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1. Introduction

This paper is continuation of a general program related to various self-improving
phenomena, including Poincaré and Hardy inequalities and uniform fatness; see e.g. [3,
11,15,19] for earlier results and [5,6,18] for recent work by the authors. In this paper
we introduce a class of p-Hardy weights and consider for such weights w the pointwise
(p, w)-Hardy inequality

1
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Here € is an open subset of a metric space X, d(x, 2¢) denotes the distance from z € {2 to
the complement Q° = X\ Q, k > 1, and g is a (bounded) upper gradient of u € Lip,(£2);
see Sections 2 and 3 for definitions. Our main result, Theorem 7.4, shows that these
inequalities are self-improving with respect to the exponent p: if a pointwise (p, w)-Hardy
inequality holds in Q with an exponent 1 < p < oo, then, under suitable assumptions,
there exists 1 < ¢ < p such that also a pointwise (¢, w)-Hardy inequality holds in
Q. The unweighted case w = 1 corresponds to the pointwise p-Hardy inequality, for
which the self-improvement was proved in [6]. Our approach relies on the basic ideas
and techniques developed in [5,6]. However, unlike the self-improvement of pointwise
p-Hardy inequalities, which was known already before the work in [6] indirectly via
the self-improvement of uniform p-fatness (see [3,19]) and the equivalence between these
two concepts (see [13]), the present self-improvement for the weighted pointwise p-Hardy
inequalities is previously unknown. In particular, our main result is new even for X = R",
equipped with the Euclidean distance and the Lebesgue measure.

The self-improvement of the pointwise (p, w)-Hardy inequality and a weighted max-
imal function theorem show that inequality (1), for every = € €, implies the integral
version of the (p,w)-Hardy inequality, that is,

/dec (@) dp(x) < / ) w () dp(z); (2)

Q

see Section 8 for details. This implication is not immediate from inequality (1), since
the maximal operator is not typically bounded on L(X). In some sense the inbuilt self-
improvement of pointwise Hardy inequalities provides a mechanism to bypass the lack
of the L'-boundedness for the maximal operator.

An important model case of (2) is the weighted (p, 8)-Hardy inequality in R™, with
w(z) = d(x,Q°)8, for B € R; see [16,20]. Corresponding pointwise theory was developed
n [14], but in order to be able to apply the maximal function theorem, it was necessary
to assume a priori the validity of a stronger variant of (1) in terms of an exponent
1 < g < p. With the self-improvement results of the present work, the starting point
in the weighted pointwise Hardy inequalities as in [14] can now be taken to be the



S. Eriksson-Bique et al. / Journal of Functional Analysis 279 (2020) 108691 3

natural candidate involving only the exponent p, at least for § > 0. More motivation
and explanation related to (weighted) pointwise Hardy inequalities in Euclidean spaces
will be given in Section 8.

Often the theory of weighted inequalities is concerned with doubling weights. In the
present setting the natural assumption is a weaker semilocal doubling condition with
respect to the open set 2 C X. This class of weights is introduced in Section 3, where we
also prove some technical lemmas for such weights. As a tool in pointwise (p, w)-Hardy
inequalities we also use a related class of p-Poincaré weights for €2, see Section 4. In
Section 5 we define the p-Hardy weights, which will be crucial for the pointwise (p, w)-
Hardy inequalities, and in Section 6 we establish a self-improvement result for p-Hardy
weights. This plays a key role also in the self-improvement of pointwise (p,w)-Hardy
inequalities, since in Section 7 we show that w being a p-Hardy weight is equivalent
to the validity of the pointwise (p,w)-Hardy inequality. Finally, Section 8 contains the
applications related to integral versions of weighted Hardy inequalities.

2. Notation and auxiliary results

We make the standing assumption that X = (X,d, ), with #X > 2, is a metric
measure space equipped with a metric d and a positive complete D-doubling Borel regular
measure g such that 0 < u(B) < oo and

1(2B) < D pu(B) (3)

for some D > 1 and for all balls B = B(z,r) = {y € X | d(y,z) < r}. Here we use for
0 < A < oo the notation AB = B(z, Ar). It follows that the space X is separable (see
e.g. [1, Proposition 1.6]) and p({z}) = 0 for every x € X by [1, Corollary 3.9].

For us, a curve is a rectifiable and continuous mapping ~: [a,b] — X. By T'(X) we
denote the set of all curves in X. The length of a curve v € I'(X) is written as len(y).
A curve 7: [a,b] = X connects € X toy € X (or a point € X to a set £ C X), if
~v(a) = x and (b) =y (y(b) € E, respectively). We assume throughout that the space
X is Cqc-quasiconvex for some Cqc > 1, that is, for every z,y € X there exists a curve
7 connecting z to y such that len(y) < Cqcd(z,y).

Fix z,y € X, £ C X and v > 1. The collection I'(X)%  is the set of all curves that
connect  to y and whose lengths are at most vd(z, y). The set of all curves that connect
r to E and whose lengths are at most vd(z, E) is denoted by I'(X)} .

A Borel function g > 0 on X is an upper gradient of function u: X — R, if for all
curves v: [a,b] = X, we have

utr(@)) = a8 < [ gds. ()
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The space of Lipschitz functions on X is denoted by Lip(X). By definition u € Lip(X)
if there exists a constant A > 0 such that

lu(z) — u(y)| < Md(x,y), for all z,y € X.

When ©Q C X is an open set, we denote by Lipy(€2) the space of all Lipschitz functions
on X that vanish on Q° = X \ Q. The set of lower semicontinuous functions on X is
denoted by LC(X).

Recall that

up = g[udu = ﬁZU(y) du(y)

is the integral average of a function u € L*(E) over a measurable set £ C X with 0 <
u(E) < oo. If 1 <p<ooand u: X — R is a g-measurable function, then u € L (X)
means that for each zo € X there exists » > 0 such that v € LP(B(xq,7)), that is,
fB(xo,r) |u? dpp < co. The characteristic function of a set £ C X is denoted by 1g; that

is, 1g(zx) =1ifz € Fand 1g(z)=0ifxr € X \ E.
3. Weights and restricted maximal functions for open sets

We need several classes of weights for open sets. To avoid pathological situations,
we assume throughout the paper that the open sets 2 C X under consideration are
nonempty.

Definition 3.1. Let 2 C X be an open set. A non-negative Borel function w in X is a
weight for Q, if [, w(x)dr < oo for all balls B C X and w(z) > 0 for almost every
r e Q. If E C X is a measurable set, then we write w(E) = [, wdp.

We impose the following localized doubling condition on the weight w. We remark
that there are also other uses for the term semilocally doubling in the literature, see
e.g. [2]. In our definition “local” refers to the fact that the condition is required only for
points x € ), but “semi” is added since the balls need not be contained in €.

Definition 3.2. Let 2 C X be an open set and let w be a weight for . We say that w

is semilocally doubling for € if for every x > 0 there exists a constant D(w, ) > 1 such
that

0 < w(B(z,r)) < D(w, k)w(B(z,r/2)) < 00

for all z € Q and 0 < r < kd(z, Q°).
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In some of our results we will need the following regularity property of w. See [10,
Theorem 14.1] for a corresponding statement under slightly different assumptions. We
provide a short proof for the reader’s convenience.

Lemma 3.3. Let 0 C X be an open set and let w be a weight for Q. Then w is outer
reqular, that is, for every Borel set E C X and every € > 0, there exists an open set
V D E such that w(V) < w(E) +¢.

Proof. Let X be a completion of X. We remark that X could fail to be a Borel subset of
its completion. We denote by %(X) and %(X) the Borel sets of X and X, respectively.
The measures p and dv := w dp extend to Borel regular measures 77 and 7 on X, and 7
is doubling, by [21, Lemma 1]. More precisely

(FeBX)|FNXeBX)}=BX), (5)

and therefore one can define i(F) = u(FNX) and 7(F) = w(FNX) for each F € #(X);
see the proof of [21, Lemma 1]. This defines the extended measures as Borel measures
that are finite on balls, and the Borel regular (complete) extended measures are obtained
by completion. The space X is complete and the measure 7z doubling; thus X is proper
by [1, Proposition 3.1]. Hence, the measure 7 is outer regular on X by [7, Theorem 7.8].

Let F € #(X) and € > 0. By using o-algebra arguments, one can show that £ = FNX
for some F' € %(X). By the outer regularity of 7, there exists an open set U in X such
that U D F and 7(U) < 7(F) + &. We define V = U N X, which is an open subset of X.
Then V D E and

wV)=wUNX)=0U) <v(F)+e=wFNX)+ec=w(E)+e.
This shows that w is outer regular. O

Let Q € X be an open set and fix a weight w for Q. Let 0 < Kk < oo and 1 < p < o0,
and let f be a measurable function in X. We define restricted weighted maximal functions

Mp,w,nf and Mﬁw,nf at x € 0 by

My i flx) = sup

0<r<md(z,ﬂc)<w(B(xvr)) /|f| wdu)

B(z,r)

and

1

1 P

MGy o f (@) = sup (7 / | f1Pw d,u) )
b 0<r<min{kd(z,Q°),R} w(B(xvr))B( )
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Observe that 0 < w(B(z,7)) < oo for all balls B(z, r) that appear within the supremums.
R

The maximal functions M, «f and M},

f are lower semicontinuous in 2. This fol-
lows easily using monotone convergence theorem and the fact that B = (J,...,(1—¢)B
for all balls B C X.

The following lemmas are adaptations of similar results from our prior work [5,6]. Al-
though the methods are the same, we provide here the full proofs due to subtle technical

differences.

Lemma 3.4. Suppose that w is a semilocally doubling weight for an open set Q@ C X.
Assume that 1 < g < oo and k > 1, and let f € L{ (X), x € Q and 7 > 0 be such that

loc

Mq,w,an(-T) S T.

Fix A > 0 and define

Ea={y e Q| M%) f(y) > AT},

q,w,2K

Then

D(w, 10k)*

Ml,w,nlEA (1') S Aq . (6)

Proof. Fix 0 < r < rd(z,°) and let B = B(z,r). We need to show that

D(w, 10k)*

w(lB)/lEAWdH S (7)
B

The proof of (7) uses a covering argument. For each y € ExNB we fix a ball B, = B(y,ry)
of radius 0 < r, < min{2xd(y, Q°), kd(x, 2°)} such that

L fowdy "o Ar (8)
(s fvo)

There are two cases to consider.
Case 1: There exists y € Ey N B with r < r,. Then B(y,r,) C B(z,2r,) C B(y,3ry)
and 3r, < 6kd(y, 2°). By semilocal doubling, we have

w(B(y, 3ry)) < D(w,10k)*w(B(y, ry))-

Observe that 2r, < 2kd(z,Q2°). Therefore,
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_1 q
1 oy S, [fliwdp
— [ 1pwdp <1 v) By
Tl R v
B

D(w, 10%)° 55t 3ryy) J(a,20, 1F170 b
AT
D(w, 10/@)2(Mq7w,gﬁ,f(x))q < D(w, 10k)*
Aara - A4 ’

<

proving inequality (7).

Case 2: For each y € E5 N B we have r > r,. The 5r-covering lemma [1, Lemma 1.7]
yields a pairwise disjoint subcollection B C {B, | y € E) N B} of balls such that
Ex N B C JgiepdB'. Hence, by (8) and the fact that 5r, < 10kd(y,Q°) for every
y € bp\NDB,

1 1 ,
w(B)B/lEAdeS @ Z w(5B’)

B'eB

< D(w,10x)3 Z w(B')

(w, 10%
q
< R > / [l dp.
B'eBp

Since rg < r, we have B’ C 2B = B(xz, 2r) for every B’ € B. Also, since 2r < 2kd(z, Q°),
we have w(2B) < D(w, 10k)w(B). Consequently, inequality (7) follows from the esti-
mates

1 (w, 10/{
— [ 1 d Twd,
B

< D(w,10x)% (me,g,gf(ac))q < D(w, 10k)*
- Aara - A4

The next approximation lemma is a variant of [5, Lemma 3.7]. The outer regularity
of the weight, see Lemma 3.3, is needed in the proof. Recall that a Borel function
g: X — [0,00) is simple, if it can be expressed as g = Z?Zl a;1g, for some real numbers
a; > 0 and Borel sets F; C X, j=1,...,k.

Lemma 3.5. Suppose that w is a semilocally doubling weight for an open set Q). Assume
that 1 <p < oo and k > 1, and let g: X — [0,00) be a simple Borel function. Then, for
each finite set F' C € and every € > 0, there exists a non-negative and bounded gr. €
LC(X) such that g(y) < gre(y) for ally € X \ F and My, o x9re(z) < My eg(z) +€
for every x € F.
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Proof. Tt suffices to prove the claim for singletons F' = {z}, since for F = {x1,...,z,}
the function gp. can be obtained as the minimum of the functions g,y ... Fix €
and € > 0.

Step 1: proving the claim for ¢ = 15 with a Borel set £. We show that there exists
an open set U C X such that 15 < 1y in X \ {z} and

Mp,w,n(lU — 1E)(.’L') < €. (9)
For each m € Z, we set
An={ye X |2™ ! <d(z,y) < 2™}

Observe that each y € X belongs to at most two annuli A,,. Moreover, if m € Z then
by outer regularity of the weight w (Lemma 3.3) and the fact that A, is open, there is
an open set U, C A,, such that

A,NEcCU, and

€ w(Am) (10)

WU\ B) = (U \ (An N B)) < g0 S

In the case w(A,,) = 0 we can choose U, = A,,. Define U = J,, .7 U. Then

E\{z}c |JAmnE)C | Un=U. (11)

meZ meZ

As a consequence, we have 15(y) < 1y(y) for every y € X \ {z}.
To prove (9), we let B(z,r) C X be a ball with 0 < r < kd(z,Q°). Then 1y — 15 =
1\ g p-almost everywhere, and therefore by (10) we obtain

1 / 11 1gPwd 1 / 1 d
—_— —_ w = — w
w(B(z, 1)) v e = (B(x, 1) U\EW AR

B(xz,r) B(z,r)

[log, 7]

1
w(B(, 1) / 2 Twapwdp

X m=—0oQ

IN

o Mg, 7

~ 2D(w, 4r)2w(B(z, 1)) > wldw)

m=—0oQ

< eP w(B(x,4r))
~ D(w,4k)? w(B(z,r)) —  w(B(z,T1))

Inequality (9) follows by raising this estimate to power 1/p and then taking supremum
over all balls B(z,r) as above.
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Step 2: proving the claim for a simple Borel function g = Z?Zl a;1g,;. By Step 1, for
each j = 1,...,k, there exists a non-negative and bounded gy, . ; € LC(X) such that
1g; < 9fz},e,; in X \ {z} and

3
Mpw(9iey e — 18;) (@) < 7 (12)

kmax; a;

Define g(s3. = Z?Zl ajg{a}e,j- Then g < gz . in X\ {z}, and by using the subadditiv-
ity and positive homogeneity of the maximal function and inequality (12), we conclude
that

Mp,w,mg{:r},s(x) = Mp,w,ﬂ(g + 9{z},e — g)(l‘)

< Mp,w,ng(x) + Mp,w,n(g{z}75 - g)(x)
k
< Mp,w,ng(x) + Z ajMp,w,n(g{w},E,j - ]-EJ)(J:)

Jj=1

<Mpwrglz)+e O
4. Local Poincaré inequalities in open sets

In the sequel, we will need to assume that a suitable pointwise Poincaré inequality
holds with respect to the weight w.

Definition 4.1. Let 1 < p < 00, let Q@ € X be an open set and let w be a weight for €.
We say that w is a p-Poincaré weight for €, if there are constants Ca > 0, v > Cqc and
k > 1 such that for each non-negative and bounded g € LC(X) and every z,y € Q with

d(z,y) < d(z,Q°)/(3r),

it holds that

inf d <C d rd(z,y) rd(x,y) . 13
L [ods < Cade (M) M ). ()
Y

Definition 4.1 for a p-Poincaré weight is slightly technical, since it is adjusted to our
later purposes. The following lemma provides a more familiar variant of a p-Poincaré
inequality that is sufficient for (13). We emphasize the local nature of these Poincaré
inequalities with respect to €; for instance, we only require inequality (14) for balls B
satisfying 2AB C Q. Compare also to [9] and [10, Section 3], and the references therein,
concerning Poincaré inequalities and pointwise inequalities related to (13).

We write up,, = ﬁ [ w(z)w(x) dpu(xz) whenever uw € L'(B) and B is a ball in X.



10 S. Eriksson-Bique et al. / Journal of Functional Analysis 279 (2020) 108691

Lemma 4.2. Let 1 <p < oo and 1 < XA < oo, let Q@ C X be an open set, and let w be a
semilocally doubling weight for ). Suppose there exists a constant C1 such that for each
u € Lip(X) and for every bounded upper gradient g of u we have

| 1 ,
. < P
B) /|u upwlwdp < Clr(w(AB) /g wdu) , (14)
B B

whenever B = B(x,r) is a ball with 2AB C Q. Then w is a p-Poincaré weight for ).

Proof. The proof has two steps.
Step 1: We show that there exist constants Co = 6C; D(w,271)? and k = 3\ such
that

u(x) — uy)] < Cad(z, y) (MEL=N g(x) + MELED g(y)) (15)

p,w

for every x,y € Q with d(z,y) < d(z,Q°)/(3k). Here u and g are as in the assumptions

of the lemma.
Fix z,y € Q, with « # y and r = d(z,y) < d(z,Q°)/(9)\). Write B; = B(x,27"r), for
every i € Ny. A telescoping argument yields

|u(:r;) - uB(ac,v");w| < Z|UB +1w T quz;wl
1=0
oo

G )
A

=0

— UB,w|w dp

3

< 201D (w, 271 )d(z, y) Mo g ().

Observe that B(x,r) C B(y,2r) and 2r = 2d(z,y) < d(z,Q°)/(4)\) < d(y,2°)/(2X).
Thus, a similar telescoping argument gives

|u(y) - uB(y,27‘);w‘ < 401D('LU, 27 ) ( )Mgim}sy) ( )

Since B(z,r) C B(y,2r) C B(z,4r), we also have

1
<—— - Y,2r);w d
= w(B(@1) / e = anywle di

B(z,r)
< w(B(x,4r)) 1

~ w(B(wz,7)) w(B(y,2r)) / lu = up(y,2ryw|w dp
B(y,2r)

|uB(.r,r);w — UB(y,2r);w
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. 1 ’
<201 D(w,2 1)2d($’y)<m / QPWdH)
7 B(y,2Ar)

< 20, D(w,27Y)2d(z, y) MELZY) g (1)),

p,w,K

By combining the estimates above we obtain

|u($) - u(y)| < |’U,(£L') — UB(x,r);w + |uB(ac,7");'w - uB(y,2r);w| + |u(y) - uB(y,2r);w|
< 6C1D(w,27")2d(z, y) (M52 g(x) + MGATY g(y)),
and this completes the proof of inequality (15).
Step 2: With the aid of inequality (15), we show that w is a p-Poincaré weight for
0. Let g € LC(X) be a non-negative and bounded function. Fix z,y € Q such that

0 <d(z,y) < d(z,Q°)/(3k) and let § > 0; here k = 3\ by Step 1. Define u: X — [0, 00)
by setting

u(z) = inf/hds7 ze X, (16)
vy
8!

where
h =g+ (MEEEY g(z) + MEAmY) g(y) + 6)

and the infimum is taken over all curves v in X connecting z to y. Note that h is a
non-negative bounded Borel function, and clearly u(y) = 0. Fix 21, 22 € X and consider
any curve o connecting z; to zo. We claim that

(1) — u(z)| g/hds. (17)

From this it follows, in particular, that h is an upper gradient of u. Moreover, since X
is quasiconvex and h is bounded, estimate (17) implies that u € Lip(X).

In order to prove (17), we may assume that u(z1) > u(z2). Fix € > 0 and let v be a
curve in X that connects zo to y and satisfies inequality

u(ze) > /hds — €.
¥
Let o+ be the concatenation of o and . Then

(1) — u(z2)] = ulz1) — u(z2) g/hds—/hds+a:/hds+5.

o
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The desired inequality (17) follows by taking & — 0.
Application of inequality (15) to u € Lip(X) and its bounded upper gradient h gives
[u(z) — u(y)| < Cad(z, y) (MGI5 h(x) + MEAEY h(y)) < oo

DW,K P,W,K

Since u(z) > dd(z,y) > 0 and u(y) = 0, by (16) there is a curve v in X connecting z to
y such that

[ ods + (My0 (@) + Mz g(y) + 6) ten()
J

= /hds < 2u(z) = 2Ju(x) — u(y)]
y (18)
< 205d(2,y) (MEXE D h () + MELED (y))

p,w,K PaW, K
< 205 d(x,y) (BME5Y g () + 3METY g(y) + 26)
< 6C d(x,y) (ML g(a) + MY g(y) + 6).

The penultimate inequality follows from the sublinearity of maximal function and defini-
tion of h. From (18) we see that len(y) < 6Cy d(x,y). By taking § — 04, we also obtain
from (18) that inequality (13) holds, that is,

inf ds < Ca d rkd(z,y) rd(z,y)
’YGFI(I}();,{J /g §> LA (-1:7 y) (Mpﬂ,U,KZ g(ﬂ?) + Mp,wm (y))7
vy

with Ca = 6C2, k = 3X and v > max{Cqc,6C2}. O
5. The class of p-Hardy weights

The following class of weights turns out to be natural in connection with pointwise
Hardy inequalities; see Lemma 7.2, and compare also to the definition of p-Poincaré
weights in Definition 4.1.

Definition 5.1. Let 1 < p < 00, let © C X be an open set, and let w be a weight for €.
We say that w is a p-Hardy weight for € if there are constants Cr > 0, v > Cqc and
k > 1 such that for each non-negative and bounded g € LC(X) and every x € Q, we
have

inf ds < Crd(x, Q)M w rg(x). 19

eritt, [ o < Crd(e, 290y 109(a) (19)
5

Next we define a convenient albeit slightly abstract a-function that condenses the p-

Hardy weight property, specifically inequality (19), in a single function. Indeed, despite
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the complex appearance this function is a very useful tool in the proof of the self-
improvement for p-Hardy weight property.

Definition 5.2. Let 2 C X be an open set and let w be a weight for Q. If 7 > 0, K > 1,
1<p<ooandz €, we write

& a=19€ LC(X) | Mpwrg(x) <71 and g(y) € [0,1] for all y € X}.

pw,z,2 T

If also v > Cqc, then we write

inf'YeF(X);,Qc ffy ) ds
apwa(V, Kk, T) :=sup sup 10z O°
zeQgesll | o (x, )

(20)

The parameter v is related to the maximum length of the curves v, since len(y) <
vd(z,§2°). The remaining parameters x and 7 are used to control the non-locality and
size, or “level”, of the maximal function M, ., «g(z).

The following lemma codifies the relationship between inequality (19) and the a-
function.

Lemma 5.3. Let Q C X be an open set and let w be a weight for Q). Assume that k > 1,
1<p<ooandv > Cqc, and let g € LC(X) be such that g(y) € [0,1] for everyy € X.
Then, for every x € Q, we have

inf /gds < d(z,Q%ap w0 (1/, K, (Muwﬁg(:c))). (21)

'YGF(X);YQC
~

Proof. Take any g € LC(X) with ¢g(y) € [0,1] for all y € X. Fix z €  and write
T = Mp,u)’ﬁ,g«r) Z 0

Then g € €7 and by the definition of a0

W, £

infvep(x);m fwgds . inf,yep(X);m fvhds
d(l'vQC) - he&" d(:L"QC)

pw,z,Q

< ap,w,Q(V7 K, T)'

The last step holds, since x € Q. O

In particular, from Lemma 5.3 we obtain the following sufficient condition for p-Hardy
weights in terms of a 7-linear upper bound for the a-function.

Lemma 5.4. Let 1 < p < oo, let Q@ C X be an open set and let w be a weight for (1.
Suppose that there are constants v > Cqc, &k > 1 and C, > 0 such that, for any 7 > 0,
we have ap oV, k, 7) < Co. Then w is a p-Hardy weight for .
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Proof. By Definition 5.1, it suffices to find a constant Ct > 0 such that inequality (19)
holds for every non-negative bounded g € LC(X) and every = € ) — the remaining
constants v and k are given in the assumptions of the present lemma. Fix such a function
g and a point & € Q. Since ¢ is bounded and inequality (19) is invariant under multi-
plication of g with a strictly positive constant, we may further assume that g(y) € [0, 1]
for all y € X. Then the desired estimate (19), with Cr = C,,, follows immediately from
Lemma 5.3 and the assumptions. O

The converse of Lemma 5.4 is also true, as we will see in Section 6. Therein the
following inequalities for the a-function become useful.

Lemma 5.5. Let Q C X be an open set. Let 0 <7 <7/, k >1,1<p< oo andv > Cqc.
Then

ap,w,Q(Va R, T) < ap,w,Q(Vy R, 7-/)7 ap,w,Q(V7 R, 7-) < v,
and, for every M > 1,
apwav,k, MT) < May, oV, k,T).

Proof. These inequalities are clear from the definition of ;. 0(v, &, 7) in (20). The
second inequality also uses the fact that g is bounded by 1 and quasiconvexity, that is,
existence of a curve with len(y) < wvd(x,Q°). O

6. Self-improvement property for p-Hardy weights

In this section we examine self-improvement properties of p-Hardy weights for 1 < p <
00. We assume that w is a pg-Poincaré weight for some py < p. This assumption allows us
to focus on the new phenomena that arise especially in connection with the improvement
of pointwise p-Hardy inequalities. Recall that if the metric space X is complete and X
supports a (1, p)-Poincaré inequality, that is, (14) with w = 1 holds for all balls B C X
whenever u € Lip(X) and g is an upper gradient of u, then there exists pg < p such that
X supports a (1, pg)-Poincaré inequality; see [11] and see also Lemma 8.3 concerning
this assumption for distance weights in R™. It is plausible that also p-Poincaré weights
enjoy self-improvement properties, but in the present work we will not focus on this
aspect.

The following Theorem 6.1 implies a self-improvement property for p-Hardy weights.
This result also provides a converse of Lemma 5.4 for p > 1.

Theorem 6.1. Let 1 < py < p < 00, let Q C X be an open set and let w be a semilocally
doubling weight for Q. Assume that w is a po-Poincaré weight for Q0 and a p-Hardy weight
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for Q. Then there exist an exponent q¢ € (po,p) and constants N > Cqc, K > 1 and
Cyo > 0 such that

aq,w,Q(Na Kv T) < Coﬂ— (22)
whenever T > 0.

Proof. First, we fix some constants to give accurate bounds. In Definition 5.1, inequal-
ity (19) holds with constants Cr > 0, vr > Cqc and kr > 1. Also, denote by Ca > 0,
va > Cqc and ko > 1 the constants from inequality (13) in Definition 4.1, for the expo-
nent pg < p. By Holder’s inequality we may assume p/2 < pg. Without loss of generality,
we may also assume that kp = kp =: kK and vpr = v =: V.

Step 1: Estimate to prove, strategy and parameters. Assume that we have found
parameters k € N, K, 5 € (1,00), N € (Cqc, ), M > 1 and ¢ € (0,1) such that, for
each q € (po,p) and every T > 0, we have

agwo(N,K,7) < ST+ ma (M_M/paq)w@(]\f, K,M'T)). (23)

=1,

From this inequality and Lemma 5.5, we obtain

—q

agwa(N,K,7) < ST+ (SMkaOéq7w7Q<N, K,T) for all ¢ € (po,p) and 7 > 0.
Observe that the last term on the right is finite by Lemma 5.5. In order to absorb this
term to the left-hand side, we need 0M F¥5" < 1. This can be ensured by choosing
q € (po,p) so close to p that

pln()

0<p—q<7kln(M).

With this choice of ¢ we find for all 7 > 0 that

S

@ ,w, N7K77—) S (7
a0 1 sM*"

) T =: C,T.
This inequality holds also for 7 = 0, which is seen by using monotonicity property of the
a-function, see Lemma 5.5. Thus, the desired inequality (22) follows from (23). Hence, it
suffices to find parameters, as above, for which inequality (23) holds for every g € (po,p)
and 7 > 0.

We begin by fixing the auxiliary parameters

K=2xk, N=3v, M=4, 6=

| =

We also choose k € N so large that CR2P D(w, 10k)* k' =7 < (§/(3k))P. The last parameter
is given by S = 14 M*v +3Cx MP*. For what follows q € (pg,p) and 7 > 0 are arbitrary.
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Now, the overall strategy is to construct, for any x € Q and any g € Eq w0 & Curve
v € F(X)I qe such that, for some ig =1,...,k
/ gds < Std(z,Q°) + IM~0Pqa, , (N, K, MO7)d(z, Q). (24)

~

Estimating the right-hand side by the maximum over possible ig, then dividing both sides
by d(x,Q¢), and finally taking the supremum over z and g as above, proves inequality
(23). This strategy first involves choosing a good level iy along with some proto-curve 7
having a small integral, and then adjusting the curve at the level iy by filling in certain
gaps.

Step 2: Choosing a good level iy and the proto-curve . Fix z €  and g € ex

q,w,z,0Q"
For each i > 1, we write

B = {y e Q| MJU53 ) g(y) > MiT},

and define a bounded function h: X — [0, 00) by setting

k
1 _
_ - iq/
_kg 1g, M"/P.
=1

Since E; D E; if j <iand p/2 < pg < ¢ < p, it follows that

1 o)’ o & 4
k_z (ZMW SRCEED P
j=1

: =1 Jj=

In the final estimate, we also use the choice M = 4 to obtain the factor 2P. Observe
that 1p, € LC(X) since E; is open, for each ¢ = 1,..., k, by the lower semicontinuity

of MZ%”}’(QC) g. Hence, we have h € LC(X). By sublinearity and monotonicity of the

maximal function, Lemma 3.4, and the assumption that g € ex

oy Where K = 2, we

obtain

ZI
-

<
Il
—

(Mp,w,nh(l'))p < (Ml w, w1 ( ))qu

(25)
D(w, 10k)* I < 2P D(w, 10k)*
Mia - kp—1

IA
TR

I
—

J

Then, by the choice of k and estimate (25), we have

Crd(, ) My ph(z) < -

d(z,Q°).
3K (=, %)
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Therefore by Definition 5.1, with exponent p, there is a curve 79 € I'(X )Z,ch which is
parameterized by the arc length and defined on the interval [0, len(v)], such that

k
1 ; ]
— iq/ — i c
k;qup/lE"’ds_/hds<3/@d(m’ﬂ) (26)
- Yo Yo
and
len(vyo) < vd(z, Q°). (27)

Without loss of generality, we may assume that ([0, len(vg)) C Q. By inequality (26),
there exists i € {1,...,k} such that

5 ,
/1,51.0 ds < ﬁM*’Oq/T’d(:ﬁ, Q°). (28)

Yo

Step 3: Adjusting the curve at level 7 by filling in gaps. Recall that the proto-curve
7o is parameterized by arc length. Let O = v; ' (E;,) and write T = [0,len(vo)] \ O. By
the lower semicontinuity of g and the definition of E;, we have, for all ¢t € T\ {len(vo)},

9(10(t)) < MEWE ) g(y0(t) < Mo, (29)

Since E;, is open in X, the set O is relatively open in [0,len(yo)]. Observe that 0 ¢ O
K,

gq,wT,z,Q'

as a union of so-called gaps:

since g € Likewise len(vyg) ¢ O since vo(len(vyp)) € Q°. Hence, we can write O

O: U(ai7bi), (30)

i€l

where I C N is a finite or infinite indexing set. We also write z; := yo(a;), ¥i := Yo(b;) and
d; := d(z;,y;) for each i € I. There are two cases to consider: either d; < d(z;,°)/(3k)
for all 4 € I or there exists ¢ € I such that d; > d(x;,Q°)/(3k). The latter also includes
the case when y; € Q° for some i € I. In both cases the gaps (a;, b;) are pairwise disjoint
and 0 < a; < b; <len(yg) for each i € I. By inequality (28), we have

Z d1 < Zlen(PYOHai,bi]) = Z ]'Eio ds

el el el
1€ 1€ S ’YO|[a,L-,b,Lv]

) )
< /1E,.0 ds < 3—KM*20q/Pd(x,QC).

Yo

For each ¢ we next define a filling curve 7;: [a;, b;] — X connecting vo(a;) and ~o(b;).
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Case 1: We have d(z;,y;) = d; < d(x;,Q°)/(3k) for all i € I. Fixi € I. If d; = 0, we
define 7;(t) = vo(a;) = v0(b;) for each ¢ € [a;, b;]. From now on we assume that d; > 0
and proceed as follows. Observe that x < K and z;,y; € Q\ E;,. This gives

Mg%ﬁ;ﬂc)g(xi) < M%7 and M”d(x’m)g(yi) < M'or, (32)

q, W,k

We apply Definition 4.1 to the points x; and y;. After a reparameterization, this yields
a curve 7;: [ai, b)) — X such that v;(a;) = @i, 7i(bi) = yi,

len(v;) < vd(z;, i) = vd;, (33)

and, by using also Holder’s inequality and the fact that py < ¢,

/gds < Cad(xs, yi) (Mgﬁﬁfé’yi)g(m + MS%Té’yi)g(yi)) + OaM™7d(z;,y;) - (34)
—_—

Vi >0
Here kd(z;,y;) < kd(x, ), since by (31) we have
d(ws,yi) =d; <Y di < d(z,Q°).
iel

This estimate together with (32) and (34) gives

/gds < 3CAM™1d,. (35)

Vi

We define a curve v: [0,len(yo)] — X by setting y(t) = yo(¢) if ¢t € T and v(t) = v (t)
if t € (a;,b;) for some i € I that is uniquely determined by ¢. Then, by the length
estimates (27) and (33), followed by inequality (31), we obtain

len(y) <len(yo) + Zlen(’yi) < vd(z,Q°) + I/Z d; <2vd(z,Q°) < Nd(z,Q°).
icl iel

From this it follows that v € I'(X )fcv qe; we remark that the required continuity and
connecting properties of v are straightforward to establish, and we omit the details.
Also, by inequalities (27), (29), (31) and (35), we have

/gds—/g(%(t))dﬂrgw[gds

o T
< Mrvd(x, Q%) + 3CA M 7d(z,Q°)
< (My +3CAM™)rd(x,Q°) < Std(z,Q°).

Thus curve « satisfies inequality (24) and this concludes the proof of the first case.
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Case 2: There exists ¢ € I such that d(z;,y;) = d; > d(x;,Q°)/(3k). This includes the
case when b; = len(vyy) for some i € I. Write

t =inf{a; | i € I and d(z;,y;) > d(z;,Q°)/(3k)} € [0,len(vp)).

The infimum is reached, that is, there exists an index 49 € I such that t = qa;, and
d(Tiy, Yig) > d(x4,2°)/(3k). Indeed, otherwise there would exist a strictly decreasing
sequence (a;, )ken such that iy € I and d(zy,,vs,,) > d(zi,,Q2°)/(3k) for all k € N, and
limg_yo0 a;, = t. Clearly a,,_, —a;, — 0 as k — oo. Since 7y is parameterized by arc
length, we obtain for all £ > 1

d(’yo(aik)v QC)/(?"‘{) = d(xlmﬂc)/(?”‘i) < d(xwmylk)
k—oc0

= d(’yo(aik>7’70(bik)) < blk — Qiy, < Qij_y — Qjyy — 0.

Hence, by continuity, we have d(yo(t), %) = limg_ 00 d(y0(ai,,), 2°) = 0. Since Q° is
closed, this implies vo(¢) € Q°. This is a contradiction, since ¢ < len(yg) and, on the
other hand, we have assumed that ~o([0, len(~g)) C Q.

Let J:={ie€1]|a; <a;}. Then d; < d(x;,Q°)/(3k) for all i € J. As in the previous
case, for each i € J, we can first construct curves ~;: [a;, b;] — X such that

len(’Yi) g Vd(xzayl) = Vdia (36)
and
/ gds < 3CAM*7d,. (37)
Yi

For i = iy we are too close to the boundary and must proceed more carefully. By using
(31) and the equality 3K = k, we first observe that

Kd(x;,,0°) < 3cKd(x;,yi,) = 3:Kd;, < 3Kdd(z,Q°) < rd(z,Q°).
We still have that z;, € 2\ E;,, and thus

’QC .
Mo,k 9(i) < MW g(25,) < M7,

From this it follows that g € Sf wj\ﬁzTg Using the definition (20) of the function

agwa(N, K, MT), we obtain a curve v;,: [ai,,bi,] — X connecting z;, € Q to Q°
such that

len(vy;,) < Nd(zi,, Q) < 3kNd(zi,,vi,) = 3cNd;, (38)

and
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/ gds < d(z,, Q%) agwalN, K, M°7) + 7d(z,Q°)
N—_——
Tig >0 (39)

< 3kdiy g wa(N, K, M©7) + 1d(x,Q°).
We now define a curve 7: [0,b;,,] — X by setting v(t) = ~o(t) if ¢ € T N[0, a,],
v(t) = ~i(t) if t € (a;,b;) for some ¢ € J, which is uniquely determined by ¢, and

¥(t) = 74, (t) for every t € (a;,,b;,]. Then by (27), (31), (36), (38), and our choices of N
and 4, we obtain

len(y) <len(yo) + Y _len(v;) + len(v;,)
ieJ
< (w+v+dN)d(z,Q°) < Nd(z, Q°),

and thus v € F(X)QQC. Finally, by inequalities (27), (29), (31), (37), and (39) we have

/gds: / g(’yo(t))dtJrieZJW[gderWngs

Y TN[0,a44]
< M™7vd(x, Q) + 3CA M 1d(x,Q°) + 3kd;y g uwa(N, K, M°T) + 7d(x,Q°)
< S7d(z,Q°) + IM~0Pq, (N, K, MO7)d(z, Q°).

This shows that (24) holds also in Case 2, and the proof is complete. O
7. Pointwise (p, w)-Hardy inequalities

The definition of a pointwise (p,w)-Hardy inequality is as follows; recall that Q¢ =
X\ Q.

Definition 7.1. Let 1 < p < o0, let Q@ C X be an open set, and let w be a weight for
). We say that a pointwise (p, w)-Hardy inequality holds in € if there exist constants
Cy > 0 and k > 1 such that for every Lipschitz function v € Lipy(€2), every bounded
upper gradient g of u and every x € {2, we have

u(z)] < Cu d(z, Q) Mp,w,rg(2). (40)

These pointwise (p,w)-Hardy inequalities in fact characterize the class of p-Hardy
weights for €2, thus explaining the terminology.

Lemma 7.2, Let 1 < p < o0, let Q@ C X be an open set and let w be a semilocally doubling
weight for Q. Then a pointwise (p, w)-Hardy inequality holds in Q if, and only if, w is a
p-Hardy weight for €.
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Proof. Throughout this proof, we tacitly assume that curves are parameterized by arc
length. First assume that a pointwise (p, w)-Hardy inequality (40) holds in © with con-
stants Cyp > 0 and kr > 1. Let g € LC(X) be a non-negative and bounded function,
and fix z €  and § > 0. We define a function u: X — [0, 00) by setting

u(y) = inf/hds, y e X, (41)
B!

~

where h = g+M,, 4 xpg(x)+0 and the infimum is taken over all curves v in X connecting
y to Q¢ note that h is a non-negative bounded Borel function. Clearly, we have v = 0 in
Q°. Fix y,z € X and consider any curve o connecting y to z. As in Step 2 of the proof
of Lemma 4.2, we assume that u(y) > u(z) and fix £ > 0. We let vy be a curve in X that
connects z to Q¢ and satisfies inequality

u(z) > /hds—a,
8!

and define o7y to be the concatenation of o and . Then, as in the proof of Lemma 4.2,

Iww*uwﬂé/hﬁ+a

o

and by taking e — 04 we obtain
u(y) ~u(2)] < [ b, (42)

This shows that h is an upper gradient of u. Moreover, since X is quasiconvex and h is
bounded, it follows from (42) that v € Lip,(€2).

Now, applying the assumed pointwise (p,w)-Hardy inequality (40) to u € Lipy(£2)
and its bounded upper gradient h yields

u(z) < Cud(z, Q)Mp .y wph(x) < 0o,

Since u(x) > dd(x, Q) > 0, by (41) there is a curve v in X connecting x to ¢ such that

/gds + (Mpwrrg(x) +0)len(y) = /hds < 2u(x)

5
<2CH d(l'v QC)(Mp,w,ﬁrh(z)) (43)
S QCH d(l’, QC)(2Mp,w,Hrg(x) + 5)
< ACk d(z, Q) ( My epg(z) + 0).
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Here the penultimate inequality follows from the sublinearity of maximal function. We
can now conclude from (43) that len(y) < 4Cyd(x,Q°). By taking 6 — 04, we also
obtain from (43) that (19) holds, that is,

inf d <O d Qc .
verglf);,m/g s < Cr d(z, Q) Mp.w.xg ()
vy

with
Cr = 4CH, K = R, v > max{C’QC, 4CH}

For the converse implication, we assume that inequality (19) holds for all non-negative
and bounded g € LC(X) and for all € Q. We need to prove that a pointwise (p, w)-
Hardy inequality holds in €. To this end, we fix € Q and u € Lipy(£2), and let g be
a bounded upper gradient of u. Since g is not necessarily lower semicontinuous, some
approximation is first needed so that we get to apply (19) and thereby establish inequality
(40).

Let (gn)nen be a pointwisely increasing sequence of simple Borel functions such that
limy 00 gv = ¢ uniformly in X. Fix ¢ > 0. By the uniform convergence, there exists
N € N such that for all v € I'(X)} . we have

/gds: /gNds+/(g—gN)ds
2! 2! v

< / gn ds + 52?( (9(y) — gn(y)) len(y)

< [ gy ds+ sup(g(y) — gn(y))vd(z, Q)

yeX

< [ gnds+e.

R R— 2

Let gn 5, € LC(X) be the non-negative bounded approximant of gy given by Lemma 3.5
with F' = {z}. By inequality (19) and Lemma 3.5, there exists yx € I'(X) o. defined
on the interval [0, £(yn)] such that

/gN,z,s ds < Cl‘d(x, QC)Mp,w,ngN,x,s(w) +e€

YN (45)
< Crd(z, Q%) Mpwrgn(x)+e)+e

< Crd(l‘, QC) (Mp,w,ng(x) + 5) te.
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Without loss of generality, we may assume that vy (t) = x only if £ = 0. On the other
hand, by Lemma 3.5, we have gy < gnze in X \ {z}. Inequalities (44) and (45), with

v = N, imply that
/gd5§/gNds+5§/gN,m,sd3+5

TN TN TN

< Crd(z,9Q°) (Mp wxg(z) +€) + 2.

Since g is an upper gradient of u € Lipy(£2) and vy (len(yn)) € ¢, we obtain

u(2)| = lu(vn(0)) — u(yn (len(yw)))]

< /gds < Crd(z, Q%) (Mpw.rg(z) +€) + 2¢,

YN

and letting e — 04 gives the pointwise (p, w)-Hardy inequality (40) with Cy = Cr and
k. O

Remark 7.3. Let Q C X be an open set and let w be a weight for ) such that a pointwise
(p, w)-Hardy inequality holds in Q, with constants Cy > 0 and x > 1. Then the proof of
Lemma 7.2, with g = 0, shows that for every € > 0 and every = € () there exists a curve
~ that connects z to 2¢ in X such that len(vy) < (1 + €)Cud(z, 2°).

The following is our main result.

Theorem 7.4. Let 1 < pg < p < o0, let & C X be an open set, and assume that w is
a semilocally doubling po-Poincaré weight for Q. If a pointwise (p,w)-Hardy inequality
holds in Q, then there exists q € (po,p) such that a pointwise (q,w)-Hardy inequality
holds in Q.

Proof. By Lemma 7.2, we find that w is a p-Hardy weight for ). Theorem 6.1 and
Lemma 5.4 imply that there exists ¢ € (po,p) such that w is a ¢-Hardy weight for Q.
Lemma 7.2 implies that a pointwise (¢, w)-Hardy inequality holds in Q. O

Remark 7.5. The proofs of the results in Sections 3, 4, 6 and 7 show that the semilocal
doubling property in Definition 3.1 is not really needed to hold for every x > 0 but for
every 0 < k < kg with a large enough k¢ depending on the parameters in the assumed
po-Poincaré weight property and pointwise (p, w)-Hardy inequality.

8. Applications

In this section we show how the self-improvement of pointwise (p, w)-Hardy inequal-
ities can be applied in the context of integral versions of weighted Hardy inequalities.
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Here we need to know, for all 1 < ¢ < oo and all 0 < k < oo, the boundedness of the
restricted weighted maximal operator My 4,1 LI(X;wdp) — LI(Q;wdp), where w is
a semilocally doubling weight for an open set ). If w is a doubling weight in X, then
this L?-boundedness of M, ,, . follows from the maximal function theorem in X; see,
for instance [1, Section 3.2]. In our case the weight w is not necessarily doubling, but the
boundedness follows with a suitable adaptation of the proof of the doubling case, given
by the following lemma.

Lemma 8.1. Let 0 < k < 00 and 1 < g < oo, let Q C X be an open set, and assume that
w s a semilocally doubling weight for Q2. Then the restricted weighted maximal operator
My LU X;wdp) — LY(Qwdp) is bounded, that is, there is a constant C = Cy 1
such that

[ M) wdu =€ [ 1w dp,
X

Q

for every f € LU X;wdu).

Proof. Clearly My x: L®(X;wdp) — L*°(Q;wdu) is bounded. Hence by interpola-
tion it suffices to prove that My 4, . is of corresponding weak type (1,1), compare to
the proof of [1, Theorem 3.13]. Let f € L*(X;wdu) and 0 < 7 < co. We estimate the
wdp-measure of E = {x € Q| My 4, f(x) > 7}. The set E has a cover by balls in

1 C
B:{B:B(xm) x € 9, m/|f|wd,u>7'7 0<r<krd(z,Q )}
B

By the 5r-covering lemma [1, Lemma 1.7], we obtain a countable subfamily B’ C B of
pairwise disjoint balls such that

Ec |J 5B
BeB'
Then

w(E) < w(B(r,5r) < Dw 5 S w(Bla,r)
B(z,r)eB’ B(xz,r)eB’

|flwdy _ D(w,5k)?
< D(w, sy Y Jolflodi  Dlw. o) [t
BeB’ X

On the first line we used semilocal doubling with = € 2 and 0 < r < rd(z,2°), and on
the last line we used the fact that the balls in B’ are pairwise disjoint. This shows the
desired weak type (1,1) property and the proof is completed by interpolation. O
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Theorem 8.2. Let 1 < pyg < p < 00, let 2 C X be an open set, and assume that w is
a semilocally doubling po-Poincaré weight for Q). Assume that a pointwise (p,w)-Hardy
inequality holds in Q. Then there exists a constant C > 0 such that the (p,w)-Hardy
inequality

/ mw(@ du(z) < C / 9(@)Pw(x) du(x)
Q Q

holds for every u € Lipy(2) and for all bounded upper gradients g of u.

Proof. By Theorem 7.4 there exists ¢ € (po,p) such that a pointwise (¢, w)-Hardy in-
equality holds in Q with 1 < k < oo. Let u € Lipy(©2) and let g be a bounded upper
gradient of u. Without loss of generality, we may assume that g = 0 in 2°. It is immediate
that

P
q

(Mq,w,ng(x))p = (Ml,w,ngq(x)) )

for every x € ), and on the other hand the pointwise (¢, w)-Hardy inequality, raised to
power p, implies

u()? »
W < C<Mq,w,ng($))

for every x € Q. Since p/q > 1, by the LP/9-boundedness of My, from Lemma 8.1 we
obtain

u/aggggguwwduu>SC?/CNuwﬁgm»pwwﬂdu®>
Q

= C’/(MLw,Hg (x))gw(:c) du(x)
Q
sc/mmwmwmmzc/mw%mwmm
X Q

and this proves the claim. O

Next we concentrate on the special case where X = R"™ is equipped with the Euclidean
distance and the Lebesgue measure, and weights w are powers of the distance function
x = d(z,Q°). Let 1 < p < oo and let  C R™ be an open set. We say that a pointwise
p-Hardy inequality holds in 2, if there exists a constant C' > 0 such that

S

lu(z)| < Cd(x,QC)(MQd(I’QC)‘VU;‘p(x)) , (46)
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for every € Q and every u € Lipy(£2). Here Moy, ey is the usual restricted max-
imal operator, which corresponds to M 12 in the notation introduced in Section 3.
These pointwise inequalities were introduced and studied by Hajlasz [8] and Kinnunen
and Martio [12], and they can be regarded as pointwise variants of the usual p-Hardy
inequality

@) ()P d
/d(%mpd sc/\v ()] d. (47)
Q Q

If (46) holds for a function uw € Lipy(Q2) at every z € €, but with an exponent
1 < ¢ < p, then the maximal function theorem implies that (47) with exponent p holds
for u with a constant C' independent of u. However, the passage from (46) to (47), with
the same exponent 1 < p < oo, is not at all obvious. This was established in [13] using an
indirect route, first showing the equivalence between the validity of (46) and the uniform
p-fatness of ¢, and then applying the known self-improvement of the latter, which in
R™ is by Lewis [19] and in metric spaces by Bjorn, MacManus and Shanmugalingam [3].
A direct proof for the self-improvement of pointwise p-Hardy inequalities, which applies
also in metric spaces, was recently given in [6].

The following weighted version of the pointwise p-Hardy inequality was considered in
[14]:

Q[

lu(z)| < Cd(x, 2°)' ™5 (Mag(a.e) (|Vuld(-, Q%) %) (2)) 7, (48)

for every z € Q and every u € Lipy(€2), where 1 < ¢ < p are fixed. As in the unweighted
case, with an application of the maximal function theorem for exponent % > 1, this
implies the weighted (p, 5)-Hardy inequality

/\u(m)|pd(a:, Q)PP dy < C’/\Vu(a:ﬂpd(x, Q°)P da. (49)
Q Q

A more natural formulation for the weighted pointwise Hardy inequality (48) would have
been with ¢ = p, but then the passage to inequality (49) would not have been possible
with a direct use of the maximal function theorem.

Now, using the general technology developed in this paper, we can show that the
validity of (48), with 1 < ¢ = p < oo, implies (49), at least in the case § > 0. We begin
by proving that in this case the weight w(z) = d(x,Q°)?, for 2 € R™, is a semilocally
doubling pp-Poincaré weight for €2, for every 1 < pg < oo.

Lemma 8.3. Let 1 < py < oo and B > 0, and let Q@ C R™ be an open set. Define
w(z) = d(z,0°)? for all x € R™. Then w is a semilocally doubling po-Poincaré weight
for Q.
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Proof. Let x>0, z € Q and 0 < r < rd(z,Q°). There exists C = C(n, 8, k) such that

Ol d(w, 9)P < w(B(r,r)) = / Ay, ) dy < Crmd(z, )P,

B(z,r)

(50)

and this shows that w is a semilocally doubling weight for 2.
To prove the po-Poincaré weight property, we let u € Lip(R™). There exists a bounded
upper gradient g, of u such that

gu = |Vul and [Vu| < g (51)

almost everywhere in R™ whenever g is a bounded upper gradient of u; we refer to the
proof of [1, Corollary 1.47] and [1, Proposition A.3|. Let = € Q and let B = B(x,r) be
a ball with 2B = B(z,2r) C Q. We have 0 < r < d(z,Q°)/2 and d(y, Q2°) < 2d(z,Q°) <
4d(y, Q¢) for every y € B. By (50), with k = 1/2, and the well-known 1-Poincaré in-
equality in R™, we have

ﬁ!m(y) — upwlw(y) dy < /|u — upi|w(y) dy
< om%/u@ ~ualay < S /| )~ upaldy
(n6|B|/IVU ) dy < On, B)—" / dy
< ClnB) o B/ o()wly)dy

whenever g is a bounded upper gradient of u, where the final step follows from the second
inequality in (51). This together with Holder’s inequality and Lemma 4.2, with A = 1,
proves that w is a pg-Poincaré weight in Q. O

The claim that weighted pointwise (p, §)-Hardy inequality (52), with 8 > 0, implies
the integral version of the (p, §)-Hardy inequality is now a special case of Theorem 8.2.

Theorem 8.4. Let 1 < p < 0o and B > 0, and let @ C R™ be an open set. Assume that
there exists a constant C > 0 such that

=

lu(z)| < Cd(z, Q) (Madgz,00) (|VulPd(-, Q%)) (2)) 7, (52)

for every x € Q and every u € Lipy(?). Then the weighted (p, 8)-Hardy inequality (49)
holds for every u € Lipy(2), with a constant independent of w.
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Proof. Define w(x) = d(z,Q°¢)? for every € R™ and let x = 2. By Lemma 8.3, w is
a semilocally doubling 1-Poincaré weight for Q. Let u € Lipy(£2). From the estimates
in (50) it follows that inequality (52) is comparable to (40), with k = 2 and g = |Vu/, and
therefore a pointwise (p, w)-Hardy inequality holds in Q by (51). Hence all assumptions
of Theorem 8.2 are valid and the claim follows from the (p,w)-Hardy inequality in
Theorem 8.2, applied with the bounded upper gradient g, that is given in connection
with (51). O

Remark 8.5. It is possible to extend Lemma 8.3 and Theorem 8.4 also to some —n <
[ < 0. In this case it is natural to add the condition that w = 0 in Q°. The obstruction
with 8 < 0 is that clearly the last inequality in (50) is not valid for every 8 < 0 if
the ball B(x,r) intersects the boundary of Q, since for small enough g the integral in
(50) becomes infinite. On the other hand, if the last inequality in (50) is valid for some
B < 0, then everything else in Lemma 8.3 and Theorem 8.4 works, and we conclude that
for such § < 0 the weighted pointwise (p, 8)-Hardy inequality (52) implies the weighted
(p, B)-Hardy inequality (49).

The validity of the last inequality in (50) is closely related to the Assouad dimension
of 0N via the so-called Aikawa condition, but we omit any further discussion related to
these concepts and refer to [4,17] for details.
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