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Fast Optimal Circular Clustering and
Applications on Round Genomes

Tathagata Debnath and Mingzhou Song∗

Abstract—Round genomes are found in bacteria, plant chloroplasts, and mitochondria. Genetic or epigenetic marks can present
biologically interesting clusters along a circular genome. The circular data clustering problem groups N points on a circle into K

clusters to minimize the within-cluster sum of squared distances. Repeatedly applying the K-means algorithm takes quadratic time,
impractical for large circular datasets. To overcome this issue, we developed a reproducible fast optimal circular clustering (FOCC)
algorithm of worst-case O(KN log2 N) time. The core is a fast optimal framed clustering algorithm, which we designed by integrating
two divide-and-conquer and one bracket dynamic programming strategies. The algorithm is optimal based on a property of monotonic
increasing cluster borders over frames on linearized data. On clustering 50,000 circular data points, FOCC outruns brute-force or
heuristic circular clustering by three orders of magnitude in time. We produced clusters of CpG sites and genes along three round
genomes, exhibiting higher quality than heuristic clustering. More broadly, the presented subquadratic-time algorithms offer the fastest
known solution to not only framed and circular clustering, but also angular, periodical, and looped clustering. We implemented these
algorithms in the R package ‘OptCirClust’ (https://CRAN.R-project.org/package=OptCirClust).

Index Terms—Circular Clustering, Framed Clustering, CpG Island, Round Genome, Mitochondria, Bacteria.
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1 INTRODUCTION

1 ROUND genomes widely exist in living systems [1] such2
as bacteria [2], chloroplasts in plants [3], and mitochon-3

dria in eukaryotes [4]. They are no less abundant than linear4
genomes, as the number of bacterial species is in the order5
of millions [5]. Circular RNA [6] and extrachromosomal6
circular DNA [7] molecules are linked to multiple diseases7
including cancer. Genomes are uneven [8], [9], whose ele-8
ments are not uniformly spread throughout a chromosome.9
Clusters of CpG islands [10], gene locations [11], and origin10
of replication [12] can point to active regions [13] or hot11
spots [14], [15] along a circular molecule.12

The circular clustering problem takesN points on a circle13
as input and generates K clusters as output. Unlike linear14
univariate clustering [16], [17], there is no starting or ending15
position in circular data. An intuitive solution to circular16
clustering is to consider all possible starting positions of cir-17
cular data to form frames and repeatedly apply a K-means18
algorithm [18] on each frame. The asymptotic runtime of19
such an approach is O(N2t), where t is the number of20
iterations in each run of the K-means algorithm. Not only21
slow, this approach is not necessarily reproducible due to22
stochastic behavior of heuristic K-means methods.23

Although the multivariate clustering problem is NP-24
hard, univariate clustering is exactly solvable with re-25
producibility by dynamic programming in polynomial26
time [19], [20], [21]. Recent work by Song and Zhong [21]27
provides a low-overhead method to achieve optimal uni-28
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variate clustering in O(KN) time on sorted linear data. 29
However, repeatedly applying optimal univariate clustering 30
starting at each circular point will take a quadratic runtime 31
of O(KN2), which is still impractical for a circular genome 32
with millions of base pairs. 33

To overcome the inefficiency of a simple extension of K- 34
means, we present a fast optimal circular clustering (FOCC) 35
algorithm, which runs in the worst-case O(KN log2N) 36
time. The FOCC algorithm integrates two divide-and- 37
conquer and one bracket dynamic programming strategies 38
to drastically cut down runtime. It first arranges the circular 39
data O with N points into linear data X with 2N − 1 40
points, by traversing through the sorted circular data twice. 41
Figure 1(a) and (b) illustrates this conversion. Then we 42
introduce a fast optimal framed clustering algorithm to 43
examine each data frame of size N along the linearized 44
data to identify an optimal frame. Each frame is marked 45
by an ID, ranging from 0 to N − 1, which is the smallest 46
index to points in the frame. The optimality of framed 47
clustering is guaranteed based on a property of monotonic 48
increasing cluster borders over frames on linearized data. 49
Figure 1(b) illustrates framed clustering on linearized data 50
to constrain the search of optimal cluster borders by those 51
of two nearby frames. Figure 1(c) shows the effect of search 52
space reduction on the dynamic programming matrices 53
of framed clustering. The output clustering of FOCC is 54
illustrated in Figure 1(d). On a circular genome of 50,000 55
events, the FOCC algorithm empirically runs three-orders- 56
of-magnitude faster than brute-force or heuristic circular 57
clustering. The advantage in optimality becomes evident as 58
the number of clusters increases. 59

The main contributions of this work are as follows: 60

• We establish the fast circular clustering algorithm 61
FOCC based on optimal framed clustering that mas- 62
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Figure 1: An overview of the fast optimal circular clustering algorithm. (a) The input circular data O increase
counterclockwise from the origin (dashed line) on a circle of circumference L. The gray line segments represent events
located on the circle. (b) Optimal framed clustering on X linearized from O. It uses divide-and-conquer twice to reduce
the search space in dynamic programming. The cluster borders of current frame f is constrained to be within borders
of already done previous and next frames. (c) Search space reduction in the dynamic programming matrix that contains
the within-cluster sum of squared distances for sub-problems in the current frame. Only gray entries in the matrix are
computed. (d) An output optimal clustering for the input circular data O. Colors of line segments indicate three optimal
clusters found.

sively reduces the search space of cluster borders.1
• The FOCC algorithm guarantees optimal clusters on2

circular data.3
• The FOCC algorithm runs in subquadratic time,4

much faster than other known options.5

The rest of this article is structured as follows. Section 26
discusses related work and highlights relevant algorithms.7
Section 3 presents the FOCC algorithm and proves its cor-8
rectness via the property of monotonically increasing cluster9
borders across frames. It also derives the asymptotic run-10
time of the algorithm. Section 4 compares the performance11
of the FOCC algorithm with existing methods and presents12
results on simulated and real data. Section 5 discusses ap-13
plications of the algorithm to angular, periodic, and looped14

data clustering. Finally, Section 6 concludes the work. 15

2 RELATED WORK 16

In contrast to clustering in the Cartesian coordinate system, 17
circular clustering methods [22], [23], [24], [25], [26] have 18
been sparsely designed to group circular data [27]. The 19
MSBC algorithm [22] is a mean-shift based method. MSBC 20
requires the user to select some parameters and transforms 21
circular clustering to hierarchical clustering. An expectation 22
maximization based parametric method was introduced 23
in [23] and [24]. Two methods named SWGMM [25] and 24
JCLMM [26] cluster circular–linear data in a cylindrical 25
coordinate system. Both methods are based on expecta- 26
tion maximization and use mixture models to cluster the 27
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circular-linear data. Hierarchical clustering and expectation1
maximization are heuristic methods; they can converge to a2
locally optimal solution which may not guarantee a globally3
optimal clustering.4

Linear clustering methods like heuristic K-means [18],5
fuzzy c-means [28], and dynamic programming [20], [21]6
algorithms can be adapted to cluster linearized circular7
data by considering all starting positions. However, such8
strategies are inefficient for large circular datasets [5]. We9
refer to the circular application of heuristic K-means as10
heuristic circular clustering (HEUC) and that of dynamic11
programming as brute-force circular clustering (BOCC).12

The HEUC algorithm does not guarantee clustering opti-13
mality. On the other hand, the BOCC algorithm finds one set14
of optimal cluster borders but in quadratic timeO(KN2) for15
circular data. Therefore, a faster algorithm to find optimal16
cluster borders is highly desirable. This paper proposes such17
an efficient algorithm called FOCC for circular clustering in18
subquadratic time. The FOCC algorithm takes advantage of19
an inherent property of the circular clustering problem to20
guarantee much reduced runtime and optimality.21

3 METHODS22

The circular clustering problem is to identify K groups from23
input circular data such that the total within-cluster sum24
of squared distances is minimized. We present the FOCC25
algorithm to solve the problem with guaranteed optimality,26
linear-polylogarithmic time complexity, and reproducibility.27
We will first describe the FOCC algorithm and its sup-28
porting algorithms. Then we prove its optimality based on29
the property of monotonically increasing cluster borders30
across frames. Lastly, we establish the worst-case asymptotic31
runtime of the FOCC algorithm.32

3.1 Notation33

The input to the FOCC algorithm is the circular data O,34
the number of clusters K , and the circumference L of the35
circle where data are located. We summarize symbols that36
are used in algorithms and proofs to be presented as follows:37

O: an unsorted array of lengthN to hold the coordinates38
along the circle for the input circular data points39

L: the circumference of the circle where data are located40
K : the number of clusters to be found on the circular41

data42
X : a sorted array of length 2N − 1 holding linearized43

data from O. X is created by appending the sorted44
circular data O to itself, but excluding the last point.45

f : the ID of a frame of fixed length N . ID is the index46
of the frame’s first point in X . The range of values47
for f is [−1, 0, . . . , N − 1, N ] including two sentinel48
frames on both ends for boundary conditions49

fstart: the ID of the first frame to be clustered among a50
consecutive number of frames51

fend: the ID of the last frame to be clustered among a52
consecutive number of frames53

fprev: the ID of a nearest frame previously clustered smaller54
than the current frame ID55

fnext: the ID of a nearest frame previously clustered greater56
than the current frame ID57

Cf : Cf = {bf0 , b
f
1 , . . . , b

f
K−1} is the ending indices of each 58

cluster in an optimal K-clustering of frame f on 59
linearized data X . We also define a sentinel value 60
bf−1 = f − 1 as the index to the point before the 61
first data point in cluster 0 in frame f . This value is 62
implicitly used in Eq. (1) 63

SSQ: SSQ(X, Cf ) is the total within-cluster sum of 64
squared distances for a K-clustering of frame f on 65
linearized data X 66

3.2 The FOCC Algorithm 67

The input data are coordinates on a circle in the range of 68
[0, L). For any input data point outside this range, they can 69
be adjusted by performing a modulo L operation on that 70
data point. 71

Algorithm 1 Fast-Optimal-Circular-Clustering (FOCC) 72
encapsulates a hybrid of two divide-and-conquer algo- 73
rithms and one dynamic programming algorithm. It has 74
three main steps. The first step is to sort, linearize, and ex- 75
tend the circular data. The original circular locations O form 76
the first half of linearized points. The second half is obtained 77
by shifting the original circular data by circumference L by 78
O + L, excluding the last point in O. The two sorted halves 79
together constitute 2N − 1 linearized points in X . 80

In the second step, the FOCC algorithm treats the lin-
earized data as N overlapping frames each containing N
points. The starting locations of the N frames are from
X[0] to X[N − 1]. A frame is numbered by the index of
its first point in X . Two sentinel frames of indices -1 and
N are created to handle boundary conditions. It calls Alg. 2
Framed-Clustering (FC) to perform optimal univariate lin-
ear clustering on all the frames and identifies one frame
with the minimum within-cluster sum of squared distances
(SSQ). Framed-Clustering identifies a frame f to minimize
SSQ defined on a clustering Cf of the frame by

SSQ(X, Cf ) =
K−1∑
k=0

bfk∑
i=bfk−1+1

(xi − µfk)2 (1)

where µfk is the mean of points in cluster k in clustering Cf . 81

In the third step, the FOCC algorithm assigns the opti- 82
mal cluster borders obtained from the FC algorithm to the 83
original data O. The final output of FOCC is an optimal 84
cluster assignment A to all points in O. 85
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Algorithm 1 Fast-Optimal-Circular-Clustering(O, K , L)

1: Step 1. Sort, linearize, extend circular data to linear data:
2: Sort: Let I be a permutation of 0, . . . , N − 1 such that

O[I[i]] ≤ O[I[i+ 1]] for i = 0, . . . , N − 2
3: Linearize: X ← (O[I[0]], . . . , O[I[N − 1]])
4: Extend: X ← (X,X[0] + L, . . . ,X[N − 2] + L)

5: Step 2. Find one of N frames 0 to N−1 to minimize within-
cluster sum of squared distances:

6: Frame −1 clustering: C−1 = {b−1
0 = · · · = b−1

K−1 = 0}
7: Frame N clustering: CN = {bN0 = · · · = bNK−1 = 2N − 1}
8: Cf

∗
, f∗ ← FC(X , K, 0, N − 1, −1, N )

9: Step 3. Assign clusters to points in original circular data O:
10: k ← 0
11: for i← f∗ to f∗ +N − 1 do
12: if i > bf

∗

k from Cf
∗

then
13: k ← k + 1
14: end if
15: A[I[i mod N ]]← k
16: end for

17: return Cluster assignment A in order of each point in O

The key innovation in our solution is Alg. 2 Framed-1
Clustering (FC) that solves the optimal framed clustering2
problem based on divide-and-conquer. This algorithm di-3
vides each problem into three sub-problems: namely, left,4
right sub-problems and the middle frame. First the mid-5
dle frame is solved by calling Alg. 3 Bracket-Dynamic-6
Programming (BDP). The left/right sub-problem is to find7
an optimal frame among all frames to the left/right of the8
middle frame. Both sub-problems are recursively solved.9
The FC algorithm finally returns one optimal frame f∗ and10
its optimal clustering Cf∗

.11

Algorithm 2 Framed-Clustering FC(X , K , fstart, fend, fprev,
fnext)

1: f∗, Cf
∗
← NIL

2: if fstart ≤ fend then
3: fmid ← b(fstart + fend)/2c
4: Cfmid ←BDP(X , K, fmid, fprev, fnext)
5: f∗ ← fmid
6: Cf

∗
← Cfmid

7: Cfleft , fleft ← FC(X , K, fstart, fmid − 1, fprev, fmid)
8: if SSQ(X, Cfleft) ≤ SSQ(X, Cf

∗
) then

9: f∗ ← fleft
10: Cf

∗
← Cfleft

11: end if
12: Cfright , fright ← FC(X , K, fmid + 1, fend, fmid, fnext)
13: if SSQ(X, Cfright) < SSQ(X, Cf

∗
) then

14: f∗ ← fright

15: Cf
∗
← Cfright

16: end if
17: end if
18: return Cf

∗
, f∗

Algorithm 3 BDP performs dynamic programming on a
frame by utilizing a search bracket bounded by the optimal
cluster borders already computed for two nearby enclosing
frames fprev and fnext. It executes divide-and-conquer on the
data points belonging to the search bracket to fill up twoK×
N dynamic programming matrices S and J of the current
frame f . S[k, i] is the minimum SSQ value ifX[f ] toX[f+i]
are put into k + 1 optimal clusters (numbered 0 to k). f +

J [k, i] is the index to the first point in cluster k. The dynamic
programming recurrence equations are

S[k, i] =
+∞ i < k − 1

ssq(0, i, f) k = 0

min
k−1≤j≤i

S[k − 1, j − 1] + ssq(j, i, f) otherwise
(2)

J [k, i] =
undefined i < k − 1

0 k = 0

argmin
k−1≤j≤i

S[k − 1, j − 1] + ssq(j, i, f) otherwise
(3)

where ssq(j, i, f) computes the sum of squared distances 12
from each point of X[j + f ] to X[i + f ] to the mean of 13
the same points. Algorithm 3 BDP fills up matrices S and 14
J only partially specified by the brackets starting within 15
[jmin, jmax] and ending within [imin, imax] that constrain the 16
beginning position of cluster k. It calls Alg. 4 Find-Borders, 17
the second divide-and-conquer algorithm, to accomplish 18
fast calculation inside the brackets. The BDP algorithm 19
yields optimal cluster borders for the current frame. 20

Algorithm 3 Bracket-Dynamic-Programming BDP(X , K , f ,
fprev, fnext)

1: for k ← 0 to K − 1 do
2: imin ← b

fprev

k − fprev; imax ← bfnext
k − fnext

3: jmin ← b
fprev

k−1 − fprev + 1; jmax ← bfnext
k−1 − fnext + 1

4: Search for cluster k borders of frame f starting at j ∈
[jmin, jmax] and ending at i ∈ [imin, imax]:
Find-Borders(X , K, f , k, imin, imax, jmin, jmax, S, J)

5: end for
6: Cf ← Backtrack(J , N , K, f )
7: return Cf

Algorithm 4 Find-Borders uses divide-and-conquer to 21
compute entries in the dynamic programming matrices 22
bounded by given brackets of both the positions needed 23
to be filled and the cluster borders. This is analogous to the 24
Fill-Row algorithm defined on page N5-8 of Supplementary 25
Note N5 [21]. Algorithm 4 adapts the Fill-Row algorithm to 26
framed clustering. 27

Algorithm 4 Find-Borders(X , K , f , k, imin, imax, jmin, jmax,
S, J )

1: if imin ≤ imax then
2: i = b(imax + imin)/2c
3: Minimize-SSQ(X , K, f , k, i, jmin, jmax, S, J )
4: Find-Borders(X , K, f , k, imin, i− 1, jmin, J [k, i], S, J)
5: Find-Borders(X , K, f , k, i+ 1, imax, J [k, i], jmax, S, J)
6: end if
7: return Updated entries in S and J

Algorithm 5 Minimize-SSQ computes one entry at [k, i] 28
of the dynamic programming matrices S and J for a k- 29
clustering of frame f ending at X[i] of index i. Matrix 30
S contains the SSQ values and J contains optimal cluster 31
borders for sub-problems in the given frame. The Minimize- 32
SSQ algorithm invokes the recurrence equations of dynamic 33



U
np

ub
lis

he
d

D
oc

um
en

t

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. , NO. , AUGUST 20 5

programming. Algorithm 5 adapts the FindMinimum algo-1
rithm defined on page N5-8 of Supplementary Note N5 [21]2
to framed clustering.3

Algorithm 5 Minimize-SSQ(X , K , f , k, i, jmin, jmax, S, J )

1: if i < k then
2: S[k, i] =∞
3: else if k = 0 or i = 0 then
4: S[k, i] = ssq(0, i, f)
5: J [k, i] = 0
6: else
7: S[k, i] =∞
8: J [k, i] = i
9: for j = max(jmin, k) to min(jmax, i) do

10: if S[k − 1, j − 1] + ssq(j, i, f) ≤ S[k, i] then
11: S[k, i] = S[k − 1, j − 1] + ssq(j, i, f)
12: J [k, i] = j
13: end if
14: end for
15: end if
16: return Updated entries in S and J

Algorithm 5 calls function ssq(j, i, f) (j ≤ i), whose
calculation takes O(j − i + 1) time by definition. However,
with pre-computed sums and sums of squares, it can be
done in constant time O(1), critical for the overall runtime
to stay below quadratic in N . The pre-computed sums are

Z[i] =
i∑
l=0

X[l] i = 0, . . . , 2N − 1 (4)

and the pre-computed sums of squares are

Q[i] =
i∑
l=0

X2[l] i = 0, . . . , 2N − 1 (5)

The mean of X[j + f ] to X[i + f ] is computed in constant
time by

µ(j, i, f) =

{
Z[i]
i+1 j = f = 0
Z[i+f ]−Z[j+f−1]

i−j+1 otherwise
(0 ≤ j ≤ i) (6)

and finally, ssq(j, i, f) is also computed in constant time by

ssq(j, i, f) = Q[i]− 1

i+ 1
Z2[i], j = f = 0 (7)

or, when j = f = 0 is not true,

ssq(j, i, f) = Q[i+ f ]−Q[j + f − 1]

− (i− j + 1)µ2(j, i, f) (8)

Supplementary Note N5 [21] derived these equations in4
full detail. We replace i and j there with i+f and j+f here,5
respectively, to incorporate the frame concept. Additionally,6
as framed clustering is unweighted, we also replace weights7
by one from equations there [21].8

Algorithm 6 Backtrack retrieves an optimal K-clustering9
borders for frame f in linear time of K from matrix J .10
It adapts the Backtrack algorithm given on page N5-3 of11
Supplementary Note N5 [21] to framed clustering.12

Algorithm 6 Backtrack(J , N , K , f )

1: Initialize b to hold ending indices of K clusters
2: j = N − 1
3: k = K − 1
4: b[k] = j + f
5: while q > 0 do
6: j = J [k, i]− 1
7: k = k − 1
8: b[k] = j + f
9: end while

10: return Cf = {b[0], . . . , b[K − 1]}

3.3 The correctness and optimality of FOCC 13

Here, we establish the correctness and optimality of the 14
FOCC algorithm. We will show that the use of bracket 15
dynamic programming, while reducing the runtime, always 16
guarantees an optimal clustering solution. The proof is 17
based on the monotonically increasing property of cluster 18
borders across frames when SSQ is to be minimized. By 19
monotonically increasing, we mean that we can always find 20
optimal cluster borders of a current frame to be greater 21
than or equal to those corresponding optimal borders in 22
a previous frame that starts before the current frame. This 23
property ensures that some optimal solutions can always be 24
found within the bracket formed by two neighboring frames 25
enclosing a current frame. 26

Lemma 1 (Monotonically increasing cluster borders). Let
x0 ≤ · · · ≤ xi be a sorted sequence of i+1 numbers. Let jk(i−1)
be the beginning index of cluster k ending at index i − 1 in an
optimal (k+ 1)-clustering of the first i numbers. Let jk(i) be the
beginning index of cluster k ending at i in an optimal (k + 1)-
clustering of all i+ 1 numbers. Given jk(i− 1) or jk(i), we can
always find the other such that

jk(i) ≥ jk(i− 1) (9)

This is a well-known monotonic property of the uni- 27
variate clustering problem that minimizes the within-cluster 28
sum of squared distances [21]. One proof is provided in 29
Supplementary Note N5 [21] as Theorem N5.4.4 (page N5- 30
6), which was stated for weighted optimal clustering whose 31
borders for each cluster are the largest possible when there 32
are multiple optimal clustering solutions. Evidently, the 33
proof applies to unweighted optimal clustering. Lemma 1 34
rephrased the theorem for the context needed here. 35

Lemma 2. Let x0 ≤ · · · ≤ xi be a sorted sequence of i + 1
numbers. Let bq(0, i − 1) be the ending index of cluster q in an
optimal (k + 1)-clustering of the first i numbers. Let bq(0, i) be
the ending index of cluster q in an optimal (k + 1)-clustering of
all i + 1 numbers. Given bq(0, i) or bq(0, i − 1), we can always
find the other to satisfy

bq(0, i) ≥ bq(0, i− 1), q = 0, . . . , k (10)

Proof. (By induction) 36
Base case: By definition and when q = k, we have 37

bk(0, i) = i and bk(0, i − 1) = i − 1, so we have bk(0, i) ≥ 38
bk(0, i− 1). 39

Hypothesis: bq(0, i) ≥ bq(0, i− 1) for cluster q or higher. 40
Induction: Let jq(h) be the beginning index of cluster 41

q ending at index h. For cluster q − 1 of the clustering on 42
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all i points, its ending index is bq−1(0, i) = jq(bq(0, i)) − 1;1
for cluster q − 1 of the clustering on x0 to xi−1, its ending2
index is bq−1(0, i − 1) = jq(bq(0, i − 1)) − 1. By the induc-3
tion hypothesis, we have bq(0, i) ≥ bq(0, i − 1). Applying4
Lemma 1, we can find jq(bq(0, i)) ≥ jq(bq(0, i − 1)). It5
leads to bq−1(0, i) ≥ bq−1(0, i − 1), proving the induction6
hypothesis.7

Lemma 3. Let x0 ≤ · · · ≤ xi be a sorted sequence of i +
1 numbers. Let bq(1, i) be the ending index of cluster q in an
optimal (k + 1)-clustering of the last i numbers. Let bq(0, i) be
the ending index of cluster q in an optimal (k + 1)-clustering
of all i + 1 numbers. Given bq(0, i), we can always find bq(1, i)
such that

bq(1, i) ≥ bq(0, i), q = 0, . . . , k (11)

Proof. Reflecting x0, . . . , xi around zero, we obtain x′0 =
−xi ≤ x′1 = −xi−1 ≤ · · · ≤ x′i = −x0. As distances
between points are preserved, an optimal (k+ 1)-clustering
on x′0 to x′i also maps to an optimal (k+ 1)-clustering on x0

to xi. It follows that

b′k−q−1(0, i) = i− bq(0, i)− 1, q = 0, . . . , k − 1 (12)

With clustering on x1 to xi mapping to clustering on x′0 to
x′i−1, we have

b′k−q−1(0, i− 1) = i− bq(1, i)− 1, q = 0, . . . , k − 1 (13)

By Lemma 2, we can find b′k−q−1(0, i − 1) ≤ b′k−q−1(0, i).
From inequalities (12) and (13), we immediately have

bq(1, i) ≥ bq(0, i), q = 0, . . . , k − 1 (14)

When q = k, bk(0, i) = xi = bk(1, i). Therefore, we have

bq(1, i) ≥ bq(0, i), q = 0, . . . , k (15)

which proves the claim in this lemma.8

Lemma 4. Let f be the starting index of a frame. Let
(bf0 , . . . , b

f
K−1) be the ending index of each cluster in an optimal

K-clustering of points within frame f . Then there must exist an
optimal K-clustering of frame f + 1 such that

bfk ≤ b
f+1
k , 0 ≤ k ≤ K − 1 (16)

Proof. By definition, frame f contains points X[f ], . . .,
X[f+N ] and frame f+1 containsX[f+1], . . . , X [f+N+1].
We create an intermediate subset X[f ], . . . , X [f + N + 1].
By Lemma 2, we have bk(f, f + N) ≤ bk(f, f + N + 1) on
K-clustering of frame f and the intermediate subset of X ;
by Lemma 3, we have bk(f, f+N+1) ≤ bk(f+1, f+N+1)
on the intermediate subset of X and frame f+1. Integrating
the two inequalities, we obtain

bk(f, f +N) ≤ bk(f + 1, f +N + 1), 0 ≤ k ≤ K − 1 (17)

By definition, bk(f, f +N) = bfk and bk(f + 1, f +N + 1) =

bf+1
k . Therefore, we have

bfk ≤ b
f+1
k , 0 ≤ k ≤ K − 1 (18)

which proves the lemma.9

Theorem 1 (Monotonically increasing cluster borders
across frames). Let f be the starting index of a frame. Let
(bf0 , . . . , b

f
K−1) be the ending index of each cluster in an optimal

K-clustering of points within frame f . Then there must exist an
optimal K-clustering of frame f whose cluster borders indices
are bounded between any previous frame fprev < f and any next
frame fnext > f , that is

b
fprev

k ≤ bfk ≤ b
fnext
k , 0 ≤ k ≤ K − 1 (19)

Proof. As fprev < f , we apply Lemma 4 repeatedly on
consecutive pairs of frames starting at fprev and ending at
f to get

b
fprev

k ≤ bfprev+1

k ≤ · · · ≤ bf−1
k ≤ bfk , 0 ≤ k ≤ K−1 (20)

which leads to

b
fprev

k ≤ bfk , 0 ≤ k ≤ K − 1 (21)

As f < fnext, by applying Lemma 4 repeatedly on
consecutive pairs of frames from f to fnext, we can similarly
derive

bfk ≤ b
fnext
k , 0 ≤ k ≤ K − 1 (22)

Therefore, we can conclude there must exist optimal K-
clustering of frame f such that its cluster ending indices
are bounded by those of frames fprev and fnext, satisfying

b
fprev

k ≤ bfk ≤ b
fnext
k , 0 ≤ k ≤ K − 1 (23)

which proves the theorem. 10

Theorem 2. The FOCC correctly returns a K-clustering of the 11
input circular data that minimizes the within-cluster sum of 12
squared distances. 13

Proof. With K clusters, there are exactly K cluster borders 14
to be determined on circular data. Once the beginning 15
position of the first cluster is given, the circular clustering 16
problem reduces to a linear clustering problem. As there are 17
N possible start positions of the first cluster, the circular 18
clustering problem needs to solve N linear clustering sub- 19
problems. Algorithm 1 FOCC indeed solves exactly these 20
sub-problems. Next we justify the correctness of FOCC’s 21
constituent algorithms. 22

Algorithm 2 Framed-Clustering uses divide-and- 23
conquer to find a frame with the minimum SSQ. It indeed 24
covers each frame exactly once by bracket dynamic pro- 25
gramming. Remaining unprocessed frames are passed onto 26
next level of recursion. 27

Algorithm 3 Bracket-Dynamic-Programming correctly 28
solves linear univariate clustering without bracketing [20], 29
[21]. As Theorem 1 guarantees that a set of optimal borders 30
must belong to brackets formed by two neighboring frames 31
already computed, optimal solutions to sub-problems must 32
be found by searching for optimal borders within each 33
bracket during dynamic programming. 34

Finally, Alg. 1 FOCC uses cluster borders of the optimal 35
frame to assign clusters to each point in the original circular 36
data, providing the correct solution to the original circular 37
clustering problem. 38
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3.4 The asymptotic runtime of FOCC1

In addition to the speedup due to bracket dynamic program-2
ming by Alg. 3 BDP, the divide-and-conquer in Alg. 2 FC3
processes frames in pre-order on a binary tree of all frames,4
instead of in the order of frame positions along X . This5
strategy maximizes time savings due to bracket dynamic6
programming. The runtime of solving a single frame by7
Alg. 4 is based on integrating the brackets into a log-linear8
solution for univariate linear clustering previously estab-9
lished [21].10

Theorem 3. The worst-case asymptotic runtime of the FOCC11
algorithm is O(KN log2N), where N is the number of circular12
data points and K is the number of clusters.13

Proof. We first establish the runtime for a given k ∈ [0,K −14
1]. In Alg. 3 BDP, for frame f only the bracket [imin, imax]15
is computed for row k in S and J matrices, where the16
optimal cluster boundaries are searched for within the17
bracket [jmin, jmax]. Let mi(f) = imax − imin + 1 and18
mj(f) = jmax−jmin +1. We know from previous univariate19
clustering results [21] that it takes O(mj(f) logmi(f)) time20
to fill out the elements in S[k, imin], . . ., S[k, imax] and21
J [k, imin], . . ., J [k, imax].22

At the recursion depth d ∈ [0, blogNc] of Alg. 2 Framed-
Clustering, exactly 2d frames are computed. Let these
frames be fp1 , . . . , fp2d . The time H(k, d,N) to compute
brackets within these frames at depth d is thus

H(k, d,N) =
2d∑
r=1

mj(fpr ) logmi(fpr ) (24)

As these frames overlap by exactly one boundary element,
it must follow that

2d∑
r=1

mj(fpr ) = 2N − 1 + 2d − 1 (25)

2d∑
r=1

mi(fpr ) = 2N − 1 + 2d − 1 (26)

Replacing mi(fpr ) in Eq. (24) by a larger value of∑2d

s=1mi(fps), we derive an upper bound for H(k, d,N):

H(k, d,N) (27)

≤
2d∑
r=1

mj(fpr ) log
2d∑
s=1

mi(fps) (28)

= (2N − 1 + 2d − 1) log(2N − 1 + 2d − 1) (29)
≤ (2N − 1 + 2N − 1) log(2N − 1 + 2N − 1) (30)
≤ 4N log 4N (31)

Summing up H(k, d,N)over depth d and k, we have an
upper bound to the runtime for Alg. 2 Framed-Clustering:

K−1∑
k=0

blogNc∑
d=0

H(k, d,N) ≤ 4KN log2 4N (32)

which dominates the O(N logN) time for sorting the circu-23
lar data in step 1 and the linear time for cluster assignment24
in step 3 of Alg. 1 FOCC. Therefore, the overall runtime25

T (N,K) of FOCC in the worst case is asymptotically 26
T (N,K) = O(KN log2N). 27

4 RESULTS 28

We now evaluate the performance of the FOCC algorithm in 29
contrast to HEUC and BOCC algorithms on simulated cir- 30
cular data and real circular data from three round genomes. 31
We report the observed runtime of each algorithm as a 32
function of sample size and number of clusters, and the clus- 33
tering accuracy measured in within-cluster sum of squared 34
distances. We also illustrate qualitative differences of the 35
clusters produced on both real and simulated data by op- 36
timal and heuristic clustering. 37

4.1 Optimality and runtime on simulated data 38

We simulated circular data to evaluate the runtime, accu- 39
racy, and cluster quality of FOCC, BOCC, and HEUC. Linear 40
data were randomly generated from Gaussian mixture mod- 41
els where each Gaussian component represents a cluster. 42
Linear data are converted to circular data by the modulo 43
operation. 44

For the first experiment with results shown in Figure 2(a) 45
and (c), we created a Gaussian mixture model comprising of 46
three components. Each component had 500 random data 47
points, which modulo the circumference 210 of the circle are 48
used as the input O. Their means were 0, 100, 200 respec- 49
tively and standard deviation was 0.3 for all components. 50

In the second experiment with results displayed in Fig- 51
ure 2(b), the same Gaussian mixture model with varying 52
sample sizes was used. 53

The optimality of each algorithm is visualized in Fig- 54
ure 2(a). The BOCC algorithm provides a gold standard as 55
it is guaranteed to find the minimum SSQ via brute-force 56
search of optimal clustering among all frames. The FOCC 57
algorithm produced identical SSQ with BOCC, supporting 58
its optimality. However, the HEUC algorithm led to SSQ 59
values higher than the minimum SSQ when K is large, 60
indicating that non-optimal clustering has resulted from its 61
heuristic. This result thus confirms the theoretical argument 62
that FOCC guarantees to find optimal circular clustering. 63

The runtime results are reported in Figure 2(b,c). Fig- 64
ure 2(b) shows that the runtime of BOCC and HEUC grows 65
with increasing input size N polynomially faster than the 66
runtime of FOCC. At an input size N = 50, 000, FOCC 67
runs about 800 times faster than HOCC and about 400 68
times faster than HEUC. Figure 2(c) is the runtime as a 69
function of number of clusters K for each algorithm for 70
fixed N . Although the runtime of each algorithm grows at 71
a similar rate with K , the runtime of FOCC stays about 250 72
and 50 times lower than the BOCC and HEUC algorithms, 73
respectively. All runtime was observed on an iMac with 2.93 74
GHz Intel Core i7 processor, 16 GB 1333 MHz DDR3 RAM, 75
and a 2TB HDD. These results suggest that FOCC cashed 76
out its theoretical advantage to be highly efficient in practice 77
than what had been achievable for circular clustering. 78

Next, we examined the difference between optimal and 79
heuristic clustering qualitatively. We created a Gaussian 80
mixture model of three components with a standard devi- 81
ation of 1 and mean 0, 5, 11, respectively. We sampled 100 82

Joe Song

Joe Song
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Joe Song
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Figure 2: The optimality and runtime of fast optimal circular clustering (FOCC) versus brute-force optimal circular
clustering (BOCC) and heuristic circular clustering (HEUC). (a) The within-cluster sum of squared distances as a function
of number of clusters on the same dataset. (b) Runtime as a function of number of points N in the circular data for a fixed
number of clusters K . (c) Runtime as a function of number of clusters K at a fixed sample size N .
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(b) Heuristic clustering by HEUC

Figure 3: Effectiveness of optimal versus heuristic circular clustering on simulated data. The circular data were randomly
generated using a Gaussian mixture model modulo the circumference. Each solid line segment represents a circular point.
The black horizontal line marks the origin of the circle. The black arrow indicates the points increasing counterclockwise.
Nine optimal clusters returned by FOCC are marked in color in (a) and nine heuristic clusters by HEUC in (b). Borders
(dotted lines) between the C5 (orange) and C6 (green) clusters and between the C6 (green) and C7 (violate) clusters of
the FOCC result are more justifiable as compared to the corresponding HEUC output. The FOCC algorithm puts cluster
borders in wider gaps than the HEUC algorithm.

points from each component. We then mapped the points1
modulo L = 15 to a circle with circumference 15.2

Figure 3 visualizes clustering outputs from FOCC and 3
HEUC for the Gaussian mixture model. The FOCC pro- 4
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Figure 4: CpG sites and gene starting sites are clustered in three round genomes captured well by optimal, but not
heuristic circular clustering. Each column used the same data. The FOCC clusters are in the top row and HEUC clusters in
the bottom row. (a) CpG sites in 30 clusters along the human mitochondrial genome [29]. (b) CpG sites in 14 clusters along
the Candidatus Carsonella ruddii genome [30]. (c) Gene locations in 30 clusters along the Candidatus Carsonella ruddii
genome [31]. (d) Gene locations in 30 clusters along the Lactobacillus curieae genome [32]. (e,f,g,h) are clustering results
using heuristic clustering on the same four datasets in (a,b,c,d), respectively.

duced justifiable clustering outcomes; however, the clusters1
found by HEUC are not optimal. Many cluster borders2
generated by the FOCC and HEUC are similar except the3
borders between cluster C5 and C6 and that between C64
and C7. The FOCC algorithm tends to put cluster borders5
in wider gaps, whereas the HEUC algorithm may identify6
a sub-optimal border. Thus, qualitatively it can be said that7
the FOCC algorithm makes better clusters than the HEUC8
algorithm.9

Complementary to the theoretical arguments, the result10
on simulated data demonstrates the uncompromising prac-11
tical advantages of the FOCC algorithm in both optimality12
and efficiency over existing algorithms for circular cluster-13
ing.14

4.2 Cluster quality on round genomic data15

Round genomes are the most abundant among all genomes16
due to the large number of bacterial species. We applied17
circular clustering on CpG sites and gene locations from18
three round genomes, including the human mitochondrial19
genome, the Candidatus Carsonella ruddii genome, and the20
Lactobacillus curieae genome. The length of each genome is21
the circumference of data. The clustering results are shown22
in Figure 4.23

The CpG site clustering in the human mitochondrial 24
genome [33] is visualized in Figure 4(a,e). Mitochondria 25
in eukaryotic cells produce ATP from food nutrients and 26
store energy. We have extracted 30 clusters from the genome 27
having 16,569 bp and 435 CpG sites. 28

Candidatus Carsonella ruddii (Ca. C. ruddii) [34] is 29
found in phloem sap-feeding insects also known as psyl- 30
lids [30]. There it synthesizes amino acids. Figure 4(b,f) 31
shows clustering outcomes for 490 CpG sites of the Ca. C. 32
ruddii genome. We explored 14 clusters from the 173,904 bp 33
long genome. Similarly, Figure 4(c,g) shows gene clusters in 34
the Ca. C. ruddii [35] genome. We have extracted 30 clusters 35
from 232 gene locations. 36

The Lactobacillus curieae is popularly used to fer- 37
ment different types of milk [36] and produce gamma- 38
aminobutyric acid. Lactobacillus curieae is specially used 39
to produce stinky tofu brine [36]. Figure 4(d,h) demonstrate 40
gene clusters in the 2,095,860 bp long [37] genome with 2,010 41
genes, which are shown in 30 clusters inside the genome. 42

Clustering from FOCC, guaranteed to minimize within- 43
cluster sum of squared distances, is subjectively adequate 44
when compared to the HEUC clustering. For example, one 45
prominent difference can be observed between Figure 4(b) 46
and (f). The HEUC algorithm assigned sub-optimal cluster 47
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border between the C4 and C8 clusters of the CpG sites in1
the lower right portion of the Ca. C ruddii genome, whereas2
the FOCC output combines the entire compact CpG sites3
inside one cluster (C8). Similar examples can be found on4
all the other genome clusters. The FOCC output reveals5
underlying event patterns along these genomes. These pat-6
terns may suggest non-random biological activity along the7
circular genome.8

5 DISCUSSION9

The FOCC algorithm can be applied to cluster angular data.10
Given the angular coordinate Θ (in radian) of a point in a11
polar coordinate system, we can convert it to a location O12
on a circle of circumference L by O = L Θ

2π . Then we can13
apply the FOCC algorithm to find clusters for O which can14
be translated to angular clusters in the original input data.15

For periodical data with period L, we can map the input16
data by modulo L to a circle of circumference L and then17
apply the FOCC algorithm to find the clusters.18

The definition of circular data is not strict. In addition19
to be located on a circle, data points can be on a non-self-20
intersecting loop with a distance between two points on the21
loop defined as the minimum sum of distances between22
each consecutive pair of points along a path between the23
two points. The presented algorithms maintain optimality24
by this generalization to looped data clustering.25

6 CONCLUSIONS26

We have presented an algorithm for fast, reproducible, and27
optimal circular clustering. On both simulated and real28
round genomic data from mitochondria and bacteria, it29
outperforms in both accuracy and runtime other circular30
clustering methods including the heuristic K-means algo-31
rithm. We anticipate that it becomes a valuable addition to32
data science for the analysis of circular, periodic, angular,33
looped, or framed data, arising from biology and many34
other scientific disciplines.35

SOFTWARE AVAILABILITY36

All presented and evaluated algorithms are implemented37
in C/C++ and R programming languages available in an38
R software package ‘OptCirClust’ released via the Compre-39
hensive R Archive Network. The package also includes both40
circular and framed data clustering visualization functions.41
A vignette guides the user through functions provided in42
the package. The package can be freely downloaded from43
https://CRAN.R-project.org/package=OptCirClust.44

Additionally, R script files and data files are deposited45
to Code Ocean for reproducing figures in the results section46
via link https://codeocean.com/capsule/2728449/tree.47
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