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As one of the most rapidly developing artificial intelligence techniques, deep learning

has been applied in various machine learning tasks and has received great attention

in data science and statistics. Regardless of the complex model structure, deep neural

networks can be viewed as a nonlinear and nonparametric generalization of existing

statistical models. In this review, we introduce several popular deep learning models

including convolutional neural networks, generative adversarial networks, recurrent

neural networks, and autoencoders, with their applications in image data, sequential

data and recommender systems. We review the architecture of each model and

highlight their connections and differences compared with conventional statistical

models. In particular, we provide a brief survey of the recent works on the unique

overparameterization phenomenon, which explains the strengths and advantages of

using an extremely large number of parameters in deep learning. In addition, we

provide a practical guidance on optimization algorithms, hyperparameter tuning, and

computing resources.
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1 | INTRODUCTION

In recent years, deep neural networks have achieved great success across all spectrums of machine learning problems such as image

segmentation, natural language processing, and object tracking. The development of deep learning can be summarized to three stages

(Goodfellow et al., 2016). The first stage is 1940s–1960s, where linear networks with a single neuron were proposed (McCulloch & Pitts, 1943;

Rosenblatt, 1958; 1961). However, it lacked nonlinear features, and thus the applications were limited.

The second stage is 1980s–1990s, gaining more successful developments due to the application of backpropagation algorithms (Rumelhart,

Hinton, & Williams, 1986) in training neural networks with one or two layers. Furthermore, the prototype of many popular deep models originates

in the late second stage, for example, the Boltzmann Machine (Sabour, Frosst, & Hinton, 2018), the long short-term memory (LSTM) (Hochreiter

& Schmidhuber, 1997), and the convolutional neural network (CNN) (LeCun, Bottou, Bengio, & Haffner, 1998). However, the applications of

LSTMs and CNNs were limited at that time because of high computational cost. For example, training a CNN with only two hidden layers could

take 3 days (LeCun et al. 1998). Another issue is that the backpropagation algorithm is often trapped in a local optimum because of the nature of

nonconvexity of the multilayer network optimization.

The computational issue was unresolved until Hinton proposed the deep belief network (DBN) (Hinton & Salakhutdinov, 2006), which is

used as an initialization strategy in deep neural network training. This breakthrough in computation opened the curtain of the third stage of

deep learning development. Since 2011, a series of success in computer vision competitions further makes deep learning more popular. For

example, AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) won the 2012 ImageNet Recognition Challenge with a more than 10% error rate

than the best non-neural-network solution. In 2015, ResNet (He, Zhang, Ren, & Sun, 2016) outperformed the human in classification on the

ImageNet dataset for the first time. Generally, two key factors contribute to the resurgence of deep learning. One is the revolutionary gain in
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computing power such as the use of graphics processing units (GPUs) and tensor processing units (TPUs), which accelerates the training of

neural networks for hundreds or thousands of times (CireşAn, Meier, Gambardella, & Schmidhuber, 2010). The other key factor is the avail-

ability of large labelled datasets. The ImageNet dataset (Deng et al. 2009) is launched in 2009 and contains 3.2 million annotated images with

5,247 categories, whereas the WMT 2014 English to French dataset (Bojar et al. 2014) consists of almost 1 billion sentence pairs for machine

translation. These datasets make it feasible to generalize deep neural networks by supplying a large amount of training data and therefore

improve model prediction accuracy. On the other hand, traditional parametric models fail to fully approximate the complex distribution

from these large datasets, whereas deep models allow more flexible model structures and display overwhelming advantages in large-scale

data applications.

The recent deep learning development can be categorized into three main categories: supervised learning, unsupervised learning, and rein-

forcement learning. In supervised learning, there are two main classes for different data types: CNNs and recurrent neural networks (RNNs).

CNNs are designed for image-related tasks and applied in image classification, object detection, face recognition, and medical imaging data ana-

lyses. RNNs including their variations such as LSTMs and gated recurrent units (GRUs) (Cho et al. 2014) are designed for sequential data such as

time series data and acoustic data. RNNs are also applied in dynamic tracking and monitoring sequential systems including traffic forecasting

systems (Azzouni & Pujolle, 2017) and driver action prediction systems (Olabiyi, Martinson, Chintalapudi, & Guo, 2017).

Deep unsupervised learning aims at extracting features and learning underlying distributions of input data. Among this category,

autoencoders (Hinton & Salakhutdinov, 2006) and Restricted Boltzmann Machines (RBMs) (Srivastava & Salakhutdinov, 2012; Salakhutdinov &

Hinton, 2009) are widely applied in text mining and recommender systems, and generative adversarial networks (GANs) are effective for

image and video synthesis. In addition, deep unsupervised learning can be integrated into deep supervised learning as a preprocessing

technique, which is commonly used in recommender systems (Chu & Tsai, 2017) and natural language processing (Devlin, Chang, Lee, &

Toutanova, 2018; Radford et al. 2019). Deep reinforcement learning aims to learn an optimal decision-making strategy in an action-reward

system. The most recognized achievements in this field are Alpha-Go (Silver et al. 2017) and Alpha-Zero (Silver et al. 2017). Other applica-

tions include autonomous driving techniques (Sallab, Abdou, Perot, & Yogamani, 2017) and game artificial intelligence (Vinyals et al. 2017) to

improve game players.

One important trend of deep learning is that complexity of neural networks increases as the layers of neural networks and the total number

of parameters keep increasing. Figure 1 illustrates the number of parameters corresponding to representative deep learning models. Generally,

neural networks doubled in size every 2.4 years (Goodfellow et al., 2016). The increasing trend is even accelerated more since ResNet (He et al.

2016) has been proposed. Although a few theoretical developments have been established so far, experimental results (Simonyan & Zisserman,

2014; Szegedy et al. 2015) demonstrate that the performance of deep neural networks improves with an increasing number of layers, or equiva-

lently, deeper networks provide lower generalization errors.

In general, deep learning deals with supervised or unsupervised learning problems under a framework similar to statistical methods. However,

deep learning goes beyond traditional statistical learning algorithms through increasing the number of processing operations from input data to

output data. Specifically, it approximates training examples by a hierarchical composition of multiple nonlinear transformations over latent

features from input data. This architecture is extremely effective in capturing highly nonlinear relations between input data and output data. In

addition, deep learning models bring new insights on the bias-variance trade-off principle under the overparameterization regime.

In this review, we elaborate the applications of deep learning in three important domains: image analyses, sequence data analyses, and

recommender systems. Moreover, we investigate the general connections between statistical models and deep learning models, which are not

considered by most of the existing reviews. For the rest of this review, we introduce the basic deep learning architecture, that is, the general

feed-forward network in Section 2. In Section 3, we present two popular models in imaging data analyses: the CNN and the GAN. Section 4

illustrates the recurrent neural network designed for sequential data. Section 5 considers two deep models for recommender systems: the

autoencoder and the Boltzmann machine.

Section 6 focuses on optimization for training a deep learning model. We summarize the connections between deep learning and statistical

models in Section 7. Section 8 provides softwares and platforms for implementing deep learning models. A summary of the advantages and limita-

tions of deep learning is provided in the last section.

F IGURE 1 Size evolution of deep neural networks, showing the names of deep neural networks along with the year and the total number
of parameters
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2 | BASIC DEEP ARCHITECTURE: FEED-FORWARD NEURAL NETWORK

In this section, we introduce the general structure of the feed-forward neural network (FNN) (Haykin, 1994). We denote the training dataset as

{(xi, yi)}1 ≤ i ≤ n, where xi 2Rd is the independent input data and yi is the dependent response data. In regression problems, yi belongs to a continuous

subset of R, whereas in classification problems, yi belongs to a discrete set [K] = {1, 2, …, K}, where K is the number of categories.

The structure of the FNN mainly consists of three parts: input layer, hidden layer and output layer. The input layer is simply the vector x. The

hidden layer involves a linear transformation or nonlinear transformation. Specifically, for an L-layer FNN, we denote the dimension of the ℓth

layer as dℓ, and the ℓth layer can be defined recursively by

hð0Þ = x; hðℓÞ = σðWðℓÞhðℓ−1Þ + bðℓÞÞ, ℓ = 1,2,…,L,

where WðℓÞ 2Rdℓ × dℓ−1 is the weighting matrix, bðℓÞ 2Rdℓ is the bias, and σ :Rdℓ !Rdℓ is a prespecified nonlinear transformation function, called

the activation function.

The choice of σ includes the sigmoid function, rectified linear unit (ReLU), leaky ReLU, tanh function and others, which are provided in

Table 1. Among these activation functions, sigmoid and tanh are smooth functions. However, the computational cost of using these smooth func-

tions is relatively more expensive. Most critically, they may result in a gradient vanishing problem where the derivatives of the first several layers

are close to zero during model training, especially when the number of layers is high. The reason is that the derivatives of sigmoid and tanh are

between 0 and 1 and could lead to smaller derivatives by multiplications arising from chain rules. In contrast, ReLU has a constant gradient on

positive values, which avoids the gradient vanishing problem. Yet the derivative stays zero once the hidden unit is negative, which defeats the

purpose of backpropagation. To solve this problem, leaky ReLU (Maas, Hannun, & Ng, 2013) and exponential linear unit (ELU) (Clevert,

Unterthiner, & Hochreiter, 2015) add a small gradient to the negative values. Compared with ReLU, these modifications are more robust as they

avoid being trapped in the negative values.

The formulation of the output layer is determined by different learning tasks. For regression problems, the function of the output layer can

be an affine transformation defined by gðhðLÞÞ=wT
oh

ðLÞ + bo , where wo 2Rdo and bo is a scalar. For multicategory classification problems, the trans-

formation function is selected as a softmax function defined by

½gðhðLÞÞ�i =
expðh∗i ÞXK

j=1

expðh∗j Þ
, where h∗ =Woh

ðLÞ + bo:

In general, the full structure of the FNN can be formulated as f(x|Θ) = g∘h(L)∘h(L−1)∘ … ∘h(1)(x), where ∘ denotes functional composition and

Θ= fWo,bo,W
ðℓÞ,bðℓÞgℓ2½L� is the parameter set corresponding to the affine transformation matrices and bias vectors of all layers. Figure 2

TABLE 1 Commonly used activation functions in deep neural networks

Name Sigmoid ReLU tanh Leaky ReLU ELU

Formula 1
1+ e−x maxð0,xÞ tanh(x) maxðcx,xÞðc>0Þ x x≥0

α ex−1ð Þ x<0

�

Abbreviations: ELU, exponential linear unit; ReLU, rectified linear unit.

F IGURE 2 General structure of a two-layer feed-forward neural network (FNN) with a scalar output. Each circle represents an element in
vectors of input x and hidden units h(ℓ), where ℓ=1 and 2
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illustrates the structure of a two-layer FNN. For model training, we can estimate Θ by minimizing the empirical loss function. For example, for a

regression problem, we use the quadratic loss, Θ̂= argminΘ
Pn

i=1 fðxijΘÞ−yið Þ2, and for a classification problem, we use the negative log likelihood

loss, Θ̂= argminΘ−
Pn

i=1

PK
k =11fyi = kglog½fðxjΘÞ�k: The training of parameters utilizes backpropagation (Rumelhart et al. 1986), which computes

the derivatives of parameters in each layer via a chain rule.

Compared with parametric models, the advantages of FNNs are mainly attributed from the nonlinearity induced by the activation function in

each layer. Indeed, the universal approximation theorem (Cybenko, 1989; Hornik, Stinchcombe, & White, 1990) states that any Borel measurable

function can be approximated by an FNN with one hidden layer under mild conditions on the activation function. Moreover, the derivatives of

any Borel measurable function can be approximated by the derivatives of an FNN as well. This theorem provides theoretical foundation for the

representation and formulation of the FNN.

3 | DEEP MODELS FOR IMAGING DATA

In this section, we introduce the application of deep neural networks related to imaging data, including CNNs for supervised learning tasks and

GANs for unsupervised learning tasks.

3.1 | Convolutional neural networks

CNNs (LeCun et al. 1998) are specialized feed-forward networks designed for imaging data. It has achieved great success in imaging data analysis

including classification, object detection, segmentation, and semantic description. Different from the general FNN introduced in Section 2, CNNs

use convolution operation instead of matrix multiplication to extract features, which enables CNNs to utilize the grid structure of imaging data.

We first introduce the unique operators involved in CNNs, including convolution and pooling. Let X2Rcin × d1 × d2 be a multicolor image; we

define the filter as K 2Rcout × cin × p1 × p2 , where cin is the number of matrices of input data and cout is the number of matrices of output data. Then,

the convolution between X and K is defined elementwisely as

½X∗K�u,i,j =
Xcin
v =1

Xp1
m=1

Xp2
n=1

Xv,ði−1Þs +m,ðj−1Þs + nKu,v,m,n,

and the max pooling function is defined as

½πðXÞ�u,i,j = max
ðm,nÞ2½p1 �× ½p2 �

Xu,ði−1Þs+m,ðj−1Þs+ n,

where s is a positive integer called stride. Different K results in different image processing procedures such as blurring, sharpening, and edge

detection. In CNNs, the filters are viewed as parameters and are trained to extract features. Figure 3 illustrates a convolution with

cin = cout = 1, d1 = d2 = 4, p1 = p2 = 3, and s = 1.

In general, CNNs consist of a feature extractor and a classifier. The feature extractor is a combination of convolution layers and pooling layers

g(ℓ−1) = σ(h(ℓ−1)∗K(ℓ−1)), h(ℓ) = π(g(ℓ−1)), where σ is an activation function, selected as ReLU by default. The outputs of the convolution layer g(ℓ) are

also called feature maps. Note that the convolution layer is not necessarily followed by a pooling layer. The output of the feature extractor is then

vectorized and connected with the classifier, which consists of a general multilayer FNN or a fully connected layer. Figure 4 illustrates the struc-

ture of CNNs with a single convolution layer and a single fully connected layer.

F IGURE 3 Illustration of convolution
operator between 4 × 4 input data and a
2 × 2 filter with stride equal 1. The output
is of size 3 × 3
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The reason why the convolution operator benefits the performance of CNNs on image data is attributed to two parts. On one hand, the fea-

tures extracted by CNNs are not location sensitive because of the translation invariance of convolution operators (Goodfellow et al., 2016), and

thus CNNs are more robust to the translation of signal pixels compared with the general FNN and traditional regression settings, where the index

of the features are usually fixed. On the other hand, using a convolution layer reduces the computational cost and storage requirement of the

model as the size of filters is much smaller than the input data. The reduced number of parameters avoids overfitting and thus improves the gen-

eralization capability of the model.

Despite the popularity of CNNs in the computer vision field, there are also limitations. First, CNNs ignore the orientation and the relative

location information of these features. However, these information may be important in tasks such as face recognition, where the presence of all

facial features does not imply a human face. Second, CNNs perform poorly when image data are highly heterogeneous across the subjects or the

number of training samples is limited (Tang, Bi, & Qu, 2019). In practice, this problem can be alleviated by data augmentation, that is, enlarging the

training dataset manually through zooming, rotating, and cropping. Nonetheless, CNNs are still not able to recognize variations of images that are

not presented in the augmented data. Finally, CNNs are vulnerable to adversarial attacks, which are specifically designed noise added to training

data. Some of these attacks are imperceptible to human beings (Goodfellow, Shlens, & Szegedy, 2014) or only minor changes of lighting and orien-

tation settings (Kurakin, Goodfellow, & Bengio, 2016) but could result in poor performance of a fine-trained CNN. How to defend CNNs from

adversarial attacks remains an open problem. For implementations of image classification through CNNs, please see the Supplementary Material

(Yuan, Deng, Zhang, & Qu, 2020).

3.2 | Generative adversarial networks

The GAN is an unsupervised learning method that estimates the density of population distribution. It has shown great capability to sample from

complex distributions and achieved great success in image-related tasks such as style transfer (Karras, Laine, & Aila, 2019), image synthesis (Tran,

Yin, & Liu, 2018), and object detection (Ehsani, Mottaghi, & Farhadi, 2018).

Given the observed data fxig1≤ i≤ n 2Rp , the GAN learns the underlying distribution density of X, PX, with two deep neural networks, namely,

the discriminator D and the generator G. The discriminator D :Rp !R is trained to determine whether the input data is sampled from the popula-

tion or generated from G, whereas the generator G aims to minimize the difference between the generated data distribution and the population

data distribution, so that D eventually cannot distinguish these two distributions. To that end, the generator G samples from a prior noise distribu-

tion z�PZ as input and outputs a transformed vector GðzÞ 2Rp. Mathematically, the GAN solves the following min-max problem:

min
θG

max
θD

Ex�PX log DðxÞf g+ Ez�PZ log 1−D GðzÞf gð Þ, ð1Þ

where θD and θG are the parameters in D and G, respectively. Figure 5 illustrates an example of GANs in generating images that resemble hand-

written digits. We denote the implicit probability distribution of G(z) over the data space induced by the generator as Pg; then, the target function

(1) can be written as to minimize the Jensen-Shannon divergence between Pg and PX. However, Jensen-Shannon divergence may not be suitable

for multimodal distributions because of potential missing modes (Che, Li, Jacob, Bengio, & Li, 2016; Nguyen, Yosinski, & Clune, 2016), where the

F IGURE 4 Illustration of a convolutional neural network (CNN) with a single convolution layer, a single pooling layer, and a single fully
connected layer
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generated distribution Pg could approximate poorly at the modes with small density. To solve this, one can replace the Jensen-Shannon diver-

gence with other divergence criteria (Nowozin, Cseke, & Tomioka, 2016), which generates multiple variants of GANs.

In addition, works have been done on approximation efficiency analysis regarding the convergence rate of the GAN towards the true distribu-

tion PX (Liang, 2018). Because PX is not observed directly, the GAN implicitly uses the empirical density of the data Pdata based on n independent

and identically distributed samples to approximate the unobserved PX. Therefore, the discrepancy between the generated sampling distribution Pg

and the target distribution PX comes from two parts: the approximation error due to the iterative min-max process of the GAN and the statistical

error due to the approximation of Pdata instead of PX. Under some smoothness assumptions, instead of using the empirical density function, one

can use a kernel density approximation to improve the convergence rate

dPdata
dx

=
1
nh

Xn
i=1

K Xi−xð Þ=hf g, ð2Þ

where K is a kernel function and h is the bandwidth. Another way to improve the convergence rate is to shrink the search space of D by modifying

the evaluation metric. Note the target of the discriminator D can be generalized to

dFD ðPg ,PXÞ : =max
f2FD

EY�Pg fðYÞ−EX�PX fðXÞ
� �

, ð3Þ

where FD is the function class of the discriminator. One can utilize the prior information of PX to reduce the size of FD so that the generated dis-

tribution is closer to the target distribution. For example, if FD contains only Lipschitz-1 function, then dFD can be chosen as the Wasserstein-1

metric, and it leads to the Wasserstein-GAN (Arjovsky, Chintala, & Bottou, 2017), which provides a lower approximation error to a smooth

function compared with the original GAN.

One important advantage of the GAN is its high capability to learn nonparametric density functions, which are difficult to be fully captured

using parametric generative models such as the Markov random field. Specifically, because the discriminator D is optimized over a function class

FD , the GAN achieves the minimum loss from an family of divergence criteria, which is smaller than using a specific divergence such as negative

log-likelihood. On the other hand, to make optimization feasible, conventional generative models use variational inference or impose additional

assumptions on density functions, such as the factorial assumption in the Markov random field, which may introduce an additional approximation

error in minimizing the divergence. In contrast, the GAN is able to decrease the approximation error because of its representation power of multi-

layer networks and therefore generates higher-quality samples.

In spite of high flexibility and accurate approximation power to the population distribution, GAN has drawbacks regarding high computational

cost, the mode missing problem (Che et al. 2016; Metz, Poole, Pfau, & Sohl-Dickstein, 2016), and the difficulty to measure estimation uncertainty.

The GAN also has limitations in generating discrete data distributions because training of GAN relies on gradient backpropagation.

F IGURE 5 Architecture of generative adversarial network (GAN) to generate handwritten digits. The discriminator D determines whether the
input data is sampled from the true population or generated by G. The generator G aims to minimize difference between PX and Pg. Both D and G
are multilayer networks

6 of 19 YUAN ET AL.



4 | APPLICATION ON DYNAMIC SEQUENCE DATA

In this section, we elaborate the application of deep learning methods in the field of sequence data and introduce the RNN method and its variant

LSTM (Hochreiter & Schmidhuber, 1997).

4.1 | Recurrent neural networks

The RNNs are first developed in the 1980s (Rumelhart et al. 1986; Werbos, 1988; Elman, 1990) and designed to process sequence data, for exam-

ple, stock price prediction, speech recognition, machine translation, and genome sequencing, because they can utilize historical data to capture

sequential patterns. Suppose we have historical sequence data y = {y1, y2, …, yT} and X = {x1, x2, …, xT}, where yt 2R and xt 2Rp. We can use RNNs

to model dynamic systems based on observed sequence data for predicting yk(k>T). The structure of RNNs consists of an input layer, one or more

hidden layers, and an output layer. The simplest RNN sequential model can be described as follows, respectively:

ht = σhðWhhht−1 +Wxhxt + bhÞ and zt = σzðWhzht + bzÞ,

where ht 2Rd is the hidden state of the recurrent network at time t, zt is the output at the time t, σh and σz are given nonlinear activation func-

tions, Whh, Wxh and Whz are weight matrices, and bh and bz are bias vectors. Different from FNNs and CNNs, the hidden state ht at time

t depends not only on the current observation xt but also on the previous hidden state ht−1. Therefore, ht can capture historical information from

a sequence via previous hidden states ht−1, ht−2, …, h0 and incorporate update from the current observation xt.

Figure 6 shows the structure of a simple RNN with one input unit xt, one output unit zt, and one hidden unit ht at time t. It can be extended

from the one hidden case to multiple layers by adding more hidden layers between hts and xts. We can minimize the loss function

LðX,yÞ=
XT
t=1

ðyt−ztÞ2 to estimate model parameters. During the training process, an RNN needs to calculate the gradients ∂L(X, y)/∂ht in the

reverse time order and uses a backpropagation algorithm. Computing ∂L(X, y)/∂ht for a long sequence involves multiplication of many ∂ht+1/∂ht,

which usually results in singular values or divergent values. Therefore, the backpropagation algorithm may have gradient vanishing or exploding

problems, which limits the use of RNNs. Hochreiter and Schmidhuber (1997) proposed LSTM networks to handle the gradient vanishing problem.

LSTM has attracted great attention for sequence data application recently and yielded significant improvement over RNNs. We introduce LSTM

in the following part.

4.2 | Long short-term memory

LSTM adds additional interactions per hidden unit for addressing the aforementioned drawbacks of the RNN. It is capable of learning long-term

dependencies and remembering information for prolonged periods of time. A common LSTM unit is composed of a cell, an input gate, an output

gate, and a forget gate. Specifically, given a sequence data {x1, …, xT} for xt 2Rp, an LSTM unit with a forget gate is composed as follows:

ft = σgðWxfxt +Whfht−1 + bfÞ, it = σgðWxixt +Whiht−1 + biÞ,
gt = tanhðWxcxt +Whcht−1 + bcÞ, ot = σgðWxoxt +Whoht−1 + boÞ,
ct = ft∘ct−1 + it∘gt, ht = ot∘tanhðctÞ,zt = σzðWhzht + bzÞ,

ð4Þ

F IGURE 6 A simple recurrent neural network (RNN) with one input unit, one output unit, and one hidden unit
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where ft 2Rd is a forget gate, it 2Rd is an input gate, gt 2Rd is a cell input activation vector, ot 2Rd is an output gate, and ct 2Rd is a cell

state vector. Here, zt is an output, and W, b with different subscripts are weight matrices and bias vectors, respectively. The σg and σz are the

activation functions.

The core of LSTM is a memory unit or cell ct, which encodes historical information of the inputs. Compared with the hidden layer in nor-

mal RNNs, the memory cell ct has more gating units, which control the historical information flow. The input gate and output gate respectively

control the information input to the memory unit and the information output from the memory unit. Moreover, the forget gate ht can be con-

trolled by the output gate ot, and the cell ct−1 is also controlled by the forget gate ht−1 via resetting the gating unit with activation functions.

Because these gates control the memorizing process, LSTM can avoid the long-term dependency problem. Figure 7 shows the structure of the

LSTM network.

Deep learning methods learn the behaviour of sequence data using the compositional function class like (4). This is a sharp difference from

traditional statistical methods such as linear models (e.g., autoregressive integrated moving average) and nonlinear models (e.g., autoregressive

conditional heteroskedasticity). Although traditional model-based methods have proven to be quite effective in many circumstances, identifying a

model that is broadly applicable has been difficult (Längkvist, Karlsson, & Loutfi, 2014). Deep learning methods do not involve human knowledge

and make no claims about the generation process. Moreover, the performance of traditional statistical methods mainly depends on the properties

of target functions and their related optimization are less complicated, whereas the statistical performance of deep learning methods depends

heavily on optimization algorithms.

5 | DEEP MODELS FOR RECOMMENDER SYSTEM

Deep learning has been applied in recommendation architectures and brings more opportunities to improve the performance of recom-

mender systems. A recommender system is used to recommend items to users based on users' personalized preference, represented by

maximum rating scores in a utility matrix, denoted by R2Rn×m , where n and m are the numbers of users and items, respectively. In practice,

there are a vast amount of items for users to choose from, but users can only choose and rate a few items, which leads to an extremely large and

sparse utility matrix. Therefore, the key of recommender systems is to predict rating scores of a user on the basis of the observed scores

and make recommendations based on the predicted rating scores. Among many existing recommender systems, deep learning-based recom-

mender systems (Salakhutdinov, Mnih, & Hinton, 2007; Dong et al. 2017; Li, Kawale, & Fu, 2015; Bansal, Belanger, & McCallum, 2016) are

promising. These include multilayer perception (MLP) (Liang, Zhan, & Ellis, 2015; Alashkar, Jiang, Wang, & Fu, 2017), CNN (Chu & Tsai, 2017;

Elkahky, Song, & He, 2015), RNN (Bansal et al. 2016), autoencoder (Dong et al. 2017; Li et al. 2015), RBM-based recommender system

(Salakhutdinov et al. 2007), and deep hybrid models. In the following, we mainly focus on RBM-based recommendation and autoencoder-based

recommender systems.

F IGURE 7 Typical structure of a cell of a single-layer long short-term memory (LSTM)
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5.1 | Restricted Boltzmann machine

An RBM (Smolensky, 1986; Freund & Haussler, 1992; Hinton, 2002) is to use unobserved hidden layers to explain the observed visible layers.

The RBM has wide applications in classification, feature learning, topic modelling, and collaborative filtering. The standard type of RBMs has a

binary-valued hidden layer h2Rd and a visible layer x2Rp , which are connected via an energy function of (x, h) as follows: E(x, h) =−a>x− b>h

− x>Wh, where W= ðwijÞ 2Rp× d is a weighting matrix linking hidden units h and visible units x and a and b are bias weights for the visible units

and the hidden units, respectively. In general Boltzmann machines, the probability distributions over hidden and/or visible vectors are defined in

terms of the energy function as Pðx, hÞ= expf−Eðx, hÞg=Z , where Z is a partition function defined as the sum of expf−Eðx, hÞg over all possible

pairs of vectors (x, h).

Because the RBM is a special bipartite graph with no intralayer connections, the hidden units are mutually independent given the visible units,

and the visible units are mutually independent given the hidden units. Therefore, for p visible units and d hidden units, the conditional probabilities

of the units x given h and of the units h given x are respectively

Pðx hÞ=
Yp
i=1

Pðxi
�����

�����hÞ and Pðh xÞ=
Yd
j=1

Pðhj
�����

�����xÞ:

The individual activation probabilities are given by Pðhj =1 xÞ= σ bj +
Pp

i=1wijxi
� �

and Pðxi =1
�� ��hÞ= σ ai +

Pd
j=1wijhj

� 	
, respectively, where σ

denotes the logistic sigmoid. The visible units of an RBM can be multinomial, although the hidden units are Bernoulli. In this case, the individual

probability of the visible unit is given by Pðxki =1jhÞ= exp aki +
Pd

j=1w
k
ijhj

� 	
=
PK

t =1exp ati +
Pd

j=1w
t
ijhj

� 	
, where K is the number of categories the visi-

ble layers have, and xki = 1 represents that the ith visible unit has the kth discrete value. Figure 8 provides a graphical representation of an RBM.

The RBM was first applied to recommender systems in 2007 (Salakhutdinov et al. 2007). Salakhutdinov et al. (2007) first proposed an RBM-

based recommender systems for tackling the Netflix challenge. For the RBM-based recommender systems, the rating score is represented in a

vector of dummy variables to represent binary-valued visible units. For example, in movie rating, (0,0,1,0,0) represents that the user gives a rating

score 3 to a movie. The rating score vector of a user is denoted by r 2 {1, 2, …, K}p, where p is the number of items and K is the maximum rating

score. Let X be a K × p matrix of the dummy variables of r, where xki =1 if the user rated movie i as score k and xki = 0 otherwise. We can estimate

the parameters of the RBM via the contrastive divergence algorithm (Goodfellow et al., 2016). The above RBM-based recommender systems are

user-based, where a given user's ratings are observed and input to the visible layer. Item-based RBM recommender systems can be similarly

designed via inputting a given item's rating to the visible layer.

5.2 | Autoencoder

The autoencoder is an alternate unsupervised neural network and has been considered as a powerful dimension reduction tool for automatically

extracting nonlinear features (Chen, Xu, Weinberger, & Sha, 2012). A basic autoencoder consists of an input layer, a hidden layer, and an output

F IGURE 8 Graphical representation of a restricted
Boltzmann machine
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layer, and Figure 9 provides an illustration. An encoder part encodes the high-dimensional input data x = {x1, x2, …, xp} into a low-dimensional hid-

den representation h = {h1, h2, …, hk} via a function f in that h = f(x) = σf(Wx + b), where σf is an activation function, W is a k × p weight matrix,

and a bias vector b2Rk . A decoder maps h back to a reconstructed data x0 = fx01, x02, …, x0pg by a function g in that x 0= g(h) = σg(W 0h+ b 0), where σg

is an activation function, W 0 is a p× k weight matrix, and a bias vector b0 2Rp . The functions σf and σg are usually nonlinear activation functions

(Zhang, Yao, & Xu, 2017). Both of the encoder function f and the decoder function g are two key components of a basic autoencoder and can be

multilayer neural networks.

An autoencoder is trained to minimize the reconstruction error between xi and x0i for i=1, 2, …, n. Let Lðxi, x0iÞ be a loss function that measures

the difference between xi and x0i . To find the f and g such that L(xi, g(f(xi))) is as small as possible, we can solve the following minimization problem:

minf,g
Pn

i=1Lðxi, gðfðxiÞÞÞ. A regularized term can be added for constructing the loss function of anautoencoder. The loss function can be optimized

by stochastic gradient descent (SGD) or alternative least squares. In recent years, there are many variants of autoencoders used in recommender

systems such as denoising autoencoder (Vincent, Larochelle, Bengio, & Manzagol, 2008), stack denoising autoencoder (Vincent, Larochelle, Lajoie,

Bengio, & Manzagol, 2010), and variational autoencoder (Kingma & Welling, 2013).

In the autoencoder-based recommender system framework, an autoencoder is used to extract features of the items, so we can predict the

users' ratings on items. In collaborative filtering, there are n users, m items, and a partially observed user–item rating matrix R2Rn×m . The rating

of each item can be represented by a partially observed vector ri= (R1i,R2i, …,Rni)
> for i=1, 2, …,m. An item-based autoencoder can take ri as input,

project it into a low-dimensional hidden representation, and then reconstruct r0i to predict missing ratings for the purpose of recommendation.

That is, the item-based autoencoder can be formulated as minθ
P

r2Ωkr−gðfðr,θÞÞk2 + λðkWk2F + kW0k2FÞ=2, where Ω is the set of ratings in Rn , the

parameter θ= {W,W0 , b, b0}, λ is the regularization parameter, and k �k2F is the Frobenius norm of a matrix. A user-based autoencoder can be

similarly designed via inputting users' ratings.

Obviously, autoencoders resemble principal component analysis (PCA) for dimensional reduction. PCA extracts key information via searching

a set of orthogonal eigenvectors corresponding to the larger eigenvalues of the empirical covariance matrix of theinput data and represents data

using fewer dimensions than the initial data. However, there are many differences between autoencoders and the PCA. First, whereas PCA is a

linear transformation, autoencoders allow nonlinear transformation, which makes autoencoders more flexible and powerful. Unfortunately, the

latent space found by autoencoders lacks interpretability (Ladjal, Newson, & Pham, 2019). Second, the latent features extracted by PCA are

orthogonal to each other and are ordered with respect to their eigenvalues. However, in the standard autoencoders, there is no such ordering and

orthogonality, which makes it more difficult to guarantee that the bases of the latent spaces are independent and the size of the latent spaces

needs to be predetermined. For more detailed discussions regarding the relationship between t autoencoders and PCA, we refer the readers to

Ladjal et al. (2019) and Alkhayrat, Aljnidi, and Aljoumaa (2020).

RBMs and autoencoders achieve similar goals, such as reducing dimensionality or extracting features from signals, via different training theo-

ries. The RBM uses stochastic neural networks with a particular distribution instead of deterministic distributions. The main task of training an

F IGURE 9 Graphical representation of a
basic autoencoder
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RBM is to obtain connectability between two sets of input variables and hidden variables. There are no intralayer communications in the visible

layer or hidden layer. In contrast, for autoencoders, the main task of training is to minimize errors in reconstruction, that is, to find the most effi-

cient compact representation for the input data. The hidden layer is used as important feature representations of the input data. The number of

hidden units is much less than the number of visible ones, which extracts essential information of visible units and then represents the input data

under another space.

6 | OPTIMIZATION

In this section, we introduce some important optimization algorithms for deep hierarchical structures. Because of the highly nonconvex nature of

deep architectures, training deep learning models is challenging. We apply the gradient-descent type algorithms in deep learning optimization

because most of the convex optimization algorithms are not applicable. In addition, we provide practical principles for tuning hyperparameters in

deep learning.

6.1 | Parameter estimation and acceleration algorithms

We introduce the gradient descent optimization algorithms for parameter estimation as follows. Denote L(θ) as the loss function to be minimized;

the general form of the gradient descent is

θ = θ−η∗rθLðθÞ,

where θ denotes the model parameter and η is the learning rate as a step size at each iteration.

It is common to utilize a part of training data to update the parameter in each step to achieve a balance between accuracy of update and com-

putational cost. On the basis of the quantity of the training data used for updating thegradient, the gradient descent has two main variations. The

first one is SGD: θ = θ−η∗rθL θ;xðiÞ;yðiÞ
� �

, where one random training sample (x(i), y(i)) is used to update parameters in each step. It achieves a much

faster computational speed than the original gradient descent. However, the estimation obtained by the SGD in general suffers from high variance

and slow convergence. The second variation is the mini-batch gradient descent: θ = θ−η∗rθL θ;xði:i+ nÞ;yði:i+ nÞ
� �

, where the parameter is updated

through averaging on a small subset of the training dataset. This is much faster than the original gradient descent and more stable than the SGD.

However, it requires the determination of a mini-batch size as an additional tuning parameter.

The main challenge for the original gradient descent is that it lacks guarantee of a good convergence. In addition, because the estimation can

be easily trapped at the suboptimal local minima or saddle points, many modifications focus on adaptively adjusting the learning rate. Specifically,

some algorithms ensure that the learning rate is not too large to prevent fluctuated outcomes and not too small to be trapped in local minima,

which leads to a slow convergence. Table 2 lists popular variants of gradient descent to accelerate the convergence. In the following, we provide

details for Nesterov accelerated gradient (NAG) (Nesterov, 1983) and adaptive moment estimation (ADAM) (Kingma & Ba, 2014).

The main idea of NAG is to provide a short-term memory from the past gradients for the current gradient for achieving a fast acceleration

and avoiding saddle points:

vk = βvk−1 + αrθL θðk−1Þ−ηvk−1

� 	
, θðkÞ = θðk−1Þ−vk ,

where vk−1 is the memory of the past gradient, and rθL θðk−1Þ−ηvk−1

� �
represents correction of the gradient at the current step. Coefficients

α2 [0, 1], β2 [0, 1] are weights on the correction term and the memory term, respectively, and vk is the velocity update. The NAG degenerates to

TABLE 2 Summary of acceleration methods

Methods Principle summary Advantages

(mini-batch) SGD Update gradient through random subset of samples Reduce computational time and memory cost

Suitable for online learning

NAG Update gradient with adding previous gradients Speed up convergence; avoid saddle points

AdaGrad/AdaDelta Large update on infrequently updated directions Handle sparse and unbalanced data

Small update on frequently updated directions Avoid overfitting

ADAM Combine AdaDelta and NAG Recommended optimizer for deep learning

Abbreviations: ADAM, adaptive moment estimation; NAG, Nesterov accelerated gradient; SGD, stochastic gradient descent.
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the vanilla gradient descent when β =0. In general, the NAG speeds up the convergence of parameter estimation up to a quadratic rate compared

with the original gradient descent.

The second popular acceleration algorithm for many deep learning applications is called the ADAM. The main idea of ADAM is to use small

updating steps in a direction where parameters have large uncertainty. Considering an update in a given direction gk: = rθL(θ
(k)), the ADAM

consists of three steps:

1. Incorporate memory from previous gradients:

ðiÞ update velocity :vk = β1vk−1 + 1−β1ð Þgk ,
ðiiÞ update uncertainty :mk = β2mk−1 + 1−β2ð Þg2k ,

where the default parameters recommended are β1 = 0.9 and β2 = 0.999.

2. Correct bias via calculating the high-order moments given EðvkÞ≈ ð1−βk1ÞEðgkÞ and EðmkÞ≈ ð1−βk2ÞEðg2k Þ:

v̂k =
vk

1−βk1
and m̂k =

mk

1−βk2
:

3. Update parameter: θk +1 = θk−η v̂kffiffiffiffiffi
m̂k

p , where v̂kffiffiffiffiffi
m̂k

p is a signal-to-noise ratio and determines the learning rate.

The acceleration algorithms enable an adaptive adjustment for the learning rate. For example, the acceleration algorithms such as ADAM

apply different learning rates for updating different parameters , which is useful when data are sparse. In addition, it accommodates features with

different frequencies and performs a large update for rarely occurring features and a small update for frequent ones. However, some cautions

might be taken into account. The empirical study (Wilson, Roelofs, Stern, Srebro, & Recht, 2017) shows that adaptive gradient methods tend to

overfit the training data and select spurious features, which might lead to a poor generalization on test data.

6.2 | Hyperparameter tuning

The performance of deep neural networks is sensitive to hyperparameters such as the batch size, filter size, the number of layers, and the number

of nodes of each layer, and most of these hyperparameters need to be predetermined. In contrast to the Akaike information criterion (AIC) or

Bayesian information criterion (BIC) used in the statistical model selection, there are no explicit criteria for tuning hyperparameters in deep neural

networks. Instead, deep learning selects the best hyperparameters on the basis of the performance on a validation set. The entire tuning proce-

dure can be viewed as a black-box optimization where only the input values and the output values are known. The most widely adopted method

is the grid search, which traverses all the combinations of hyperparameters. However, the grid search is intractable and computational costly

when the range of hyperparameters is large or the parameter space is continuous.

Alternatively, we can choose hyperparameters without exhaustive search. One method is to randomly select a subset of the hyperparameters

(Bergstra & Bengio, 2012). Another method is the sequential model-based optimization (Bergstra, Bardenet, Bengio, & Kégl, 2011), which

applies an explicit surrogate model to approximate the unknown target function. Specifically, the sequential model-based method views the

hyperparameters as independent variables and the accuracy on the validation set as dependent variables, respectively, then estimates the

posterior distribution of hyperparameters using a Gaussian process or random forest. The optimization is proceeded in a sequential fashion, where

the hyperparameters in the next step are selected to maximize the expected improvement of the surrogate model estimated in the current step.

Consequently, this method avoids sampling the parameters that might not increase the model accuracy and therefore is more efficient than the

grid search or random search.

7 | CONNECTION BETWEEN DEEP LEARNING MODELS AND STATISTICAL MODELS

In this section, we connect the principles of deep learning to statistical concepts and modelling. Most of statistical models can be viewed as shallow

models, in contrast to deep learning models, which can be considered as generalization of statistical models due to their increased model depth.

Specifically, the principle of deep learning models is to perform feature engineering and seek a class of functions to achieve good perfor-

mance on the learning task. In addition, deep learning models are capable of representing highly nonlinear relations between the input data and

the output data. This is achieved through multiple layers of composition functions for latent features from the input data. Furthermore, the deep

12 of 19 YUAN ET AL.



architecture brings some new insights about the bias-variance trade-off principle under the overparameterization regime, which also motivates us

to develop new learning theories and large-scale nonconvex optimization algorithms.

7.1 | Deep learning as a statistical model

Deep neural networks are connected with many existing statistical or machine learning approaches. For example, the FNN with hidden layers is

equivalent to a recursive generalized linear model with a hierarchical structure. If there is no hidden layer, the FNN is equivalent to a generalized

linear model. However, if there are multiple hidden layers, then the hidden unit in each layer h(ℓ) = σ(W(ℓ)h(ℓ−1) + b(ℓ)) is just a generalized linear

model, where the activation function σ(�) corresponds to a link function. The composition of sequential simple functions provides the flexibility of

FNNs on feature selections for complex data and enables approximation of complex nonlinear functions.

For deep generative models, it also connects to unsupervised learning models. For example, the autoencoder connects with the latent factor

model in statistics (Qiu & Wang, 2020; Qiu, Zhang, & Wang, 2020). The autoencoder consists of an encoder and a decoder, where the encoder

estimates the latent factor through a prespecified model Zf = f(Y0, Θ), and Y0 is a sample of the observed dataset Y containing random noise and Θ

is the model parameter. The latent factor Zf serves as a compressed representation for Y0, and the encoding procedure is equivalent to inferring a

parametric distribution from the sample data. In contrast, decoding is a sampling process that generates data from a specific distribution p(Y|Zf)

based on the learned latent factor. Figure 10 illustrates the encoding and decoding processes. Specifically, the autoencoder aims to capture the

hidden data generation process by optimizing LðZfÞ= logpðYjZfÞ−λRðY, Y 0Þ, where the penalty term R(Y,Y0) measures the discrepancy between Y

and Y0.

Most of the supervised or unsupervised algorithms such as PCA, project pursuit regression, and kernel methods can be regarded as shallow

models compared with the deep model as they follow a two-layer framework that consists of a data-transformation layer and a reconstruction

layer (Polson & Sokolov, 2017). Specifically, consider a training dataset (X, Y) and a two-layer model:

Z = f1ðWð1ÞX + bð1ÞÞ and EðYÞ≈ f2ðWð2ÞZ + bð2ÞÞ, ð5Þ

where W(1), W(2), b(1), b(2) are corresponding weights and biases defined in Section 2. For the aforementioned shallow models, the information in

the original data X is projected into the latent space Z through a data transformation f1(�|W(1), b(1)). Then, the output Y is reconstructed through a

composition procedure f2(�|W(2), b(2)) on the latent space Z. The main challenge here is to determine appropriate f1 and f2 to uncover relevant fea-

tures in predicting the output Y. The traditional statistical learning methods differ at the specification of output Y, f1 and f2 in (5). For example,

given that f1 is the identity function and f2 is a nonlinear smooth function, then (5) is equivalent to the project pursuit regression. For another

example, given that Y = {1, −1}, f2 is the sign function, and f1 denotes a class of eigen-functions expanded by a kernel, then (5) is equivalent to the

support vector machine (SVM) under the hinge loss. On the other hand, if f1 and f2 are nonlinear functions such as the logistic function, then (5) is

a two-layer FNN. Therefore, the deep learning model generalizes a two-layer shallow model to a hierarchical multiple-layer model.

The RNN also has its counterpart in statistics, which is the probabilistic recurrent state-space model. A sequence data (x1, x2, …, xT) is

governed by the joint distribution of the observed sequence given the corresponding hidden states ht,1 ≤ t ≤ T:

p x1, … xTð Þ=
YT
t=1

ð
p xtjhtð Þp htjht−1ð Þdht: ð6Þ

The RNN is a special case of the probabilistic modelling in (6) in that the transition of hidden states is assumed to be deterministic, that is,

p htjht−1ð Þ= fθðht−1,xt−1Þ , where fθ(�) is the hidden unit in the RNN. Accordingly, training the RNN model is equivalent to maximizing the

log-likelihood function logp x1, … xTð Þ (Goodfellow et al., 2016).

7.2 | Beyond statistical model: Overparameterization

One significant difference between deep learning and statistical modelling is the understanding of overparameterization. The statistical principle

suggests that increasing the complexity of models tends to cause overfitting and being less robust on future prediction. On the contrary, deep

F IGURE 10 A deep generative model
as a latent factor model
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learning is able to decrease the generalization error with increasing the number of parameters. Specifically, Figure 11 illustrates the over-

parameterization phenomenon where the test error could further decrease through increasing the number of hidden units while the training

error vanishes.

This phenomenon has been confirmed by empirical studies. For example, numerical results in Zhang, Bengio, Hardt, Recht, and Vinyals (2016)

demonstrate the benefits of overparameterization on an image classification task. They show that the deep neural network can achieve zero

training error even when the images are randomly labelled, and the trained neural network also fits the test dataset well. These results also imply

that the overparameterization enables the deep learning model to memorize the entire dataset. Although it seems to contradict the statistical

principle of bias-variance trade-off, some recent works (Belkin, Hsu, Ma, & Mandal, 2019; Belkin, Ma, & Mandal, 2018) explain that the vanishing

of the training error does not necessarily diminish the generalization power on test data when the number of parameters exceeds the size of the

training dataset.

For statistical models, it is conventional to control the model complexity via regularization. In contrast, the model complexity of deep learning

is not directly controlled by the explicit regularizations. Instead, the regularizations serve as tuning parameters for decreasing the test error. The

absence of explicit regularizations does not necessarily lead to insufficient power of generalization on test data. In the following, we explain the

rationale behind overparameterization in deep learning models from the learning theory and optimization algorithm perspective.

7.2.1 | Overparameterization via complexity measurement

Recent works (Arora, Cohen, & Hazan, 2018; Chen, Mo, Yang, & Wang, 2019; Liao & Poggio, 2017; Xu & Wang, 2018; Xu, Zheng, Yang, &

Wang, 2020) provide theoretical justification on why overparameterization could benefit decreasing generalization errors. Specifically, a relation

between the complexity of neural networks and the corresponding generalization errors is established. For example, results in Neyshabur, Li,

Bhojanapalli, LeCun, and Srebro (2018) indicate that the traditional model complexity measurements such as the number of parameters or

Vapnik-Chervonenkis dimension are not applicable to deep learning models and thus are not suitable for overparameterization. Instead, a com-

plexity measurement for neural networks is introduced. On the basis of the new measurement, it can be shown that the generalization error

decreases as the number of hidden units increases. Specifically, consider a two-layer and fully connected ReLU network

fWð1Þ ,Wð2Þ ðxÞ=Wð2Þ½Wð1Þx�+, where ½x�+ =maxð0, xÞ, x2Rd is the d-dimension input, and W(1)2Rh×d, W(2)2Rc×h are weighting matrices for the hidden

layer and the output layer, respectively. Let L0(f ) and L̂0ðfÞ be the expected risk and the empirical risk. Neyshabur et al. (2018) shows that

L0ðfÞ≤ L̂0ðfÞ+O
kWð2ÞkFðkWð1Þ−Wð1Þ

0 kF + kWð1Þ
0 k2Þffiffiffiffi

m
p

 !
,

where m is the size of the training dataset, Wð1Þ
0 stands for the initial weight of W(1), kWð1Þ

i −Wð1Þ
0i kF determines the complexity of the ith hidden

unit, and kWð2Þ
i kF stands for the weight of the ith hidden unit in the output. Empirical studies show that both kWð1Þ

i −Wð1Þ
0i kF and kWð2Þ

i kF decrease
at a rate faster than 1=

ffiffiffi
n

p
, where n is the number of hidden units. In other words, the complexity of hidden units decreases faster than the

increasing number of hidden units. Consequently, the generalization error of the neural network decreases as the number of parameters increases.

In other words, although the function space expanded by the neural network with all possible weights (W(1),W(2)) become larger, the function

space to fit the observed dataset becomes smaller.

F IGURE 11 Overparameterization on deep learning: test error
keeps decreasing after train error vanishes
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7.2.2 | Overparameterization via implicit regularization in optimization

The power of generalization for a deep learning model is also determined by optimization algorithms. Empirical studies (Zhang et al. 2018; Zhang

et al. 2016) show that gradient descent algorithms improve the generalization error. This is because the gradient descent algorithms introduce an

implicit regularization (Rosasco & Villa, 2015; Ali, Dobriban, & Tibshirani, 2020; Wu et al. 2019; Shuxiao, Dobriban, & Jane, 2020). In addition, an

estimation from gradient descent asymptotically converges to a solution with a minimal norm with an appropriate initial value (Poggio et al. 2017;

Zhang et al. 2016).

We use a linear regression model to demonstrate the intuition. Suppose we consider a linear estimation problem on a training dataset

fðxi,yiÞgni=1 : minw2Rd
1
n

Xn
i=1

loss wTxi,yi
� �

, where w is the weighting parameter. If we estimate w through the gradient descent algorithm

wt+1 =wt−ηet 1n
P

xi starting from an initial w0 = 0, where η is the learning rate and et is the loss function error, then the solution based on the gra-

dient descent has the form w=XTα with a coefficient α. Given a perfect interpolation such that Xw=Y, we have XXTα=Y. Note that this equation

only relies on the dot-product between data points xi, and XXT is a full rank under the overparameterization regime. Under the regression loss

setting, α converges to a unique solution α∗= (XXT)−1Y. Therefore, w∗=XTα∗=XT(XXT)−1Y has the smallest L2 norm among all w satisfying Xw=Y. In

classification, the minimum norm solution is known to maximize a margin (Poggio et al. 2017). Specifically, under the logistic or cross-entropy loss

function, the solution from the gradient descent converges asymptotically to the max-margin solution, which is similar to the solution of the

hard-margin SVM (Zhang et al. 2018; Poggio et al. 2017). In summary, the implicit regularization property of the gradient descent stands for a

broad class of regression loss and classification loss functions.

8 | SOFTWARE AND COMPUTING RESOURCE

In this section, we introduce some development tools including softwares, hardwares, and cloud computing resources. There are many open-

source softwares that can be applied to train deep learning networks, for example, Tensorflow(Abadi et al. 2015), Pytorch (Paszke et al. 2019),

and CognitiveToolkit (CNTK) (Seide & Agarwal, 2016). Among these softwares, Tensorflow is widely implemented in industry because it facilitates

an easy and fast deployment of the trained deep learning model for production. In addition, the integrated tool Tensorboard provides visualization

of the training process, which is useful for debugging and hyperparameter tuning. Meanwhile, Pytorch is more favored in the research community

because of its simplicity to build a deep learning model. Another advantage of Pytorch is its support for dynamic computing graphs, which greatly

facilitates linguistic analyses. For R users, Keras (Chollet, 2017) offers a user-friendly interface that enables quickly prototyping deep learning

models. Moreover, Keras allows the same coding to run on CPU or on GPU without significant changes. More softwares and their platforms as

well as supporting languages are also listed inTable 3.

Training deep learning models has high demand on hardwares because of high volume of parameters. Nowadays, there are mainly three types

of processing units: CPU, GPU, and TPU. In general, GPUs can accelerate the training by 100 times compared with CPUs because of its multicore

architecture, which facilitates parallel computing. On the other hand, TPUs are highly optimized for large batches in deep learning and can boost

the computing speed by up to 20 times compared with GPUs. Although CPUs have the slowest training speed among all processing units, they

have the largest memory per core and thus are capable of implementing extremely large models or datasets, whereas GPUs and TPUs may

encounter out-of-memory issues. For a more detailed comparison betweenTPUs, GPUs, and CPUs in deep learning training, we refer the readers

to Wang et al. (2019).

Instead of training deep learning models locally, which may require high investment on hardware and extra effort to set up the environment,

there are cloud computing resources available online, such as Google Colaboratory (Google LLC. 2020), AWS Sagemaker (Amazon Web Services

Inc. 2020), FloydHub (Floyd Labs Inc. 2020) and Azure (Microsoft Corporation, 2020). These cloud services enable users to run deep learning

models faster and cheaper by supplying GPU or TPU computing power remotely.

TABLE 3 Summary of deep learning softwares

Software Platforms Language Author

Tensorflow Linux, macOS, Windows, Android Python, C/C++, R, Java Abadi et al. (2015)

Pytorch Linux, macOS, Windows, Android (beta) Python, C++ Paszke et al. (2019)

CNTK Linux, Windows Python, C++ Seide and Agarwal (2016)

Theano Linux, macOS, Windows Python TheTheano Development Team et al. (2016)

Keras Linux, macOS, Windows Python, R Chollet (2015)

Matlab Deep learning toolbox Linux, macOS, Windows Matlab The MathWorks, Inc. (2019)
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9 | DISCUSSION AND CONCLUSION

In this review, we introduce the general structure of deep neural networks and its applications in imaging analyses, sequence data and recom-

mender systems. We also review important optimization algorithms, software, and platforms for implementing deep learning models. In addition,

we provide the general connections between deep learning models and statistical principles.

Deep learning models distinguish from standard statistical models in two aspects: extraction of task-relevant features from input

data and the target function for modelling the relations between input data and output data. In deep learning models, latent features are

hierarchically extracted from input data in that high-level features are composite of low-level features. The hierarchical structure is able

to digest input data at multiple levels, which is important for many artificial intelligence applications that mimic human behaviour. In

addition, deep learning models are sequentially composed of multiple nonlinear and affine transformations. This architecture is equivalent to

a procedure that splits the input space into a large number of irregular regions and discriminates each region on the basis of its

corresponding output value. Therefore, deep learning is able to approximate complex relations between input data and output data if the

model is sufficient deep. In contrast to statistical models, the number of parameters in deep learning models is much larger than the size of

training data. However, the overparameterization of deep learning indeed decreases the generalization error and enhances the performance in

many applications.

However, deep learning has its own limitations. First, deep learning lacks interpretability (Lipton, 2018). That is, deep learning is mostly black-

box function approximators. Nevertheless, there are some recent works on improving interpretability (Erhan, Bengio, Courville, & Vincent, 2009;

Karpathy, Johnson, & Fei-Fei, 2015; Mahendran & Vedaldi, 2015; Nguyen et al. 2016). For example, Erhan et al. (2009) developed visualizing the

responses of individual units in any layer of a neural network. Zeiler and Fergus (2014) and Karpathy et al. (2015) extended the above idea to the

CNN and the LSTM, respectively. Mahendran and Vedaldi (2015), Yosinski, Clune, Nguyen, Fuchs, and Lipson (2015), and Nguyen et al. (2016)

investigated the latent features at different CNN levels for better understanding of layer representations in deep models. Shwartz-Ziv and Tishby

(2017) provided a deep insight for analysing deep networks using information theory, which applies the information bottleneck framework

(Tishby, Pereira, & Bialek, 1999) to calculate information preserved on each layer's inputs and outputs. Second, deep learning has consistency

issues, including the consistency of a universal neural network classifier (Faragó & Lugosi, 1993), the consistency of training deep neural networks

(Ye, Yang, Fermuller, & Aloimonos, 2017), the consistency of using metrics to select the best network (Twomey & Smith, 1995) and the consis-

tency of neural network detections (Yang, Gregg, & Babaeizadeh, 2020). In addition, the uncertainties of neural networks such as model uncer-

tainty (Blundell, Cornebise, Kavukcuoglu, & Wierstra, 2015; Gal, 2016) and data uncertainty are evaluated using the tested algorithms on data

with noise or disturbance. Nevertheless, these problems remain open and unsolved.
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