Joint Grid Discretization for Biological Pattern Discovery

Jiandong Wang
Department of Computer Science
New Mexico State University
Las Cruces, New Mexico, USA
wangjd24@nmsu.edu

ABSTRACT

The complexity, dynamics, and scale of data acquired by modern
biotechnology increasingly favor model-free computational meth-
ods that make minimal assumptions about underlying biological
mechanisms. For example, single-cell transcriptome and proteome
data have a throughput several orders more than bulk methods.
Many model-free statistical methods for pattern discovery such
as mutual information and chi-squared tests, however, require dis-
crete data. Most discretization methods minimize squared errors
for each variable independently, not necessarily retaining joint pat-
terns. To address this issue, we present a joint grid discretization
algorithm that preserves clusters in the original data. We evaluated
this algorithm on simulated data to show its advantage over other
methods in maintaining clusters as measured by the adjusted Rand
index. We also show it promotes global functional patterns over
independent patterns. On single-cell proteome and transcriptome
of leukemia and healthy blood, joint grid discretization captured
known protein-to-RNA regulatory relationships, while revealing
previously unknown interactions. As such, the joint grid discretiza-
tion is applicable as a data transformation step in associative, func-
tional, and causal inference of molecular interactions fundamental
to systems biology. The developed software is publicly available at
https://cran.r-project.org/package=GridOnClusters
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1 INTRODUCTION

Discretization converts analog to digital signals. It is most often
used to represent measurements from the physical world such
as a biological system. Most discretization methods are univari-
ate, such as equal-bin-width quantization, optimal univariate k-
means [23, 25, 29], maximum entropy quantization [15], and maxi-
mum likelihood quantization [24]. Multivariate discretization meth-
ods are also developed, including vector quantization [11] and se-
quential multivariate quantization [18]. These methods optimize
on the fidelity of a discretized signal to the original signal, often
measured by squared errors.

The utility of discretization has progressed from signal represen-
tation to pattern discovery. Notably, certain model-free methods
for pattern discovery rely on discrete representation of signals to
rid the process of any parametric assumption. They include mutual
information and the classical Pearson’s chi-squared test of asso-
ciation [19], the recent functional tests [17, 32, 35], and discrete
causal inference methods such as causal inference by stochastic
complexity [2] and hidden compact representation [3]. These model-
free methods detect symmetric, functional, or causal dependencies
between variables without assuming a mathematical model for a
relationship. They are used to study biological interactions from
measurements of molecular abundance such as transcriptome or
proteome data [6, 13, 16, 28, 34, 35]. However, univariate discretiza-
tion, often used before these methods, is ineffective if marginal
distributions do not reflect patterns in the joint distribution.

To transform analog to digital signals for model-free pattern
discovery, we present a joint grid discretization method that pre-
serves clusters in the original data. Instead of using the mainstream
squared error criterion, the method finds a grid to preserve the rela-
tive positions of clustered patterns in the data. The grid is then used
to discretize the data for downstream analysis, such as constructing
a contingency table.

We benchmarked joint grid discretization in contrast to marginal
methods by simulation studies and single-cell multiomic datasets of
multiple phenotype acute leukemia [10]. The performance is mea-
sured by the adjusted Rand index to evaluate the strength of cluster
preservation. The functional chi-squared statistic (FunChisq) and
mutual information score [14] are also used to indicate how well a
discrete function is present in discrete data. Joint grid discretiza-
tion demonstrates advantages in maintaining cluster patterns and
improving functional pattern discovery accuracy over marginal
methods. On a subset of the single-cell leukemia dataset, novel
protein-RNA interactions are revealed via the strength of discrete
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Figure 1: Overview of joint grid discretization. (a) The input is multivariate continuous data. (b) Step 1, silhouette information
is used to select a best number of clusters k. (c) Step 2, data are clustered by k-means. (d) Step 3, hyperplanes (grid lines in 2D)
cutting each dimension are found to preserve the clustering. (¢) The output is a multivariate grid. (f) For downstream analysis,

a contingency table is formed by discretizing the input continuous data using the grid.

functional pattern. Its success on noisy single-cell data suggests
a broad range of possibilities in studying complex biological sys-
tems where model-free approaches are beneficial for discovery of
previously unknown mechanisms.

2 METHODS

2.1 Overview of joint grid discretization

To capture multivariate patterns, we introduce a joint grid dis-
cretization algorithm whose main steps are summarized in Figure 1.
Previous joint grid finding approaches are based on likelihood or
entropy but not based on cluster preservation, while marginal grids
obtained by discretizing each dimension separately are blind to
joint patterns.

Figure 2 illustrates the advantage of joint discretization. Both
joint and marginal grid discretization are applied on bivariate data
on two functional patterns of a chessboard and a noisy curve. Here,
the marginal distributions of both dimensions are uniform. The
joint grid captured the patterns visibly better than the marginal
grid, and also better by the lower p-values of FunChisq obtained
from the contingency tables built from discretized data. As uniform
marginal distributions do not carry any information regarding a
joint pattern, the marginal grid is nearly blind to the joint patterns
in both cases. The examples thus provide an intuition why joint grid

discretization preserves a joint pattern much better than marginal
grid discretization.

The joint grid discretization method is given as Algorithm 1
JoINT-GRID-DISCRETIZATION. Its input is d-dimensional multivari-
ate data set X of n points. There are three main steps in the algo-

Algorithm 1 JoINT-GRID-DISCRETIZATION(X)

1 fork = 2 to kpax

2 C(k) = Perform k-means clustering on X with k clusters

3 if k == 2 or clustering C(k) increases average silhouette
width over C*

4 C* = C(k)

5 G = FiND-GriD(X, C*)

6 return grid G

rithm. The first step is to perform multivariate k-means clustering;
the second step is to select an optimal number of clusters by silhou-
ette information; and the last step is to find hyperplanes (grid lines
in 2D) perpendicular to the axes that best separate the projection
of clusters onto each dimension. The time complexity of the joint
grid discretization algorithm is O(kmaxn? + d(n + k) log n), where
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Figure 2: The advantage of joint over marginal grid discretization on a chessboard pattern and a noisy curve. The corresponding
contingency tables are shown to the right of each pattern. p-values are obtained by the FunChisq test on the contingency tables.

the first term is the time for the clustering and k selection steps,
and the second term is the time needed for finding a grid.

2.2 Finding homogeneous clusters

We first cluster the input multivariate continuous data. The goal is
to represent the data in a way such that each cluster is isotropic,
meaning points within a cluster are homogeneous without a strong
direction. Such clustering allows one to capture global changes
across homogeneous clusters instead of hiding them inside one
large heterogeneous cluster. This is often critical for downstream
pattern discovery. We use k-means clustering in the Euclidean space
to achieve this step.

We use the average silhouette width of a clustering to select an
optimal number of clusters. Silhouette information characterizes
the separation across clusters versus the compactness within each
cluster. Unlike other internal cluster quality measures, silhouette
is not biased to a large number of clusters making it suitable for
selecting the best number of clusters. For a given clustering, the
average silhouette width is in the range of [—1, 1]. The greater the
width, the better is the clustering. We select the best k-means clus-
tering over a various number of clusters from 2 to kmax, as specified
by the user. A clustering with the greatest average silhouette width
is selected as the optimal clustering to find a grid.

2.3 Determining a grid that preserves clusters

To identify a grid that preserves a given clustering, we design
Algorithm 2 FIND-GRID. Its input is the original continuous data
and a clustering of the data. Its output is a grid. It projects the
data and clustering to each dimension to determine whether a
hyperplane (line in 2D) is necessary between consecutive clusters

Algorithm 2 FIND-GRID(X, C)

1 ni,...,n, = number of points in clusters 1,...,kin C
2 for each dimension d of X
3 Y1,..., Y, = dimension d coordinate vectors of k clusters

in ascending order by medians
4 forj=1tok-1
5 W = INTERSECT(Y}, Yj+1)
6 line = FIND-LINE(W, 0, [W|, nj, nj41)
7 Append line to dimension d in G
8 return grid G

and if so the location of a hyperplane. For two dimensional input
data, the grid is composed of lines; for higher dimensions, the grid
is a collection of hyperplanes.

We find grid lines in each dimension by minimizing line crossings
between projections of consecutive clusters. The rationale is that
cluster projection already reflects the joint pattern. Working with
projections preserves the joint patterns. We first decide whether
two cluster projections have sufficient separation by their overlap.
We define the error rate e; as the percentage of points in cluster j
that cross the grid line away from the cluster median. If the sum
of the error rates of two neighboring projected clusters e; + ej1 is
more than 50%, we declare the two clusters overlap in the current
dimension and no grid line is added to separate these two clusters.
Otherwise, we add a grid line at a location where the error rates of
the two neighboring clusters are about equal. In the algorithm, € is
the machine precision, which we set to 0.005.
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To speed up error rate calculation, we design an index-based
search strategy given as Algorithm 3 FIND-LINE. Direct computation
of error rate e is expensive since it has to be calculated twice in each
dimension for each cluster by going through the entire cluster to
obtain the number of misplaced points. The search algorithm based
on index can speed up this process. The main idea is to use an index
to provide information about the number of misplaced points. As
the number is fixed for each position, we calculate it only once for
repeated use. The index tells us how many points are misplaced for
two consecutive clusters at the position we examined. We create a
data structure called W to maintain the index information.

Algorithm 3 FIND-LINE(W, left, right, sizey, sizez)

line_index = [(left + right) /2]
line = W[0][line_index]
Calculate error rates e; and ey for cluster; and cluster;
err_sum = ey + eg; err_diff = |e1 — ez
if left == right — 1 or line_index == right or err_diff < e
/ base case:
if err_sum > 0.5
/ Clusters j and j + 1 overlap in dimension d
return null
9 elseif err_sum < 0.5
/ Clusters j and j + 1 do not overlap in dimension d
10 return line
11 if e; > ey / search the right side

N NG W N =

12 return FIND-LINE(W, line_index, right, sizey, sizes)
13 elseif e; < ez # search the left side
14 return FIND-LINE(W, left, line_index, sizey, size)

We design Algorithm 4 INTERSECT to calculate this index for two
given clusters. The idea is illustrated in Figure 3. We first merge
two consecutive clusters and index points by the decreasing order
for cluster 1 and increasing order for cluster 2. Then we extract
points in cluster 1 and cluster 2 in between the cluster medians. In
case the line overlaps a point in the data, we calculate mid-point
for every pair of consecutive points and use right side index for
cluster 1 and left side index for cluster 2, as index will indicate how
many points in that cluster cross the line. The following theorem
justifies searching between cluster medians.

THEOREM 2.1. Given two multisets S and Sy, each containing n;
and ny real numbers, respectively. Let ay and az be the medians of S
and Sz, respectively. We assume a1 < az without loss of generality.
Let t be a real number. Using t as a decision boundary, we define the
error rates for S; and Sy by

e1 = [{x|x > t,x € S1}|/m
and
ez = [{x|x < t,x € Sa}|/ny
Ift < a1 ort > ay, then the sum of error rates e; + ez > 50%.
PRroOF. By the definition of error rate and as ¢ increases (moving
from left to right), e; decreases from 100% to 0 and ey increases

from 0 to 100%. When ¢ = a, it is always true that e; > 50%; when
t = ap, we always have ez > 50%. Thus, if t < a3 or t > ay, either
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e1 > 50% or ez > 50%. As the error rate is always non-negative, we
can conclude that if t < a7 or t > @y, then the sum of error rates
e +e > 50%. ]

Algorithm 4 INTERSECT(Y7, V2)

Merge and sort points in the two clusters

2 Create an index data structure based on decreasing order for Y;
and increasing order for Y,

3 Extract points and corresponding indices between the medians
of Y and Yy

4 Calculate mid-points for every two consecutive points and
assign the corresponding index

5 return mid-points and their indices

To find a grid line in a given dimension, we perform binary
search between projections of two consecutive cluster medians.
We evaluate error rates of the two clusters if the line is put at the
middle of two end points. Let e; and e, be the error rates for the
left and right neighboring clusters. We repeatedly shrink the search
interval by half until either e; + e; > 50%, e1 == ey, or the interval
width is zero. The binary search strategy is correct because the
error rate difference of e; — e; will not increase as the line position
increases in the given dimension.

The runtime of FIND-GRID includes both sorting and search,
giving rise to a time complexity of O(dnlogn).

2.4 Forming a contingency table by a grid

For discrete pattern discovery, data are discretized by the grid. Algo-
rithm 5 FORM-CONTINGENCY-TABLE(Z, G, d) produces a contingency
table, whose columns are dimension d of Z as the dependent vari-
able, and rows are all remaining dimensions of Z as independent
variables. The contingency table can be used for the FunChisq test,
Pearson’s chi-squared test, or mutual information calculation.

Algorithm 5 Form-CONTINGENCY-TABLE(Z, G, d)

Let Lj be the number of intervals in dimension d in grid G
Discretize Z; by G to Y of s = L levels

Discretize Z\{Z;} by Gto X of r = H?:l,j;éd Lj levels
Form a table T of dimensions r X s
Map each point (x,y) € (X,Y) to T using grid G

return contingency table T

AU R W N

2.5 Functional chi-squared statistics

One downstream analysis of discretization is functional pattern
discovery. Given n observations of two discrete variables, X with
r unique levels and Y with s unique levels, the FunChisq statistic
measures the functional dependency X — Y in an r X s contingency
table with X as rows and Y as columns defined as

r s (. 2 s L 2
X}(Xﬁy)zzz[nu (ni./s)] _Z[n-] (n/s)] (1)

o o ni./s = n/s
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Figure 3: Data structures used in the INTERSECT algorithm. The green solid line indicates cluster 1 and the red solid line is
cluster 2. The two vertical dashed lines show the medians of each cluster.

where n;; is joint frequency at row X = i and column Y = j, n;.
is the sum of row X = i and n.; is the sum of column Y = j.
FunChisq follows the chi-squared distribution asymptotically with
(r—1) - (s — 1) degrees of freedom under the null hypothesis of X
and Y being independent when Y is uniformly distributed. Other
mathematical properties of FunChisq are derived in [17, 32, 35].

3 RESULTS
3.1 Simulation studies
3.1.1 Simulated patterns. To evaluate the joint grid discretization

method, we generated 15 functional patterns as shown in Figure 4,
where each pattern is either a discrete or a continuous function.
The patterns shown do not carry noise. Various levels of Gaussian
noise are later added in the simulation study. Each pattern contains
500 sample points. The first eight patterns are highly discrete and
the last seven are smooth functions. Zero-mean Gaussian noise
at standard deviation levels from 0 to 150% of the signal standard
deviation is added to each signal.

3.1.2  Using adjusted Rand index to measure cluster preservation. We
first compare the joint grid (GOC) and three marginal discretization
methods for cluster preservation in our simulation studies. For all
four methods, we use the same table dimension as determined by the
joint grid. The marginal grid discretization is performed using the
discretize function in the R package ‘arules’ [12] with ‘cluster’—
univariate k-means (KMEANS), ‘frequency’—maximum entropy
(FREQ) and ‘interval’—equal bin width (INT) strategies. Marginal
discretization was performed on each dimension to obtain a grid.
This grid is used to generate a contingency table. Then we calculate
the adjusted Rand index (ARI) score to evaluate the performance
of each method. The (unadjusted) Rand index computes a simi-
larity measure between two clusterings by considering all pairs
of samples and counting pairs that are assigned in the same or

different clusters in the predicted and true clustering. ARI is the
corrected-for-chance version of the Rand index. Such a correction
for chance establishes a baseline by using the expected similarity
of all pair-wise comparisons between clusterings specified by a
random model [21, 27]. The ARI of the four methods are shown in
Figure 5. The higher the ARI, the better preservation of the original
clusters. From Figure 5, we observe that joint grid discretization
method has better ARI scores at most noise levels, capturing the
clusters more accurately than marginal discretization methods.

3.1.3  Using the FunChisq test and mutual information to measure
functional dependency. Next, we applied the FunChisq test and mu-
tual information on the contingency table obtained from the grid
to calculate a p-value and a score, respectively, to measure the
functional dependency. Distributions of FunChisq p-values and
mutual information of the four methods are shown in Figure 6. On
functional patterns at low noise levels, joint grid discretization out-
performed marginal grid discretization in returning smaller median
p-values and mutual information scores. On noisy functional pat-
terns which are getting closer to independent patterns, all methods
returned p-values and mutual information close to one. Figure 6
suggests that the joint grid method did better then the marginal
methods at most noise levels.

3.1.4  Functional relationships versus independent patterns. We also
evaluated if joint grid, along with three marginal discretization
strategies promote functional over independent patterns at increas-
ing levels of noise. For each functional pattern at each noise level,
an independent pattern was generated by two random normal vari-
ables with their mean and standard deviation same as the variables
in the functional pattern. Figure 7(a) and (b) show the area under
the receiver operating characteristic (AUROC) curve and area under
the precision recall (AUPR) curve over increasing noise for four
discretization strategies obtained using FunChisq. Figure 7(c) and
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Figure 5: Cluster preservation by joint and marginal dis-
cretization methods on simulated data. The horizontal axis
represents the noise level percentage at multiples of signal
standard deviation. The vertical axis is ARI score.

(d) used mutual information instead. Joint grid (GOC) is the overall
top performer until noise level 0.8%, after which the performance
becomes unstable as functional patterns approach independence.
K-means clustering (KMEANS) is second best, followed by maxi-
mum entropy (FREQ) and equal bin width (INT) that are relatively
similar.

3.2 Discovering novel combinatorial protein to
RNA interactions in leukemia cells

Greenleaf and colleagues [10] generated multi-omic single-cell
datasets containing proteome and transcriptome of cells of healthy
developing blood and cells of mixed-phenotype acute leukemia
(MPAL). Using single-cell RNA sequencing (scRNA-seq) [33], they
measured 20,287 RNA transcripts across 53,638 cells. They also
measured 21 surface proteins across 52,886 cells using single-cell
antibody-derived tag sequencing (scADT-seq) [26].

Following the steps in [10], we processed both datasets by first
removing zero variance cells. We also removed zero variance RNAs,
while no proteins of zero variance were found. After filtration,
the scRNA-seq data had 17,451 RNAs and scADT-seq data had 21
proteins across 52,885 matched single-cells. Next, we transformed
scADT-seq using the centered log ratio (CLR) as explained in [26].
We filtered scRNA-seq using log, transformation after normalizing
it to count per thousand (CPT) and adding one, given by: lej =

log, (1 + (Rij - 10, OOO/R.j)), where R;; is the count of RNA i in cell
j and R.;j is the sum of unique molecular identifiers in cell ;.

We evaluated if the four discretization strategies are able to cap-
ture and prefer known combinatorial protein to RNA interactions
over shuffled independent patterns. We obtained 551 known protein-
RNA interactions from Pathway Commons [4] that have docu-
mented experimental evidence for physical interactions. Among
the 551 interactions, 176 RNAs were influenced by two or more
proteins. For each of the 176 RNAs, we obtained its two most ‘ac-
tive’ proteins by selecting ones with the highest non-zero median
absolute deviation (MAD) across samples, scaled by the number
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Figure 6: The performance of joint and marginal discretiza-
tion methods on simulated functional patterns. The hori-
zontal axis represents the noise level percentage at multi-
ples of the signal standard deviation. The vertical axis is (a)
FunChisq (- In p-value) and (b) mutual information. In both
cases, a high value suggests a strong functional pattern.

of non-zero single-cells. Thus, we evaluated 176 protein X protein
— RNA interactions versus 176 independent patterns by means
of mutual information and FunChisq p-value. The independent
patterns were generated by asynchronously shuffling the single
cells in the original interaction.

For joint grid, each interaction was jointly discretized to obtain a
grid G. Algorithm 5 FORM-CONTINGENCY-TABLE was then used on
the three dimensional Z containing two proteins and one RNA. For
marginal discretization, all proteins and RNAs were individually
discretized with the same number of levels as that obtained by joint
grid. Independent patterns were discretized in the same manner.
When discretizing, we only considered samples that were non-zero
across the two proteins and the RNA.

Figure 8 shows the ROC and PR curves generated using FunChisq,
GOC (AUROC=0.89, AUPR=0.93) is the top performer followed by
the KMEANS and FREQ (AUROC=0.87, AUPR=0.92) performing
equally and INT (AUROC=0.86, AUPR=0.91) performing slightly
worse than others. A similar trend is seen in Figure 8(c) and (d)
generated using mutual information, where GOC (AUROC=0.81,
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Figure 7: Detecting functional versus independent patterns.
(a,c) AUROC and (b,d) AUPR over increasing noise obtained
via FunChisq and mutual information, respectively.

AUPR=0.77) is the overall top performer, followed by KMEANS
and FREQ (AUROC=0.81, AUPR=0.75) with INT (AUROC=0.81,
AUPR=0.73) coming in last.

3.2.1 Cluster preservation among combinatorial interactions. Fig-
ure 9 shows the ARI distribution for all 176 protein X protein
— RNA interactions, ordered by median ARI. KMEANS (median
ARI=0.450) is the best performer followed by GOC (median ARI=0.434).
INT (median ARI=0.420) with a large dynamic range comes in third
while FREQ (median ARI=0.174) performed poorly.

3.2.2 Discovering putative protein-RNA interactions. To discover
putative protein-RNA interactions that may play a role in leukemia,
we applied the four discretization methods to a subset of the leukemia
dataset and computed four FunChisq p-values. Four surface marker
proteins CD14, CD3D, CD19, and CD8A with known roles in healthy
blood development [10] were selected. 1,000 RNAs with the highest
non-zero MAD scaled by the number of non-zero single-cells were
also selected. Thus, we computed the FunChisq p-values for 4000
interactions under the four discretization schemes.

Figure 10 shows the joint kernel densities of top four patterns
ordered by their aggregate ranks of FunChisq p-value on four dis-
cretization schemes. Each subplot also shows the grid lines and
FunChisq p-value for each discretization strategy. CD3D (CD3d Mol-
ecule) indirectly regulates B2M (f-2-Microglobulin) in Figure 10(a)
as CD3D protein governs T-cell development [22] as a part of T-cell
receptor (TCR) complex, while the TCR stimulus (or CD3/CD28
costimulus) induces USF1 [9] which in turn regulates B2M transac-
tivation in hematopoietic cells [8]. In Figure 10(b), CD14 (CD14 Mol-
ecule) may have regulatory impact on FTL (Ferritin Light Chain) as
soluble CD14 (sCD14) in patients on hemodialysis showed positive
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Figure 8: Performance on Leukemia dataset. (a),(c) ROC and (b),(d) PR using FunChisq and mutual information, respectively.
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Figure 9: Performance of joint and marginal discretization
methods on leukemia datasets expressed through adjusted
Rand index distribution.

correlation with serum ferritin encoded by FIL [22], among other
biochemical variables [20]. In Figure 10(c), CD14 and 5100A6 (5100
Calcium Binding Protein A6) differentially express in porcine alve-
olar macrophages’ response to Haemophilus parasuis in pigs [30].
Additionally, they are also found to differentially express together
in rat blood under heat stress [5]. In Figure 10(d), CD14 indirectly
regulates CTSS (Cathepsin S) by initiating a pathway that induces
SRC-family kinase [31]. SRC in turn, is known to control CTSS [7].
In each case, the grid lines of GOC are appropriately placed boosting
the FunChisq p-value, while other methods either cut in or around
a dense region, except KMEANS in Figure 10(d). In Figure 10(a),
the INT placement of the grid lines makes an otherwise functional
pattern, non-functional.

4 DISCUSSION

To create contingency tables that can represent global patterns
within the data, we developed a joint grid discretization approach.
Our findings suggest that it is more sensitive to functional patterns
than a marginal grid approach, but treats independent patterns
equally with the marginal grid approach.
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Figure 10: Discretization on top four putative patterns. (a) CD3D—B2M, (b) CD14—FTL, (c) CD14—S100A6 and (d) CD14—CTSS.
Each point represents a cell and warmer colors (approaching red) indicate higher cell concentration. Each plot contains four
subplots showing the dashed grid lines obtained by GOC, KMEANS, FREQ and INT and their respective FunChisq In p-value.

Vector quantization, consistent with k-means clustering, returns
decision boundaries not parallel to the axes of each variable as in
grid discretization. A grid parallel to axes is often required for model-
free pattern discovery such as in detecting gene-gene interactions.

Grid discretization is different from grid-based clustering such
as the CLIQUE method [1]. The goal of the former is to identify a
grid whose cells cover homogeneous clusters formed by the data;
the goal of the latter is to group cells in a fine grid into clusters
efficiently in high dimensions.

We removed cell and gene outliers but did not normalize the
single-cell leukemia data by library size as typically done. The
primary reason is that all library size normalization methods we
tried introduced artifacts of perfect lines in gene-gene scatter plots.

Additionally, we do not observe obvious systematic effects due
to library size in top gene-gene interactions. Artifacts introduced
during library size normalization do raise a concern for further
studies.

Even top known gene-gene interaction patterns appear much
noisier in single-cell (Figure 10) than bulk RNA-seq data we have
seen in the past. Such data quality is not desirable but unavoidable
due to current challenges in single-cell instrumentation. But it does
support the use of a discretization method to capture only globally
important variations rather than local details, which may benefit
downstream model-free pattern discovery tasks.
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5 CONCLUSIONS

A joint grid discretization algorithm is introduced and demonstrated
for its desirable performance in preserving clusters and functional
patterns in the data. It is unconventional as its focus is not to mini-
mize the squared errors between the discretized points and their
continuous originals. Thus its capacity is not in the numerical pre-
cision as needed in modeling, but in locking in the global patterns
required for model-free pattern discovery. It is thus beneficial to a
broad range of biology applications with a goal to discover from
noisy data hidden biological mechanisms.
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