocity
and with some slope, both related to the two key parameters. By
working in spherical symmetry and assuming the T1+C abnormality
represents regions exhibiting 80% of the tumor cell carrying capacity
and above and the T2/FLAIR regions correspond to 16% and above, one
can parameterize this model in a patient-specific way given just the
standard imaging. These image-based growth kinetics, and the intuition
they provide, have proven statistically significantly prognostic in many
ways including survival, response to radiation, benefit from resection,
and defining response metrics.

Specific clinical challenges that arise from intratumoral hetero-
geneity (and how imaging can address these challenges). We review
the pertinent literature and focus on those published studies employing
image-localized biopsies to resolve the spatial intratumoral hetero-
geneity of glioma.

15. Differentiating high-grade vs. low-grade glioma regions in
non-enhancing gliomas

Non-enhancing gliomas (i.e., those lacking BBB disruption) present
unique challenges for surgical targeting during diagnostic biopsy. While
non-enhancement generally suggests low-grade tumor, approximately
30-40% of nonenhancing gliomas are in fact malignant [13–15]. Due to
intratumoral heterogeneity, these high-grade components can actually
co-exist with low-grade tumor within the same non-enhancing lesion.
And lack of a T1+C enhancing target makes it difficult to reliably lo-
calize those high-grade components using conventional MRI alone. All
of these factors can contribute to a reported 30% incidence of sampling
error and misdiagnosis (i.e., undergrading) of non-enhancing high-
grade gliomas [83]. To address this, Maia et al. compared DSC-MRI
measures of rCBV with histologic grade from image-localized biopsies
in a cohort of non-enhancing gliomas, including multiple biopsies from
the same tumor [14]. They found that low-grade diffuse astrocytomas
exhibited significantly lower rCBV compared to high-grade anaplastic
astrocytomas, which they later showed to relate to increased VEGF
expression [84] They also found that other types of low-grade gliomas
(e.g., oligodendrogliomas) can demonstrate mildly higher rCBV com-
pared with low-grade astrocytomas, but not as high as anaplastic as-
trocytomas. They concluded that DSC-MRI provides a clinically valu-
able method for guiding surgical targeting to identify potential high-
grade components in non-enhancing gliomas. These findings were
supported in a prospective study by Chaskis et al., in which they used
DSC-MRI rCBV maps to assist MRI-guided biopsies in 55 glioma patients
[83]. They found that rCBV improved target selection, independently
from T1+C enhancement, for discriminating high-grade from low-
grade gliomas. Fig. 2 shows an example how DSC-MRI rCBV maps,
superimposed intraoperatively with conventional MRI, can improve the

Fig. 2. 40 y/o male with 2 separate
biopsies for a mass suspicious for low-
grade glioma. The suspected low-grade
glioma appears as a (A) T2W hyperintense,
expansile mass in the left insular region
with (B) no appreciable enhancing focus.
(C, D) On DSC-MRI rCBV maps that have
been thresholded and color-coded, pink re-
gions indicate high rCBV above 2.5. Green
indicates low rCBV below 1.0, and Blue in-
dicates moderate rCBV between 1 and 2.5.
Two separate biopsies were taken from the
patient's tumor. Biopsy #1 within the lesion

(C) was taken from a moderate rCBV region (blue) and yielded low grade (Grade 2) Oligodendroglioma on histopathology. Biopsy #2, from a high rCBV region
(pink), revealed a high-grade (Grade 3) component with MIB-1 of 19%, consistent with elevated proliferative indices. The rCBV threshold of 2.5 remains consistent
with the study by Maia et al. [14] to separate high-vs. low-grade oligodendrogliomas.
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diagnostic yield and recovery of high-grade tumor, from otherwise non-
specific, non-enhancing gliomas. DSC-MRI measures of rCBV have been
shown to demonstrate malignant transformation from low-grade to
high-grade tumor up to 1 year prior to the development of contrast
enhancement [28]. Pöpperl et al. evaluated 18F-FET PET imaging in 54
glioma cases using image-guided biopsies to differentiate tumors based
on histologic grade. The cohort included both enhancing and non-en-
hancing tumors. While maximum standardized uptake value (SUV)
showed adequate accuracy for differentiating low-grade from high-
grade tumors (sensitivity 71%, specificity 85%), they found that eva-
luation of dynamic uptake values could improve diagnostic perfor-
mance (sensitivity 94%, specificity 100%) [58].

16. Differentiating regions of HGG from non-tumoral edema and
defining tumor extent beyond regions of MRI enhancement

Non-enhancing tumor can account for a substantial proportion of
overall tumor burden for many GBM tumors. Because surgical resection
favors T1+C enhancing volume, and because T2W imaging lacks the
capability to distinguish infiltrating tumor from vasogenic edema, the
non-enhancing tumor component is often left unresected after surgery
and submaximally dosed by radiation therapy. Localizing the regional
extent and relative abundance of non-enhancing tumor could help re-
fine image-guided targeting and treatment. These issues underscore the
motivation for many groups to develop better image-based methods
that can quantify and optimally treat the non-enhancing tumor segment
of GBM.

Multiple independent studies have correlated various advanced MRI
metrics with regional tumor cell density using image-localized biopsies
from the enhancing and non-enhancing components of glial tumors.
Across multiple independent studies, the most consistent correlations
have been observed with DSC-MRI. Measures of rCBV have shown
consistently low-to-moderate positive correlations between rCBV and
tumor cell density across 4 different image-localized biopsy studies
[29–31,85]. For DTI, the reported correlations have been slightly more
variable. Two separate studies reported strong negative correlations
between anisotropic diffusion (i.e., FA) and regional tumor cell density
from image-localized biopsies, suggesting that tumor growth disrupts
the integrity of white matter fiber tracts [48,86]. However, a third
study reported a strongly positive correlation between FA and regional
tumor cell density, which contradicts the previous studies [52]. Dis-
crepancies have also been observed with reported DWI correlations,
which have been split between negative and positive correlations be-
tween ADC and/or MD and regional tumor cell density from corre-
sponding image-localized biopsies [30,46–48]. Based on these studies,
if choosing one imaging technique, DSC-MRI measures of rCBV appear
to provide the most consistent correlation with tumor cell density.
However, this correlation is low-to-moderate at best, which suggests the
limitations in relying on a single MRI-based imaging metric to reliably
predict regional tumor cell content.

Recognizing this gap, several groups have developed predictive
models that incorporate multiple complementary imaging features, in
combination, to improve the predictive performance for quantifying
regional tumor cell density. Hu et al. employed multi-parametric MRI
(including rCBV, MD, FA) and texture analysis to train an ML model
that predicted the binary classification of high-vs. low-tumor content
(≥80% vs.< 80% tumor) within corresponding image-localized biop-
sies. The model achieved 85% cross-validation accuracy, and 82% ac-
curacy in a separate validation set [12]. Other groups have developed
ML models to predict tumor cell density on a continuous scale, rather
than using a binary approach. Durst et al. employed an ML model that
incorporated multiple MRI contrasts (including rCBV, MD, FA) and
achieved strong correlations (r = 0.75) in the training set between
predicted and actual tumor cell density from image-localized biopsies
[116]. Similarly, Chang et al. reported a multi-parametric model (in-
cluding ADC) that also achieved strong correlation (r = 0.74) in the

training set [47].
Gaw et al. demonstrated the feasibility of incorporating mechanistic

models with machine-learning (ML) to improve the biological inter-
pretability and predictive performance of ML-based models [87]. They
developed a hybrid model integrating ML and the mechanistic (PI)
model, using image-localized biopsies in the 18 patient GBM cohort
from Hu et al. [12] This hybrid ML-PI model improved the predictive
performance (r = 0.84) for quantifying tumor cell density (as a con-
tinuous variable) compared to ML alone (r = 0.52). The strength of ML
derives from its ability to integrate complex arrays of MRI and tissue
data (including patient-specific histologic inputs) to inform model de-
velopment [12,29]. This approach is strengthened further by using
spatially-matched MRI and image-localized biopsies as inputs for model
training. Yet, ML is inherently limited in the ability to generalize be-
yond these localized data inputs. As such, integration of mechanistic
modeling approaches would help to integrate the spatial relationships
of neighboring biopsies or to generalize predicted outputs between
biopsy locations, by providing constraints from grounded biological
principles. This can also beneficially affect the feasibility of predicted
outputs (e.g., tumor growth/invasion along brain edges). The me-
chanistic PI approach offers biological inferences and spatial contiguity
that ideally complement data-driven ML.

The aforementioned studies have all taken a “one-model-fits-all”
approach that uses a training cohort of patient data to develop a single
model, which would then be applied uniformly to all future prospective
patients. Such models would lack the capability to account or adjust for
potential interpatient variabilities in image-tissue correlations, which
could degrade the model fit for outlier cases. To address this potential
confound, Hu et al. developed an ML model using Transfer Learning to
further improve predictive performance [29]. This approach uses
training cohort data to develop a template model, which can then be
transferred and optimized for each individual patient using their own
MRI and biopsy data. Following cross validation, the model sig-
nificantly improved the correlation (r = 0.88) between predicted and
actual tumor cell density across the entire cohort of image-localized
biopsies (n = 82), compared to the one-model-fits-all approach. In-
terestingly, this correlation increased further (r = 0.94) when focussing
on only those biopsies from the non-enhancing invasive edge (n = 33).
This work offers proof of concept for developing individualized patient-
specific models to optimize the predictive performance for image-based
applications such as dosimetric radiation treatment planning.

PET imaging has also shown utility in identifying the presence of
HGG tumor and helping to define tumor extent beyond MRI enhance-
ment. For this application, amino acid radiotracers have shown the
greatest utility, due to the ability to cross an intact BBB. For instance,
Pafundi et al. evaluated 18F-FDOPA PET imaging and MRI in 10 glioma
patients (23 image-localized biopsies). They compared SUV of 18F-
FDOPA within T2W/FLAIR abnormal regions, beyond MRI enhance-
ment, and found strong correlation with both the presence of tumor and
histologic features of aggressiveness (e.g., cell density, proliferative
indices) [7]. Stockhammer et al. evaluated 22 non-enhancing glioma
patients using 18F-FET PET imaging [60]. They found that cell density
and vascular density correlated strongly with 18F-FET uptake, despite
lack of MRI enhancement.

17. Differentiating regions of HGG recurrence from post-treatment
radiation effects (e.g., PsP, RN) for image-based response
assessment

Conventional contrast-enhanced MRI guides response assessment
for essentially all HGG patients and clinical trials worldwide.
Specifically, the T1+C enhancing volume is used as a surrogate of re-
current tumor burden. However, there is an increasing awareness of
non-tumoral post-treatment radiation effects (PTRE) – namely pseu-
doprogression (PsP) and radiation necrosis (RN) – that can exactly
mimic tumor recurrence on conventional MRI [19,41,88,89]. While
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tumor recurrence signals treatment failure, PTRE represents a positive
response to treatment with a good prognosis. This distinction can be
further complicated by the histologic admixture between HGG tumor
and PTRE, which can impact both diagnosis and prognostication, de-
pending on the relative histologic burden of each entity [54,65,90,91].
And in the case of surgical biopsy, regional heterogeneity and resulting
sampling errors can negatively affect the diagnostic confirmation of
tumor vs. PTRE, as well as the adequacy of tumor content for molecular
and genomic profiling [3]. These issues underscore the importance of
improving image-based response assessment, particularly in the context
of intratumoral heterogeneity.

Over the past decade, DSC-MRI has emerged as a clinically valuable
and accessible tool to distinguish tumor recurrence from PTRE within
otherwise non-specific T1+C enhancing lesions [92]. A meta-analysis
by Patel et al. has highlighted a continually expanding body of litera-
ture showing consistently higher rCBV values in HGG tumor compared
to PTRE [21,41,92−95]]. Yet, variability in reported rCBV thresholds
across different studies can generate confusion about prospective clin-
ical guidelines, which underscores the need to not only standardize
DSC-MRI methodology, but to also employ spatially accurate validation
methods that can address the confounds of intratumoral histologic
heterogeneity. First, not all studies employ histologic validation, as
some rely instead on serial imaging (in lieu of histology) to classify MRI
lesions as tumor recurrence (serially enlarging) vs. post-treatment effect
(serially regressing) [96,97]. This approach has pitfalls given that post-
treatment effects can serially enlarge over time (mimicking growth of
tumor), and even regressing lesions can contain components of indolent
tumor. Second, across those studies employing histologic validation,
rCBV thresholds could be affected by the variability in histologic cri-
teria used to define HGG tumor vs post-treatment effect. For instance,
some studies have required that surgical samples contain at least 20%
tumor to be classified as tumor [98], while other studies have used
lower histologic thresholds [64,65,93,99]. Finally, most studies have
employed non-localizing methods of image correlation, which could
promote tissue sampling error and potential discrepancies between the
biopsy location and the analyzed portions of the MRI enhancing lesion
[92].

To overcome the challenges of intratumoral heterogeneity and
tissue sampling error, Hu et al. undertook a series of studies employing
image-localized biopsies and spatially matched DSC-MRI to identify an
rCBV threshold that could accurately separate HGG tumor samples from
those with PTRE [22,64,65,99]. They found that the rCBV threshold of
1.0 (when normalized against contralateral white matter) could sepa-
rate HGG recurrence from post-treatment changes with 96% accuracy
(100% specificity, 92% sensitivity) [64]. This accuracy improved fur-
ther when evaluating only patients with GBM [65]. Moreover, this rCBV
threshold could be used to classify each image voxel as containing ei-
ther tumor or PTRE, which provides voxel-based maps of spatial dis-
tribution for regional recurrence vs. post-treatment change (Fig. 3).
Quantifying the abundance of tumor voxels, relative to PTRE voxels,
defines the metric Fractional Tumor Burden (FTB), which correlates
with histologic tumor burden and overall survival [65]. This provides a
clinically validated and accessible tool for response assessment, which
has since been independently validated by Prah et al. using image-lo-
calized biopsies and spatially matched rCBV [21].

18. Role of radiogenomics in resolving intratumoral genetic
heterogeneity in HGG, and how this potentially augments the
paradigm of individualized oncology

While the prognosis for GBM remains poor with standard treatment,
genomic profiling offers the potential to improve outcomes through
more personalized therapies [100]. In particular, individualized on-
cology seeks to drive optimal treatment decisions based on each pa-
tient's genetic diagnosis and the unique drug sensitivities of each tumor
[101]. Unfortunately, this potential benefit has yet to be realized in any

meaningful way, due in large part to GBM's profound intratumoral
heterogeneity and the confounding issues of tissue sampling [102].
Specifically, each GBM tumor actually comprises multiple genetically
distinct subpopulations with differing sensitivities, such that genetic
targets from one biopsy location may not accurately reflect those from
other parts of the same tumor [103]. Tissue sampling errors are mag-
nified by the fact that surgical targeting favors MRI enhancing tumor
components but leaves behind residual subpopulations within the non-
enhancing tumor segment [37,104,105]. Ironically, these un-
characterized residual subpopulations represent the primary targets of
adjuvant therapy and the main source of recurrence, but may harbor
genetic drug targets that remain “unknown”, even after gross total re-
section [86,106].

The emerging field of radiogenomics has shown the feasibility of
using MRI-based signatures to predict underlying genetic status, and
the potential to apply these predictions to inform clinical decisions in
the context of individualized oncology. As an example, radiogenomics
models that can predict the amplification status of receptor tyrosine
kinases (e.g., EGFR, PDGFRA) within the residual tumor segment could
help stratify which patients would benefit from adjuvant targeted drug
therapies, given the abundance of clinically tested and available in-
hibitors on market [101]. Historically, most published radiogenomics
studies have employed non-localizing correlations, which assume
homogeneous expression of these genetic targets, whereby a single

Fig. 3. Two separate GBM patients status post standard adjuvant chemo-
radiation therapy undergoing surgical biopsy for suspected recurrence. In
patient 1, (1A) T1+C images demonstrate a large heterogeneously enhancing
mass concerning for tumor recurrence. The green dot depicts the stereotactic
location of the biopsy specimen. (1B) On the coregistered FTB map, which is
superimposed on the T1+C image, blue voxels correspond to predicted PTRE
regions with low rCBV ≤ 1.0. The yellow (1.75 ≥ rCBV > 1.0) and red
(rCBV > 1.75) voxels correspond to predicted tumor regions. The FTB metric
is defined as the percentage of both yellow and red voxels relative to all voxels
within the green ROI (green box) around the biopsy location (green dot). The
FTB for the biopsy measured 0.96 (i.e., 96% of the voxels were predicted as
tumor), which correlated with histologic quantification of 95% tumor from the
spatially matched biopsy specimen. In patient 2, (2A) the T1+C image again
demonstrates a large heterogeneous mass concerning for tumor recurrence.
However, (2B) the FTB map shows an abundance of blue voxels consistent with
predominant PTRE, with an FTB measurement of 0 (i.e., 0% of the voxels were
predicted as tumor) within the ROI (green box) around the biopsy location
(green dot). This correlated with the histologic findings of post-treatment effect,
with no visible tumor within the spatially matched biopsy specimen.
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representative genetic profile and imaging signature are used to sum-
marize the entire tumor as a whole [36,38,40,106–111]. Unfortunately,
these non-localizing studies remain incapable of resolving GBM's in-
tratumoral heterogeneity, particularly within the non-enhancing tumor
populations, given that most biopsies, by clinical convention, originate
from MRI enhancement [106,112]. Further, MRI contrast-enhancement
itself (whether on T1W or T2W/FLAIR imaging) due to BBB disruption
inherently lacks the specificity to distinguish many of the genetically
distinct tumor populations that can reside within a single tumor [37].
This is due to the fact that genetic heterogeneity can exist even amongst
different regional biopsy samples from the same MRI enhancing seg-
ment. This genetic heterogeneity has also been observed within the
non-enhancing tumor segment [37].

To address this challenge of intratumoral heterogeneity, Hu et al.
undertook the first study of its kind using spatially resolved tissue
sampling to develop predictive models of regional genetic hetero-
geneity in GBM [37]. To accomplish this, they employed a combination
of image-localized biopsies, spatially matched MRI and texture features,
and machine-learning (ML) methodology. They identified MRI sig-
natures at the voxel-level that could classify the status of key GBM driver
genes throughout different regions within a single GBM tumor, in-
cluding the non-enhancing invasive edge [37]. Importantly, this offers a
clinically viable solution for non-invasively diagnosing the potentially
unique drug targets within the residual unresected tumor segment,
which remains a persisting challenge due to the inability to routinely

surgically sample this region (Figs. 4 and 5). Barajas et al. also under-
took an image-localized biopsy study, which confirmed that enhancing
and non-enhancing tumor segments often express different gene ex-
pression and imaging signatures, further validating the importance of
spatially resolving the unique genetic targets within the non-enhancing
tumor segment [106].

Future directions and the path to improving patient care: Advanced
imaging and image-based modeling offer a variety of impactful and
clinically feasible solutions to address the challenges brought on by
intratumoral heterogeneity in glioma. In the case of DSC-MRI, use of the
metric rCBV has already shown far reaching and widely validated ap-
plications for surgical targeting and response assessment. Further pro-
gress will likely stem from continued work in developing consensus
recommendations to standardize both image acquisition and post-pro-
cessing methods across institutions. And for the still burgeoning field of
radiogenomics, clinical assimilation of these predictive models will
need to address issues of clinician confidence, to overcome the “black
box” stigma of ML and other technologies stemming from Artificial
Intelligence. Such efforts to address predictive uncertainty [113] and
the biological interpretability [87] of model predictions will provide
the needed transparency to facilitate their integration into clinical de-
cision-making. And finally, work will be needed to identify ways to
continually improve the standards of clinical care through the use of
these advanced imaging techniques. Examples include novel ap-
proaches to radiation dosimetric targeting based on spatial cell density

Fig. 4. Radiogenomics map demarcating re-
gions of amplification (amp) for Epidermal
Growth Factor Receptor (EGFR) in a 63 y/o
Male with primary GBM. (A) The lesion is
shown on the T2W image, with the margins
demarcated by the bright green outline. The
location of the biopsy (which was subsequently
genetically profiled) is shown by the yellow
arrow and yellow circle. (B) The central enhan-
cing component is outlined by the dark green
line on the T1+C image. The biopsy location
(yellow arrow, yellow circle) is again shown,
originating from the peripheral T2W non-en-
hancing component of tumor. (C) The radio-
genomics map shows predicted regions of EGFR
amplification (red) and non-amplified EGFR
wildtype (wt) (blue), within the T2W region of
interest (bright green outline) around the tumor.
The radiogenomics map prediction of EGFR
amplification (red) for the biopsy location cor-
responds with the elevated copy number variant
(CNV) of 17.79, confirming EGFR amplification.

Fig. 5. Radiogenomics map demarcating re-
gions of amplification (amp) for Epidermal
Growth Factor Receptor (EGFR) in a 67 y/o
Male with primary GBM. (A) The lesion is
shown on the T2W image, with the margins
demarcated by the bright green outline. The lo-
cation of the biopsy (which was subsequently
genetically profiled) is shown by the yellow
arrow and yellow circle. (B) The central enhan-
cing component is outlined by the dark green
line on the T1+C image. The biopsy location
(yellow arrow, yellow circle) is again shown,
originating from the T1+C enhancing compo-
nent of tumor. (C) The radiogenomics map
shows predicted regions of EGFR amplification
(red) and non-amplified wildtype (wt) (blue),
throughout the entire T2W region of interest
(bright green outline). The radiogenomics map

prediction of EGFR wild-type (blue) for the biopsy location corresponds with the low copy number variant (CNV) of 2.89 for EGFR, consistent with absence of
amplification.
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maps, as well as adaptive therapeutic approaches that can leverage the
interactions between co-existing genetic subpopulations that comprise
each tumor [114].
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