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We show that the 1st-order Sobolev spaces Wl'p(Qw), 1 < p < 00, on cuspidal symmetric
domains Q,, can be characterized via pointwise inequalities. In particular, they coincide
with the Hajtasz-Sobolev spaces M'P(R,,).

1 Introduction

Optimal definitions for Sobolev spaces are crucial in analysis. It was a remarkable
discovery of Hajtasz [3] that distributionally defined Sobolev functions can be char-
acterized using pointwise estimates in the context of Sobolev extension domains. This,
in part, has played a crucial role in defining Sobolev spaces for general metric measure
spaces. Here, we show that for certain cuspidal domains the pointwise characterization
holds without any additional assumptions. These domains do not admit extensions for
Sobolev functions. Given a domain 2 c R", we denote by wiP(Q), 1 < p < oo, the

usual 1st-order Sobolev space consisting of all functions u € LP(Q2) whose 1st-order
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2 S. Eriksson-Bique et al.

distributional partial derivatives also belong to LP(Q2). If @ = R", then any Sobolev

function u satisfies the pointwise inequality
lu) —u(y)| < Clx — y| (M[IVull(x) + M[[Vull(y)) (1.1)

at Lebesgue points of u, where M[|Vul|] is the Hardy-Littlewood maximal function
of |Vul, see [1, 2, 3, 6]. Motivated by this, Hajtasz introduced [3] the space M!P(Q)
consisting of all those u € LP(Q2) for which there exists a set E C Q of n-measure zero
and a function 0 < g € LP(Q) so that

lux) —u)| < Ix -yl @) +9¥), (1.2)

whenever x,y € Q \ E.

One has M'P(R*) = WP(R") as sets for 1 < p < oo, and the norms are
comparable once M!'P(R") is equipped with the natural norm. Also, for 1 < p < oo,
one always has M'"P(Q) c W'P(Q) and the inclusion is strict for p = 1 for any domain
Q, see [5].

A natural question to ask is:
For which domains Q c R" do we have M'"P(Q) = WP (Q)?

Indeed, these two spaces coincide if there is a bounded extension operator from
WP (Q) into W!P(R"), for a given 1 < p < co. When p = oo and 2 is bounded, this is the
case if Q is quasiconvex and actually the equality is equivalent to quasiconvexity under
these assumptions. This follows from [4, Theorem 7]. Moreover, for 1 < p < oo, under

the assumption that
|B(x, 1| < C|B(x,7) N (1.3)

for every x € Q and every 0 < r < 1, where | - | refers to n-measure, M'"P(Q) = WP (Q)
implies the existence of such an extension operator. Indeed, in this case the spaces
coincide precisely when such an extension operator exists. For this, see [4]. Using this
fact, it is easy to exhibit domains © for which M'P(Q) = WP(Q) fails for all p; for
example, take Q@ C R? to be the unit disk minus the interval [0, 1) on the real axis.

In this paper, we consider this question for cuspidal domains of the form

Q, = {(t,X) €(0,1) x R" L |x| < w(t)} U{t,x el1,2) x R" L x| < y(1)),  (1.4)
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Pointwise Inequalities for Sobolev Functions 3

where ¢¥: (0,11 — (0,00) is a left-continuous increasing function. (Left continuity is
required just to get 2, open. The term “increasing” is used in the non-strict sense.) The
seemingly strange cylindrical annexes are included only to exclude other singularities
than the cuspidal one. It is crucial to note that these domains will not, except for limited

special cases, be Sobolev extension domains, and thus the methods from [4] do not apply.

@
t

density condition (3) fails, and hence, by [4], there can not exist any bounded extension

It is easy to check that @, C R" is a domain. If lim, ,, = 0, then the measure

operator from Wl'p(Qw) to WYP(R™). However, according to a somewhat surprising
result by Romanov [7], one still has W'P(Q,) = M'P(Q,) if y(t) = t° with s > 1

1+(n—1)s
and p > ———=

. Actually, Romanov proved this statement for a domain, which is bi-
Lipschitz equivalent to Q, when () = t°, but bi-Lipschitz transforms preserve both

Sobolev and Hajtasz—Sobolev spaces.

We show that the above restriction on p is superfluous and that ¢ being of the

form v (t) = t° can be relaxed to being any left-continuous increasing function.

Theorem 1.1. Let ¢ : (0,1] — (0, 00) be a left-continuous increasing function. Define
the corresponding cuspidal domain Q2 as in (4). Then Wl'p(Qw) = Ml'p(Qw) forall 1 <

p < oo with equivalence of norms.

As a consequence of the bi-Lipschitz invariance stated above, the conclusion
M'P(Q) = WP (Q) then holds for all bi-Lipschitz images of Q. Thus, our result covers

the result obtained by Romanov.
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4 S. Eriksson-Bique et al.
2 Definitions and Preliminaries

In what follows, 2 c R" is always a domain. We write
R" =R x R" ! :={z:=(t,x) e R x R"" 1},

Throughout the paper, we consider a left-continuous increasing function ¢ : (0,1] —
(0, 00), extend the definition of ¥ to the interval (0, 2) by setting

¥(t) =y (1), forevery te (1,2),
and write
Q, ={(t,x) € (0,2) x R" ;x| < ¥ (1)} .

Typically, ¢ or C will be constants that depend on various parameters and may
differ even on the same line of inequalities. The Euclidean distance between points x, y
in the Euclidean space R"” is denoted by |x — y|. The open m-dimensional ball of radius

r centered at the point x is denoted by B™(x, r).

1
loc

measurable set Q ¢ R™ with 0 < |Q] < oo and every non-negative measurable or

The space of locally integrable functions is denoted by L; (). For every

integrable function f on Q we define the integral average of f over Q by

][f(w)dw = L/f(w)dw.
Q 1al Ja

Let us give the definitions of Sobolev space W!'P(Q) and Hajtasz-Sobolev space
M'P(Q).

Definition 1. We define the 1st-order Sobolev space W!P(Q2), 1 < p < oo, as the set
{ueIP(Q);Vu e IP(RY }.

Here Vu = (5’7”1 e ;7‘2) is the weak (or distributional) gradient of a locally integrable

function u.
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Pointwise Inequalities for Sobolev Functions 5

We equip W!P(Q) with the non-homogeneous norm:

”u”Wl:P(Q) = ”u”LP(Q) + |||Vu|||LP(Q)
for 1 < p < oo, where ||fllp () denotes the usual LP-norm for p € [1, oc].

For u € LP(2), we denote by Dy (w) the class of functions 0 < g € LP(Q2) for which
there exists E C Q with |E| = 0, so that

lu(z)) — u(zy)| <1z, — 2, (9(21) + 9(2,)), for z;,z, € Q\E.
Definition 2. We define the Hajtasz-Sobolev space M!P(Q), 1 < p < oo, as the set
[uerr@, D, £0).
We equip M!P(2) with the non-homogeneous norm:
u =|u inf ,
I ||M1,p(52) I ”LP(Q) + 9eDp(w) ||g||1,p(gz)

forl <p < .

3 Maximal Functions

We will define two maximal functions. The 1st one, M*[f], will vary only the 1st
component t, and the 2nd M*[f] will vary the x-component. For every x € B*~1(0,v (1))

set
S, ={teR;(t,x) e Qw}.

Let f: Qy, — R be measurable and let (t,x) < Q,. We define the one-dimensional

maximal function in the direction of the 1st variable by setting

MT[f1(t,x) :== sup ][ If (s, x)| ds. (3.1)
[a,b]>t J [a,bINSx

The supremum is taken over all intervals [a, b] containing t.
On the other hand, the 2nd maximal function will be defined for functions
f:(0,2) x R*! — R, For every point (¢,x) € (0,2) x R*7!, we define the (n—1)-
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6 S. Eriksson-Bique et al.

dimensional maximal function MX[f] by setting

MX[f1(t,x) == sup ][ 1 If (¢, y)| dy, (3.2)
B 1(x',r)

Bl (x',r)ax

where we take the supremum over the (n—1)-dimensional balls for which x € B*~1(x/, r).
The next lemmas tell us that both M* and M* enjoy the usual LP-boundedness property.

See [8] for the statements and proofs of the classical boundedness results.

Lemma 3.1. Let 1 < p < oo. Then for every f € LP(2,), M"[f] is measurable and we

have
/ |MT[f1(2)|? dz < C/ If (2)|P dz, (3.3)
Q‘// Qz//

where the constant C is independent of f.

Proof. Since the maximal function comes out the same if we consider only seg-
ments with rational endpoints, it preserves measurability. Fubini's theorem implies
that f(-,x) € LP(S,) for almost every x € B"1(0,¥(1)). By the LP-boundedness of
the classical Hardy-Littlewood maximal function on the interval S,, for such x we

have
/ |MTIf1(¢, %) | P dt < C/ If (¢, x)| P dt, (3.4)
Sy Sx

where the constant C is independent of f and x. By combining the inequality (4) and

Fubini’s theorem together, we obtain

/ |MTIf1(¢, x)| P dx dt =/ |MTIf1(¢, x)| P dt dx
Qy BP1(0,y/(1)) / Sx

c/ /|f(t,x)|pdtdx
B»1(0,¥(1)) JSx

= C/ If (¢, %)|P dx dt. m
Qy

IA

Lemma 3.2. Let 1 < p < co. Then for every f € LP((0,2) x R*~!), MX[f] is measurable

and we have

/(0 2R |MX[f](Z)|PdZ < C/ If(2)|? dz, (3.5)

(0,2) xRn—1

where the constant C is independent of f.
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Pointwise Inequalities for Sobolev Functions 7

Proof. Again, the maximal function preserves measurability, as it comes out the same
if we consider only balls with rational centers and radii (a point is rational if all its
coordinates are rational). By Fubini’s theorem, f(t,-) € LP(R""!) for almost every t €

(0,2). By the LP-boundedness of the Hardy-Littlewood maximal operator we have
/ \Mx[f](t,x)|PdX§C/ If (¢, %)| P dx,
Rn-1 Rn-1

where the positive constant C is independent of f and ¢. Then Fubini’s theorem gives

2
/ |M*[f1(2)|P dz // |MX[f1(¢, x)| P dx d¢
0,2)xRn—1 0 JRn-1

IA

2
C/ If(t,x)|P dx dt
0 Rn—l

Cc / If (2)|P dz.
(0,2)xRn-1

IA

4 Proof of the Main Theorem

Let us begin by sketching a simple proof for Theorem 1.1 in the Euclidean plane R?, for
1 < p < oo. In this case, the maximal function M*[f], with respect to the x-coordinate,

can be replaced by

BP0 = sup | Ft, )l dy, @.1)
lz.wlsx J {yelz,wl;(t,y)eQy}
for every (¢, x) € 521/,. As in Lemma 3.1 we obtain
/ \M[f1(2)P dz < C/ If (2)|P dz. @.2)
Qv, Q1,//

By [3], there is a bounded inclusion :: M'P(Q,) < W'P(Q,). To show that ¢ is an
isomorphism, it suffices to show that its inverse (~! is both densely defined and
bounded on Wl'p(SZw). Let C! () be the set of continuously differentiable functions.
Since CI(QW) N Wl'p(Q¢) is dense in Wl'p(Q¢), it suffices to show that Cl(le) N
w'P(Q,) ¢ M'"P(Q,) and that for each u € C'(Q,) N W'P(Q,) we have lullanrg,) <
||u||W1rp(Q¢)-

Fix u € C1(Q,) N W'P(Q,). Let z; = (t;,X,), 2, = (3, X;) € Q, be arbitrary.

Without loss of generality, we assume 0 < t; < t, < 2. From the definition of Qw, the
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8 S. Eriksson-Bique et al.

point z' := (t,, x,) is also in €2,,. Using the triangle inequality, we have
lu(z,) — u(zy)| < lu(z)) — u@)| + lu(z) — u(zy)l. (4.3)
Since u € C! (Qy)N Wl'p(Qw), the fundamental theorem of calculus implies
t2
lu(zy) — u(z)| < / IVu(s, x;)|ds < |z; — zo[M*[|Vull(z;) (4.4)
t1
and

lu(z) — u(zy)| < < |z; — zy|MX[|Vull(z,). (4.5)

X2
/ IVu(ty, y)ldy
X

1

Combining inequalities (3), (4), and (5) together, we have
[u@) — u(z)| < I2y — 2] (MIVUllz) + X IVUll(z) < 12, - 2,1(9(@) +9(2),
where
9(2) := M'[|Vull(z) + MX[|Vull(2).
By inequalities (3) and (2), we have

/ g@Pdz<cC / Vu@P dz,
o o

which immediately gives that g € Dp(u), and ||u||M1,p(Qw) < C||u||W1,p(Qw).

In higher dimensions, we have to work harder. Let us fix some notation.

Let n: R®! — R be a smooth cut-off function such that = 1 on B*1(0,1)
and n = 0 on the complement of B"1(0,2). Consider the standard extension operator
ER: wl'P(B"1(0,R)) - W'P(R"1) given by

u(x), x| <R,
ERux) = {0, |x| = R,

u(Ex)n(%), Ixl >R,
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Pointwise Inequalities for Sobolev Functions 9

Then,
IVER Ul pgn-1) < CIIVUlp@n-10,7)) (4.6)

with C independent of u and R.
Letu e Wl'p(Qv,) be arbitrary, 1 < p < oo. Extend the function u to (0,2) x R*"!
by setting

a(t, ) =EYOwut, ), te(0,2). (4.7)

Denoting the gradient with respect to the x-variable by VX, from (1) we

immediately obtain
[t(z,) — U(zy)| < Clzy — z,|(M*[|[V*Ull(z)) + M*[|V*ll(z,)) (4.8)

for a.e. t € (0,2) and a.e. z;, z, € {t} x R""!. It is easily seen, when u € C'(Q,), that the
function @ and VX are measurable on (0, 2) x R®~1. In fact, it could be shown that both
of these would be measurable even if u were just in Wl'p(Qw).

Next, we prove the main estimate.

Lemma 4.1. Let z; = (t;,%;),2; := ({3, %) € Q, be two points with ¢; < ¢,. Suppose

that u € WI'P(SZW) N CI(QVI) and that u is its extension given by (7). Then we have

lu(z)) —uzy)l < Clzy — 2| (M'[|Vull(z)) + MTIM*[|[V*Qlli(z,) +

M*[|Vull(zy) + MT[MX[|VX11|]](ZZ)). (4.9)

Proof. Similarly to the 2D argument, we will compare the change in the function via
additional values (s, x;) for some s € (0, 2). Without knowing exactly which s yields an
optimal estimate, we will instead average over a range of possible s with the hope that,

on average, the differences are better controlled. Indeed, let

) ty —
T2=m1n{2,t2+ 5 },
-t
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10 S. Eriksson-Bique et al.

Notice that ¢, € [T, T,] and [Ty, Tl x {x;,x,} C €. When we average over different

possible s € [T}, T,] and use the triangle inequality we obtain that

T2
lu(zy) —u(zy))| < 7 1T / lu(ty, x5) — u(s, x,)| ds
2 177
I
1 T2
+ ﬁ/ﬁ lu(s, x,) — u(s, x;)| ds
I
1 T2
+ T, T, /T1 lu(s, x;) —u(t;, x;)| dsj. (4.10)

I

First, we estimate the terms I and III. Let i € {1, 2}. If t; < s, by the fundamental

theorem of calculus, we have the following:

lu(t;, x;) — u(s, x| < / |Vu(r, x)|dr < |t; — sIM"[|[Vull(z) < 3(T, — T)M [|Vull(z).
i

(4.11)
Similarly, (11) holds also if t; > s. Integrating with respect to s we obtain
I <3(Ty, — T)M [|Vull(z,) < 2|z, — z;|M*[|Vull(z,) (4.12)
and
IIT < 3(T, — T)M[|Vull(z)) < 2|z, — z, M [|Vull(z) (4.13)

Next, we apply (8) to the 2nd term:

Clx; — x,| (T2

In < MXVXall(s, xp) + MX[|[VXull(s, x5)) ds
T2 - Tl T
1 T2 1 T2
< Clx; — %, ( / (MXA[IVXTll(s, x;) ds + / (MX[IVXTll(s, x4) ds)
T, -t Jy T,-T, Jr

< Clzy — z,| (M M|V @lll(z,) + MM [V @ll(2,)). (4.14)
Finally, by combining inequalities (12), (13), (14), and (10), we obtain the desired
inequality (9). u
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Pointwise Inequalities for Sobolev Functions 11

Recall that a domain Q is quasiconvex if there exists a C > 1 such that, for
every pair of points x,y € , there is a rectifiable curve y C Q joining x to y so that

len(y) < Clx —y|.

Proof. Proof of Theorem 1.1 Because Q, is quasiconvex for every v, the case of p = 00
is a consequence of [4, Theorem 7]. Thus, fix 1 < p < oo. By [3], we know that there
is a bounded inclusion :: Ml'p(Qw) S Wl'p(Qw). To show that ¢ is an isomorphism, it
suffices to show that the dense subspace C'(2,,) N Wl'p(Qw) of Wl'p(Qw) is contained in
Ml'p(Qv,) and that the restricted inverse (~* lc1(@y)nwir(q,) 1s defined and bounded.

Let u € C'(Q,) N W'P(Q,) be arbitrary, and define % as in (7). Set

g(z) = M'[|Vull(z) + M*[|[V*0|l(2) + MTIM*[|V*@|]l(2). (4.15)
By (8) and Lemma 4.1, for every z;,z, € 2, we get the estimate
lu(zy) — w(zy)| < Clzy — 2,1(9(21) + §(22)).
Hence, (2) holds for g := Cg for a suitable constant C > 1. The triangle inequality gives

/ 9P dzsc( / MVull2)P dz+ / MV @f)(z)P dz+ / MMV Gl (2)P dz).
Qy Qy Qy Qy

Lemmata 3.1 and 3.2 and (6) lead to the estimates

/ IM*[|Vull(2)|P dz < C/ IVu(z)P dz
Qy Qy

and
/ MMV @@ P dz < € [ MXIVXall@P dz < C / VX a(2)P dz
" Q (0,2)xRn-1
2 2
< C/ / |Vxﬂ(t,X)|de dt < C/ / |qu(t,X)|de dt
o Jrn-1 0 JBO,v (@)
<

C/ [Vu(z)P dz,
Sty
which imply thatg [S Dp(u) and that ”u”Ml,p(Ql/,) < C”u”erP(Q],,)‘ That iS, l_l |C1 (Qu)NWLP(Qy)

is both well-defined and bounded. [ |
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