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ABSTRACT

Patterns of two molecules across biological systems are often la-
beled as conserved or differential. We argue that this classifica-
tion is insufficient. Here, we introduce three types of relationships
across systems. Upon stimuli, a type-0 pattern arises from con-
served circuitry with active conserved trajectory; a type-1 pattern
is conserved circuitry with active differential trajectory; a type-2
pattern is rewired circuitry with active trajectory. We present a
1st-order marginal change test, prove its optimality, and establish
its asymptotic chi-squared distribution under the null hypothesis of
identical marginals across conditions. The test outperformed other
methods in detecting 1st-order difference in simulation studies. We
also introduce a zeroth-order strength test to assess association
of two variables across systems. We compared gene co-expression
networks of planktonic microbial communities in cold California
coastal water against the warm water of North Pacific Subtropical
Gyre. The frequency of type-1 patterns is much higher than those
of type-2 and type-0 patterns, revealing that the microbial commu-
nities are mostly conserved in molecular circuitry but responded
differentially to ocean habitats. Type-1 and 2 patterns are enriched
with genes known to respond to environmental changes or stress;
type-0 patterns involve genes having essential function such as pho-
tosynthesis and general transcription. Our work provides a deep
understanding to effects of the environment on gene regulation in
microbial communities. The method is generally applicable to other
biological systems. All tests are provided in the R package ‘Dif-
fXTables’ at https://cran.r-project.org/package=DiftXTables. Other
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1 INTRODUCTION

Comparative studies of molecular biological systems have been
a key contributory factor in advancing life science [14, 19]. Two
dynamical systems can differ in trajectory, circuitry, or both. The
trajectory of a system is a collection of states over time. Change in
trajectory is directly observable; change in circuitry often has to be
inferred. To study such differences, changes in a single molecule
have been studied using differential gene-expression (DGE) analysis
to link molecular basis to phenotypic variations [3, 5]. Specifically,
DGE analysis detects mean difference in gene expression dynamics.
Changes in gene interactions have been dominated by differential
correlation methods to reveal changed circuitry restricted to linear
or monotonic dynamic patterns across conditions [26, 28, 38]; the
Sharma-Song test [37] can detect changed non-monotonic interac-
tion patterns across conditions.

There is a gap that these methods by themselves do not ad-
dress. What part of a gene network is involved in responding to
environmental changes but is not rewired in circuitry? To answer
this question, we classify changes to a bivariate relationship into
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three types as summarized in Table 1. A pair of random variables
is zeroth-order if their trajectory does not form a random pattern
in some condition. A pair is first-order differential if either variable
differs in marginal distribution across conditions. A pair is second-
order differential if the deviation of their joint distribution from
the product of marginals is unequal across conditions. We catego-
rize type-1 patterns as those that are differential in the first-order
but show no change in the second order. Type-2 patterns must be
second-order differential. Type-0 patterns are conserved in the first
and second orders. Additionally, all three types must also be zeroth
order (active in some condition); otherwise, a pair is type-null.

By DGE analysis, one cannot fully answer the first-order differen-
tial question because DGE is insensitive to difference in distribution
when means are equal. To overcome this deficiency, we introduce
a model-free statistical method named marginal change test that
can determine first-order or marginal distribution change in a pair
of random variables X and Y across conditions. We define its test
statistic by summing up two chi-squared statistics from each vari-
able across conditions. Under the null hypothesis that the marginals
for both X and Y are conserved across condition, we prove that
the test statistic asymptotically follows a chi-squared distribution.
Additionally, we show that the test statistic is minimized to zero if
and only if X has the same empirical marginal distribution across
conditions and so does Y. In our simulation studies, the test demon-
strates considerable advantage in detecting first-order differential
components in patterns over other methods.

Microbial community covers a large fraction of the aquatic envi-
ronment and supports the sustainability and functioning of marine
ecosystems [7, 24, 43]. Environmental factors like light, temper-
ature, oxygen concentration, and nutrient availability can have
a major impact on plankton diversity [27, 29]. Most studies on
oceanic habitats [6, 15, 16] are limited to comparing microscopic
abundance of two ecosystems. To learn how microbial gene regula-
tion may have adapted to oceanic conditions, we characterized the
three pattern types on gene co-expression of planktonic microbial
communities in California coastal (CC) and North Pacific Subtrop-
ical Gyre (NPSG) oceanic ecosystems, which differ substantially
in water temperature and nutrient availability. We utilized meta-
transcriptomic data that were collected to measure expression of
homologous genes in microbial clades over a span of five days in
two previous studies [6, 30].

Among common 4,015 gene pairs actively co-expressed in at
least one ecosystem, our analysis revealed about 62% gene-gene
co-expression pairs as type 1, 22% as type 2, and 16% as type 0.
Type-1 and 2 patterns are enriched with genes known to respond
to environmental changes or stress; type-0 patterns involve genes
required for essential function such as photosynthesis and general
transcription. Type-1 patterns are over-represented in SAR116 and
SARS6 clades, whereas SAR11 and SAR406 clades are prominent
with type-0 and type-2 patterns in comparison to other clades.
SAR116 and SAR86 clades are known to be affected by environ-
mental factors like temperature and abundance of nutrients. SAR11
and SAR406 clades hint at adaptability as they can sustain in oxy-
gen minimum zones. Taken together, our findings suggest that the
two contrasting oceanic ecosystems have a high impact on their
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planktonic microbial inhabitants which have coped with the envi-
ronment using mostly the same gene regulatory circuitry with a
modest level of gene network rewiring.

2 METHODS
2.1 A First-order Marginal Change Test

To examine whether the marginal distribution of any variable in a
pattern has changed across K conditions, we design a first-order
marginal change test to examine K contingency tables for either
row or column marginal differences. The null hypothesis is that
row and column variables are independent in each contingency
table and all K tables are observed independently of each other.

Let X and Y be discrete random variables of r and s levels, rep-
resenting row and column variables, respectively. Let pr (X) be the
marginal distribution of X and py (Y) be the marginal distribution
of Y in contingency table k. Let py (X, Y) be the joint distribution
of X and Y in contingency table k.

We consider the null hypothesis where the K tables are first-order
conserved, which is defined by

p(X)=---=pg(X) and pi(Y)=---=px(Y) (1)

In the alternative hypothesis, the K tables are first-order differential
if for some pair of tables k and m, the following holds:

pi(X) # pm(X) or  p(Y) # pm(Y) @)

Let n;jr be the observed counts of X = i and Y = j under
condition k. We create an K X r contingency table Cx, where row
k is the counts of X from levels 1 to r in condition k, written as

S
Cxlk,il = ) miji 3)
j=1
and we define a chi-squared statistic based on the Pearson’s chi-
squared test [32]:

K r =
(Cx[k.i] = Cx [k i])*
X(ZK—l)(r—l)(CX) = 1;—1: Z. . Cx[k,z ()

where the expected count of X = i in condition k is

. P Cxlk '] X5, Cx K]
Cx ki) = == (5)
Zk’:l Zi':l CX[k 51 ]
We also create an K X s contingency table Cy, where row k is
the counts of Y from levels 1 to s in condition k, given by

r

Cylk, j1 =) miji (©)
i=1
which also gives rise to a chi-squared statistic
K s , ~ N2
2 (Cy[k,j] = Cy[k jD
X(x-1)(s-1) (CY) = ST ™)
o (= 1 2 G
where the expected count of Y = j in condition k is
] S5 Cylk 1 XK oyIk ]
Cylk,j] = ®)

SR S Oyl



Three Co-Expression Pattern Types

BCB 20, September 21-24, 2020, Virtual Event, USA

Table 1: Classification of relationships between two or more dynamical systems involving two variables. Each variable has the
same physical meaning across systems. For example, each system can be a cell that contains the same pair of genes.

Zeroth-order First-order Second-order Interpretation
Type association  difference difference  Trajectory Circuitry Explanation
0 Present Absent Absent Same Same Conserved mechanism responding to same input
1 Present Present Absent Changed Same Conserved mechanism responding to changed input
2 Present Any Present Changed Rewired Different mechanisms responding to input
Null Absent - - - - No active mechanism involved

Now, we define the statistic of the first-order marginal change
test by

2 _ .2 2
Xv = X(Kk-1)(r-1) (Cx) T X(K-1)(s-1) (Cy) )

where the degrees of freedom (d.f.) v is
v=(K-1)(r+s-2) (10)

THEOREM 2.1 (NULL DISTRIBUTION). The first-order marginal
change test statistic x> is asymptotically chi-squared distributed un-
der the null hypothesis that X and Y are statistically independent, X
is identically and independently distributed (i.i.d.) across conditions,
and so does Y.

ProOOF. As the counts observed for X in each condition are i.i.d.
under the null hypothesis, the row and column variables of Cx
are independent. It thus follows that y?(Cx) is asymptotically chi-
squared distributed with (K—1)(r—1) d.f. under the null hypothesis.
We can similarly derive that y?(Cy) is asymptotically chi-squared
distributed with (K — 1)(s — 1) d.f. under the null hypothesis.

As the sum of chi-squared distributed variables are also chi-
squared with the summed d.f. of each variable, y2 = x2(Cx) +
x%(Cy) must also be chi-squared distributed with

v=(K-1)r-D+EK-1D(s-1)=K-D(r+s—-2) (11)

d.f. under the null hypothesis. O

Using the upper tail probability of the chi-squared null distribu-
tion, we can compute a P-value, the statistical significance of ob-
serving some 1st-order differences in K conditions if the marginals
are all identical.

Next, we show that the test statistic y? is optimal in the sense
that it is minimized to zero if and only if the observed marginal
probabilities of both row and column variables are identical across
the K tables, which corresponds to the state of the null hypothesis.

THEOREM 2.2 (OPTIMALITY). The first-order marginal change test
statistic y2 is minimized to zero if and only if X has the same observed
marginal probability in each condition, and so does Y.

Proor. First we prove the sufficient condition that equal ob-
served marginal probabilities of X and Y across conditions lead to
X2 =0.Let py, ..., pr be the equal observed marginal probabilities
of X. Let the sample size for each table be nj, ..., ng. Then we have

Cx [k, i] = nipi, which gives rise to
Sho Cxlk il T, Cx[K,i]

Cxlk. il = TR (12)
o1 TP By (13)

Dozt Simy WP
_nme (mt- -+ ng)pi (14)

ny+---+ng
=nipi = Cx |k, i] (15)

Plugging Cx [k, i] into Eq. (4), we immediately have X%K—l) (r-1) (Cx)
= 0. Similarly, given equal observed marginal probabilities of Y, it
is true that X(ZK—l)(s—l) (Cy) = 0. This implies that

X% = X(ZK_l)(r_l) (Cx) + X?K—l)(s—l) (Cy)=0 (16)

Thus, we have proven the sufficient condition for y? = 0.

Second, we prove the necessary condition that y2 = 0 implies
equal observed marginal probabilities of X and Y across K con-
ditions. As y? is defined by sum of squares, each squared terms
must be zero if )(‘2, = 0. This suggests that Cx [k, i] = Cx [k, i] and
Cy [k, j1 = Cy[k, j]. By Eq. (5), we have

Sho Cxlk i - T8 Cx K, i]

Cx[k.i] = 17)
Z:Ik('=1 =1 Cx [k, 1]
m - SK_ Cx [k ]
= (18)
ng+---+ng
Then the marginal probability of X =i in table k is

Cxlkil  Zgo, Cx[K.i]

x kil _ 2= (19)

ng ny+---+ng
As the right-hand side is constant with respect to k, all the ob-
served marginal probabilities of X are identical across the K tables.
Similarly, we can show that Y has the same observed marginal
probabilities across the K tables. Thus, we have also proven the
necessary condition for y? = 0. O

2.2 Detecting Type 0, 1, and 2 Patterns

These three pattern types are convenient because their interpreta-
tions (Table 1) are intuitive about physical systems. We now trans-
late them into testable hypotheses: type-0 patterns are conserved in
the joint distributions p1(X,Y) = - - - = px (X, Y); type-1 patterns
differ in 1st-order (marginal) distribution but have no 2nd-order
difference; type-2 patterns must have 2nd-order difference.
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Table 2 summarizes how type 0, 1, and 2 patterns are detected

across K contingency tables. We use the strength chi-squared test [37]

to ensure at least one table represents a strong association. Then we
use the 1st-order marginal change test to detect 1st-order difference
and the Sharma-Song test [37] to detect the 2nd-order difference.
The threshold is applied on adjusted P-values when applicable.

2.3 Normalizing Metatranscriptomic Data

To study the three pattern types in biological networks, we exam-
ined the planktonic microbial metatranscriptomic data previously
collected in two oceanic water ecosystems: the cold water of Cal-
ifornia coastal (CC) region and the warm water of North Pacific
Subtropical Gyre (NPSG). The NPSG dataset of 30 samples was
first published [30]. The CC dataset of 35 samples was later col-
lected and studied together with the NPSG data in [6], where we
obtained the normalized counts of both data sets. The data were
sampled over a time span of five days at every four hours. The
CC data gave rise to 8844 gene clusters and NPSG data had 7276
gene clusters. For our analysis, we selected the 2958 common gene
clusters based on cluster names, KEGG ID, and KO ID. We exam-
ined the combined data using principal component analysis (PCA)
in Section 4. We detected outliers using the Mahalanobis distance
from each sample to the center in the subspace of the first five PC
dimensions [12], accounting for 95% of variance in the data. We
found seven samples—six from CC and one from NPSG—that were
significantly (P <0.05) distant. After removing these seven samples,
we have 29 CC and 29 NPSG samples remained. CC and NPSG were
separately log scaled after normalizing them to their respective
aggregated sample median and adding one, given by

. Eij'.é
E,‘j:].n +1
E.j-F;

where Ej; is the expression of gene cluster i in sample j, E.; is
the sample aggregate for sample j, E is the median aggregated
across all samples and F; is the normalizing factor returned by
calcNormFactors function in ‘edgeR’ using the weighted trimmed
mean of M-values [35].

3 BENCHMARKING THE FIRST-ORDER
MARGINAL CHANGE TEST

We performed a simulation study to evaluate the performance of 1st
order marginal change test in comparison with two other methods.
A Z-score based method on scaled differential Spearman’s correla-
tion from DGCA [28] and the chi-squared heterogeneity test [42].
We conducted the evaluation using receiver operating characteris-
tic (ROC) curves in detecting 1st-order components from observed
patterns across two conditions. We define a full-order pattern to
contain both 1st and 2nd-order differences across conditions. The
four setups include detecting 1st- from 2nd-order patterns, 1st-
order from conserved, full-order from 2nd-order, and full-order
differential patterns from conserved patterns.

We simulated 1st-order, 2nd-order, full-order differential pat-
terns and also conserved patterns. The algorithm for simulating
the patterns are available publicly [36, 37]. We simulated 500 pairs
of tables (K = 2) with dimension size of 3 to 5 for each table type
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and sample size ranging from 100 to 300. The noise levels of 0, 0.1,
0.2, 0.3, 0.4 and 0.5 are incorporated into the simulated tables.

The performance of all three tested methods is reported in Fig-
ure 1. Figure 1a gives the accuracy of our method versus other
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Figure 1: Benchmarking the 1st-order marginal change test
and two other methods in detecting 1st-order components
in patterns. We measure the performance by areas under the
ROC curve over increasing noise levels. (a) 1st-order versus
2nd-order patterns. (b) 1st-order versus conserved patterns.
(c) Full-order versus 2nd-order patterns. (d) Full-order ver-
sus conserved patterns.

methods in detecting 1st- from 2nd-order differential patterns. Fig-
ure 1b shows the difference in accuracy between our method and
other methods in telling 1st-order patterns from conserved patterns.
Figure 1c depicts the higher accuracy of our method than other
methods in distinguishing full-order differential patterns from 2nd-
order differential patterns. Figure 1d reveals that our method has an
advantage over other methods in recognizing full-order differential
patterns over conserved patterns.

4 MICROBIAL GENE CO-EXPRESSION
PATTERNS ACROSS TWO ECOSYSTEMS

To understand how planktonic microbial gene networks may have
evolved across oceanic waters, we study type 0, 1, and 2 gene co-
expression patterns of planktonic microbial communities between
CC and NPSG ecosystems. The input metatranscriptomic data of
CC and NPSG include normalized data of 58 samples after removing
seven outliers from the original 65 samples. Figure 2 shows the first
three principal components before and after outlier removal.

We followed the protocol in Table 2 to detect three types of gene
co-expression patterns across CC and NPSG ecosystems. For each
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Table 2: A protocol for testing for type 0, 1, and 2 patterns across two ore more systems of two variables using three statistical

tests.

Zeroth-order association First-order differential
Marginal change test

Type Strength test

Second-order differential
Sharma-Song test

0 P-value < 0.10
1 P-value < 0.10
2 P-value < 0.10

P-value > 0.05
P-value < 0.05

P-value > 0.05
P-value > 0.05

Any P-value < 0.05

P-value > 0.10

P-value > 0.05

P-value > 0.05

PC2 21.28 %
B
1
]

=20 =10

>
>
>
PC3 3.86 %

-0 -40 -20 o 20 40 &0 &80

PC1 40.87 %

PCA (after outlier removal)
& CC NPSG

0
=
10

PC2 11.64 %

-

=10

PC3 3.73%

=30 -20 -10 o 10 20

PC1 25.52 %

Figure 2: First three principal components of California
coastal and North Pacific Subtropical Gyre samples. (a) PCA
on the original 65 samples. (b) PCA on the remaining 58 sam-
ples after outlier removal.

gene pair, we removed samples where both have zero expression
values. Then we discretized the continuous gene expression value
using an optimal univariate clustering algorithm [39, 41].

We constructed two co-expression networks for CC and NPSG,
respectively, by evaluating (292582] gene pairs using a strength chi-
squared test [32, 37] where the sum of chi-squared statistics with the
summed d.f. of both CC and NPSG is used to select unique gene pairs

with strong association in at least one water. We obtained 4,015

unique significant patterns at Benjamini-Hochberg [9] adjusted
P-value < 0.1.

We applied the 1st-order marginal change test and Sharma-Song
test [37] on discretized values of the 4,015 co-expressed gene pairs
across the CC and NPSG samples. Both tests return P-values as
level of statistical significance, further adjusted by the Benjamini-
Hochberg [9] method to account for multiple testing effects. At the
significance level of 0.05, we detected 2468 type-1, 891 type-2, and
656 type-0 patterns. Table 3 summarizes the patterns detected for
genes in five microbial clades. Type-1 patterns are most abundant
(61.47%), aligning with the conserved gene networks of microbial
communities across CC and NPSG as previously reported [6]. How-
ever, there are rewired gene pairs (22.19%) that were not reported
previously; they may be fundamental for microbial communities to
adapt to changed oceanic habitats.

Table 3: Numbers and percentages of type 0, 1, and 2 gene co-
expression patterns in five heterotrophic bacterial clades of
planktonic microbial communities between CC and NPSG
oceanic ecosystems.

Clade

SARI116
SARSB6 1037
SARI11 3409
Roseobacter 920 16.74%
SAR406 434  31.80%

4015 656
16.34%

Total
2230

Type 0

6.68 %
13.98%
21.30%

Typel Type2

69.06% 24.26%
66.25% 19.77%
57.38% 21.33%
61.41% 21.85%
43.32%  24.88%

2468 891
61.47% 22.19%

Total unique
Percentage

We extracted five hub genes with highest degrees in the network
of the 4,015 patterns. We sampled 40 patterns for each hub gene to
create a subnetwork (Figure 3) of 200 interactions, where each hub
gene has different proportions of type 0, 1, and 2 patterns.

From Table 3, the SAR116 clade is most abundant in type-1 pat-
terns followed by type-2 patterns, suggesting genes have responded
to temperature and nutrient differences in the two waters. The
dddP gene of SAR116 is involved in the dimethylsulfoniopropionate
(DMSP) cycle in ocean, regulated by temperature, UV radiation, car-
bon, and sulfur demands [11]. These observations highlight genes
that cope with changed environmental inputs using mostly the
same mechanism and some rewired mechanisms.

The SARS86 clade has a relatively high percentage of type-1 pat-
terns with a low percentage for type-0 and type-2 patterns among



BCB 20, September 21-24, 2020, Virtual Event, USA

SAR11_452
SAR86_776

SAR86_38

Sharma, Luo, Kumar and Song

SAR86_684

SAR11_1062 SAR11_874 SAR1_248 J SAR11_220
SAR86_773 SAR11_34 SAR11_978 SaRaatiids SARB86_300 SAR11_534
= SAR116_478
SAR406_272 =
SARM_128 E SAR11_631 e SAR86_807
SAR86_1271 Roseo_1403 SAR11_582 SARB6_132 SAR86_128
SART1 94 SAR11_1163 SAR11_1114 o SAR86_458
- SART1_ 358 SAR116_24 =
SAR11_1116 SARB6_744 = SARN_1171 = SAR11_1654
B - SARTIB. 1 SAR86_889
BARED0T024 1021579 AR50 SARB6_593 o SARI16 1307 Roseo_400
SAR11_583 Ro860_104 SAR86 358~ SAR11_341 SEUILEED - SART_1090 =
0se0_ SARB6_1102 SAR11.363 SART1_166 SAR116_1139 SAR116_552
SAR116_2025 SAR11_1007 = AT = TR - i SAR116_1640
SAR86_717 —— SAR11_101 = SARS6_891 SAR11_681 - x SARM_580
SAR11_1176 SARBEB03 | on e = SAR11_972 SAR116_187 SAR11_1266 SAR11_411 SAR116_1547
SARB6_949 1 SAR11_999 Roseo 913 SAR86_671 Roseo_1374 SAR116_1624 SAR11_194 SART_1272
- SARB6_990 SAR11_790 . X
ARG SAR116_1398 [ “SAR11_1040 SARE6_3 SAR406_275 SART16_1626
SoRnTen SAR11_439 SARA06_674 - \ SAR11_414 SAR116_856
= - cosTEe SART1 1280 ) SARS6.355 . SAR11_1110  SAR11_1035 E _ SARTNAESS
SARS6_2323 SARM_1249 - = = SAR11_498 =
— = SAR86.67 7 sarn 1052 [ SAR11_666 SAR116_1584 SARB6_1267 SARTIE
SAR11_122 ! L .
= SIELLED) SAR11_726 SARS 100 | SART_80 [ SARII_1275  SAR86_143 SAR116_397 (R 72
SART1_60 SAR86_1058 Roseo_860 - SAR116_1272
- = AR11_432 1 .
SAR11_1086 Roseo_263 SAR86_611 AR SAR11_43: SAR116_432 SAR116_857 SAR116_557
SARB6_956 SAR406_121 SAR11_728 . SAR11_593 SAR116_1585 SAR406_266 SAR11_1253
g - - SAR86_378 SAR11_530 Roseo_695
0se0. &
h SAR11_373 Roseo_1372 SARTI_2606 SAR116_1580
- SARIT1S SARLRed SAR116_1485
SARB6_301 SAR86_573 ol SAR116_1992
Roseo_375
SAR11_386 =
SAR11_811 SARM241 " 5aR11_1255
SAR86_130 = SAR116.509  / SAR406_568 _ K
i SAR11_315 SAR11_836
1
SARBS6_377 K SERTNE SAR1_120
SN AR SART1_875  sAR11_519
SARB6_1229 SAR11_283 SARTL75
SARB6 494 ( SARBS6_748 SAR11_680
SAR1_276 SAR11_610

Figure 3: A subnetwork containing all three types of pattern sele

cted for five hub genes and 200 patterns in California coast

and North Pacific Subtropical Gyre. Hub genes are highlighted within yellow nodes. Type 0, 1, 2 patterns are represented by

green, orange, and red edges.

all the clades. SAR86 is dominant in the coastal water [31] subject
to temperature change [29].

The SAR11 clade has the highest number (3409) of active gene
pairs among the clades, suggesting the overall importance of this
clade to oceanic ecosystems for a prolonged desire of sustainability
and endurance towards drastic environmental changes.

The SAR406 clade has the lowest number of active gene pairs
among the clades. It has highest percentages of type-0 and type-
2 patterns and the lowest of type-1 patterns. Like SAR11, genes
involved in SAR406 have mechanisms conserved in the two wa-
ters yet exhibit rewired mechanisms probably for sustainability in
oxygen minimum zones.

Both SAR11 and SAR406 are abundant in oxygen minimum
zones [10]. Some operational taxonomic units (OTUs) of SAR11 and
SAR406 increase with deoxygenation and others decrease [2, 8].
SAR406 can grow in diverse environmental conditions and is ge-
netically linked to the Fibrobacter spp. and green sulfur bacteria in
the Atlantic and Pacific oceans [18]. The SAR11 clade is the most
abundantly found in marine ecosystems. SAR11 can survive in olig-
otrophic regions like NPSG with limiting conditions [21]. SAR11
is involved in the pathway of ocean nitrogen loss by contributing
towards NO3 respiration in anoxic zones [40]. To adapt for life
in a nutrient deficient ecosystem, a change in the molecular cir-
cuitry of SAR11 and SAR406 from cold nutrient-rich water to warm
nutrient-deficient conditions is justifiable.

The Roseobacter clade has minimal presence in active gene-gene
patterns after SAR406. They are observed mostly as type-1 pat-
terns followed by type-2 patterns. Our analysis reveals Roseobacter

responded to the drastic oceanic change with mostly conserved
circuitry and modest network rewiring.

4.1 Type-1 Gene Co-expression Patterns and
Network: Conserved Mechanisms
Responding to Changed Ocean Habitats

Four significant type-1 patterns are shown in Figure 4a-d. Gene
SARB86_118 (K03782) is involved in biosynthesis of secondary metabo-
lites, phenylpropanoid biosynthesis, and tryptophan metabolism. It
is positively associated with SAR11_498 (K03798), functioning as
peptidases, inhibitors, chaperones, or folding catalysts. SAR11_1474
(K02030) is involved in signaling and cellular processes as trans-
porters. It is positively co-expressed with SAR11_301 with lower
expression in NPSG water than CC water. SAR86_429 (K00605) is
involved in biosynthesis of secondary metabolites, glycine, serine
and threonine metabolism, and carbon metabolism. It is negatively
co-expressed with SAR116_535 (K03687) implicated in genetic in-
formation processing, and chaperones and folding catalysts, with
high expression in NPSG water. SAR116_501 (K00963), involved in
starch and sucrose metabolism, galactose metabolism, and pentose
and glucuronate interconversions, is positively co-expressed with
SAR11_391 with a same non-monotonic trend and high expression
in NPSG water. These type-1 interactions have same mechanism
between the two waters, but there exists a marginal difference sug-
gesting an adaptive response to oceanic input without changing
molecular circuitry.

Figure 4e is a network representing the top 200 type-1 interac-
tions. Hub gene SAR86_118 represents the accumulation of katG
genes which encode catalase-peroxidases, a unique bifunctional
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Figure 4: Type-1 patterns and networks differential in the 1st-order but not 2nd-order between California coast and North Pa-
cific Subtropical Gyre. (a-d) Four type-1 gene co-expression patterns. The horizontal and vertical axes are the gene-expressions.
A loess curve is fitted to show dynamics. (e) A type-1 network formed by top 200 type-1 patterns (edges) between CC and NPSG.
Each node represents a cluster of homologous genes from microbial species in a common clade.

enzyme that expresses in soil bacteria, playing an important role
in coping with the environmental stress or oxidative stress [17].
Another hub gene SAR11_233 is molecular chaperone IbpA also
known as heat shock protein. The function of IbpA gene is to pro-
tect or suppress the inactivation of enzymes from the stress of heat
and oxidants [22, 23]. SAR116_535, a molecular chaperone GrpE, is
a heat shock protein responsible for bacterial growth and viability
against all temperatures [4]. Some highly active genes are respon-
sible for the protection of ortholog organisms against the external
environmental factors. CC and NPSG are two oceanic ecosystems
differing in temperature, oxygen level, nutrient availability [21]. It
is conceivable that a type-1 pattern reacts to changed environmen-
tal conditions across the two ecosystems without having to rewire
the molecular circuitry.

4.2 Type-2 Gene Co-expression Patterns and
Network: Rewired Mechanisms

Four significant type-2 patterns are shown in Figure 5a—-d, illustrat-
ing dramatic co-expression differences due to rewiring. SAR11_56
(K00128), involved in microbial metabolism in diverse environments,
valine, leucine and isoleucine degradation, fatty acid degradation,
and lysine degradation. It co-expresses with SAR86_378 (K00382)
involved in microbial metabolism in diverse environments / Valine,
leucine and isoleucine degradation, and lysine degradation, with
an increasing trend in CC and a non-monotonic trend in NPSG.
Roseo_1(K03116) is involved in environmental information process-
ing, bacterial secretion system, folding, sorting and degradation,

genetic information processing, and membrane transport. It co-
expresses with SAR86_437 (K03561) involved in protein families:
signaling and cellular processes, transporters, biopolymer trans-
port protein ExbB, with a non-monotonic pattern in CC while
showing an independent trend in NPSG. SAR86_182 (K00789) par-
ticipates in biosynthesis of secondary metabolites, biosynthesis of
amino acids, cysteine and methionine metabolism. It co-expresses
with SAR11_361 (K04754) as structural proteins and phospholipid-
binding lipoprotein MlaA, with a negative relationship in NPSG
whereas an increasing trend in CC. SAR11_155 (K00161), involved
in microbial metabolism in diverse environments and HIF-1 signal-
ing pathway, co-expresses with SAR116_282 (K00795) involved in
metabolism of terpenoids and polyketides, and terpenoid backbone
biosynthesis, observing an opposite non-monotonic trend in both
CC and NPSG. These patterns show the rewiring of interactions
between two genes which can result from ecosystem adaptability
spanned over a long time.

Figure 5e is a network comprising of top 200 type-2 patterns.
There are several hubs of high degrees. One hub gene SAR11_56 in-
teracting with many genes and another gene SAR11_31, is involved
in the pathway of microbial metabolism in diverse environments.
The pathway is the accumulation of several metabolic pathways like
nitrogen, sulfur, methane, amino acid and energy pathways [20].
SAR11_377 gene of DNA gyrase subunit B is known for DNA repli-
cation, repair and recombination [1]. It has been used as a genetic
marker for exploring bacterial diversity [13, 33]. GyrB, a housekeep-
ing gene responsible for diversity between the strains of fresh and
deep water, suggests the adaptation of bacterial ecotypes in deep
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Figure 5: Type-2 patterns and networks differential in 2nd-order between California coast and North Pacific Subtropical Gyre.
(a—d) Four type-2 gene co-expression patterns. The horizontal and vertical axes are the gene-expressions. Fitted loess curves
show dynamics. (e) A type-2 network formed by top 200 type-2 patterns differential between CC and NPSG. The edges are
statistically significant type 2 patterns involving the two nodes of each edge.

sea [25]. The SAR11 clade is the most abundant in surface water and
also exists in oxygen minimum zones [40]. SAR11 lineages, having
adapted to the harsh environment of oxygen minimum zones, are
involved in the pathway of ocean nitrogen loss by contributing
towards NOj respiration in anoxic zones [40]. SAR11_1253 gene
of aprA (adenylylsulfate reductase, subunit A) is involved in dissim-
ilatory sulphate reduction [20]. Bacteria carrying aprA and aprB
genes involved in dissimilatory sulphate reduction are enriched
in oxygen minimum zones in the Bay of Bengal [34]. A number
of genes detected as a part of significant type-2 patterns are in-
volved in some vital metabolic pathways like nitrogen and sulfur
metabolism. These metabolic pathways are key factor for sustain-
ability of microbiome in oxygen minimum zones like NPSG. The
function of these type-2 gene patterns suggests that it is possible
genetic rewiring may have occurred to enhance adaptability of the
microbiome in the two contrasting oceanic ecosystems.

4.3 Type-0 Gene Co-expression Patterns and
Network: Conserved Mechanisms and
Dynamics Unrelated to Environment

Four type-0 patterns are illustrated in Figure 6a—d, where gene co-
expression patterns are dynamic but almost identical in trajectory
between CC and NPSG waters.

SAR11_644 (K02879) is involved in translation and genetic in-
formation processing. It co-expresses with SAR11_639 (K06207),
involved in signaling and cellular process, with an increasing trend
in both ecosystems.

SAR406_1867 (K02636), involved in photosynthesis and meta-
bolic pathways, co-expresses with SAR406_294 (K03043), involved
in RNA polymerase, genetic information processing, and transcrip-
tion, has a positive trend in both water systems. SAR116_1914
(K02035), involved in quorum sensing and cellular processes, has
positive relation with SAR11_920. SAR11_545 (K02109), involved
in photosynthesis, metabolic pathways, and oxidative phospho-
rylation, negatively co-expresses with SAR11_186 in both water
systems. Figure 6e is a network of top 200 type-0 patterns, as ranked
by increasing P-values of the zeroth-order strength test. From the
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Figure 6: Type-0 gene co-expression patterns and networks conserved between California coast and North Pacific Subtropical
Gyre. (a—d) Four pairs of type-0 gene patterns. The horizontal and vertical axes are the gene-expressions. Fitted loess curves
show the dynamics in each ecosystem. (e) A type-0 network of top 200 patterns in conserved between CC and NPSG. The edges
are type-0 patterns involving the two nodes of each edge. In a type-0 pattern, the pair of genes involved must be significantly
co-expressed in at least one ecosystem, but the patterns do not differ in 1st- or 2nd-order significantly.

described function of the involved genes, these active but environ-
mentally unchanged co-expression patterns reflect the most fun-
damental life processes such as photosynthesis and general gene
regulation, conserved in both dynamics and molecular mechanisms
in most biological systems.

5 DISCUSSION

DeLong and colleagues reported conserved transcriptional net-
works underlying planktonic microbial communities between Cal-
ifornia coastal and North Pacific Subtropical Gyre water ecosys-
tems [6]. We further evaluated the gene co-expression patterns
for evidence to support 1st- and 2nd-order differential networks
across the two ecosystems. Our study resulted in about 62% type-1
patterns, 22% type-2 patterns and 16% type-0 patterns. Our results
comply with the previous study in the aspect of conservancy in the
microbial behavior as more than 70% has same interaction patterns.

Type 1 gene co-expression patterns exhibited some diversity of
trajectory. Most co-expression patterns differ in mean expression
of the involved genes and are thus detectable by typical differential
gene expression analysis methods. However, the presented 1st-
order marginal change test can also detect change in marginal
distribution of involved genes which may have similar mean values.
Therefore, our method is sensitive to difference in both distribution
and mean, more general in recognizing changed marginal activities.

6 CONCLUSIONS

We have demonstrated the first-order marginal change test and how
it is integrated with a second-order test to reveal three types of con-
served and differential patterns across conditions. Applying these
methods on metatranscriptomic data of planktonic microbial com-
munities from different oceanic ecosystems, we revealed conserved
and rewired microbial gene networks. The uncovered type-1 differ-
ential network suggests that planktonic microbial communities can
respond to different oceanic habitats using the same underlying
molecular mechanisms. Previous work focused mostly on type-0
conserved and type-2 differential networks. We emphasize the im-
portance of type-1 differential network which can identify active
network components that respond to contrasting environmental
input using the same mechanism across conditions to generate dif-
ferent output. Therefore, the marginal change test gives new insight
into molecular mechanisms beyond type 0 and 2. The three network
types together comprehensively delineate how microbial commu-
nities gene networks may have evolved to respond to changed
environments, also applicable to the analysis of other biological
networks.
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