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The study by Mouraviev et al' brings to light the important con-
cept of assimilating radiomics predictions with other clinical
information to augment diagnostic performance. In the most
basic terms, radiomics models integrate non-invasive imaging
(typically MRI) with specific clinical parameters—such as ge-
netic status from corresponding biopsies—as matched data
inputs to train machine-learning (ML) algorithms. These ML al-
gorithms identify the statistical correlations within the training
data to non-invasively predict the clinical parameter of interest
(eg, epidermal growth factor receptor [EGFR] amplification) on
new unseen cases using the MR images alone. This has poten-
tially transformative implications for many aggressive CNS tu-
mors that may not be amenable to complete surgical resection,
like glioblastoma (GBM) or multiple brain metastases. Namely,
one of the fundamental challenges for individualized oncology
(ie, precision medicine) lies in the inability to resolve the internal
genetic heterogeneity of tumors like GBM using surgical biop-
sies alone, because the genetic drug targets from one biopsy
location may not accurately reflect those from other parts of
the same tumor.? Similarly, the genetic alterations within a sur-
gically biopsied brain metastasis may differ from other surgi-
cally unsampled metastases elsewhere in the brain.? Ironically,
these unbiopsied/unresected tumor populations harbor the
most clinically relevant sensitivities to targeted drug therapy,
despite remaining “unknown” even after gross total resection.
In light of these challenges, recent use of image-localized bi-
opsies and spatially resolved radiomics maps of intratumoral
genetic heterogeneity have introduced clinically viable solu-
tions for diagnosing the potentially unique drug targets within
the residual unresected tumor segment.* These maps also
offer insight into the dynamics between neighboring genetic
subpopulations, which could be leveraged for therapeutic ben-
efit. This positions radiomics at the forefront of decision sup-
port for the still evolving paradigm of individualized oncology.
With that said, there are challenges that must be addressed
before radiomics can reliably integrate with clinical decision

making. For instance, existing radiomics models lack the ability
to quantify or report the uncertainty associated with each pre-
diction. Past studies have focused on accuracy (eg, sensitivity/
specificity) and covariance (eg, standard error, 95% confidence
intervals) in group analyses but have not yet addressed the un-
certainty for individual predictions. This uncertainty represents
a key feature of all modeling approaches, because it informs
how each patient’s data coincide with the model’s ability to
make a prediction on those data.® In the context of ML, pre-
dictive uncertainty generally relates to the abundance or spar-
sity of the model’s training data.The scope of this training data
(whether sparse or abundant) establishes the upper and lower
bounds of the model domain, which guides the predictions
for all new unseen test cases (ie, new prospective patients).
Ideally, the new patient’s test data fall within the distribution
of the training domain, which allows the radiomics model to
interpolate predictions with the lowest uncertainty. However,
if the patient’s test data fall outside of the training domain,
predictions must be extrapolated, at the cost of greater model
uncertainty. Essentially all clinical models suffer from the uni-
versal problem of sparse training data, because patient biopsy
and imaging data are usually limited. This is particularly true
for heterogeneous tumors like GBM, which require image-
localized biopsies (and spatially matched MRl measurements)
to resolve the regional genetic variability within each tumor.
As such, radiomics models invariably run the risk of extrapola-
tion, which underscores the importance of quantifying the un-
certainty of each model prediction. As an example, reporting
whether a patient’s tumor has a 55% likelihood of EGFR am-
plification may present different clinical implications than
reporting a 99% likelihood of EGFR amplification. But both
scenarios are more informative than simply stating that the
amplification is present (Fig. 1).” Predictive uncertainty allows
clinicians to understand how each patient’s data relate to the
training domain of the model, which can inform clinical confi-
dence and decisions on how to stratify the radiomics outputs
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Fig.1 Predictive uncertainty of radiomics models. Many nonmedical ML applications (eg, weather mapping, hydrologic forecasting) employ a prob-
abilistic approach to quantifying predictive uncertainty.” Such approaches can be implemented in radiomics models to inform the clinical confidence
in predicted diagnoses. As an example, in the scenario of high predictive certainty (ie, low uncertainty) (Model A, far left), individual predictions are
determined from the mean values (dark blue and orange lines) of relatively narrow probability distributions (blue and orange bars). These narrow
distributions represent relatively low predictive uncertainty, and in this case, are well separated from the clinical diagnostic threshold (dotted line)
guiding prospective diagnosis. This type of model provides the greatest utility when it achieves both high classification accuracy (ie, positive vs nega-
tive diagnosis) as well as high predictive certainty (ie, narrow probability distributions and low uncertainty) in the diagnosis provided by the model. An
example of a less useful model (Model B, middle) would exhibit lower predictive certainty (ie, higher uncertainty) as represented by broader proba-
bility distributions (blue and orange bars) that cross the diagnostic threshold (dotted line). Such overlap would convey lower clinical confidence in the
model-generated predictions of positive vs negative diagnosis (dark blue and orange lines, respectively). Regardless, having knowledge of predictive
uncertainty—whether high or low—provides valuable information and inherent confidence for clinical teams to stratify model outputs relative to
other clinical diagnostic information. Both Models A and B are preferred to current radiomics models (far right) that lack the ability to quantify predic-

tive uncertainty.

relative to other available clinical information and the
overall management considerations as a whole.

The clinical integration of radiomics models will also de-
mand continued improvements in predictive performance
and biological interpretability, particularly when applied
to individual patients in prospective fashion. It has been
shown that interpatient biological variations can impact
the strength of correlation between a patient’s imaging
data and their underlying tumor biology.® Interpatient dif-
ferences are evident even when stratifying by the most
fundamental of biological features, such as patient sex (ie,
male vs female), which influences not only tumor behavior
and gene expression, but also how these events phenotyp-
ically manifest on imaging.® As such, rather than trying to
generalize models for a broad patient population through
a “one-model-fits-all” approach, a more promising avenue
may be to tailor the model to fit the individual patient, or
subgroups of patients, much like treatments are tailored
in the context of personalized medicine. This individual-
ized approach to radiomics has already shown substantial
gains in model performance for predicting tumor cell den-
sity and extent.® Similar approaches should be translated
to other radiomics applications in the future. It is also in-
cumbent upon us, as physicians and clinical scientists, to
continue to impose our biological understanding and ex-
pertise in the development and application of radiomics
models. We should not accept a purely “black-box” ap-
proach to diagnosing and managing our patients. While

ML offers obvious benefits, it is a data-driven approach
with inherent limitations. For instance, ML generally suf-
fers in the ability to generalize correlations beyond the
training data (eg, extrapolate) or integrate the spatial rela-
tionships of neighboring and potentially correlated predic-
tions/biopsies within the same patient tumor. ML outputs
also lack constraints from grounded biological principles,
which can affect the feasibility of some predicted outputs
(eg, tumor growth/invasion along brain edges, prediction
of genetic aberrations in normal brain). As an example,
initial efforts in hybrid modeling—through the integra-
tion of biological inferences from mechanistic models—
have shown improvements in biological interpretability
and predictive performance over pure ML data-driven
models in specific clinical contexts.’ Continued work is
needed to expand such approaches to broader radiomics
applications.
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