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We show that the 1st-order Sobolev spaces W1,p(�ψ), 1 < p ≤ ∞, on cuspidal symmetric

domains �ψ can be characterized via pointwise inequalities. In particular, they coincide

with the Hajłasz–Sobolev spaces M1,p(�ψ).

1 Introduction

Optimal definitions for Sobolev spaces are crucial in analysis. It was a remarkable

discovery of Hajłasz [3] that distributionally defined Sobolev functions can be char-

acterized using pointwise estimates in the context of Sobolev extension domains. This,

in part, has played a crucial role in defining Sobolev spaces for general metric measure

spaces. Here, we show that for certain cuspidal domains the pointwise characterization

holds without any additional assumptions. These domains do not admit extensions for

Sobolev functions. Given a domain � ⊂ R
n, we denote by W1,p(�), 1 ≤ p ≤ ∞, the

usual 1st-order Sobolev space consisting of all functions u ∈ Lp(�) whose 1st-order

Communicated by
Received December 11, 2019; Revised September 21, 2020; Accepted September 23, 2020

© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions,

please e-mail: journals.permission@oup.com.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa279/5999064 by U

niversity of O
ulu, M

edical library user on 04 June 2021



2 S. Eriksson-Bique et al.

distributional partial derivatives also belong to Lp(�). If � = R
n, then any Sobolev

function u satisfies the pointwise inequality

|u(x) − u(y)| ≤ C|x − y| (M[|∇u|](x) + M[|∇u|](y)) (1.1)

at Lebesgue points of u, where M[|∇u|] is the Hardy–Littlewood maximal function

of |∇u|, see [1, 2, 3, 6]. Motivated by this, Hajłasz introduced [3] the space M1,p(�)

consisting of all those u ∈ Lp(�) for which there exists a set E ⊂ � of n-measure zero

and a function 0 ≤ g ∈ Lp(�) so that

|u(x) − u(y)| ≤ |x − y| (g(x) + g(y)) , (1.2)

whenever x, y ∈ � \ E.

One has M1,p(Rn) = W1,p(Rn) as sets for 1 < p ≤ ∞, and the norms are

comparable once M1,p(Rn) is equipped with the natural norm. Also, for 1 ≤ p ≤ ∞,

one always has M1,p(�) ⊂ W1,p(�) and the inclusion is strict for p = 1 for any domain

�, see [5].

A natural question to ask is:

For which domains � ⊂ R
n do we have M1,p(�) = W1,p(�)?

Indeed, these two spaces coincide if there is a bounded extension operator from

W1,p(�) into W1,p(Rn), for a given 1 < p ≤ ∞. When p = ∞ and � is bounded, this is the

case if � is quasiconvex and actually the equality is equivalent to quasiconvexity under

these assumptions. This follows from [4, Theorem 7]. Moreover, for 1 < p < ∞, under

the assumption that

|B(x, r)| ≤ C|B(x, r) ∩ �| (1.3)

for every x ∈ � and every 0 < r < 1, where | · | refers to n-measure, M1,p(�) = W1,p(�)

implies the existence of such an extension operator. Indeed, in this case the spaces

coincide precisely when such an extension operator exists. For this, see [4]. Using this

fact, it is easy to exhibit domains � for which M1,p(�) = W1,p(�) fails for all p; for

example, take � ⊂ R
2 to be the unit disk minus the interval [0, 1) on the real axis.

In this paper, we consider this question for cuspidal domains of the form

�ψ :=
{
(t, x) ∈ (0, 1) × R

n−1; |x| < ψ(t)
}

∪ {(t, x) ∈ [1, 2) × R
n−1; |x| < ψ(1)}, (1.4)
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Pointwise Inequalities for Sobolev Functions 3

where ψ : (0, 1] → (0, ∞) is a left-continuous increasing function. (Left continuity is

required just to get �ψ open. The term “increasing” is used in the non-strict sense.) The

seemingly strange cylindrical annexes are included only to exclude other singularities

than the cuspidal one. It is crucial to note that these domains will not, except for limited

special cases, be Sobolev extension domains, and thus the methods from [4] do not apply.

It is easy to check that �ψ ⊂ R
n is a domain. If limt→0

ψ(t)
t = 0, then the measure

density condition (3) fails, and hence, by [4], there can not exist any bounded extension

operator from W1,p(�ψ) to W1,p(Rn). However, according to a somewhat surprising

result by Romanov [7], one still has W1,p(�ψ) = M1,p(�ψ) if ψ(t) = ts with s > 1

and p >
1+(n−1)s

n . Actually, Romanov proved this statement for a domain, which is bi-

Lipschitz equivalent to �ψ when ψ(t) = ts, but bi-Lipschitz transforms preserve both

Sobolev and Hajłasz–Sobolev spaces.

We show that the above restriction on p is superfluous and that ψ being of the

form ψ(t) = ts can be relaxed to being any left-continuous increasing function.

Theorem 1.1. Let ψ : (0, 1] → (0, ∞) be a left-continuous increasing function. Define

the corresponding cuspidal domain �ψ as in (4). Then W1,p(�ψ) = M1,p(�ψ) for all 1 <

p ≤ ∞ with equivalence of norms.

As a consequence of the bi-Lipschitz invariance stated above, the conclusion

M1,p(�) = W1,p(�) then holds for all bi-Lipschitz images of �ψ . Thus, our result covers

the result obtained by Romanov.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa279/5999064 by U

niversity of O
ulu, M

edical library user on 04 June 2021



4 S. Eriksson-Bique et al.

2 Definitions and Preliminaries

In what follows, � ⊂ R
n is always a domain. We write

R
n = R × R

n−1 := {z := (t, x) ∈ R × R
n−1} .

Throughout the paper, we consider a left-continuous increasing function ψ : (0, 1] →
(0, ∞), extend the definition of ψ to the interval (0, 2) by setting

ψ(t) = ψ(1), for every t ∈ (1, 2),

and write

�ψ = {(t, x) ∈ (0, 2) × R
n−1; |x| < ψ(t)} .

Typically, c or C will be constants that depend on various parameters and may

differ even on the same line of inequalities. The Euclidean distance between points x, y

in the Euclidean space R
n is denoted by |x − y|. The open m-dimensional ball of radius

r centered at the point x is denoted by Bm(x, r).

The space of locally integrable functions is denoted by L1
loc(�). For every

measurable set Q ⊂ R
n with 0 < |Q| < ∞ and every non-negative measurable or

integrable function f on Q we define the integral average of f over Q by

∫
Q

f (w) dw := 1

|Q|
∫

Q
f (w) dw.

Let us give the definitions of Sobolev space W1,p(�) and Hajłasz–Sobolev space

M1,p(�).

Definition 1. We define the 1st-order Sobolev space W1,p(�), 1 ≤ p ≤ ∞, as the set

{
u ∈ Lp(�); ∇u ∈ Lp(�;Rn)

}
.

Here ∇u =
(

∂u
∂x1

, . . . , ∂u
∂xn

)
is the weak (or distributional) gradient of a locally integrable

function u.
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Pointwise Inequalities for Sobolev Functions 5

We equip W1,p(�) with the non-homogeneous norm:

‖u‖W1,p(�) = ‖u‖Lp(�) + ‖|∇u|‖Lp(�)

for 1 ≤ p ≤ ∞, where ‖f ‖Lp(�) denotes the usual Lp-norm for p ∈ [1, ∞].

For u ∈ Lp(�), we denote by Dp(u) the class of functions 0 ≤ g ∈ Lp(�) for which

there exists E ⊂ � with |E| = 0, so that

|u(z1) − u(z2)| ≤ |z1 − z2| (g(z1) + g(z2)
)

, for z1, z2 ∈ � \ E.

Definition 2. We define the Hajłasz–Sobolev space M1,p(�), 1 ≤ p ≤ ∞, as the set

{
u ∈ Lp(�),Dp(u) �= ∅

}
.

We equip M1,p(�) with the non-homogeneous norm:

‖u‖M1,p(�) = ‖u‖Lp(�) + inf
g∈Dp(u)

‖g‖Lp(�),

for 1 ≤ p ≤ ∞.

3 Maximal Functions

We will define two maximal functions. The 1st one, Mτ [f ], will vary only the 1st

component t, and the 2nd Mχ [f ] will vary the x-component. For every x ∈ Bn−1(0, ψ(1))

set

Sx := {t ∈ R; (t, x) ∈ �ψ }.

Let f : �ψ → R be measurable and let (t, x) ∈ �ψ . We define the one-dimensional

maximal function in the direction of the 1st variable by setting

Mτ [f ](t, x) := sup
[a,b]�t

∫
[a,b]∩Sx

|f (s, x)| ds. (3.1)

The supremum is taken over all intervals [a, b] containing t.

On the other hand, the 2nd maximal function will be defined for functions

f : (0, 2) × R
n−1 → R. For every point (t, x) ∈ (0, 2) × R

n−1, we define the (n−1)-
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6 S. Eriksson-Bique et al.

dimensional maximal function Mχ [f ] by setting

Mχ [f ](t, x) := sup
Bn−1(x′,r)�x

∫
Bn−1(x′,r)

|f (t, y)| dy, (3.2)

where we take the supremum over the (n−1)-dimensional balls for which x ∈ Bn−1(x′, r).

The next lemmas tell us that both Mτ and Mχ enjoy the usual Lp-boundedness property.

See [8] for the statements and proofs of the classical boundedness results.

Lemma 3.1. Let 1 < p < ∞. Then for every f ∈ Lp(�ψ), Mτ [f ] is measurable and we

have

∫
�ψ

∣∣Mτ [f ](z)
∣∣ p dz ≤ C

∫
�ψ

|f (z)| p dz, (3.3)

where the constant C is independent of f .

Proof. Since the maximal function comes out the same if we consider only seg-

ments with rational endpoints, it preserves measurability. Fubini’s theorem implies

that f (·, x) ∈ Lp(Sx) for almost every x ∈ Bn−1(0, ψ(1)). By the Lp-boundedness of

the classical Hardy–Littlewood maximal function on the interval Sx, for such x we

have

∫
Sx

∣∣Mτ [f ](t, x)
∣∣ p dt ≤ C

∫
Sx

|f (t, x)| p dt, (3.4)

where the constant C is independent of f and x. By combining the inequality (4) and

Fubini’s theorem together, we obtain

∫
�ψ

∣∣Mτ [f ](t, x)
∣∣ p dx dt =

∫
Bn−1(0,ψ(1))

∫
Sx

∣∣Mτ [f ](t, x)
∣∣ p dt dx

≤ C
∫

Bn−1(0,ψ(1))

∫
Sx

|f (t, x)| p dt dx

= C
∫

�ψ

|f (t, x)| p dx dt. �

Lemma 3.2. Let 1 < p < ∞. Then for every f ∈ Lp((0, 2) × R
n−1), Mχ [f ] is measurable

and we have

∫
(0,2)×Rn−1

∣∣Mχ [f ](z)
∣∣ p dz ≤ C

∫
(0,2)×Rn−1

|f (z)| p dz, (3.5)

where the constant C is independent of f .
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Pointwise Inequalities for Sobolev Functions 7

Proof. Again, the maximal function preserves measurability, as it comes out the same

if we consider only balls with rational centers and radii (a point is rational if all its

coordinates are rational). By Fubini’s theorem, f (t, ·) ∈ Lp(Rn−1) for almost every t ∈
(0, 2). By the Lp-boundedness of the Hardy–Littlewood maximal operator we have

∫
Rn−1

∣∣Mχ [f ](t, x)
∣∣ p dx ≤ C

∫
Rn−1

|f (t, x)| p dx,

where the positive constant C is independent of f and t. Then Fubini’s theorem gives

∫
(0,2)×Rn−1

∣∣Mχ [f ](z)
∣∣ p dz =

∫ 2

0

∫
Rn−1

∣∣Mχ [f ](t, x)
∣∣ p dx dt

≤ C
∫ 2

0

∫
Rn−1

|f (t, x)| p dx dt

≤ C
∫

(0,2)×Rn−1
|f (z)| p dz.

�

4 Proof of the Main Theorem

Let us begin by sketching a simple proof for Theorem 1.1 in the Euclidean plane R
2, for

1 < p < ∞. In this case, the maximal function Mχ [f ], with respect to the x-coordinate,

can be replaced by

M̃χ [f ](t, x) := sup
[z,w]�x

∫
{y∈[z,w];(t,y)∈�ψ }

|f (t, y)| dy, (4.1)

for every (t, x) ∈ �ψ . As in Lemma 3.1 we obtain

∫
�ψ

|M̃χ [f ](z)|p dz ≤ C
∫

�ψ

|f (z)|p dz. (4.2)

By [3], there is a bounded inclusion ι : M1,p(�ψ) ↪→ W1,p(�ψ). To show that ι is an

isomorphism, it suffices to show that its inverse ι−1 is both densely defined and

bounded on W1,p(�ψ). Let C1(�ψ) be the set of continuously differentiable functions.

Since C1(�ψ) ∩ W1,p(�ψ) is dense in W1,p(�ψ), it suffices to show that C1(�ψ) ∩
W1,p(�ψ) ⊂ M1,p(�ψ) and that for each u ∈ C1(�ψ) ∩ W1,p(�ψ) we have ||u||M1,p(�ψ) �
||u||W1,p(�ψ).

Fix u ∈ C1(�ψ) ∩ W1,p(�ψ). Let z1 := (t1, x1), z2 := (t2, x2) ∈ �ψ be arbitrary.

Without loss of generality, we assume 0 < t1 ≤ t2 < 2. From the definition of �ψ , the
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8 S. Eriksson-Bique et al.

point z′ := (t2, x1) is also in �ψ . Using the triangle inequality, we have

|u(z1) − u(z2)| ≤ |u(z1) − u(z′)| + |u(z′) − u(z2)|. (4.3)

Since u ∈ C1(�ψ) ∩ W1,p(�ψ), the fundamental theorem of calculus implies

|u(z1) − u(z′)| ≤
∫ t2

t1

|∇u(s, x1)| ds ≤ |z1 − z2|Mτ [|∇u|](z1) (4.4)

and

|u(z′) − u(z2)| ≤
∣∣∣∣
∫ x2

x1

|∇u(t2, y)|dy

∣∣∣∣ ≤ |z1 − z2|M̃χ [|∇u|](z2). (4.5)

Combining inequalities (3), (4), and (5) together, we have

|u(z1) − u(z2)| ≤ |z1 − z2|
(
Mτ [|∇u|](z1) + M̃χ [|∇u|](z2)

)
≤ |z1 − z2|(g(z1) + g(z2)),

where

g(z) := Mτ [|∇u|](z) + M̃χ [|∇u|](z).

By inequalities (3) and (2), we have

∫
�ψ

|g(z)|p dz ≤ C
∫

�ψ

|∇u(z)|p dz,

which immediately gives that g ∈ Dp(u), and ‖u‖M1,p(�ψ) ≤ C‖u‖W1,p(�ψ).

In higher dimensions, we have to work harder. Let us fix some notation.

Let η : Rn−1 → R be a smooth cut-off function such that η = 1 on Bn−1(0, 1)

and η = 0 on the complement of Bn−1(0, 2). Consider the standard extension operator

ER : W1,p(Bn−1(0, R)) → W1,p(Rn−1) given by

ERu(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x), |x| < R,

0, |x| = R,

u
( R2

|x|2 x
)
η
( x

R

)
, |x| > R.
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Pointwise Inequalities for Sobolev Functions 9

Then,

‖∇ERu‖Lp(Rn−1) ≤ C‖∇u‖Lp(Bn−1(0,R)) (4.6)

with C independent of u and R.

Let u ∈ W1,p(�ψ) be arbitrary, 1 < p < ∞. Extend the function u to (0, 2) × R
n−1

by setting

ũ(t, ·) = Eψ(t)(u(t, ·)), t ∈ (0, 2). (4.7)

Denoting the gradient with respect to the x-variable by ∇χ , from (1) we

immediately obtain

|ũ(z1) − ũ(z2)| ≤ C|z1 − z2|(Mχ [|∇χ ũ|](z1) + Mχ [|∇χ ũ|](z2)) (4.8)

for a.e. t ∈ (0, 2) and a.e. z1, z2 ∈ {t} × R
n−1. It is easily seen, when u ∈ C1(�ψ), that the

function ũ and ∇χ ũ are measurable on (0, 2)×R
n−1. In fact, it could be shown that both

of these would be measurable even if u were just in W1,p(�ψ).

Next, we prove the main estimate.

Lemma 4.1. Let z1 = (t1, x1), z2 := (t2, x2) ∈ �ψ be two points with t1 < t2. Suppose

that u ∈ W1,p(�ψ) ∩ C1(�ψ) and that ũ is its extension given by (7). Then we have

|u(z1) − u(z2)| ≤ C|z1 − z2|(Mτ [|∇u|](z1) + Mτ [Mχ [|∇χ ũ|]](z1) +
Mτ [|∇u|](z2) + Mτ [Mχ [|∇χ ũ|]](z2)

)
. (4.9)

Proof. Similarly to the 2D argument, we will compare the change in the function via

additional values ũ(s, xi) for some s ∈ (0, 2). Without knowing exactly which s yields an

optimal estimate, we will instead average over a range of possible s with the hope that,

on average, the differences are better controlled. Indeed, let

T2 = min
{
2, t2 + t2 − t1

2

}
,

T1 = T2 − t2 − t1

2
.
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10 S. Eriksson-Bique et al.

Notice that t2 ∈ [T1, T2] and [T1, T2] × {x1, x2} ⊂ �ψ . When we average over different

possible s ∈ [T1, T2] and use the triangle inequality we obtain that

∣∣u(z2) − u(z1)
∣∣ ≤

∣∣∣∣ 1

T2 − T1

∫ T2

T1

|u(t2, x2) − u(s, x2)| ds

∣∣∣∣︸ ︷︷ ︸
I

+
∣∣∣∣ 1

T2 − T1

∫ T2

T1

|u(s, x2) − u(s, x1)| ds

∣∣∣∣︸ ︷︷ ︸
II

+
∣∣∣∣ 1

T2 − T1

∫ T2

T1

|u(s, x1) − u(t1, x1)| ds

∣∣∣∣︸ ︷︷ ︸
III

. (4.10)

First, we estimate the terms I and III. Let i ∈ {1, 2}. If ti < s, by the fundamental

theorem of calculus, we have the following:

|u(ti, xi) − u(s, xi)| ≤
∫ s

ti

|∇u(r, xi)| dr ≤ |ti − s|Mτ [|∇u|](zi) ≤ 3(T2 − T1)Mτ [|∇u|](zi).

(4.11)

Similarly, (11) holds also if ti ≥ s. Integrating with respect to s we obtain

I ≤ 3(T2 − T1)Mτ [|∇u|](z2) ≤ 2|z2 − z1|Mτ [|∇u|](z2) (4.12)

and

III ≤ 3(T2 − T1)Mτ [|∇u|](z1) ≤ 2|z2 − z1|Mτ [|∇u|](z1) (4.13)

Next, we apply (8) to the 2nd term:

II ≤ C|x1 − x2|
T2 − T1

∫ T2

T1

(Mχ [|∇χ ũ|](s, x1) + Mχ [|∇χ ũ|](s, x2)) ds

≤ C|x1 − x2|
(

1

T2 − t1

∫ T2

t1

(Mχ [|∇χ ũ|](s, x1) ds + 1

T2 − T1

∫ T2

T1

(Mχ [|∇χ ũ|](s, x2) ds
)

≤ C|z1 − z2|(Mτ [Mχ [|∇χ ũ|]](z1) + Mτ [Mχ [|∇χ ũ|]](z2)
)
. (4.14)

Finally, by combining inequalities (12), (13), (14), and (10), we obtain the desired

inequality (9). �
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Pointwise Inequalities for Sobolev Functions 11

Recall that a domain � is quasiconvex if there exists a C ≥ 1 such that, for

every pair of points x, y ∈ �, there is a rectifiable curve γ ⊂ � joining x to y so that

len(γ ) ≤ C|x − y|.

Proof. Proof of Theorem 1.1 Because �ψ is quasiconvex for every ψ , the case of p = ∞
is a consequence of [4, Theorem 7]. Thus, fix 1 < p < ∞. By [3], we know that there

is a bounded inclusion ι : M1,p(�ψ) ↪→ W1,p(�ψ). To show that ι is an isomorphism, it

suffices to show that the dense subspace C1(�ψ) ∩ W1,p(�ψ) of W1,p(�ψ) is contained in

M1,p(�ψ) and that the restricted inverse ι−1|C1(�ψ)∩W1,p(�ψ) is defined and bounded.

Let u ∈ C1(�ψ) ∩ W1,p(�ψ) be arbitrary, and define ũ as in (7). Set

ĝ(z) = Mτ [|∇u|](z) + Mχ [|∇χ ũ|](z) + Mτ [Mχ [|∇χ ũ|]](z). (4.15)

By (8) and Lemma 4.1, for every z1, z2 ∈ �ψ , we get the estimate

|u(z1) − u(z2)| ≤ C|z1 − z2|(ĝ(z1) + ĝ(z2)).

Hence, (2) holds for g := Cĝ for a suitable constant C > 1. The triangle inequality gives∫
�ψ

|g(z)|p dz≤C

(∫
�ψ

Mτ [|∇u|](z)p dz+
∫
�ψ

Mχ [|∇χ ũ|](z)p dz+
∫
�ψ

Mτ [Mχ [|∇χ ũ|]](z)p dz

)
.

Lemmata 3.1 and 3.2 and (6) lead to the estimates

∫
�ψ

|Mτ [|∇u|](z)|p dz ≤ C
∫

�ψ

|∇u(z)|p dz

and∫
�ψ

|Mτ [Mχ [|∇χ ũ|]](z)|p dz ≤ C
∫
�ψ

Mχ [|∇χ ũ|](z)p dz ≤ C
∫
(0,2)×Rn−1

|∇χ ũ(z)|p dz

≤ C
∫ 2

0

∫
Rn−1

|∇χ ũ(t, x)|p dx dt ≤ C
∫ 2

0

∫
B(0,ψ(t))

|∇χ u(t, x)|p dx dt

≤ C
∫
�ψ

|∇u(z)|p dz,

which imply that g ∈ Dp(u) and that ‖u‖M1,p(�ψ) ≤ C‖u‖W1,p(�ψ). That is, ι−1|C1(�ψ)∩W1,p(�ψ)

is both well-defined and bounded. �
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