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1. Introduction

This paper is continuation of a general program related to various self-improving 
phenomena, including Poincaré and Hardy inequalities and uniform fatness; see e.g. [3,
11,15,19] for earlier results and [5,6,18] for recent work by the authors. In this paper 
we introduce a class of p-Hardy weights and consider for such weights w the pointwise 
(p, w)-Hardy inequality

|u(x)| ≤ C d(x,Ωc) sup
0<r<κd(x,Ωc)

(
1

w(B(x, r))

ˆ

B(x,r)

g(y)pw(y) dμ(y)
) 1

p

. (1)

Here Ω is an open subset of a metric space X, d(x, Ωc) denotes the distance from x ∈ Ω to 
the complement Ωc = X \Ω, κ > 1, and g is a (bounded) upper gradient of u ∈ Lip0(Ω); 
see Sections 2 and 3 for definitions. Our main result, Theorem 7.4, shows that these 
inequalities are self-improving with respect to the exponent p: if a pointwise (p, w)-Hardy 
inequality holds in Ω with an exponent 1 < p < ∞, then, under suitable assumptions, 
there exists 1 < q < p such that also a pointwise (q, w)-Hardy inequality holds in 
Ω. The unweighted case w = 1 corresponds to the pointwise p-Hardy inequality, for 
which the self-improvement was proved in [6]. Our approach relies on the basic ideas 
and techniques developed in [5,6]. However, unlike the self-improvement of pointwise 
p-Hardy inequalities, which was known already before the work in [6] indirectly via 
the self-improvement of uniform p-fatness (see [3,19]) and the equivalence between these 
two concepts (see [13]), the present self-improvement for the weighted pointwise p-Hardy 
inequalities is previously unknown. In particular, our main result is new even for X = Rn, 
equipped with the Euclidean distance and the Lebesgue measure.

The self-improvement of the pointwise (p, w)-Hardy inequality and a weighted max-
imal function theorem show that inequality (1), for every x ∈ Ω, implies the integral 
version of the (p, w)-Hardy inequality, that is,

ˆ

Ω

|u(x)|p
d(x,Ωc)p w(x) dμ(x) ≤ C

ˆ

Ω

g(x)pw(x) dμ(x); (2)

see Section 8 for details. This implication is not immediate from inequality (1), since 
the maximal operator is not typically bounded on L1(X). In some sense the inbuilt self-
improvement of pointwise Hardy inequalities provides a mechanism to bypass the lack 
of the L1-boundedness for the maximal operator.

An important model case of (2) is the weighted (p, β)-Hardy inequality in Rn, with 
w(x) = d(x, Ωc)β , for β ∈ R; see [16,20]. Corresponding pointwise theory was developed 
in [14], but in order to be able to apply the maximal function theorem, it was necessary 
to assume a priori the validity of a stronger variant of (1) in terms of an exponent 
1 < q < p. With the self-improvement results of the present work, the starting point 
in the weighted pointwise Hardy inequalities as in [14] can now be taken to be the 
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natural candidate involving only the exponent p, at least for β ≥ 0. More motivation 
and explanation related to (weighted) pointwise Hardy inequalities in Euclidean spaces 
will be given in Section 8.

Often the theory of weighted inequalities is concerned with doubling weights. In the 
present setting the natural assumption is a weaker semilocal doubling condition with 
respect to the open set Ω � X. This class of weights is introduced in Section 3, where we 
also prove some technical lemmas for such weights. As a tool in pointwise (p, w)-Hardy 
inequalities we also use a related class of p-Poincaré weights for Ω, see Section 4. In 
Section 5 we define the p-Hardy weights, which will be crucial for the pointwise (p, w)-
Hardy inequalities, and in Section 6 we establish a self-improvement result for p-Hardy 
weights. This plays a key role also in the self-improvement of pointwise (p, w)-Hardy 
inequalities, since in Section 7 we show that w being a p-Hardy weight is equivalent 
to the validity of the pointwise (p, w)-Hardy inequality. Finally, Section 8 contains the 
applications related to integral versions of weighted Hardy inequalities.

2. Notation and auxiliary results

We make the standing assumption that X = (X, d, μ), with #X ≥ 2, is a metric 
measure space equipped with a metric d and a positive complete D-doubling Borel regular 
measure μ such that 0 < μ(B) < ∞ and

μ(2B) ≤ Dμ(B) (3)

for some D > 1 and for all balls B = B(x, r) = {y ∈ X | d(y, x) < r}. Here we use for 
0 < λ < ∞ the notation λB = B(x, λr). It follows that the space X is separable (see 
e.g. [1, Proposition 1.6]) and μ({x}) = 0 for every x ∈ X by [1, Corollary 3.9].

For us, a curve is a rectifiable and continuous mapping γ : [a, b] → X. By Γ(X) we 
denote the set of all curves in X. The length of a curve γ ∈ Γ(X) is written as len(γ). 
A curve γ : [a, b] → X connects x ∈ X to y ∈ X (or a point x ∈ X to a set E ⊂ X), if 
γ(a) = x and γ(b) = y (γ(b) ∈ E, respectively). We assume throughout that the space 
X is CQC-quasiconvex for some CQC ≥ 1, that is, for every x, y ∈ X there exists a curve 
γ connecting x to y such that len(γ) ≤ CQCd(x, y).

Fix x, y ∈ X, E ⊂ X and ν ≥ 1. The collection Γ(X)νx,y is the set of all curves that 
connect x to y and whose lengths are at most νd(x, y). The set of all curves that connect 
x to E and whose lengths are at most νd(x, E) is denoted by Γ(X)νx,E .

A Borel function g ≥ 0 on X is an upper gradient of function u : X → R, if for all 
curves γ : [a, b] → X, we have

|u(γ(a)) − u(γ(b))| ≤
ˆ

g ds. (4)

γ
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The space of Lipschitz functions on X is denoted by Lip(X). By definition u ∈ Lip(X)
if there exists a constant λ > 0 such that

|u(x) − u(y)| ≤ λd(x, y), for all x, y ∈ X.

When Ω ⊂ X is an open set, we denote by Lip0(Ω) the space of all Lipschitz functions 
on X that vanish on Ωc = X \ Ω. The set of lower semicontinuous functions on X is 
denoted by LC(X).

Recall that

uE = −
ˆ

E

u dμ = 1
μ(E)

ˆ

E

u(y) dμ(y)

is the integral average of a function u ∈ L1(E) over a measurable set E ⊂ X with 0 <
μ(E) < ∞. If 1 ≤ p < ∞ and u : X → R is a μ-measurable function, then u ∈ Lp

loc(X)
means that for each x0 ∈ X there exists r > 0 such that u ∈ Lp(B(x0, r)), that is, ´
B(x0,r)|u|

p dμ < ∞. The characteristic function of a set E ⊂ X is denoted by 1E ; that 
is, 1E(x) = 1 if x ∈ E and 1E(x) = 0 if x ∈ X \ E.

3. Weights and restricted maximal functions for open sets

We need several classes of weights for open sets. To avoid pathological situations, 
we assume throughout the paper that the open sets Ω ⊂ X under consideration are 
nonempty.

Definition 3.1. Let Ω ⊂ X be an open set. A non-negative Borel function w in X is a 
weight for Ω, if 

´
B
w(x) dx < ∞ for all balls B ⊂ X and w(x) > 0 for almost every 

x ∈ Ω. If E ⊂ X is a measurable set, then we write w(E) =
´
E
w dμ.

We impose the following localized doubling condition on the weight w. We remark 
that there are also other uses for the term semilocally doubling in the literature, see 
e.g. [2]. In our definition “local” refers to the fact that the condition is required only for 
points x ∈ Ω, but “semi” is added since the balls need not be contained in Ω.

Definition 3.2. Let Ω � X be an open set and let w be a weight for Ω. We say that w
is semilocally doubling for Ω if for every κ > 0 there exists a constant D(w, κ) ≥ 1 such 
that

0 < w(B(x, r)) ≤ D(w, κ)w(B(x, r/2)) < ∞

for all x ∈ Ω and 0 < r ≤ κd(x, Ωc).
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In some of our results we will need the following regularity property of w. See [10, 
Theorem 14.1] for a corresponding statement under slightly different assumptions. We 
provide a short proof for the reader’s convenience.

Lemma 3.3. Let Ω ⊂ X be an open set and let w be a weight for Ω. Then w is outer 
regular, that is, for every Borel set E ⊂ X and every ε > 0, there exists an open set 
V ⊃ E such that w(V ) ≤ w(E) + ε.

Proof. Let X be a completion of X. We remark that X could fail to be a Borel subset of 
its completion. We denote by B(X) and B(X) the Borel sets of X and X, respectively. 
The measures μ and dν := w dμ extend to Borel regular measures μ and ν on X, and μ
is doubling, by [21, Lemma 1]. More precisely

{F ∈ B(X) | F ∩X ∈ B(X)} = B(X), (5)

and therefore one can define μ(F ) = μ(F ∩X) and ν(F ) = w(F ∩X) for each F ∈ B(X); 
see the proof of [21, Lemma 1]. This defines the extended measures as Borel measures 
that are finite on balls, and the Borel regular (complete) extended measures are obtained 
by completion. The space X is complete and the measure μ doubling; thus X is proper 
by [1, Proposition 3.1]. Hence, the measure ν is outer regular on X by [7, Theorem 7.8].

Let E ∈ B(X) and ε > 0. By using σ-algebra arguments, one can show that E = F∩X
for some F ∈ B(X). By the outer regularity of ν, there exists an open set U in X such 
that U ⊃ F and ν(U) ≤ ν(F ) + ε. We define V = U ∩X, which is an open subset of X. 
Then V ⊃ E and

w(V ) = w(U ∩X) = ν(U) ≤ ν(F ) + ε = w(F ∩X) + ε = w(E) + ε.

This shows that w is outer regular. �
Let Ω � X be an open set and fix a weight w for Ω. Let 0 < κ < ∞ and 1 ≤ p < ∞, 

and let f be a measurable function in X. We define restricted weighted maximal functions 
Mp,w,κf and MR

p,w,κf at x ∈ Ω by

Mp,w,κf(x) := sup
0<r<κd(x,Ωc)

(
1

w(B(x, r))

ˆ

B(x,r)

|f |pw dμ

) 1
p

and

MR
p,w,κf(x) := sup

0<r<min{κd(x,Ωc),R}

(
1

w(B(x, r))

ˆ
|f |pw dμ

) 1
p

.

B(x,r)
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Observe that 0 < w(B(x, r)) < ∞ for all balls B(x, r) that appear within the supremums. 
The maximal functions Mp,w,κf and MR

p,w,κf are lower semicontinuous in Ω. This fol-
lows easily using monotone convergence theorem and the fact that B =

⋃
0<ε<1(1 − ε)B

for all balls B ⊂ X.
The following lemmas are adaptations of similar results from our prior work [5,6]. Al-

though the methods are the same, we provide here the full proofs due to subtle technical 
differences.

Lemma 3.4. Suppose that w is a semilocally doubling weight for an open set Ω � X. 
Assume that 1 ≤ q < ∞ and κ > 1, and let f ∈ Lq

loc(X), x ∈ Ω and τ > 0 be such that

Mq,w,2κf(x) ≤ τ.

Fix Λ > 0 and define

EΛ = {y ∈ Ω | Mκd(x,Ωc)
q,w,2κ f(y) > Λτ}.

Then

M1,w,κ1EΛ(x) ≤ D(w, 10κ)4

Λq
. (6)

Proof. Fix 0 < r < κd(x, Ωc) and let B = B(x, r). We need to show that

1
w(B)

ˆ

B

1EΛw dμ ≤ D(w, 10κ)4

Λq
. (7)

The proof of (7) uses a covering argument. For each y ∈ EΛ∩B we fix a ball By = B(y, ry)
of radius 0 < ry < min{2κd(y, Ωc), κd(x, Ωc)} such that

(
1

w(By)

ˆ

By

|f |qw dμ

) 1
q

> Λτ. (8)

There are two cases to consider.
Case 1: There exists y ∈ EΛ ∩B with r < ry. Then B(y, ry) ⊂ B(x, 2ry) ⊂ B(y, 3ry)

and 3ry ≤ 6κd(y, Ωc). By semilocal doubling, we have

w(B(y, 3ry)) ≤ D(w, 10κ)2w(B(y, ry)).

Observe that 2ry < 2κd(x, Ωc). Therefore,
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1
w(B)

ˆ

B

1EΛw dμ ≤ 1 <

1
w(By)

´
By

|f |qw dμ

Λqτ q

≤
D(w, 10κ)2 1

w(B(x,2ry))
´
B(x,2ry)|f |qw dμ

Λqτ q

≤ D(w, 10κ)2(Mq,w,2κf(x))q

Λqτ q
≤ D(w, 10κ)4

Λq
,

proving inequality (7).
Case 2: For each y ∈ EΛ ∩B we have r ≥ ry. The 5r-covering lemma [1, Lemma 1.7]

yields a pairwise disjoint subcollection B ⊂ {By | y ∈ EΛ ∩ B} of balls such that 
EΛ ∩ B ⊂

⋃
B′∈B 5B′. Hence, by (8) and the fact that 5ry ≤ 10κd(y, Ωc) for every 

y ∈ EΛ ∩B,

1
w(B)

ˆ

B

1EΛw dμ ≤ 1
w(B)

∑
B′∈B

w(5B′)

≤ D(w, 10κ)3

w(B)
∑
B′∈B

w(B′)

≤ D(w, 10κ)3

Λqτ qw(B)
∑
B′∈B

ˆ

B′

|f |qw dμ.

Since rB′ ≤ r, we have B′ ⊂ 2B = B(x, 2r) for every B′ ∈ B. Also, since 2r < 2κd(x, Ωc), 
we have w(2B) ≤ D(w, 10κ)w(B). Consequently, inequality (7) follows from the esti-
mates

1
w(B)

ˆ

B

1EΛw dμ ≤ D(w, 10κ)4

Λqτ qw(2B)

ˆ

2B

|f |qw dμ

≤ D(w, 10κ)4(Mq,w,2κf(x))q

Λqτ q
≤ D(w, 10κ)4

Λq
. �

The next approximation lemma is a variant of [5, Lemma 3.7]. The outer regularity 
of the weight, see Lemma 3.3, is needed in the proof. Recall that a Borel function 
g : X → [0, ∞) is simple, if it can be expressed as g =

∑k
j=1 aj1Ej

for some real numbers 
aj > 0 and Borel sets Ej ⊂ X, j = 1, . . . , k.

Lemma 3.5. Suppose that w is a semilocally doubling weight for an open set Ω. Assume 
that 1 ≤ p < ∞ and κ > 1, and let g : X → [0, ∞) be a simple Borel function. Then, for 
each finite set F ⊂ Ω and every ε > 0, there exists a non-negative and bounded gF,ε ∈
LC(X) such that g(y) ≤ gF,ε(y) for all y ∈ X \ F and Mp,w,κgF,ε(x) ≤ Mp,w,κg(x) + ε

for every x ∈ F .
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Proof. It suffices to prove the claim for singletons F = {x}, since for F = {x1, . . . , xn}
the function gF,ε can be obtained as the minimum of the functions g{xi},ε. Fix x ∈ Ω
and ε > 0.

Step 1: proving the claim for g = 1E with a Borel set E. We show that there exists 
an open set U ⊂ X such that 1E ≤ 1U in X \ {x} and

Mp,w,κ(1U − 1E)(x) < ε. (9)

For each m ∈ Z, we set

Am = {y ∈ X | 2m−1 < d(x, y) < 2m+1}.

Observe that each y ∈ X belongs to at most two annuli Am. Moreover, if m ∈ Z then 
by outer regularity of the weight w (Lemma 3.3) and the fact that Am is open, there is 
an open set Um ⊂ Am such that

Am ∩ E ⊂ Um and

w(Um \ E) = w(Um \ (Am ∩ E)) ≤ εpw(Am)
2D(w, 4κ)2 .

(10)

In the case w(Am) = 0 we can choose Um = Am. Define U =
⋃

m∈Z Um. Then

E \ {x} ⊂
⋃

m∈Z
(Am ∩E) ⊂

⋃
m∈Z

Um = U. (11)

As a consequence, we have 1E(y) ≤ 1U (y) for every y ∈ X \ {x}.
To prove (9), we let B(x, r) ⊂ X be a ball with 0 < r < κd(x, Ωc). Then 1U − 1E =

1U\E μ-almost everywhere, and therefore by (10) we obtain

1
w(B(x, r))

ˆ

B(x,r)

|1U − 1E |pw dμ = 1
w(B(x, r))

ˆ

B(x,r)

1U\Ew dμ

≤ 1
w(B(x, r))

ˆ

X

�log2 r�∑
m=−∞

1Um\Ew dμ

= εp

2D(w, 4κ)2w(B(x, r))

�log2 r�∑
m=−∞

w(Am)

≤ εp

D(w, 4κ)2
w(B(x, 4r))
w(B(x, r)) ≤ εp

w(B(x, r))
w(B(x, r)) = εp.

Inequality (9) follows by raising this estimate to power 1/p and then taking supremum 
over all balls B(x, r) as above.
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Step 2: proving the claim for a simple Borel function g =
∑k

j=1 aj1Ej
. By Step 1, for 

each j = 1, . . . , k, there exists a non-negative and bounded g{x},ε,j ∈ LC(X) such that 
1Ej

≤ g{x},ε,j in X \ {x} and

Mp,w,κ(g{x},ε,j − 1Ej
)(x) ≤ ε

kmaxj aj
. (12)

Define g{x},ε =
∑k

j=1 ajg{x},ε,j . Then g ≤ g{x},ε in X \{x}, and by using the subadditiv-
ity and positive homogeneity of the maximal function and inequality (12), we conclude 
that

Mp,w,κg{x},ε(x) = Mp,w,κ(g + g{x},ε − g)(x)

≤ Mp,w,κg(x) + Mp,w,κ(g{x},ε − g)(x)

≤ Mp,w,κg(x) +
k∑

j=1
ajMp,w,κ(g{x},ε,j − 1Ej

)(x)

≤ Mp,w,κg(x) + ε. �
4. Local Poincaré inequalities in open sets

In the sequel, we will need to assume that a suitable pointwise Poincaré inequality 
holds with respect to the weight w.

Definition 4.1. Let 1 ≤ p < ∞, let Ω � X be an open set and let w be a weight for Ω. 
We say that w is a p-Poincaré weight for Ω, if there are constants CA > 0, ν > CQC and 
κ > 1 such that for each non-negative and bounded g ∈ LC(X) and every x, y ∈ Ω with

d(x, y) < d(x,Ωc)/(3κ),

it holds that

inf
γ∈Γ(X)νx,y

ˆ

γ

g ds ≤ CA d(x, y)
(
Mκd(x,y)

p,w,κ g(x) + Mκd(x,y)
p,w,κ g(y)

)
. (13)

Definition 4.1 for a p-Poincaré weight is slightly technical, since it is adjusted to our 
later purposes. The following lemma provides a more familiar variant of a p-Poincaré 
inequality that is sufficient for (13). We emphasize the local nature of these Poincaré 
inequalities with respect to Ω; for instance, we only require inequality (14) for balls B
satisfying 2λB ⊂ Ω. Compare also to [9] and [10, Section 3], and the references therein, 
concerning Poincaré inequalities and pointwise inequalities related to (13).

We write uB;w = 1 ´
u(x)w(x) dμ(x) whenever uw ∈ L1(B) and B is a ball in X.
w(B) B
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Lemma 4.2. Let 1 ≤ p < ∞ and 1 ≤ λ < ∞, let Ω � X be an open set, and let w be a 
semilocally doubling weight for Ω. Suppose there exists a constant C1 such that for each 
u ∈ Lip(X) and for every bounded upper gradient g of u we have

1
w(B)

ˆ

B

|u− uB;w|w dμ ≤ C1r

(
1

w(λB)

ˆ

λB

gpw dμ

) 1
p

, (14)

whenever B = B(x, r) is a ball with 2λB ⊂ Ω. Then w is a p-Poincaré weight for Ω.

Proof. The proof has two steps.
Step 1: We show that there exist constants C2 = 6C1D(w, 2−1)2 and κ = 3λ such 

that

|u(x) − u(y)| ≤ C2d(x, y)
(
Mκd(x,y)

p,w,κ g(x) + Mκd(x,y)
p,w,κ g(y)

)
(15)

for every x, y ∈ Ω with d(x, y) < d(x, Ωc)/(3κ). Here u and g are as in the assumptions 
of the lemma.

Fix x, y ∈ Ω, with x 
= y and r = d(x, y) < d(x, Ωc)/(9λ). Write Bi = B(x, 2−ir), for 
every i ∈ N0. A telescoping argument yields

|u(x) − uB(x,r);w| ≤
∞∑
i=0

|uBi+1;w − uBi;w|

≤
∞∑
i=0

w(Bi)
w(Bi+1)

1
w(Bi)

ˆ

Bi

|u− uBi;w|w dμ

≤ C1D(w, 2−1)
∞∑
i=0

(2−ir)
(

1
w(λBi)

ˆ

λBi

gpw dμ

) 1
p

≤ 2C1D(w, 2−1)d(x, y)Mκd(x,y)
p,w,κ g(x).

Observe that B(x, r) ⊂ B(y, 2r) and 2r = 2d(x, y) < d(x, Ωc)/(4λ) ≤ d(y, Ωc)/(2λ). 
Thus, a similar telescoping argument gives

|u(y) − uB(y,2r);w| ≤ 4C1D(w, 2−1)d(x, y)Mκd(x,y)
p,w,κ g(y).

Since B(x, r) ⊂ B(y, 2r) ⊂ B(x, 4r), we also have

|uB(x,r);w − uB(y,2r);w| ≤
1

w(B(x, r))

ˆ

B(x,r)

|u− uB(y,2r);w|w dμ

≤ w(B(x, 4r))
w(B(x, r))

1
w(B(y, 2r))

ˆ
|u− uB(y,2r);w|w dμ
B(y,2r)
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≤ 2C1D(w, 2−1)2d(x, y)
(

1
w(B(y, 2λr))

ˆ

B(y,2λr)

gpw dμ

) 1
p

≤ 2C1D(w, 2−1)2d(x, y)Mκd(x,y)
p,w,κ g(y).

By combining the estimates above we obtain

|u(x) − u(y)| ≤ |u(x) − uB(x,r);w| + |uB(x,r);w − uB(y,2r);w| + |u(y) − uB(y,2r);w|
≤ 6C1D(w, 2−1)2d(x, y)

(
Mκd(x,y)

p,w,κ g(x) + Mκd(x,y)
p,w,κ g(y)

)
,

and this completes the proof of inequality (15).
Step 2: With the aid of inequality (15), we show that w is a p-Poincaré weight for 

Ω. Let g ∈ LC(X) be a non-negative and bounded function. Fix x, y ∈ Ω such that 
0 < d(x, y) < d(x, Ωc)/(3κ) and let δ > 0; here κ = 3λ by Step 1. Define u : X → [0, ∞)
by setting

u(z) = inf
γ

ˆ

γ

h ds, z ∈ X, (16)

where

h = g +
(
Mκd(x,y)

p,w,κ g(x) + Mκd(x,y)
p,w,κ g(y) + δ

)
and the infimum is taken over all curves γ in X connecting z to y. Note that h is a 
non-negative bounded Borel function, and clearly u(y) = 0. Fix z1, z2 ∈ X and consider 
any curve σ connecting z1 to z2. We claim that

|u(z1) − u(z2)| ≤
ˆ

σ

h ds. (17)

From this it follows, in particular, that h is an upper gradient of u. Moreover, since X
is quasiconvex and h is bounded, estimate (17) implies that u ∈ Lip(X).

In order to prove (17), we may assume that u(z1) > u(z2). Fix ε > 0 and let γ be a 
curve in X that connects z2 to y and satisfies inequality

u(z2) ≥
ˆ

γ

h ds− ε.

Let σγ be the concatenation of σ and γ. Then

|u(z1) − u(z2)| = u(z1) − u(z2) ≤
ˆ

σγ

h ds−
ˆ

γ

h ds + ε =
ˆ

σ

h ds + ε.
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The desired inequality (17) follows by taking ε → 0+.
Application of inequality (15) to u ∈ Lip(X) and its bounded upper gradient h gives

|u(x) − u(y)| ≤ C2d(x, y)
(
Mκd(x,y)

p,w,κ h(x) + Mκd(x,y)
p,w,κ h(y)

)
< ∞.

Since u(x) ≥ δd(x, y) > 0 and u(y) = 0, by (16) there is a curve γ in X connecting x to 
y such that

ˆ

γ

g ds +
(
Mκd(x,y)

p,w,κ g(x) + Mκd(x,y)
p,w,κ g(y) + δ

)
len(γ)

=
ˆ

γ

h ds ≤ 2u(x) = 2|u(x) − u(y)|

≤ 2C2d(x, y)
(
Mκd(x,y)

p,w,κ h(x) + Mκd(x,y)
p,w,κ h(y)

)
≤ 2C2 d(x, y)

(
3Mκd(x,y)

p,w,κ g(x) + 3Mκd(x,y)
p,w,κ g(y) + 2δ

)
≤ 6C2 d(x, y)

(
Mκd(x,y)

p,w,κ g(x) + Mκd(x,y)
p,w,κ g(y) + δ

)
.

(18)

The penultimate inequality follows from the sublinearity of maximal function and defini-
tion of h. From (18) we see that len(γ) ≤ 6C2 d(x, y). By taking δ → 0+, we also obtain 
from (18) that inequality (13) holds, that is,

inf
γ∈Γ(X)νx,y

ˆ

γ

g ds ≤ CA d(x, y)
(
Mκd(x,y)

p,w,κ g(x) + Mκd(x,y)
p,w,κ g(y)

)
,

with CA = 6C2, κ = 3λ and ν > max{CQC, 6C2}. �
5. The class of p-Hardy weights

The following class of weights turns out to be natural in connection with pointwise 
Hardy inequalities; see Lemma 7.2, and compare also to the definition of p-Poincaré 
weights in Definition 4.1.

Definition 5.1. Let 1 ≤ p < ∞, let Ω � X be an open set, and let w be a weight for Ω. 
We say that w is a p-Hardy weight for Ω if there are constants CΓ > 0, ν > CQC and 
κ > 1 such that for each non-negative and bounded g ∈ LC(X) and every x ∈ Ω, we 
have

inf
γ∈Γ(X)νx,Ωc

ˆ

γ

g ds ≤ CΓ d(x,Ωc)Mp,w,κg(x). (19)

Next we define a convenient albeit slightly abstract α-function that condenses the p-
Hardy weight property, specifically inequality (19), in a single function. Indeed, despite 
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the complex appearance this function is a very useful tool in the proof of the self-
improvement for p-Hardy weight property.

Definition 5.2. Let Ω � X be an open set and let w be a weight for Ω. If τ ≥ 0, κ > 1, 
1 ≤ p < ∞ and x ∈ Ω, we write

Eκ,τ
p,w,x,Ω = {g ∈ LC(X) | Mp,w,κg(x) ≤ τ and g(y) ∈ [0, 1] for all y ∈ X}.

If also ν > CQC, then we write

αp,w,Ω(ν, κ, τ) := sup
x∈Ω

sup
g∈Eκ,τ

p,w,x,Ω

infγ∈Γ(X)νx,Ωc

´
γ
g ds

d(x,Ωc) . (20)

The parameter ν is related to the maximum length of the curves γ, since len(γ) ≤
νd(x, Ωc). The remaining parameters κ and τ are used to control the non-locality and 
size, or “level”, of the maximal function Mp,w,κg(x).

The following lemma codifies the relationship between inequality (19) and the α-
function.

Lemma 5.3. Let Ω � X be an open set and let w be a weight for Ω. Assume that κ > 1, 
1 ≤ p < ∞ and ν > CQC, and let g ∈ LC(X) be such that g(y) ∈ [0, 1] for every y ∈ X. 
Then, for every x ∈ Ω, we have

inf
γ∈Γ(X)νx,Ωc

ˆ

γ

g ds ≤ d(x,Ωc)αp,w,Ω
(
ν, κ, (Mp,w,κg(x))

)
. (21)

Proof. Take any g ∈ LC(X) with g(y) ∈ [0, 1] for all y ∈ X. Fix x ∈ Ω and write

τ = Mp,w,κg(x) ≥ 0.

Then g ∈ Eκ,τ
p,w,x,Ω, and by the definition of αp,w,Ω

infγ∈Γ(X)νx,Ωc

´
γ
g ds

d(x,Ωc) ≤ sup
h∈Eκ,τ

p,w,x,Ω

infγ∈Γ(X)νx,Ωc

´
γ
h ds

d(x,Ωc) ≤ αp,w,Ω(ν, κ, τ).

The last step holds, since x ∈ Ω. �
In particular, from Lemma 5.3 we obtain the following sufficient condition for p-Hardy 

weights in terms of a τ -linear upper bound for the α-function.

Lemma 5.4. Let 1 ≤ p < ∞, let Ω � X be an open set and let w be a weight for Ω. 
Suppose that there are constants ν > CQC, κ > 1 and Cα > 0 such that, for any τ ≥ 0, 
we have αp,w,Ω(ν, κ, τ) ≤ Cα. Then w is a p-Hardy weight for Ω.
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Proof. By Definition 5.1, it suffices to find a constant CΓ > 0 such that inequality (19)
holds for every non-negative bounded g ∈ LC(X) and every x ∈ Ω — the remaining 
constants ν and κ are given in the assumptions of the present lemma. Fix such a function 
g and a point x ∈ Ω. Since g is bounded and inequality (19) is invariant under multi-
plication of g with a strictly positive constant, we may further assume that g(y) ∈ [0, 1]
for all y ∈ X. Then the desired estimate (19), with CΓ = Cα, follows immediately from 
Lemma 5.3 and the assumptions. �

The converse of Lemma 5.4 is also true, as we will see in Section 6. Therein the 
following inequalities for the α-function become useful.

Lemma 5.5. Let Ω � X be an open set. Let 0 ≤ τ < τ ′, κ > 1, 1 ≤ p < ∞ and ν > CQC. 
Then

αp,w,Ω(ν, κ, τ) ≤ αp,w,Ω(ν, κ, τ ′), αp,w,Ω(ν, κ, τ) ≤ ν,

and, for every M ≥ 1,

αp,w,Ω(ν, κ,Mτ) ≤ Mαp,w,Ω(ν, κ, τ).

Proof. These inequalities are clear from the definition of αp,w,Ω(ν, κ, τ) in (20). The 
second inequality also uses the fact that g is bounded by 1 and quasiconvexity, that is, 
existence of a curve with len(γ) ≤ νd(x, Ωc). �
6. Self-improvement property for p-Hardy weights

In this section we examine self-improvement properties of p-Hardy weights for 1 < p <
∞. We assume that w is a p0-Poincaré weight for some p0 < p. This assumption allows us 
to focus on the new phenomena that arise especially in connection with the improvement 
of pointwise p-Hardy inequalities. Recall that if the metric space X is complete and X
supports a (1, p)-Poincaré inequality, that is, (14) with w = 1 holds for all balls B ⊂ X

whenever u ∈ Lip(X) and g is an upper gradient of u, then there exists p0 < p such that 
X supports a (1, p0)-Poincaré inequality; see [11] and see also Lemma 8.3 concerning 
this assumption for distance weights in Rn. It is plausible that also p-Poincaré weights 
enjoy self-improvement properties, but in the present work we will not focus on this 
aspect.

The following Theorem 6.1 implies a self-improvement property for p-Hardy weights. 
This result also provides a converse of Lemma 5.4 for p > 1.

Theorem 6.1. Let 1 < p0 < p < ∞, let Ω � X be an open set and let w be a semilocally 
doubling weight for Ω. Assume that w is a p0-Poincaré weight for Ω and a p-Hardy weight 



S. Eriksson-Bique et al. / Journal of Functional Analysis 279 (2020) 108691 15
for Ω. Then there exist an exponent q ∈ (p0, p) and constants N > CQC, K > 1 and 
Cα > 0 such that

αq,w,Ω(N,K, τ) ≤ Cατ (22)

whenever τ ≥ 0.

Proof. First, we fix some constants to give accurate bounds. In Definition 5.1, inequal-
ity (19) holds with constants CΓ > 0, νΓ > CQC and κΓ > 1. Also, denote by CA > 0, 
νA > CQC and κA > 1 the constants from inequality (13) in Definition 4.1, for the expo-
nent p0 < p. By Hölder’s inequality we may assume p/2 < p0. Without loss of generality, 
we may also assume that κΓ = κA =: κ and νΓ = νA =: ν.

Step 1: Estimate to prove, strategy and parameters. Assume that we have found 
parameters k ∈ N, K, S ∈ (1, ∞), N ∈ (CQC, ∞), M > 1 and δ ∈ (0, 1) such that, for 
each q ∈ (p0, p) and every τ > 0, we have

αq,w,Ω(N,K, τ) ≤ Sτ + δ max
i=1,...,k

(
M−iq/pαq,w,Ω(N,K,M iτ)

)
. (23)

From this inequality and Lemma 5.5, we obtain

αq,w,Ω(N,K, τ) ≤ Sτ + δMk p−q
p αq,w,Ω(N,K, τ) for all q ∈ (p0, p) and τ > 0.

Observe that the last term on the right is finite by Lemma 5.5. In order to absorb this 
term to the left-hand side, we need δMk p−q

p < 1. This can be ensured by choosing 
q ∈ (p0, p) so close to p that

0 < p− q <
p ln(1

δ )
k ln(M) .

With this choice of q we find for all τ > 0 that

αq,w,Ω(N,K, τ) ≤
(

S

1 − δMk p−q
p

)
τ =: Cατ.

This inequality holds also for τ = 0, which is seen by using monotonicity property of the 
α-function, see Lemma 5.5. Thus, the desired inequality (22) follows from (23). Hence, it 
suffices to find parameters, as above, for which inequality (23) holds for every q ∈ (p0, p)
and τ > 0.

We begin by fixing the auxiliary parameters

K = 2κ, N = 3ν, M = 4, δ = 1
6 .

We also choose k ∈ N so large that Cp
Γ2pD(w, 10κ)4k1−p < (δ/(3κ))p. The last parameter 

is given by S = 1 +Mkν +3CAM
k. For what follows q ∈ (p0, p) and τ > 0 are arbitrary.
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Now, the overall strategy is to construct, for any x ∈ Ω and any g ∈ EK,τ
q,w,x,Ω, a curve 

γ ∈ Γ(X)Nx,Ωc such that, for some i0 = 1, . . . , k

ˆ

γ

g ds ≤ Sτd(x,Ωc) + δM−i0q/pαq,w,Ω(N,K,M i0τ)d(x,Ωc). (24)

Estimating the right-hand side by the maximum over possible i0, then dividing both sides 
by d(x, Ωc), and finally taking the supremum over x and g as above, proves inequality 
(23). This strategy first involves choosing a good level i0 along with some proto-curve γ0
having a small integral, and then adjusting the curve at the level i0 by filling in certain 
gaps.

Step 2: Choosing a good level i0 and the proto-curve γ0. Fix x ∈ Ω and g ∈ EK,τ
q,w,x,Ω. 

For each i ≥ 1, we write

Ei := {y ∈ Ω | Mκd(x,Ωc)
q,w,K g(y) > M iτ},

and define a bounded function h : X → [0, ∞) by setting

h = 1
k

k∑
i=1

1Ei
M iq/p.

Since Ej ⊃ Ei if j ≤ i and p/2 < p0 < q < p, it follows that

hp ≤ 1
kp

k∑
j=1

( j∑
i=1

M iq/p

)p

1Ej
≤ 2p

kp

k∑
j=1

1Ej
M jq.

In the final estimate, we also use the choice M = 4 to obtain the factor 2p. Observe 
that 1Ei

∈ LC(X) since Ei is open, for each i = 1, . . . , k, by the lower semicontinuity 
of Mκd(x,Ωc)

q,w,K g. Hence, we have h ∈ LC(X). By sublinearity and monotonicity of the 

maximal function, Lemma 3.4, and the assumption that g ∈ EK,τ
q,w,x,Ω, where K = 2κ, we 

obtain

(Mp,w,κh(x))p ≤ 2p

kp

k∑
j=1

(M1,w,κ1Ej
(x))M jq

≤ 2p

kp

k∑
j=1

D(w, 10κ)4

M jq
M jq ≤ 2pD(w, 10κ)4

kp−1 .

(25)

Then, by the choice of k and estimate (25), we have

CΓd(x,Ωc)Mp,w,κh(x) < δ
d(x,Ωc).
3κ
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Therefore by Definition 5.1, with exponent p, there is a curve γ0 ∈ Γ(X)νx,Ωc , which is 
parameterized by the arc length and defined on the interval [0, len(γ0)], such that

1
k

k∑
i=1

M iq/p

ˆ

γ0

1Ei
ds =

ˆ

γ0

h ds ≤ δ

3κd(x,Ω
c) (26)

and

len(γ0) ≤ νd(x,Ωc). (27)

Without loss of generality, we may assume that γ0([0, len(γ0)) ⊂ Ω. By inequality (26), 
there exists i0 ∈ {1, . . . , k} such that

ˆ

γ0

1Ei0
ds ≤ δ

3κM
−i0q/pd(x,Ωc). (28)

Step 3: Adjusting the curve at level i0 by filling in gaps. Recall that the proto-curve 
γ0 is parameterized by arc length. Let O = γ−1

0 (Ei0) and write T = [0, len(γ0)] \ O. By 
the lower semicontinuity of g and the definition of Ei0 we have, for all t ∈ T \ {len(γ0)},

g(γ0(t)) ≤ Mκd(x,Ωc)
q,w,K g(γ0(t)) ≤ M i0τ. (29)

Since Ei0 is open in X, the set O is relatively open in [0, len(γ0)]. Observe that 0 /∈ O

since g ∈ EK,τ
q,w,x,Ω. Likewise len(γ0) /∈ O since γ0(len(γ0)) ∈ Ωc. Hence, we can write O

as a union of so-called gaps:

O =
⋃
i∈I

(ai, bi), (30)

where I ⊂ N is a finite or infinite indexing set. We also write xi := γ0(ai), yi := γ0(bi) and 
di := d(xi, yi) for each i ∈ I. There are two cases to consider: either di < d(xi, Ωc)/(3κ)
for all i ∈ I or there exists i ∈ I such that di ≥ d(xi, Ωc)/(3κ). The latter also includes 
the case when yi ∈ Ωc for some i ∈ I. In both cases the gaps (ai, bi) are pairwise disjoint 
and 0 ≤ ai < bi ≤ len(γ0) for each i ∈ I. By inequality (28), we have

∑
i∈I

di ≤
∑
i∈I

len(γ0|[ai,bi]) =
∑
i∈I

ˆ

γ0|[ai,bi]

1Ei0
ds

≤
ˆ

γ0

1Ei0
ds ≤ δ

3κM
−i0q/pd(x,Ωc).

(31)

For each i we next define a filling curve γi : [ai, bi] → X connecting γ0(ai) and γ0(bi).
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Case 1: We have d(xi, yi) = di < d(xi, Ωc)/(3κ) for all i ∈ I. Fix i ∈ I. If di = 0, we 
define γi(t) = γ0(ai) = γ0(bi) for each t ∈ [ai, bi]. From now on we assume that di > 0
and proceed as follows. Observe that κ < K and xi, yi ∈ Ω \ Ei0 . This gives

Mκd(x,Ωc)
q,w,κ g(xi) ≤ M i0τ and Mκd(x,Ωc)

q,w,κ g(yi) ≤ M i0τ. (32)

We apply Definition 4.1 to the points xi and yi. After a reparameterization, this yields 
a curve γi : [ai, bi] → X such that γi(ai) = xi, γi(bi) = yi,

len(γi) ≤ νd(xi, yi) = νdi, (33)

and, by using also Hölder’s inequality and the fact that p0 < q,
ˆ

γi

g ds ≤ CAd(xi, yi)
(
Mκd(xi,yi)

q,w,κ g(xi) + Mκd(xi,yi)
q,w,κ g(yi)

)
+ CAM

i0τd(xi, yi)︸ ︷︷ ︸
>0

. (34)

Here κd(xi, yi) ≤ κd(x, Ωc), since by (31) we have

d(xi, yi) = di ≤
∑
i∈I

di ≤ d(x,Ωc).

This estimate together with (32) and (34) gives
ˆ

γi

g ds ≤ 3CAM
i0τdi. (35)

We define a curve γ : [0, len(γ0)] → X by setting γ(t) = γ0(t) if t ∈ T and γ(t) = γi(t)
if t ∈ (ai, bi) for some i ∈ I that is uniquely determined by t. Then, by the length 
estimates (27) and (33), followed by inequality (31), we obtain

len(γ) ≤ len(γ0) +
∑
i∈I

len(γi) ≤ νd(x,Ωc) + ν
∑
i∈I

di ≤ 2νd(x,Ωc) ≤ Nd(x,Ωc).

From this it follows that γ ∈ Γ(X)Nx,Ωc ; we remark that the required continuity and 
connecting properties of γ are straightforward to establish, and we omit the details. 
Also, by inequalities (27), (29), (31) and (35), we have

ˆ

γ

g ds =
ˆ

T

g(γ0(t)) dt +
∑
i∈I

ˆ

γi

g ds

≤ M i0τνd(x,Ωc) + 3CAM
i0τd(x,Ωc)

≤ (M i0ν + 3CAM
i0)τd(x,Ωc) ≤ Sτd(x,Ωc).

Thus curve γ satisfies inequality (24) and this concludes the proof of the first case.
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Case 2: There exists i ∈ I such that d(xi, yi) = di ≥ d(xi, Ωc)/(3κ). This includes the 
case when bi = len(γ0) for some i ∈ I. Write

t = inf{ai | i ∈ I and d(xi, yi) ≥ d(xi,Ωc)/(3κ)} ∈ [0, len(γ0)).

The infimum is reached, that is, there exists an index i0 ∈ I such that t = ai0 and 
d(xi0 , yi0) ≥ d(xi0 , Ωc)/(3κ). Indeed, otherwise there would exist a strictly decreasing 
sequence (aik)k∈N such that ik ∈ I and d(xik , yik) ≥ d(xik , Ωc)/(3κ) for all k ∈ N, and 
limk→∞ aik = t. Clearly aik−1 − aik → 0 as k → ∞. Since γ0 is parameterized by arc 
length, we obtain for all k > 1

d(γ0(aik),Ωc)/(3κ) = d(xik ,Ωc)/(3κ) ≤ d(xik , yik)

= d(γ0(aik), γ0(bik)) ≤ bik − aik ≤ aik−1 − aik
k→∞−−−−→ 0.

Hence, by continuity, we have d(γ0(t), Ωc) = limk→∞ d(γ0(aik), Ωc) = 0. Since Ωc is 
closed, this implies γ0(t) ∈ Ωc. This is a contradiction, since t < len(γ0) and, on the 
other hand, we have assumed that γ0([0, len(γ0)) ⊂ Ω.

Let J := {i ∈ I | ai < ai0}. Then di < d(xi, Ωc)/(3κ) for all i ∈ J . As in the previous 
case, for each i ∈ J , we can first construct curves γi : [ai, bi] → X such that

len(γi) ≤ νd(xi, yi) = νdi, (36)

and
ˆ

γi

g ds ≤ 3CAM
i0τdi. (37)

For i = i0 we are too close to the boundary and must proceed more carefully. By using 
(31) and the equality 3Kδ = κ, we first observe that

Kd(xi0 ,Ωc) ≤ 3κKd(xi0 , yi0) = 3κKdi0 ≤ 3Kδd(x,Ωc) ≤ κd(x,Ωc).

We still have that xi0 ∈ Ω \ Ei0 , and thus

Mq,w,Kg(xi0) ≤ Mκd(x,Ωc)
q,w,K g(xi0) ≤ M i0τ.

From this it follows that g ∈ EK,Mi0τ
q,w,xi0 ,Ω

. Using the definition (20) of the function 

αq,w,Ω(N, K,M i0τ), we obtain a curve γi0 : [ai0 , bi0 ] → X connecting xi0 ∈ Ω to Ωc

such that

len(γi0) ≤ Nd(xi0 ,Ωc) ≤ 3κNd(xi0 , yi0) = 3κNdi0 (38)

and
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ˆ

γi0

g ds ≤ d(xi0 ,Ωc)αq,w,Ω(N,K,M i0τ) + τd(x,Ωc)︸ ︷︷ ︸
>0

≤ 3κdi0αq,w,Ω(N,K,M i0τ) + τd(x,Ωc).

(39)

We now define a curve γ : [0, bi0 ] → X by setting γ(t) = γ0(t) if t ∈ T ∩ [0, ai0 ], 
γ(t) = γi(t) if t ∈ (ai, bi) for some i ∈ J , which is uniquely determined by t, and 
γ(t) = γi0(t) for every t ∈ (ai0 , bi0 ]. Then by (27), (31), (36), (38), and our choices of N
and δ, we obtain

len(γ) ≤ len(γ0) +
∑
i∈J

len(γi) + len(γi0)

≤ (ν + ν + δN)d(x,Ωc) ≤ Nd(x,Ωc),

and thus γ ∈ Γ(X)Nx,Ωc . Finally, by inequalities (27), (29), (31), (37), and (39) we have

ˆ

γ

g ds =
ˆ

T∩[0,ai0 ]

g(γ0(t)) dt +
∑
i∈J

ˆ

γi

g ds +
ˆ

γi0

g ds

≤ M i0τνd(x,Ωc) + 3CAM
i0τd(x,Ωc) + 3κdi0αq,w,Ω(N,K,M i0τ) + τd(x,Ωc)

≤ Sτd(x,Ωc) + δM−i0q/pαq,w,Ω(N,K,M i0τ)d(x,Ωc).

This shows that (24) holds also in Case 2, and the proof is complete. �
7. Pointwise (p, w)-Hardy inequalities

The definition of a pointwise (p, w)-Hardy inequality is as follows; recall that Ωc =
X \ Ω.

Definition 7.1. Let 1 ≤ p < ∞, let Ω � X be an open set, and let w be a weight for 
Ω. We say that a pointwise (p, w)-Hardy inequality holds in Ω if there exist constants 
CH > 0 and κ > 1 such that for every Lipschitz function u ∈ Lip0(Ω), every bounded 
upper gradient g of u and every x ∈ Ω, we have

|u(x)| ≤ CH d(x,Ωc)Mp,w,κg(x). (40)

These pointwise (p, w)-Hardy inequalities in fact characterize the class of p-Hardy 
weights for Ω, thus explaining the terminology.

Lemma 7.2. Let 1 ≤ p < ∞, let Ω � X be an open set and let w be a semilocally doubling 
weight for Ω. Then a pointwise (p, w)-Hardy inequality holds in Ω if, and only if, w is a 
p-Hardy weight for Ω.
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Proof. Throughout this proof, we tacitly assume that curves are parameterized by arc 
length. First assume that a pointwise (p, w)-Hardy inequality (40) holds in Ω with con-
stants CH > 0 and κΓ > 1. Let g ∈ LC(X) be a non-negative and bounded function, 
and fix x ∈ Ω and δ > 0. We define a function u : X → [0, ∞) by setting

u(y) = inf
γ

ˆ

γ

h ds, y ∈ X, (41)

where h = g+Mp,w,κΓg(x) +δ and the infimum is taken over all curves γ in X connecting 
y to Ωc; note that h is a non-negative bounded Borel function. Clearly, we have u = 0 in 
Ωc. Fix y, z ∈ X and consider any curve σ connecting y to z. As in Step 2 of the proof 
of Lemma 4.2, we assume that u(y) > u(z) and fix ε > 0. We let γ be a curve in X that 
connects z to Ωc and satisfies inequality

u(z) ≥
ˆ

γ

h ds− ε,

and define σγ to be the concatenation of σ and γ. Then, as in the proof of Lemma 4.2,

|u(y) − u(z)| ≤
ˆ

σ

h ds + ε,

and by taking ε → 0+ we obtain

|u(y) − u(z)| ≤
ˆ

σ

h ds. (42)

This shows that h is an upper gradient of u. Moreover, since X is quasiconvex and h is 
bounded, it follows from (42) that u ∈ Lip0(Ω).

Now, applying the assumed pointwise (p, w)-Hardy inequality (40) to u ∈ Lip0(Ω)
and its bounded upper gradient h yields

u(x) ≤ CH d(x,Ωc)Mp,w,κΓh(x) < ∞.

Since u(x) ≥ δd(x, Ωc) > 0, by (41) there is a curve γ in X connecting x to Ωc such that
ˆ

γ

g ds + (Mp,w,κΓg(x) + δ) len(γ) =
ˆ

γ

h ds ≤ 2u(x)

≤ 2CH d(x,Ωc)(Mp,w,κΓh(x))

≤ 2CH d(x,Ωc)(2Mp,w,κΓg(x) + δ)

≤ 4C d(x,Ωc)(M g(x) + δ).

(43)
H p,w,κΓ
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Here the penultimate inequality follows from the sublinearity of maximal function. We 
can now conclude from (43) that len(γ) ≤ 4CH d(x, Ωc). By taking δ → 0+, we also 
obtain from (43) that (19) holds, that is,

inf
γ∈Γ(X)νx,Ωc

ˆ

γ

g ds ≤ CΓ d(x,Ωc)Mp,w,κg(x)

with

CΓ = 4CH, κ = κΓ, ν > max{CQC, 4CH}.

For the converse implication, we assume that inequality (19) holds for all non-negative 
and bounded g ∈ LC(X) and for all x ∈ Ω. We need to prove that a pointwise (p, w)-
Hardy inequality holds in Ω. To this end, we fix x ∈ Ω and u ∈ Lip0(Ω), and let g be 
a bounded upper gradient of u. Since g is not necessarily lower semicontinuous, some 
approximation is first needed so that we get to apply (19) and thereby establish inequality 
(40).

Let (gN )N∈N be a pointwisely increasing sequence of simple Borel functions such that 
limN→∞ gN = g uniformly in X. Fix ε > 0. By the uniform convergence, there exists 
N ∈ N such that for all γ ∈ Γ(X)νx,Ωc we have

ˆ

γ

g ds =
ˆ

γ

gN ds +
ˆ

γ

(g − gN ) ds

≤
ˆ

γ

gN ds + sup
y∈X

(g(y) − gN (y)) len(γ)

≤
ˆ

γ

gN ds + sup
y∈X

(g(y) − gN (y))νd(x,Ωc)

≤
ˆ

γ

gN ds + ε.

(44)

Let gN,x,ε ∈ LC(X) be the non-negative bounded approximant of gN given by Lemma 3.5
with F = {x}. By inequality (19) and Lemma 3.5, there exists γN ∈ Γ(X)νx,Ωc defined 
on the interval [0, �(γN )] such that

ˆ

γN

gN,x,ε ds ≤ CΓd(x,Ωc)Mp,w,κgN,x,ε(x) + ε

≤ CΓd(x,Ωc) (Mp,w,κgN (x) + ε) + ε

≤ C d(x,Ωc) (M g(x) + ε) + ε.

(45)
Γ p,w,κ
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Without loss of generality, we may assume that γN(t) = x only if t = 0. On the other 
hand, by Lemma 3.5, we have gN ≤ gN,x,ε in X \ {x}. Inequalities (44) and (45), with 
γ = γN , imply that

ˆ

γN

g ds ≤
ˆ

γN

gN ds + ε ≤
ˆ

γN

gN,x,ε ds + ε

≤ CΓd(x,Ωc) (Mp,w,κg(x) + ε) + 2ε.

Since g is an upper gradient of u ∈ Lip0(Ω) and γN (len(γN )) ∈ Ωc, we obtain

|u(x)| = |u(γN (0)) − u(γN (len(γN )))|

≤
ˆ

γN

g ds ≤ CΓd(x,Ωc) (Mp,w,κg(x) + ε) + 2ε,

and letting ε → 0+ gives the pointwise (p, w)-Hardy inequality (40) with CH = CΓ and 
κ. �
Remark 7.3. Let Ω � X be an open set and let w be a weight for Ω such that a pointwise 
(p, w)-Hardy inequality holds in Ω, with constants CH > 0 and κ > 1. Then the proof of 
Lemma 7.2, with g = 0, shows that for every ε > 0 and every x ∈ Ω there exists a curve 
γ that connects x to Ωc in X such that len(γ) ≤ (1 + ε)CHd(x, Ωc).

The following is our main result.

Theorem 7.4. Let 1 ≤ p0 < p < ∞, let Ω � X be an open set, and assume that w is 
a semilocally doubling p0-Poincaré weight for Ω. If a pointwise (p, w)-Hardy inequality 
holds in Ω, then there exists q ∈ (p0, p) such that a pointwise (q, w)-Hardy inequality 
holds in Ω.

Proof. By Lemma 7.2, we find that w is a p-Hardy weight for Ω. Theorem 6.1 and 
Lemma 5.4 imply that there exists q ∈ (p0, p) such that w is a q-Hardy weight for Ω. 
Lemma 7.2 implies that a pointwise (q, w)-Hardy inequality holds in Ω. �
Remark 7.5. The proofs of the results in Sections 3, 4, 6 and 7 show that the semilocal 
doubling property in Definition 3.1 is not really needed to hold for every κ > 0 but for 
every 0 < κ ≤ κ0 with a large enough κ0 depending on the parameters in the assumed 
p0-Poincaré weight property and pointwise (p, w)-Hardy inequality.

8. Applications

In this section we show how the self-improvement of pointwise (p, w)-Hardy inequal-
ities can be applied in the context of integral versions of weighted Hardy inequalities. 
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Here we need to know, for all 1 < q < ∞ and all 0 < κ < ∞, the boundedness of the 
restricted weighted maximal operator M1,w,κ : Lq(X; w dμ) → Lq(Ω; w dμ), where w is 
a semilocally doubling weight for an open set Ω. If w is a doubling weight in X, then 
this Lq-boundedness of M1,w,κ follows from the maximal function theorem in X; see, 
for instance [1, Section 3.2]. In our case the weight w is not necessarily doubling, but the 
boundedness follows with a suitable adaptation of the proof of the doubling case, given 
by the following lemma.

Lemma 8.1. Let 0 < κ < ∞ and 1 < q < ∞, let Ω � X be an open set, and assume that 
w is a semilocally doubling weight for Ω. Then the restricted weighted maximal operator 
M1,w,κ : Lq(X; w dμ) → Lq(Ω; w dμ) is bounded, that is, there is a constant C = Cq,κ,w

such that
ˆ

Ω

(
M1,w,κf

)q
w dμ ≤ C

ˆ

X

|f |qw dμ,

for every f ∈ Lq(X; w dμ).

Proof. Clearly M1,w,κ : L∞(X; w dμ) → L∞(Ω; w dμ) is bounded. Hence by interpola-
tion it suffices to prove that M1,w,κ is of corresponding weak type (1, 1), compare to 
the proof of [1, Theorem 3.13]. Let f ∈ L1(X; w dμ) and 0 < τ < ∞. We estimate the 
w dμ-measure of E = {x ∈ Ω | M1,w,κf(x) > τ}. The set E has a cover by balls in

B =
{
B = B(x, r)

∣∣∣ x ∈ Ω,
1

w(B)

ˆ

B

|f |w dμ > τ, 0 < r < κd(x,Ωc)
}
.

By the 5r-covering lemma [1, Lemma 1.7], we obtain a countable subfamily B′ ⊂ B of 
pairwise disjoint balls such that

E ⊂
⋃

B∈B′

5B.

Then

w(E) ≤
∑

B(x,r)∈B′

w(B(x, 5r)) ≤ D(w, 5κ)3
∑

B(x,r)∈B′

w(B(x, r))

≤ D(w, 5κ)3
∑
B∈B′

´
B
|f |w dμ

τ
≤ D(w, 5κ)3

τ

ˆ

X

|f |w dμ.

On the first line we used semilocal doubling with x ∈ Ω and 0 < r < κd(x, Ωc), and on 
the last line we used the fact that the balls in B′ are pairwise disjoint. This shows the 
desired weak type (1, 1) property and the proof is completed by interpolation. �
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Theorem 8.2. Let 1 ≤ p0 < p < ∞, let Ω � X be an open set, and assume that w is 
a semilocally doubling p0-Poincaré weight for Ω. Assume that a pointwise (p, w)-Hardy 
inequality holds in Ω. Then there exists a constant C > 0 such that the (p, w)-Hardy 
inequality

ˆ

Ω

|u(x)|p
d(x,Ωc)p w(x) dμ(x) ≤ C

ˆ

Ω

g(x)pw(x) dμ(x)

holds for every u ∈ Lip0(Ω) and for all bounded upper gradients g of u.

Proof. By Theorem 7.4 there exists q ∈ (p0, p) such that a pointwise (q, w)-Hardy in-
equality holds in Ω with 1 < κ < ∞. Let u ∈ Lip0(Ω) and let g be a bounded upper 
gradient of u. Without loss of generality, we may assume that g = 0 in Ωc. It is immediate 
that

(
Mq,w,κg(x)

)p =
(
M1,w,κg

q(x)
) p

q ,

for every x ∈ Ω, and on the other hand the pointwise (q, w)-Hardy inequality, raised to 
power p, implies

|u(x)|p
d(x,Ωc)p ≤ C

(
Mq,w,κg(x)

)p

for every x ∈ Ω. Since p/q > 1, by the Lp/q-boundedness of M1,w,κ from Lemma 8.1 we 
obtain

ˆ

Ω

|u(x)|p
d(x,Ωc)p w(x) dμ(x) ≤ C

ˆ

Ω

(
Mq,w,κg(x)

)p
w(x) dμ(x)

= C

ˆ

Ω

(
M1,w,κg

q(x)
) p

q w(x) dμ(x)

≤ C

ˆ

X

g(x)pw(x) dμ(x) = C

ˆ

Ω

g(x)pw(x) dμ(x),

and this proves the claim. �
Next we concentrate on the special case where X = Rn is equipped with the Euclidean 

distance and the Lebesgue measure, and weights w are powers of the distance function 
x �→ d(x, Ωc). Let 1 ≤ p < ∞ and let Ω � Rn be an open set. We say that a pointwise 
p-Hardy inequality holds in Ω, if there exists a constant C > 0 such that

|u(x)| ≤ Cd(x,Ωc)
(
M2d(x,Ωc)|∇u|p(x)

) 1
p , (46)
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for every x ∈ Ω and every u ∈ Lip0(Ω). Here M2d(x,Ωc) is the usual restricted max-
imal operator, which corresponds to M1,1,2 in the notation introduced in Section 3. 
These pointwise inequalities were introduced and studied by Hajłasz [8] and Kinnunen 
and Martio [12], and they can be regarded as pointwise variants of the usual p-Hardy 
inequality

ˆ

Ω

|u(x)|p
d(x,Ωc)p dx ≤ C

ˆ

Ω

|∇u(x)|p dx. (47)

If (46) holds for a function u ∈ Lip0(Ω) at every x ∈ Ω, but with an exponent 
1 < q < p, then the maximal function theorem implies that (47) with exponent p holds 
for u with a constant C independent of u. However, the passage from (46) to (47), with 
the same exponent 1 < p < ∞, is not at all obvious. This was established in [13] using an 
indirect route, first showing the equivalence between the validity of (46) and the uniform 
p-fatness of Ωc, and then applying the known self-improvement of the latter, which in 
Rn is by Lewis [19] and in metric spaces by Björn, MacManus and Shanmugalingam [3]. 
A direct proof for the self-improvement of pointwise p-Hardy inequalities, which applies 
also in metric spaces, was recently given in [6].

The following weighted version of the pointwise p-Hardy inequality was considered in 
[14]:

|u(x)| ≤ Cd(x,Ωc)1−
β
p
(
M2d(x,Ωc)

(
|∇u|qd(·,Ωc)

βq
p
)
(x)

) 1
q , (48)

for every x ∈ Ω and every u ∈ Lip0(Ω), where 1 < q < p are fixed. As in the unweighted 
case, with an application of the maximal function theorem for exponent p

q > 1, this 
implies the weighted (p, β)-Hardy inequality

ˆ

Ω

|u(x)|pd(x,Ωc)β−p dx ≤ C

ˆ

Ω

|∇u(x)|pd(x,Ωc)β dx. (49)

A more natural formulation for the weighted pointwise Hardy inequality (48) would have 
been with q = p, but then the passage to inequality (49) would not have been possible 
with a direct use of the maximal function theorem.

Now, using the general technology developed in this paper, we can show that the 
validity of (48), with 1 < q = p < ∞, implies (49), at least in the case β ≥ 0. We begin 
by proving that in this case the weight w(x) = d(x, Ωc)β , for x ∈ Rn, is a semilocally 
doubling p0-Poincaré weight for Ω, for every 1 ≤ p0 < ∞.

Lemma 8.3. Let 1 ≤ p0 < ∞ and β ≥ 0, and let Ω � Rn be an open set. Define 
w(x) = d(x, Ωc)β for all x ∈ Rn. Then w is a semilocally doubling p0-Poincaré weight 
for Ω.
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Proof. Let κ > 0, x ∈ Ω and 0 < r ≤ κd(x, Ωc). There exists C = C(n, β, κ) such that

C−1rnd(x,Ωc)β ≤ w(B(x, r)) =
ˆ

B(x,r)

d(y,Ωc)β dy ≤ Crnd(x,Ωc)β , (50)

and this shows that w is a semilocally doubling weight for Ω.
To prove the p0-Poincaré weight property, we let u ∈ Lip(Rn). There exists a bounded 

upper gradient gu of u such that

gu = |∇u| and |∇u| ≤ g (51)

almost everywhere in Rn whenever g is a bounded upper gradient of u; we refer to the 
proof of [1, Corollary 1.47] and [1, Proposition A.3]. Let x ∈ Ω and let B = B(x, r) be 
a ball with 2B = B(x, 2r) ⊂ Ω. We have 0 < r ≤ d(x, Ωc)/2 and d(y, Ωc) ≤ 2d(x, Ωc) ≤
4d(y, Ωc) for every y ∈ B. By (50), with κ = 1/2, and the well-known 1-Poincaré in-
equality in Rn, we have

1
w(B)

ˆ

B

|u(y) − uB;w|w(y) dy ≤ 2
w(B)

ˆ

B

|u(y) − uB;1|w(y) dy

≤ C(β)d(x,Ω
c)β

w(B)

ˆ

B

|u(y) − uB;1| dy ≤ C(n, β)
|B|

ˆ

B

|u(y) − uB;1| dy

≤ C(n, β) r

|B|

ˆ

B

|∇u(y)| dy ≤ C(n, β) r

w(B)

ˆ

B

|∇u(y)|w(y) dy

≤ C(n, β) r

w(B)

ˆ

B

g(y)w(y) dy

whenever g is a bounded upper gradient of u, where the final step follows from the second 
inequality in (51). This together with Hölder’s inequality and Lemma 4.2, with λ = 1, 
proves that w is a p0-Poincaré weight in Ω. �

The claim that weighted pointwise (p, β)-Hardy inequality (52), with β ≥ 0, implies 
the integral version of the (p, β)-Hardy inequality is now a special case of Theorem 8.2.

Theorem 8.4. Let 1 < p < ∞ and β ≥ 0, and let Ω � Rn be an open set. Assume that 
there exists a constant C > 0 such that

|u(x)| ≤ Cd(x,Ωc)1−
β
p
(
M2d(x,Ωc)

(
|∇u|pd(·,Ωc)β

)
(x)

) 1
p , (52)

for every x ∈ Ω and every u ∈ Lip0(Ω). Then the weighted (p, β)-Hardy inequality (49)
holds for every u ∈ Lip0(Ω), with a constant independent of u.
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Proof. Define w(x) = d(x, Ωc)β for every x ∈ Rn and let κ = 2. By Lemma 8.3, w is 
a semilocally doubling 1-Poincaré weight for Ω. Let u ∈ Lip0(Ω). From the estimates 
in (50) it follows that inequality (52) is comparable to (40), with κ = 2 and g = |∇u|, and 
therefore a pointwise (p, w)-Hardy inequality holds in Ω by (51). Hence all assumptions 
of Theorem 8.2 are valid and the claim follows from the (p, w)-Hardy inequality in 
Theorem 8.2, applied with the bounded upper gradient gu that is given in connection 
with (51). �
Remark 8.5. It is possible to extend Lemma 8.3 and Theorem 8.4 also to some −n <
β < 0. In this case it is natural to add the condition that w = 0 in Ωc. The obstruction 
with β < 0 is that clearly the last inequality in (50) is not valid for every β < 0 if 
the ball B(x, r) intersects the boundary of Ω, since for small enough β the integral in 
(50) becomes infinite. On the other hand, if the last inequality in (50) is valid for some 
β < 0, then everything else in Lemma 8.3 and Theorem 8.4 works, and we conclude that 
for such β < 0 the weighted pointwise (p, β)-Hardy inequality (52) implies the weighted 
(p, β)-Hardy inequality (49).

The validity of the last inequality in (50) is closely related to the Assouad dimension 
of ∂Ω via the so-called Aikawa condition, but we omit any further discussion related to 
these concepts and refer to [4,17] for details.
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