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Abstract

Motivation: Genetic or epigenetic events can rewire molecular networks to induce extraordinary
phenotypical divergences. Among the many network rewiring approaches, no model-free statistical
methods can differentiate gene-gene pattern changes not attributed to marginal changes. This may
obscure fundamental rewiring from superficial changes.
Results: Here we introduce a model-free Sharma-Song test to determine if patterns differ in the second
order, meaning that the deviation of the joint distribution from the product of marginal distributions is unequal
across conditions. We prove an asymptotic chi-squared null distribution for the test statistic. Simulation
studies demonstrate its advantage over alternative methods in detecting second-order differential patterns.
Applying the test on three independent mammalian developmental transcriptome datasets, we report a
lower frequency of co-expression network rewiring between human and mouse for the same tissue group
than the frequency of rewiring between tissue groups within the same species. We also find second-
order differential patterns between microRNA promoters and genes contrasting cerebellum and liver
development in mice. These patterns are enriched in the spliceosome pathway regulating tissue specificity.
Complementary to previous mammalian comparative studies mostly driven by first-order effects, our
findings contribute an understanding of system-wide second-order gene network rewiring within and across
mammalian systems. Second-order differential patterns constitute evidence for fundamentally rewired
biological circuitry due to evolution, environment, or disease.
Availability: The generic Sharma-Song test is available from the R package ‘DiffXTables’ at https://cran.r-
project.org/package=DiffXTables. Other code and data are described in Methods.
Contact: joemsong@cs.nmsu.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Molecular network rewiring in cells can induce an extraordinary
phenotypical divergence such as pluripotency and differentiation (Boland
et al., 2014; Thiagarajan et al., 2014). Rewiring arises from either
genetic variations (Van Roey et al., 2013; Lundby et al., 2019) or
epigenetic reprogramming (Reik, 2007; Watanabe et al., 2013; Klinakis
et al., 2020). Rewired distal enhancer-promoter interactions within
conserved topologically associating domains (TADs) are the basis of tissue
specificity (Dixon et al., 2012, 2015; Phillips-Cremins et al., 2013; Smith

et al., 2016). In diseases, TAD boundaries are disrupted to rewire enhancer-
gene interactions (Lupianez et al., 2015). Such biological importances
of rewiring motivated many computational methods to infer differential
molecular networks from high-throughput omics data. However, we see
a lack of statistical foundation to account for observed differences across
systems as caused by either changed upstream input or a truly rewired
connection—the latter may drown in an ocean of superficial differences,
potentially missing a critical biological event.

Here, we define a conceptual framework that distinguishes types of
change across conditions. We define differential/conserved relationships
between two random variables by the presence/absence of differences in
joint distribution across conditions. A relationship is conserved if the
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pair of random variables share a joint distribution across all conditions;
otherwise they are differential. If relationships under some conditions
differ in the marginal distribution of either variable, they are first-order
differential. If some relationships differ in joint distribution not attributed
to differences in marginal distribution, they are second-order differential.
Relationships are full-order differential if they are both 1st- and 2nd-
order differential. In the context of a biological system, we argue that
2nd-order differences be intrinsic in network rewiring. This is because
a 1st-order difference does not require a changed biological circuitry; it
can be due to different downstream responses by two systems identical in
circuitry but with changed input. Transcriptome differences of the same
tissue type between human and mouse are reported to be much greater
than differences between distinct tissue types within the same species (Lin
et al., 2014); this finding provoked a debate on whether it is caused by
artifacts of unwanted confounding effects (Gilad and Mizrahi-Man, 2015).
However, the reported transcriptome differences can be dominated by 1st-
order effects; the extent of mammalian molecular network rewiring at the
2nd-order is not answered.

Differential correlation underlies the majority of methods for network
rewiring analysis (Hu et al., 2009; de la Fuente, 2010; Mentzen et al.,
2009; Leonardson et al., 2010; McKenzie et al., 2016; Jardim et al.,
2019). It can detect 2nd-order differences but only when variables in
a relationship are linearly related. Pairwise differential correlation is
generalized to differences in parameters in regression (Ouyang et al.,
2011; Ha et al., 2015; Kim et al., 2018; He et al., 2019; Xu et al.,
2019), but again with a strong assumption on the mathematical form of
relationships. Tests of differential patterns model-free—without assuming
parametric mathematical models for relationships—are scarce. A chi-
squared heterogeneity test for goodness of fit is available from statistics
textbooks (Zar, 2009). It is not as powerful as a comparative chi-squared
test (Song et al., 2014) that was applied to detect rewiring in fruit fly gene
networks and yeast metabolic pathways (Zhang et al., 2015). A recent
model-free chi-squared test named marginal change test determines the
first-order change in a pair of random variables across conditions (Sharma
et al., 2020). However, there is no method known to us to exclusively detect
2nd-order differences in relationships.

To detect 2nd-order differential patterns model-free, we present the
Sharma-Song test. It uses a contingency table to represent frequencies of
discrete row and column random variables. Such a table is the sample
joint distribution of the pair, enabling us to infer whether population
distributions are 2nd-order differential without a parametric model. We
quantify the difference in the extent to which the joint distributions of each
pattern deviate from the product of their respective marginal distributions.
We show that the test statistic is asymptotically chi-squared distributed
under the null hypothesis. Our simulation studies demonstrate marked
advantage of the test over alternatives in capturing 2nd-order differential
patterns. We also inspected the statistical power of the test via simulation.

To understand the extent of 2nd-order co-expression network
rewiring across tissue types within and between human and mouse,
we apply the Sharma-Song test on three independent mammalian
development transcriptome datasets: the uni-source FANTOM5 CAGE
collection (FANTOM Consortium et al., 2014; FANTOM Consortium,
2017), the uni-source Evo-devo RNA-seq collection (Cardoso-Moreira
et al., 2019), and a multi-source RNA-seq collection (Yang et al., 2017).
All datasets captured gene expression of all major tissue and cell types in
both human and mouse. Uni-source refers to data sequenced by the same
organization, subject to fewer technical variations than data from multiple
organizations (multi-source). Firstly, we compare network rewiring of the
same tissue groups between human and mouse. Secondly, we contrast
different tissue groups within human and also within mouse. The two
comparisons reveal higher frequencies of network rewiring across tissue
groups than across species on all three datasets. We also examined

Table 1. Statistical methods for testing three types of differential pattern.

Model-free Differential First-order differential Second-order differential

Yes Comparative chi-squared test Marginal change test Sharma-Song test
Heterogeneity test Pearson chi-squared test

Kolmogorov-Smirnov test

No Parametric regression Generalized linear models Differential correlation

network rewiring related to microRNA taking place in the development
of cerebellum versus liver in mice on the FANTOM5 data. Second-
order differential patterns between microRNA promoters and genes in
the spliceosome pathway are highly enriched between cerebellum and
liver. Complementary to previous work mostly driven by 1st-order effects,
our findings contribute an understanding of system-wide 2nd-order gene
network rewiring within and across mammalian systems.

2 Methods

2.1 Overview of the Sharma-Song test of second-order
change in joint distribution

The Sharma-Song test evaluates statistical evidence for 2nd-order
differential patterns across contingency tables. The null hypothesis is that
row and column variables are independent of each other in all tables and
tables are independently observed. It takes as input K contingency tables
C1, . . . ,CK of the same dimensions r× s. The test outputs test statistic
D2, degrees of freedom ν, and P -value, based on an asymptotically chi-
squared null distribution. The P -value is the statistical significance of
2nd-order differential patterns across the K tables. There are four major
steps in the test as outlined in Figure 1a. In Step 1, 1st-order effects
represented by expected C̄k are subtracted from each table Ck and the
remaining counts are normalized to Ak by squared roots of expected
counts in C̄k . In Step 2, we use Helmert transform to convert matrix
Ak to vector ek of dimension (r−1)(s−1). Components in ek are i.i.d.
standard normal variables under the null hypothesis. In Step 3, vectors
∆k , deviation from each vector ek to the pooled, form columns in matrix
Q. The rows of Q are projected to S+, the column space of common null
covariance matrix of row vectors of Q. In Step 4, the squared Mahalanobis
distances from the projected vectors to the origin are summed to give the
test statisticD2, chi-squared distributed with degrees of freedom ν under
the null hypothesis. Figure 1b illustrates the test on two genes NOTCH3
and PDGFA from the Evo-devo RNA-seq data (Cardoso-Moreira et al.,
2019). NOTCH3, a neurogenic locus notch homolog protein 3, regulates
the expression of PDGFRB (Jin et al., 2008), which in turn interacts
with heterodimers formed by PDGFA and PDGFB (Stelzer et al., 2008).
Additionally, the NOTCH3–PGDFA interaction is predicted (McDowall
et al., 2009). Contrasting the discretized co-expression patterns of the
pair between human ectoderm and primitive streak derived tissue groups,
the NOTCH3–PDGFA gene pair is declared statistically significantly
2nd-order differential (P = 1.58×10−31) between the two tissue groups.

The relationship of the Sharma-Song test with other methods for
detecting differential patterns is summarized in Table 1. Network rewiring
methods based on parametric models are widely available but not model-
free, carrying potential strong biases for new systems where parametric
model assumptions may be violated. Choices of model-free approaches
are relatively limited but they are less subject to model biases.

2.2 The Sharma-Song test

The Sharma-Song test examines K contingency tables for second-order
differences. Let X and Y be two discrete random variables of r and s
levels, respectively. For table k ∈ {1, . . . ,K}, let pk(X,Y ) be the
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Fig. 1. Overview and examples of the Sharma-Song test to detect 2nd-order
differential patterns. (a) The test has four steps, illustrated on two pairs of 3×3 contingency
tables. At a significance level of 0.05, the first pair (X, Y ) is declared 2nd-order differential
but not the second pair (U,W ). (b) Applying the Sharma-Song test on the genes NOTCH3
and PDGFA using Evo-devo data. Normalized (left) and discretized (right) co-expression
patterns of the pair in human ectoderm (red box) and primitive streak (blue box) tissue
groups are shown. At a significance level of 0.05, the NOTCH3–PDGFA gene pair is
declared 2nd-order differential between the two tissue groups.

joint probability mass function of X and Y ; let pk(X) and pk(Y ) be
the marginal distributions of X and Y . The K patterns are conserved
if p1(X,Y )= · · · =pK(X,Y ); otherwise they are differential. The
K patterns are first-order conserved if p1(X)= · · · =pK(X) and
p1(Y )= · · · =pK(Y ); otherwise they are first-order differential. The
K patterns are second-order conserved if p1(X,Y )−p1(X)p1(Y )=

· · · =pK(X,Y )−pK(X)pK(Y ); otherwise, they are second-order
differential: some pattern deviates from the product of marginal
distributions to an extent different from others. Patterns are full-order
differential if they are both first- and second-order differential.

Next, we define the Helmert transform. Given an r × s contingency
table C=[nij ] (nij≥0), we define its expected matrix C̄ = [n̄ij ] by

n̄ij =

∑s
l=1 nil

∑r
l=1 nlj

n
, where n =

r∑
i=1

s∑
j=1

nij (1)

wheren is the total counts in C. Normalizing C, we get matrix A = [aij ]:

aij = (nij − n̄ij)/
√
n̄ij (2)

Let matrix [pij ] be cell probabilities of a contingency table whose counts
follow a multinomial distribution. Let row marginal probability pi· be the

sum of row i of [pij ], and column marginal probability p·j the sum of
column j of [pij ]. The r× r row-Helmert matrix V = [vij ] is defined by

vij =



√
pi· i = 1

0 j > i, i 6= 1

−
√
p1· + · · ·+ pi−1·

p1· + · · ·+ pi·
j = i, i 6= 1√

pi·pj·

(p1· + · · ·+ pi−1·)(p1· + · · ·+ pi·)
j < i

(3)

and the s× s column-Helmert matrix W = [wij ] is defined by replacing
p1·, . . . , pr· by p·1, . . . , p·s in Eq. (3). The row- and column-Helmert
transform of A is given by E = VAW>. If the row and column variables
in C are independent, elements in matrix E have a statistical property as
given in Lemma 1 previously established (Lancaster, 1949; Irwin, 1949).

Lemma 1. A contingency table whose row and column variables
are statistically independent can be asymptotically partitioned into a
matrix of independent standard normal random variables, by orthogonal
transformation of table using an r × r row-Helmert matrix and an s× s
column-Helmert matrix.

We use sample marginal probabilities to set pi· =
∑s
j=1 nij/n

and p·j =
∑r
i=1 nij/n, resulting in the 1st row and 1st column of

E containing all zeros (Lancaster, 1949).
Now, we set up the Sharma-Song test on r × s contingency tables

C1, . . ., CK of sample size n1, . . . , nK , respectively. We calculate their
Helmert transformed matrices E1, . . . ,EK . Let ek be the column-major
vector representation of matrix Ek after removing its 1st row and 1st
column. ek thus has dimension M=(r − 1)(s − 1). Let e=

∑K
k=1 ek

be the pooled vector. Deviation vectors ∆k from ek to scaled e are

∆k = ek − bke with bk =

√
nk∑K

l=1

√
nl
, k = 1, . . . ,K (4)

where the scaling vector b = (b1, . . . , bK)> is chosen such that the
deviation vectors are all zero if all input contingency tables differ by a
linear multiplicative factor. A high magnitude of ∆k indicates strong
heterogeneity between contingency table Ck and other tables. With ∆1,
. . ., ∆K as columns, we form an M ×K matrix Q = [∆1, . . . ,∆K ].
We define the row vectors of Q by qm = (∆1m, . . . ,∆Km)>, m =

1, . . . ,M , where ∆km is the m-th component in vector ∆k . Under the
null hypothesis, the covariance matrices of qm, are all equal to

Σq = I− JKdiag(b)− diag(b)JK +Kbb> (5)

where I is the identity matrix and JK a matrix of all ones, both K ×K.

Lemma 2. The rank of covariance matrix Σq is exactly K − 1.

Lemma 2 is proven in Supplement A. As the inverse of rank-deficient
matrix Σq does not exist, the Mahalanobis distance from each qm to the
origin is undefined. By eigenvalue decomposition of covariance matrix
Σq, we have Σq = SΛS−1, where the columns of S are the eigenvectors
ofΣq and the diagonal matrixΛ contains the corresponding eigenvalues of
Σq. Keeping only theK−1 non-zero eigenvalues and their corresponding
eigenvectors, we obtain Λ+ and S+. Projecting qm to S+, the column
space of Σq, and summing up the squared Mahalanobis distances from
each projected vector to the origin, we obtain the Sharma-Song test statistic

D2 =

(r−1)(s−1)∑
m=1

∥∥∥q>m S+ Λ
−1/2
+

∥∥∥2 (6)

Theorem 1. Under the null hypothesis of row and column variables
being independent inK independent contingency tables of dimension r×s,
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the Sharma-Song test statistic D2 asymptotically follows a chi-squared
distribution χ2

ν with ν = (K − 1)(r − 1)(s− 1) degrees of freedom.

Theorem 1 is proven in Supplement B. With the chi-squared null
distribution, we can compute a P -value using the upper tail probability of
an observed statistic as the significance of 2nd-order difference.

We measure the effect size by normalizing the test statistic by the table
size and the total sample size:

ε =

√√√√D2

/[
(r − 1)(s− 1)

K∑
k=1

nk

]
(7)

Algorithm S1 Sharma-Song-Test in Supplement C computes the test
statistic, degrees of freedom, effect size, and statistical significance. It
takes as inputK contingency tables C1, . . . ,CK of dimension r× s. Its
time complexity is evidently O(K(r2s + rs2) + K3), constant in the
sample size of input tables, favorable for data of large sample sizes.

2.3 The second-order network rewiring pipeline

We introduce a pipeline for second-order network rewiring (Supplementary D).
It first finds the median absolute deviation (MAD) of each cognate
gene to remove hardly changed genes among the bottom 5% MAD.
It then divides the datasets into four species-tissue groups based on
developmental origin: human ectoderm, human primitive streak, mouse
ectoderm, and mouse primitive streak. Genes with zero variance within
each group are removed from further analysis. It runs four comparisons:
human ectoderm versus primitive streak, mouse ectoderm versus primitive
streak, human versus mouse ectoderm and human versus mouse primitive
streak. Each gene expression in each condition is discretized using an
optimal univariate clustering algorithm (Wang and Song, 2011; Song
and Zhong, 2020) that determines discretization levels by the Bayesian
information criterion (Kass and Wasserman, 1995). Each co-expression
pattern forms a contingency table. It then builds model-free co-expression
networks of each comparison based on Pearson’s chi-squared test for each
condition (Song et al., 2009). It reports Benjamini and Hochberg (1995)
(BH) adjusted P -values and Cramér’s V (Cramér, 1999) effect size for
each co-expression pattern among all possible gene pairs.

To detect 2nd-order differential patterns with strong dynamics,
significant co-expression with BH adjusted P<0.1 and Cramér’s V >0.8
in at least one condition is required for selecting a gene pair. All
gene expression levels are standardized to zero mean and unit variance
in each condition. Continuous expression values of each gene are
discretized (Song et al., 2020) on merged samples for that gene. The
Sharma-Song test evaluates co-expression patterns as contingency tables
for 2nd-order difference across conditions. BH adjusted P -values and
Sharma-Song effect sizes are collected for each co-expression pattern.
To offer a sufficient strength of differentiality, we further require both
a minimal Sharma-Song effect size ε and P -value for each study. To
determine the cutoff, we generated an alternative population by simulating
100,000 discrete differential co-expression patterns in two experimental
conditions with 100 samples in each. Differential co-expression patterns
were simulated using simulate_tables (Sharma et al., 2017) in
the ‘FunChisq’ R package (Zhang et al., 2020), where each of the two
contingency tables were randomly selected to carry either a functional, a
dependent but non functional or an independent relationship. Both the
number of rows and columns for each table were independently and
randomly selected to be between two and the maximum dimension size
(row or column) observed in tables from the study. We applied the Sharma-
Song test to determine ε60, the cutoff at 60% of the effect size computed
on the alternative population. We provide an R package ‘DiffXCoExpNet’
and R scripts to analyze second-order rewired networks on omics data

in Supplement D. Code and data for omics application are available for
download at https://www.cs.nmsu.edu/~joemsong/rewiring

2.4 Preparation of uni-source FANTOM5 CAGE data

Sample selection: The ectoderm-derived tissue group includes cerebellum,
diencephalon, hippocampus, medulla oblongata, pituitary gland, skin
and spinal cord. The primitive-streak-derived tissue group includes aorta,
colon, epididymis, heart, kidney, liver, lung, ovary, pancreas, prostate,
spleen, testis, thymus, tongue, and vagina. Adult samples are included.
Developmental data, unmatched between human and mouse, are not used
except two late neonatal time points N25 and N30 from mouse, as lab mice
can reach sexual maturity as early as three weeks post birth (Snell, 1956).
Considering only healthy samples, we identified 34 human and 37 mouse
samples. Transcription start sites selection: The first promoter region (p1)
in FANTOM5 usually represents the primary transcript most abundantly
expressed. Thus, we only used TSSs labeled as p1 in our analysis. We
found p1 of 13,574 cognate gene names between human and mouse. Gene
expression in tags per million (TPM) was log transformed after adding
one. By principal component analysis (PCA), we removed a sample of
human skin tissue as outlier. After preprocessing, we selected 9,757 genes
of rich dynamics for 2nd-order network rewiring analysis.

2.5 Preparation of uni-source Evo-devo RNA-seq data

The RNA-seq dataset by Cardoso-Moreira et al. (2019) was acquired from
developing tissues of mammals from early organogenesis to adulthood.
The time span of human tissues extended from week after conception,
infants, juveniles, to adults, whereas mouse tissues were collected from
embryo to post neonate developmental stages. Gene expression is already
normalized to RPKM. Sample selection: The dataset consists of seven
tissue types out of which cerebellum and brain are ectoderm derived
and heart, kidney, liver, ovary and testis are primitive streak derived.
Human and mouse data have 297 and 316 samples, respectively. Gene
selection: Out of 43,207 human and 35,192 mouse transcripts, we selected
15,992 cognate genes between human and mouse. Gene expression was
log transformed after the addition of one. After preprocessing, 13,307
genes of rich dynamics go to 2nd-order differential analysis.

2.6 Preparation of multi-source Yang et al. RNA-seq data

The RNA-seq dataset integrated by Yang et al. (2017) contains gene
expression of differentiated tissues in unit of FPKM and is already
normalized with batch effects removed. Sample selection: Out of 78 mouse
and 184 human samples, we selected primary tissue types derived from
either primitive-streak or ectoderm. The primitive streak group includes
colon, heart, kidney, liver, lung, ovary, placenta, spleen, and testis; the
ectoderm group includes brain, cerebellum, and cortex. Gene selection:
Out of 22,495 mouse and 20,343 human protein coding genes, we selected
15,662 genes cognate between human and mouse. Gene expression was
log transformed after the addition of one. After preprocessing, 13,910
genes of rich dynamics enter 2nd-order differential analysis.

3 Results

3.1 Second-order gene network rewiring between tissues
opposed to between mammalian species

To learn the extent of gene network rewiring across tissue types versus
across mammals, we performed four comparative studies between two
tissue groups and between human and mouse on the FANTOM5 CAGE,
Yang et al. RNA-seq, and Evo-devo RNA-seq collections. Table 2 and
Figure 3 summarize the four comparative studies for all three collections.
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Table 2. Percentages of second-order rewired gene pairs among co-
expressed gene pairs across tissue types and across mammalian species.

Collection Comparison Co-expressed 2nd-order rewired (%)

Across Tissue Type
FANTOM5 Human: ectoderm (16) vs primitive streak (18) 521,416 112,794 (22%)

CAGE Mouse: ectoderm (10) vs primitive streak (27) 3,507,316 494,585 (14%)

Uni-source Across Species
(n=71) Ectoderm: Human (16) vs Mouse (10) 3,537,651 416,013 (12%)

Primitive streak: Human (18) vs Mouse (27) 472,845 36,953 (8%)

Across Tissue Type
Evo-devo Human: ectoderm (111) vs primitive streak (186) 917,171 362,684 (40%)
RNA-seq Mouse: ectoderm (98) vs primitive streak (218) 4,913,298 1,305,751 (27%)

Uni-source Across Species
(n=613) Ectoderm: Human (111) vs Mouse (98) 4,480,894 1,150,029 (26%)

Primitive streak: Human (186) vs Mouse (218) 1,216,456 179,417 (15%)

Across Tissue Type
Yang et al Human: ectoderm (21) vs primitive streak (52) 2,343,971 736,176 (31%)
RNA-seq Mouse: ectoderm (14) vs primitive streak (37) 2,783,768 639,630 (23%)

Multi-source Across Species
(n=124) Ectoderm: Human (21) vs Mouse (14) 3,764,211 799,602 (21%)

Primitive streak: Human (52) vs Mouse (37) 1,267,793 195,243 (15%)

Co-expression of gene pairs are compared across species-tissue groups. Species are human and mouse. Tissue types
are either ectoderm or primitive streak derived. Sample sizes for each group are given inside parentheses.
Significantly co-expressed gene pairs are the union of such pairs from both groups being compared, with P<0.1
and Cramér’s V >0.8. Significantly 2nd-order differential pairs with BH adjusted P<0.05 and ε>ε60 , obtained
by the Sharma-Song test, are reported by total number and percentage among significant co-expression pairs. All
P -values are BH adjusted for multiple testing.

Results from the FANTOM5 CAGE collection. In each comparison, all
9,757× 9,757 co-expression patterns were evaluated to build a condition
specific co-expression network including significant patterns from either
species-tissue group. Then we used the Sharma-Song test with BH adjusted
P <0.05 and ε>0.456 to report numbers of 2nd-order differential patterns
(Figure 2). We found higher percentages of 2nd-order differences across
tissue groups within human (22%) and also across tissue groups within
mouse (14%), but lower percentages of 2nd-order differences across
species within the primitive-streak tissue group (8%) and across species
within the ectoderm tissue group (12%). Four 2nd-order differential
gene pairs are shown for their rich nonlinear diversity in Figure 3a,d,g,j,
indicating potentially rewired molecular mechanisms.
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Fig. 2. Second-order gene network rewiring is more frequent between tissue groups
than between human and mouse on FANTOM5, Evo-devo, and Yang et al. datasets.
Tissue types are grouped by developmental origin of either ectoderm or primitive streak.
Tissue group comparisons within specie (horizontal) reveal high percentages of 2nd-order
differential patterns within both human (22%, 40%, 31%) and mouse (14%, 27%, 23%). In
contrast, the same tissue group across species (vertical) shows low percentages of 2nd-order
differential patterns for both ectoderm-derived tissues (12%, 26%, 21%) and primitive-
streak-derived tissues (8%, 15%, 15%)

.

Results from the Evo-devo RNA-seq collection. In each comparison,
all 13,307×13,307 co-expression patterns were evaluated to build a
condition specific co-expression network including significant patterns
from either species-tissue group. Table 2 reports 2nd-order differential
pattern percentages by the Sharma-Song test with BH adjusted P<0.05
and ε>0.251. We also found higher percentages of 2nd-order differences
across tissue groups within human (40%) and also across tissue groups
within mouse (27%), but lower percentages of 2nd-order differences across
species within the primitive-streak tissue group (15%) and across species
within the ectoderm tissue group (26%). Four 2nd-order differential gene
pairs are shown in Figure 3b,e,h,k.

Results from the Yang et al. RNA-seq collection. In each comparison,
all 13,909×13,909 co-expression patterns were evaluated to build a
condition specific co-expression network including significant patterns
from either species-tissue group. Table 2 reports 2nd-order differential
pattern percentages by the Sharma-Song test using BH adjusted P<0.05
and ε>0.333. We again found higher percentages of 2nd-order differences
across tissue groups within human (31%) and also across tissue groups
within mouse (23%), but lower percentages of 2nd-order differences across
species within the primitive-streak tissue group (15%) and across species
within the ectoderm tissue group (21%). Four 2nd-order differential gene
pairs are shown in Figure 3c,f,i,l.
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Fig. 3. Diverse second-order differential gene co-expression patterns between tissue
groups and across species reported by the Sharma-Song test. Each plot represents a
gene pair common to human and mouse. (a,b,c) Between human ectoderm- and primitive-
streak-derived tissue groups. (a) FANTOM5: p1@PDE3B–p1@HS3ST1, (b) Evo-devo:
DNAJC12–IDH1, (c) Yang et al.: EBF1–DAO (d,e,f) Between mouse ectoderm- and
primitive-streak-derived tissue groups. (d) FANTOM5: p1@Aplnr–p1@Btbd3, (e) Evo-
devo: Masp1–Zfp57, (f) Yang et al.: Mef2c–Timp4. (g,h,i) Between human and mouse
ectoderm-derived tissue groups. (g) FANTOM5: p1@Skap2, p1@SKAP2–p1@Neu3,
p1@NEU3. (h) Evo-devo: Ago4, AGO4–Amz2, AMZ2. (i) Yang et al.: Crhbp, CRHBP–
Pde1c, PDE1C. (j,k,l) Between human and mouse primitive-streak-derived tissue groups.
(j) FANTOM5: p1@Mapkapk3, p1@MAPKAPK3–p1@Rab23, p1@RAB23 (k) Evo-devo:
Ednra, EDNRA–Aass, AASS. (l) Yang et al.: Acox2, ACOX2–Tm4sf5, TM4SF5.

3.2 Reproducible second-order differential interactions
across all three datasets

Despite differences in sample source, sample size, and sequencing
technology, we observe some level of reproducibility of 2nd-order
differential interactions across the three datasets. We found that the
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strongest 20-percentile group of 2nd-order differential interactions
contains the largest numbers of common high-degree hub genes between
Evo-devo and Yang et al. collections in all four comparisons as shown
in Supplement E. Figure 4 showcases four gene pairs with consistent
patterns across all three collections. A complete list is provided in four
tables in Supplement F. In Figure 4a, CACNA1A, a gene involved in
the production of instructions for creating calcium channel for regulating
communication between neurons (Auvin et al., 2009) is positively co-
expressed with P2RX4 in human ectoderm tissue group—the latter is a
purinergic receptor highly expressed in central and peripheral neurons,
whereas the pair is negatively co-expressed in the primitive streak
tissue group. P2X4 endcoded by P2RX4 mediates Ca2+ channels and
neuropathic pain (Suurväli et al., 2017; Ozaki et al., 2016; Xu et al.,
2016). Both CACNA1A and P2RX4 belong to the calcium signaling
pathway (hsa04020) (Kanehisa and Goto, 2000) which plays a crucial role
during development. Defects in this pathway could lead to diseases like
epilepsy and cardiac malformations (Paudel et al., 2018). In Figure 4b,
gene RELN is critical for cerebral cortical development as it regulates
neuronal migration (Chang et al., 2007), positively co-expressed in
mouse ectoderm with PIK3R3, a phosphoinositide 3-kinase gene encoding
the PI3K enzyme with function in neurotransmitter-regulated neuronal
signaling (Gross and Bassell, 2014), whereas the pair is negatively co-
expressed in the primitive streak tissue group. Both RELN and PIK3R3
are involved in the PI3K-Akt signaling pathway (Kanehisa and Goto,
2000). The PI3K-Akt-MtoR signaling pathway regulates cellular processes
like cell growth, proliferation, autophagy and apoptosis, important for
neurodevelopment (Wang et al., 2017).

Human
Ectoderm
Primstreak

 Fantom5
P = 0.017
E = 0.53

p1@CACNA1A

p1
@

P
2R

X
4

0.0 0.5 1.0 1.5

0.
6

1.
0

1.
4

a

 Evo−devo
P = 9.4e−23

E = 0.36

CACNA1A

P
2R

X
4

0 1 2 3 4 5

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

b

 Yang et al.
P = 0.0027

E = 0.41

CACNA1A

P
2R

X
4

0 1 2 3 4 5 6

1.
5

2.
5

3.
5

4.
5

c

Mouse
Ectoderm
Primstreak

 Fantom5
P = 0.017
E = 0.55

p1@Reln

p1
@

P
ik

3r
3

0 1 2 3 4 5

0
1

2
3

4

d

 Evo−devo
P = 1.6e−13

E = 0.26

Reln

P
ik

3r
3

0.5 1.5 2.5

1
2

3
4

e

 Yang et al.
P = 0.016
E = 0.43

Reln

P
ik

3r
3

0 1 2 3 4

0
1

2
3

4

f

Ectoderm
Human
Mouse

 Fantom5
P = 0.027
E = 0.75

p1@PGAM2, p1@Pgam2p1
@

S
T6

G
A

LN
AC

5,
 p

1@
S

t6
ga

ln
ac

5

0 1 2 3 4 5 6

0
1

2
3

4
5

g

 Evo−devo
P = 2.5e−11

E = 0.49

PGAM2, Pgam2

S
T6

G
A

LN
AC

5,
 S

t6
ga

ln
ac

5

0 1 2 3 4 5

0.
0

1.
0

2.
0

3.
0

h

 Yang et al.
P = 0.0016

E = 0.77

PGAM2, Pgam2

S
T6

G
A

LN
AC

5,
 S

t6
ga

ln
ac

5

1.0 1.5 2.0 2.5 3.0

0
1

2
3

4

i

Primstreak
Human
Mouse

 Fantom5
P = 0.015

E = 0.5

p1@TTK, p1@Ttk

p1
@

FB
X

O
48

, p
1@

Fb
xo

48

0.0 1.0 2.0 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

j

 Evo−devo
P = 7.4e−21

E = 0.35

TTK, Ttk

FB
X

O
48

, F
bx

o4
8

0.0 1.0 2.0 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

k

 Yang et al.
P = 0.0027

E = 0.37

TTK, Ttk

FB
X

O
48

, F
bx

o4
8

0.0 1.0 2.0 3.0

0.
0

0.
4

0.
8

1.
2

l

Fig. 4. Reproducible second-order differential patterns across all three datasets. Each
plot represents a 2nd-order differential pattern between two genes common to human and
mouse. (a,b,c) Reproducible 2nd-order differential patterns of CACNA1A–P2RX4 between
human ectoderm-derived tissue group and primitive-streak-derived tissue group. (d,e,f)
Reproducible 2nd-order differential patterns of Reln–Pik3r3 between mouse ectoderm-
derived tissue group and primitive-streak-derived tissue group. (g,h,i) Reproducible 2nd-
order differential patterns of Pgam2–St6galnac5 from the three datasets between human and
mouse ectoderm-derived tissue groups. (j,k,l) Reproducible 2nd-order differential patterns
of Ttk–Fbxo48 between human and mouse primitive-streak-derived tissue groups.

3.3 Pathways enriched with genes in second-order
differential interactions across all three datasets

We found pathways that are highly enriched in genes involved in 2nd-order
rewired gene interactions in all four species-tissue comparisons. From 2nd-
order differential patterns of each comparison, we selected from all three
datasets common genes to perform SIGORA pathway analysis (Foroushani
et al., 2013). Human ectoderm vs. primitive streak comparison: We
found 4,599 common genes among all the three datasets and 56 enriched
pathways (Supplement G.1 Table S5) post Bonferroni correction (Dunnett,
1955). Mouse ectoderm vs. primitive streak comparison: We found
7,345 common genes enriching 89 pathways (Supplement G.2 Table S6).
Human vs. mouse ectoderm comparison: We found 7,037 coinciding
genes enriching 23 pathways (Supplement G.3 Table S7) that were
common in both human and mouse. For these three comparisons, the
most enriched include MAPK signaling (hsa04010), axon guidance
(hsa04360), Wnt signaling (hsa04310) and Hippo signaling (hsa04390)
pathways, all having a major role in development. MAPK signaling
is involved in cell proliferation, differentiation and migration; it also
activates the JNK pathway essential for embryonic development (Zhang
and Liu, 2002; Maekawa et al., 2005). Axon guidance is related to neural
development, the process by which an axon reaches its targets and leads
to neural circuit (Stoeckli, 2018). Wnt signaling is crucial for stem cell
proliferation and differentiation during embryo genesis and adult tissue
homeostasis (Steinhart and Angers, 2018). Hippo signaling controls the
organ size and also regulates tissue homeostasis during development (Pan,
2010). Human vs. mouse primitive streak comparison: We found 3,357
coinciding genes enriching six pathways (Supplement G.4 Table S8)
common between human and mouse. The top pathways are axon guidance
(hsa04360) and cell cycle (hsa04110). Cell cycles are closely coupled with
cellular differentiation where developmental signals often determine a cell
cycle mode specific to cell type (Jakoby and Schnittger, 2004), subject to
tissue specific rewiring. For example, in some brain regions, the orientation
of granule cell precursor division can determine the production of more
granule cell precursors or granule cells (Miyashita et al., 2017).

3.4 Detecting rewired miRNA-gene patterns between
developing mouse cerebellum and liver

To evaluate if the Sharma-Song test can return 2nd-order differential
patterns that are biologically relevant, we scrutinized network rewiring
between developing mouse cerebellum and liver. Both tissue types
have vast literature to provide a basis for biological justification of our
methodology development. They also have relatively large sample sizes,
long time courses, and rich dynamic in the FANTOM5 mouse data.
After preprocessing (Supplement H.1), we obtain 12,937 TSSs and 502
pri-miRNAs for 36 cerebellar samples and 15 liver samples.

Using the 2nd-order network rewiring pipeline, we evaluated
502×12,937 gene pairs to find 20,577 co-expressed patterns in cerebellum
and 197,347 in liver. A union of 216,709 unique patterns were supplied
to the Sharma-Song test that returned 42,352 significant (BH adjusted
P<0.05 and ε>0.456) 2nd-order differential patterns, five of which are
shown in Supplement H.1 Figure S2. Tpx2 and Ctnna1 are positively co-
expressed in the cerebellum whereas negatively co-expressed in the liver.
mmu-miR-5622-5p promoted by Tpx2 targets Ctnna1. Ctnna1 is important
to the Hippo and cancer pathways (Vlachos et al., 2015) by inhibiting Yap1,
which in high concentration disrupts the Hippo pathway and can result in
cancer (Herr et al., 2014; Silvis et al., 2011). Tpx2, hosting mmu-miR-
5622-5p, is over-expressed in liver cancer and promotes its growth (Hsu
et al., 2017). We observe a strong negative relationship between Ctnna1
and Tpx2 in liver, lung, heart, and kidney, which can be interpreted
as Tpx2 or mmu-miR-5622-5p suppressing Ctnna1. In the cerebellum,
however, the relationship is rewired so that Ctnna1 is promoted by Tpx2,
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Fig. 5. Benchmarking the Sharma-Song test and three other methods. The top row is
for detecting 2nd- from 1st-order differential patterns: (a) ROC curve at noise level 0.1. (b,
c, d) AUROC as a function of 2nd-order difference at three noise levels (0, 0.1, 0.4). The
bottom row is for detecting full- from 1st-order differential patterns: (e) ROC curve at noise
level 0.1. (f, g, h) AUROC as a function of full-order difference at noise levels 0, 0.1, 0.4.

opposite to other tissue types. Using 5,888 unique TSSs from second-
order differential interactions, we peformed SIGORA (Foroushani et al.,
2013) analysis to obtain 12 enriched pathways (Supplement H.2) post
Bonferroni correction (Dunnett, 1955). The top pathways of spliceosome
(mmu03040), RNA-transport (mmu03013), and cell-cycle (mmu04110)
are all ubiquitous in development (Supplement H.2). Applying our method
on the topology of the spliceosome pathway (mmu03040), we created a
2nd-order rewired spliceosome network between developing cerebellum
and liver (Supplement H.3).

3.5 Benchmarking the Sharma-Song test

We conducted simulation studies to verify the performance of the Sharma-
Song test in identifying 2nd-order differential patterns in contrast to
three other methods: differential Pearson’s correlation (Hu et al., 2009;
Leonardson et al., 2010; Mentzen et al., 2009), a Z-score on scaled
differential Spearman’s correlation from DGCA (McKenzie et al., 2016),
and the chi-squared heterogeneity test (Zar, 2009). We measured their
performance by receiver operating characteristic (ROC) curves.

We designed three algorithms to generate 500 1st-, 500 2nd-
, and 500 full-order differential table tuples. The algorithms are
implemented as options in the simulate_diff_tables function
from the ‘DiffXTables’ R package (Sharma and Song, 2020). Each tuple
contains two tables (K=2). Each table contains a random number of points
from 100 to 300. We applied noise at levels of 0.0, 0.1, 0.2, 0.3, 0.4
and 0.5 to the tables. Figure 5 shows ROC curves with area under ROC
(AUROC) for each method. In the first setup, each method detects 2nd-
from 1st-order differential patterns. In the second setup, full-order patterns
are detected from 1st-order patterns. With increasing differentiality across
tables, the performance of all methods also increases as one would expect.
At noise levels of 0.0 and 0.1, the Sharma-Song test is about 10–20%
better than differential correlation and DGCA, and 5% better than the
heterogeneity test. At noise level 0.4, all methods amount to random
guessing. Supplement I benchmarked the methods for K=3 conditions
with similar results, confirming the heterogeneity test being unspecific to
2nd-order, differential correlation not recognizing differences in complex
nonlinear patterns, and the Sharma-Song test being most effective.

3.6 The statistical power of Sharma-Song test

We studied the statistical power of Sharma-Song test in relation to sample
size, given false positive rate, effect size, and table size. The result is shown
as Supplement J Figure S6. The false positive rate was fixed at 0.05. The

60%-power effect size was given as 0.235. Three table sizes of 3×3, 4×4
and 5×5 were evaluated.

At a smaller sample size, the test can achieve a greater statistical power
on table pairs of smaller sizes than larger sizes. At a larger sample size,
the relation is reversed. To attain a power level of about 60%, the required
sample size for all table sizes is 12 for each table in the pair. Full details
are given in Supplement J.

4 Discussion
Lin et al. (2014) reported that the difference in genetic landscape between
distinct tissues types is underwhelming compared to that between species.
Their conclusions are concerned with 1st-order differences in transcript
abundance based on their own data and ENCODE Project Consortium
(2004) data. The Sharma-Song test is designed to capture second-order
differential patterns, offering an orthogonal perspective complementary
to first-order analysis. The persistence of second-order effects neither
proves nor disproves first-order effects. On three independent mammalian
development transcriptome collections, we exclusively looked for 2nd-
order differential patterns by comparing tissue types with different germ-
line lineage within human and mouse and across the two species. Not in the
same analogy to (Lin et al., 2014), we find on all three datasets that 2nd-
order differences between tissues of distinct origins are higher than those
from same tissue but between distinct species, hinting at tissue-specific
circuitry being conserved across mammals.

We studied co-expression patterns that are 2nd-order rewired across
tissue groups derived from different development origin but conserved
within each group of heterogeneous tissue types from the same
development origin. Grouping by origin was due to limited sample
availability for each homogeneous tissue type in two of the three
collections. We do expect 2nd-order differential co-expression patterns
to arise between heart and liver tissues, for example, both developed from
the primitive streak.

Shifted and scaled patterns can arise either from truly rewired
dynamical systems, or from artifacts due to batch or library size effects. In
our studies, we separately scaled and shifted the continuous data in each
condition. Although we may have demoted shifted or scaled patterns, such
pre-processing makes our analysis robust to unwanted confounding effects.

The Sharma-Song test is applicable to a network topology generated
by other network inference tools. On a given network with data observed
under multiple conditions, we can ask whether an edge carries any 2nd-
order change across conditions. On a directed network, we can test whether
a many-to-one interaction from parents to their child has rewired in the
2nd order. Here we can collapse all parent nodes into a single compound
node and then apply the test on the table formed by the compound node
and the child node.

As high-throughput biology experiments are generating data with
increasing cellular, temporal, and spatial resolutions, we expect that the
2nd-order network rewiring instrument offered here will be useful in
characterizing fundamental biological circuitry changes due to evolution,
environment, or disease.
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