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SELF-IMPROVEMENT OF POINTWISE HARDY INEQUALITY

SYLVESTER ERIKSSON-BIQUE AND ANTTI V. VAHAKANGAS

ABSTRACT. We prove the self-improvement of a pointwise p-Hardy inequality. The proof
relies on maximal function techniques and a characterization of the inequality by curves.

1. INTRODUCTION

Let X = (X,d, 1) be a metric measure space and let 1 < p < co. In this paper we are

interested in the self-improvement properties of the pointwise p-Hardy inequality

\u(:c)| S C(H d(ﬂ?, QC) (Mp,fid($,ﬂc)g<x)) . (1)
We say that an open set 2 C X satisfies pointwise p-Hardy inequality, if there are constants
Cy and k such that inequality (1) holds for all x € Q whenever u is a Lipschitz function such
that u =0 in Q° = X \ Q and ¢ is a bounded upper gradient of u; we refer to Section 2 for
the definition of M, ..q(z,0¢)g(2) and the standing assumptions on X. By Hélder’s inequality,
we see that increasing p will result in a weaker inequality (1). Self-improvement is concerned
with the opposite, and far less intuitive, possibility of lowering the exponent p slightly. Our
main result reads as follows. Let 1 < p’ < p < oo and assume that X supports a p'-
Poincaré inequality. Assume that (2 satisfies a pointwise p-Hardy inequality. Then there
exists ¢ € (p/, p) such that Q satisfies a pointwise ¢g-Hardy inequality; we refer to Theorem 5.1.
In this paper we provide a direct proof of this self-improvement result with transparent and
quantitative bounds for the quantity p — ¢ > 0 of self-improvement; see Remark 5.2.

The pointwise p-Hardy inequality was first independently studied by Hajtasz in [6] and
by Kinnunen—Martio in [10]. Korte et al. proved in [11] that a pointwise p-Hardy inequality
characterizes the so-called uniform p-fatness of the complement ¢, we note that uniform
p-fatness is a uniform p-capacity density condition that appears often in potential theory and
PDE’s, see e.g. [7]. Consequently, our proof can be used to show the deep self-improvement
property of uniform p-fatness. This result was first discovered in Euclidean spaces by Lewis
[15] using potential theoretical arguments. Subsequently Mikkonen generalized Lewis’ result
to the Euclidean weighted setting in his PhD-thesis [17]. Mikkonen’s approach, in turn, was
adapted to metric spaces by Bjorn et al. in [2]. This adaptation relies on the impressive theory
of differential structures on complete (or at least locally complete) metric spaces, established
by Cheeger in [3].

An alternative approach to the self-improvement of uniform p-fatness was recently provided
by Lehrbédck et al. in [13]. Their proof builds upon a localization of the argument due to
Koskela—Zhong [12] which, in turn, is concerned with the self-improvement of integral p-Hardy
inequalities. Consequently, either one of the papers [2] or [13] together with the mentioned
characterization in [11] can be used to provide an indirect proof of our main result. In
comparison, our approach is more direct with the additional benefit of yielding transparent
and quantitative bounds for the self-improvement. Our approach is new even in the classical
setting of Euclidean space equipped with the Euclidean metric and the Lebesgue measure.
For a survey on Hardy inequalities, and their connections to uniform p-fatness, we refer to
[9] and references therein. See also [16].
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The outline of this paper is as follows. Notation and maximal function techniques are
presented in Section 2. The pointwise p-Hardy inequality is characterized by using curves in
Section 3. The actual work for self-improvement via curves is done in Section 4 and our main
results are stated and proved in Section 5. The main line of our proof is adapted from the
paper [4] of the first author, where the self-improvement of a p-Poincaré inequality is proved
with the aid of maximal functions and a characterization by curves; this result was origi-
nally obtained in [8] by a different method. Curiously, the present approach simultaneously
explains the self-improvement property of both p-Poincaré inequality and pointwise p-Hardy
inequality. We also remark that Lerner—Pérez [14] established self-improvement properties of
Muckenhoupt weights by a similar approach to maximal functions. It is an open question, to
what extent these ideas can be taken to unify proofs of various self-improvement phenomena
that are ubiquitous in analysis and PDE.
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1704215 of NSF(U.S.). The first author also thanks Enrico Le Donne, Riikka Korte and Juha
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2. NOTATION AND AUXILIARY RESULTS

Here, and throughout the paper, we assume that X = (X,d,u) is a Coc-quasiconvex
proper metric measure space equipped with a metric d and a positive complete D-doubling
Borel measure p such that #X > 2,0 < u(B) < oo and

#(2B) < D u(B) (2)

for some D > 1 and for all balls B = B(z,r) = {y € X : d(y,z) < r}. Here we use for
0 < A < oo the notation AB = B(z, Ar). The space X is separable under these assumptions,
see [1, Proposition 1.6]. Moreover, the measure p is regular and, in particular for every Borel
set E C X and every € > 0, there exists an open set V' D E such that pu(F) < pu(V) +¢; we
refer to [5, Theorem 7.8] for further details.

We denote by Lip(X) the space of Lipschitz functions on X. That is, we have u € Lip(X)
iff there exists a constant A > 0 such that

lu(z) —u(y)| < Ad(z,y), forall »,y e X.

We let Q@ C X be an open set. We denote by Lip,(2) the space of Lipschitz functions on
X that vanish on ¢ = X \ . The set of continous functions on X is denoted by C(X),
and Cy(Q2) C C(X) consists of those continuous functions that vanish on Q°. We denote by
LC(X) the set of lower semicontinuous functions on X, and by LCy(2) we denote the set of
those functions in LC'(X) that vanish on ©°.

By a curve we mean a nonconstant, rectifiable, continuous mapping from a compact real
interval to X. By I'(X) we denote the set of all curves in X. The length of a curve v € I'(z)
is written as len(vy). We say that a curve 7: [a,b] — X connects x € X to y € X (or a point
r e X toaset EC X),if y(a) = x and y(b) = y (v(b) € E, respectively). If x,y € X,
E C X and v > 1 we denote by I'(X)y , the set of curves that connect x to y and whose
lengths are at most vd(x,y), and by I'(X)Y ; we denote the set of curves that connect z to
E and whose lengths are at most vd(zx, F).

We say that a Borel function g > 0 on X is an upper gradient of a real-valued function u
on X if, for any curve v connecting any x € X to any y € X, we have

|mm—uwﬂs/g@. (3)

o
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We use the following familiar notation:

up = ][Eu(y) du(y) = ﬁ/}ﬂu(y) du(y)

is the integral average of u € L'(F) over a measurable set £ C X with 0 < u(E) < oo.
Moreover if £ C X, then 1z denotes the characteristic function of E; that is, 1g(x) = 1 if
re€Fand 1g(z) =0ifz € X\ E. If 1 <p < oo and u: X — R is a y-measurable function,
then u € L} (X) means that for each zq € X there exists r > 0 such that u € LP(B(x, 7)),

loc
ey [pgaymlu®)IP duly) < oo.
For 0 <r <ooand1<p < oo, and every f € L} (X), we define the r-restricted maximal
function M, f(x) at x € X by

F@), ) r=0,
M, f(x) == onp (]i'f(zﬂp d,u(z)) " r>0,

where the supremum is taken over all balls B = B(y,t) in X such that z € Band 0 <t <.
The definition of a pointwise p-Hardy inequality is as follows; recall that Q¢ = X \ Q.

Definition 2.1. Let 1 < p < oo. An open set 0 # Q C X is said to satisfy a pointwise
p-Hardy inequality if there exists constants Cy > 0 and k > 1 such that for every Lipschitz
function u € Lipy(Q2), every bounded upper gradient g of u and every x € S0, we have

u(z)] < Crd(z, Q) (Mp ka0 9(x)) (4)

Clearly by Holder’s inequality, a pointwise p-Hardy inequality implies a pointwise ¢g-Hardy
inequality for every 1 < p < ¢ < oc.
The following p-Poincaré inequality has a corresponding property.

Definition 2.2. Let 1 < p < co. We say that X supports a p-Poincaré inequality, if there are
constants Cpy > 0 and X\ > 1 such that for any ball B of radius v > 0 in X, any u € Lip(X)
and any bounded upper gradient g of u, we have

£ o)~ usl (o) < Cour( £ gtor du(x))l/p- (%)
Here ug = 5 udp.

We remark that the p-Poincaré inequality has a self-improving property. More specifically,
a p-Poincaré inequality for any 1 < p < oo implies a p’-Poincaré inequality for some p’ < p;
see [4] and [8]. For a self-contained exposition, we will explicitly assume such an improved
Poincaré inequality. The following characterization from [4, Theorem 1.5] will be useful.

Lemma 2.3. Let 1 < p < co. Then X supports a p-Poincaré inequality if and only if there
are constants Ca > 0, v > Cqc and k > 1 such that, for any non-negative and bounded
g € LC(X) and any x,y € X, we have

inf /gdS S CYA d(SL’, y) (Mp,md(x,y)g<x) + Mp,nd(a:,y)f](y)) . (6)

YeL(X)%,y J

We need a few auxiliary results involving maximal functions. We begin with the following
scale invariant weak-type estimate that is originally from [4, Lemma 2.3].

Lemma 2.4. Fix 1 <g<oo and 0 <r,s <oo. Let f € L] (X), let A >0, and define

loc
E,spn={re€ X | M f(x) > A}.
Then, for every xz € X,

D5 M r+3s 7
Ml,rlqusyA(x) S ( q,AJ;?) f(x)) ) (7)
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Proof. Fix v € X and 0 <t <r. Let B= B(y,t) be a ball in X such that z € B. It suffices

to prove that
l D5 M r43s) \T q
1E¢1,S,A / <— ( q7A q3 f( )) . (8)

The proof of (8) is based upon a covering argument. For each z € E, ;N B we fix a ball B,
of radius 0 < rp, < s such that z € B, and

(f 1iau)" . )
B
Suppose that ¢ < rp, for some z € E, ;o N B. Then z € 3B, and, therefore,

q 2
flqusyAdMSK fulfl dp D fap lf1? dp _ D*(Myssf(2))° |

A4 - A4 - Ad

Since My ssf(x) < My,q3sf(x) and D > 1, we thus obtain inequality (8). Hence in the
sequel, we can assume that rp, <t for all z € E, ;A N B.
By using the 5r-covering lemma [1, Lemma 1.7], we obtain a countable and disjoint family

B C{B. |z € E;saN B} of balls such that E;;» N B C |Jg 558" Hence, by (9),

1
1p,  ,dp < —— 5B
]{3 Eq A RS ,U(B) Z M( )

B'eB

DS um)

<
B M(B) oot

_Aqﬂ Z 171y

B/GB

Since g < min{s, t}, we have that B’ C B” := B(y,t + 2min{s, t}) for every B’ € B. Also,
B C B" C 3B, so u(B") < D*u(B). We can conclude that

D D® a
][ 1E Ad,u |f|qd (Mq,tJrBsf(x)) )
& B// Aq
Since My 1135 f(2) < My ,a3:f(x), we thus obtain inequality (8) also in this case. O

The following approximation lemma is originally from [4, Lemma 3.7]. For the convenience
of the reader, we provide a proof. We remark that the regularity of the measure is needed in
the proof. A Borel function g: X — [0, 00) is simple, if g = Z?Zl ajlg; for some real a; > 0
and Borel sets I/, C X, j=1,... k.

Lemma 2.5. Let 1 < p < oco. Let g: X — [0,00) be a simple Borel function. Then, for each
x € X and every € > 0, there exists a non-negative and bounded g,. € LC(X) such that
9(Y) < guc(y) for ally € X \ {2z} and M, ,g,(x) < M,,qg(x)+¢c if r > 0.

Proof. We prove the claim, while assuming that diam(X) = co. The case diam(X) < oo is
similar, and we omit the modifications. Fix x € X and € > 0. In the first step, we prove an
auxiliary statement for a Borel set £ C X. Namely, we will show that there exists an open
set U C X such that 1z < 1y in X \ {z} and

Mp,r(]-U — 1E)(ZL') <e€, ifr>0. (10)
To prove this auxiliary statement, for each m € Z, we write

Ap={ye X : 2" <d(x,y) < 2™},
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Observe that each y € X belongs to at most two annuli. We also have that p(A,,) > 0, since
X is connected and unbounded. Hence, if m € Z then by regularity of the measure p, there
is an open set U,, C A,, such that

&P

A,NE CUp, and p(Un \ E) = u(Un \ (A, NE)) < St

(Am). (1)
Define U = {J,,c7 Um- Then

E\{z}c |JAnnE)Cc |JU.=U. (12)

meZ meZ

As a consequence, we then have 1x(y) < 1y(y) for every y € X \ {z}. To prove (10), we
let » > 0 and let B(y,t) C X be a ball in X such that z € B(y,t) and 0 < ¢ < r. Then
1y — 15 = 1\ g almost everywhere, and therefore by (11) we get

][ 1y — 1p|Pdu = ][ 1p\g dp
B(y.t) B(y,t)

[logs (2t

1 )]
< S Lo e

m=—0oQ

o [logs (26)]

SDu(BGD) 2 M)

p
DY pu(B(y,1)) 1(B(y,2t))
By raising this estimate to power % and then taking supremum over all balls B(y, t) as above,
we obtain inequality (10).
We now turn to the proof of the actual lemma. Let g = Zle a;jlg, be such that a; > 0 and

E; C X is a Borel set for each j = 1,..., k. By the auxiliary statement, for each j =1,... k,
there exists a non-negative and bounded g, . ; € LC(X) such that 15, < g,.;in X\ {z} and

Mo (Goej = 1p,) () < ——— (13)

kmax; a;

Now we define g, . = Ele @jGsej- Then g < g,.in X\ {z}. Moreover, by the subadditivity
and positive homogeneity of the maximal function, and inequalities (13), we have

My Goe(2) = Mpr(9 + goe — 9)(2)
< Myr9(2) + My (9e — 9)()
k
< M,9(x) + Z a;Mp(9z,e — 15,)(2)
j=1

<M,.g9(z)+e¢.

This concludes the proof. 0

3. CHARACTERIZATION BY CURVES

We translate the pointwise p-Hardy inequality to an equivalent problem of accessibility.
This problem can be phrased as a problem of finding a single curve with a small integral.
The standing assumptions concerning the space X are stated in Section 2.
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Lemma 3.1. Let 1 < p < oco. Then an open set ) # Q C X satisfies a pointwise p-Hardy
inequality if, and only if, there are constants Cr > 0, v > Cqc and kK > 1 such that for each
non-negative and bounded g € LC(X) and every x € ), we have

inf /gds < Crd(z, Q%) (Mp ra.009(z)) - (14)

YEL(X)} ac Jy

Proof. Throughout this proof, we tacitly assume that curves are parametrized by arc length.
First suppose that an open set () # Q C X satisfies a pointwise p-Hardy inequality (4) with
constants Cy > 0 and xr > 1. Fix a non-negative and bounded function g € LC(X). Fix
x € Qand let § > 0.

Define a function u: X — [0, 00) by setting

u(y) = inf/ hds, ye X, (15)
gl

v

where h = g+ M, .rd,009(x) + J, which is a non-negative bounded Borel function, and the
infimum is taken over all curves v in X connecting y to €2°. Let us remark that these curves
are not subject to any distance conditions. Clearly, we have that v = 0 in Q°. Fix y,w € X
and consider any curve ¢ connecting y to w. We claim that

uly) - u(w)| < [ hs. (16)

From this it follows, in particular, that h is an upper gradient of u. Moreover, since X is
quasiconvex and h is bounded, it follows from (16) that u € Lip,(2).

In order to prove (16), we may assume that u(y) > u(w). Fix £ > 0 and let v be a curve
in X such that connects w to Q¢ and satisfies inequality

u(w)Z/hds—a.

Let o be the concatenation of o and . Then

u(y) — u(w)] = u(y) — u(w)

S/ hds—/hds+z—::/hds+€.
oy o' o

The desired inequality (16) follows by taking ¢ — 0.
Now, applying the assumed pointwise p-Hardy inequality (2.1) to the function u and to its
bounded upper gradient h yields

u(x) < Cud(x, Q) ( My rd@anh(r)) < oco.
Since u(z) > dd(x,Q°) > 0, by (15) there is a curve v in X connecting = to Q¢ such that
[ 95+ Mysargla) + ) len(r) = [ hds < 2u(2)

Y Y

< 2Cu d(z, Q) ( My wpd(z.00) M (T))
S QCH d(l‘, Qc) (2Mp7ﬁrd(x7ﬂc)g(l‘) + 5) .

The last inequality follows from the sublinearity of maximal function. We can now conclude
from (17) that len(vy) < 4Cy d(z, Q2°). By taking § — 0., we obtain from (17) that

/gds < 4Cu d(z, Q%) (M, rdz0n9()) -

N
Thus, inequality (14) holds with

Cr =4Cy, K = Rr, v > maX{CQc, 4CH} .

(17)
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For the converse implication, we assume that inequality (14) holds, for all non-negative
and bounded g € LC(X), and for all z € Q. We need to prove that () satisfies a pointwise
p-Hardy inequality. To this end, we let u € Lipy(£2) and let g be a bounded upper gradient
of u. We also fix x € Q). Since g is not necessarily lower semicontinuous, some approximation
is first needed so that we can get to apply (14) and thereby establish inequality (4).

Let (gn)nen be a pointwisely increasing sequence of non-negative simple Borel functions
such that limy_ .. gy = ¢ uniformly in X. Fix ¢ > 0. By the uniform convergence, there
exists N € N such that for all v € T'(X)} o. we have

/gds: /gNd8+/(g—gN)d8
Y Y v

< / gn ds + Sg{)(g(y) —gn(y))len(y)

< / gn ds +sup(g(y) — gn(y))vd(z, Q)

yeX

g/gNds—l—a.
”

Let gy s € LC(X) be the non-negative bounded approximant of gy given by Lemma 2.5.
By inequality (14) and Lemma 2.5, there exists vy € I'(X)} o. such that

/ 9Nz e ds S de(l‘, Qc) (Mp,md(x,ﬂc)gN,m,e(l‘)) +e

TN

S Crd(l‘, QC) (Mp,nd(x,QC)gN(x) + 6) + ¢
< Crd(l‘, Qc) (Mpﬁd(x’Qc)g(fL‘) + 5) +e€.

Without loss of generality, we may assume that yy(t) = z only if ¢ = 0. On the other
hand, by Lemma 2.5, we have gy < gy in X \ {z}. Inequality (18), with v = 7y, implies

that
/gdzsg/ gnds—+e
TN TN

< / INzeds+ €
YN

S Crd(l‘, Qc) (Mpﬁd(x’Qc)g(fL‘) + 6) + 2¢.
Since g is an upper gradient of u € Lip,(€2), we get
u(2)] = [u(yn(0)) = u(yn(len(yy)))]

< / gds < Crd(z,Q°) (./\/lpﬁd(m@c)g(:c) + 8) + 2¢,
YN

and letting ¢ — 0 gives the pointwise p-Hardy inequality (4) with Cy = Cr and k > 1. O

While seemingly technical, the task of infimizing in (14) is often reduced to constructing an
explicit curve, for which the upper bound holds. In particular, our proof for self-improvement
of pointwise Hardy inequalities is based on establishing the existence of such a single curve
for some exponent ¢ < p.

Next we define a convenient a-function that condenses the pointwise p-Hardy inequality, or
inequality (14) to be more specific, in a single function at the expense of abstraction. Indeed,
the following definition looks complicated at first sight, but for our purposes the quantity
oy 1s precisely the correct way to express the pointwise p-Hardy inequality.
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Definition 3.2. Let ) # Q C X be an open set. If 7 >0, k,p > 1 and x € Q, we write
o =19 € LO(X) | M, paz009(x) < 7 and g(y) € [0,1] for ally € X}.

Py, T
If also v > Cqc, then we write

ianGF(X); Qc f'y g ds
a, (v, K, T) :==sup sup ’

(19)
€N gegg’g’g d(l‘, Qc)

Concerning definition (19), the parameter v is related to the maximum length of the curves
7 that are used so that len(y) < vd(z,§2¢). The parameters x and 7 measure the non-locality
and size of the maximal function M, .4(2.00)9(2), respectively.

The fundamental connection between inequality (14) and the a-function is established in
the following lemma.

Lemma 3.3. Let ) # Q C X be an open set, and let k,p > 1 and v > Cqc. Let g € LC(X)
be such that g(y) € [0,1] for every y € Q. Then, for every x € Q, we have

inf /gds < d(z, V)0 (v, 5, (Mpraeong(z))) - (20)

'YeF(X);Qc ~
Proof. Fix g € LC(X) such that g(y) € [0,1] for all y € X. Let z € Q and write
T = Mp,nd(:v,flc)g(x) Z 0.

Then g € £, and hence
lanGF(X)V Qc f'y g dS 1nf’y€F(X)l’ ¢ f h dS
e < sup Y < a0V, K, T)
d(x, Q) hegrT d(z,Q°) P
Where the last step follows, since x € €). ]

In particular, from Lemma 3.3 we now obtain the following sufficient condition for the
pointwise p-Hardy inequality in terms of a 7-linear upped bound for the a-function.

Lemma 3.4. Let 1 < p < oo and let ) # Q C X be an open set. Suppose that there are
constants v > Cqc, kK > 1 and C, > 0 such that, for any 7 > 0, we have

ap oV, k,T) < Cot.
Then ) satisfies a pointwise p-Hardy inequality.
Proof. By Lemma 3.1, it suffices to find a constant Ct > 0 such that inequality (14) holds
for each non-negative bounded g € LC(X) and every x € 2 — the remaining constants v
and k are given in the assumptions of the present lemma. Fix such a function g and a point
x € Q). Since g is bounded and inequality (14) is invariant under multiplication of ¢ with a
strictly positive constant, we may further assume that g(y) € [0,1] for all y € X.

Then the desired estimate (14), with Cr = C,,, follows immediately from Lemma 3.3 and
the assumptions. O

The converse of Lemma 3.4 is also true, as we will see in Section 4. Therein the following
inequalities for the a-function become useful.

Lemma 3.5. Let ) # Q C X be an open set. Let 0 <7 < 7', k,p>1 and v > Cqc. Then
apov, k7)< apalv, K, ), apov, k7)<,

and, for every M > 1,
apa(v,k, MT) < May, o(v, K, T) .

Proof. These inequalities are clear from the definition (19). In this connection, it is important
to observe that ¢ is bounded by 1 and len(vy) < vd(z, Q°). O
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4. KEY THEOREM FOR SELF-IMPROVEMENT

In this section we formulate and prove our key Theorem 4.1. In the light of Lemma 3.4,
Theorem 4.1 implies self-improvement of pointwise p-Hardy inequalities; see Theorem 5.1.
This theorem also provides a converse of Lemma 3.4 for p > 1; see Theorem 5.3.

Lemmata 2.3 and 3.1 give us the proper tools for the proof of Theorem 4.1. We assume
that X supports a better p’-Poincaré inequality for some p’ < p. This assumption allows us
to focus on the new phenomena that arise especially in connection with the self-improvement
of pointwise p-Hardy inequalities.

Theorem 4.1. Let 1 < p' < p < oo. Assume that X supports a p'-Poincaré inequality. Let
) £ Q C X be an open set that satisfies a pointwise p-Hardy inequality. Then there exists an
exponent g € (p',p) and constants N > Cqc, K > 1 and C,, > 0 such that

ago(N, K,7) < Cyut (21)
whenever T > 0.

Proof. By Holder’s inequality, we can assume that max{1, p/2} < p’. This assumption allows
us to choose M below independent of p. This property, in turn, is beneficial in Remark 5.2,
where a quantitative analysis is performed. Since 2 satisfies a pointwise p-Hardy inequality,
by Lemma 3.1 it satisfies inequality (14) with constants Cr > 0, vp > Cqc and kp > 1. Also,
let Cy > 0, va > Cqc and kp > 1 be the constants from inequality (6) in Lemma 2.3, for
the exponent p’ < p. Without loss of generality, we may assume that kp = Ky =: kK and that
Ur = vp =: L.
It suffices to prove that there exists k € N, K, S € [1,00), N € (Cqc,00), M > 1 and
d € (0,1) such that, for each ¢ € (p/, p) and every 7 > 0, we have
aga(N,K,7) < ST+ 0 max (M_iq/paqvg(N, K,M'7)). (22)

i=1,...,

Indeed, from this inequality and Lemma 3.5, we get
ago(N,K,7) < ST+ 5Mk%aq7Q(N, K, ) for all ¢ € (p/,p) and 7 > 0.

In order to absorb the last term on the right to the left, we need d M #%% < 1. This can be
ensured by choosing ¢ € (p/, p) so close to p that
pln(;)
O<p—qg<-——~+.
P4 B m(an)

With this choice of ¢ we find for all 7 > 0 that

aga(N, K, 1) < (75 p_q) T =: CyoT.
1— M5
Then, this inequality holds also for 7 = 0, which is seen by using monotonicity property of
the a-function, see Lemma 3.5. Thus, the desired inequality (21) follows from (22). Hence,
we are left with proving inequality (22).
At this stage, we fix the auxiliary parameters

K=4x, N=3v, M=4, 5:2.
We also fix k € N so large that C}. ?:;’?15 < P, that is, k > (2?5*?01111)5)711. The last auxiliary
parameter is defined to be S = 1 + M*v 4+ 3CAM*. We also let ¢ € (p/,p) and 7 > 0. Now,
the overall strategy is as follows: we will construct, for any x € {2 and any g € S(f a0 @ Curve

v € I'(X)Xq. such that

/gds < S7d(x,) + 6 max (M_iQ/pozqu(N, K, M'7))d(z, Q). (23)
y

i=1,..,k
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Dividing both sides of this estimate by d(z, ), and then taking the supremum over x and
g as above, proves inequality (22).
Let us fix x € Q and g € Sqmﬂ For each i > 1, we write

i = {Z € | Mq,/id(m,ﬂc)g(z) > MiT}v
and define a bounded function h: X — [0,00) by setting

k
1 .
_ - iq/
_k‘E 1Eiqu-
i=1

Since E; D E; if j <7 and p/2 <p' < g < p, we have

In the final estimate, we also use the equation M = 4 to obtain the factor 2P. Observe that
1p, € LCy(Q) since E; is open, for each i = 1,... k. Hence, we have h € LCy(Q2) C LC(X).
By sublinearity and monotonicity of the maximal function, Lemma 2.4, and the assumption
that g € £& o> Where K = 4k, we obtain

k
(./\/lp,{d(xgc 2 Z M rd(z,00)1E; (x ))qu
=t (24)
2pD5 (Mq74ﬁd(x7ﬂc)g( )) iq 2pD5
S kp Z quTq M < kp

j=1
Then, by the choice of k and estimate (24), we obtain that
CFMp7Hd($7QC)h<.§U> < 5,

and therefore from Lemma 3.1 with exponent p we obtain a curve vy € I'(X) ., which is
parametrized by arc length, such that

k
1 .
/ - Y 1 M ds = / hds < §d(x,Q°), (25)
0 i=1

o0
and
len(vo) < vd(z, Q). (26)
Clearly, without loss of generality, we may also assume that ~,([0,len(~p))) C €.
By inequality (25), there exists ig € {1,...,k} such that

/ 1p, ds < SM0%d(z, Q). (27)
0
Let O = 7, (Ey,) and denote T = [0,len(vo)] \ O. By the lower semicontinuity of g and the
definition of E;, we have, for all t € T'\ {len(vo)},

g(n(t)) < Mq,ﬁd(r,ﬂc)g(%(t)) < Mot (28)

Since EZ0 is open in X, the set O is relatively open in [0, len(y)]. Observe that 0 ¢ O since
g e 5 o and K > k. Likewise len(vo) € O since yo(len(vp)) € ©2°. There are now essentially
two dlfferent cases to be handled; the remaining cases of corresponding finite unions are
treated in a similar way. Namely, the two cases are:

O = Jlai,b;) or O =(ap,bo) U J(aib). (29)

i€eN 1€N
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The second case takes place, if there exists 0 < to < len(yy) such that vy(t) € E;, for
every to < t < len(v). In both cases the intervals (called ‘gaps’) are pairwise disjoint and
a; < b; < len(~) for each i € N, and in the second case ay < by = len(~p). Moreover, in
both cases (@), v0(b;) € Q\ E;, for each i € N, and in the second case yo(ap) € Q2 \ Ej,.
We remark that in the second case vy(by) & 2\ E;,, and this special property of the ‘final
gap’ (ag, by) distinguishes it from the remaining gaps. Write d; := d(vo(a;), v0(b;)) for each i.
Then, by inequality (27), we have

Zd" < Z len(Yolja,,6:)) = Z/ | 1p, ds < / 1p, ds < SM—0Pd(z,Q°) . (30)
i i 7 0lag,b]

70

7

There are now two cases to be treated in a case study.
Let us first consider the case O = J, y(a;,b;). Fix i € N. Since yo(a;),70(b;) € Q\ E;,,
there holds

1€N

Mqﬁd(mﬂc)g(%(ai)) < MPr and Mqﬁd(mﬂc)g(%(bi)) < Mot (31)

Lemma 2.3 applied to the p’-Poincaré inequality, and to the two points yo(a;) and ~o(b;),
provides us with a curve v': [a;, b;] — X such that v*(a;) = vo(a;), v'(b;) = Yo(b;),

len(v") < vd(yo(a:), 70(b:)) = vd; (32)

and, by using also the fact that p’ < ¢ and Holder’s inequality,

/ gds
,Yi

< Cad(v0(as),70(5:)) (Marato(an o) 9(10(a:)) + Mo rdtoan o) 9(70(bi)) (33)
+ ?Ad(%(ai)a 70(bi))Mm7; .

~~

>0

We observe that xd(vo(a;), v0(bi)) < kd(x,°), which follows from (30) since
d(yo(as),y0(b) = d; < di < d(x, Q).
This estimate together with (31) and (33) yields

/ gds < 3Cad(r0las), vo(bi) MioT = 3CAMrd; (34)

Y

Let us now define a curve v: [0,len(vyy)] — X by setting y(t) = vo(t) if t € T and y(t) = ~(t)
if t € (a;,b;) for some i € N that is uniquely determined by t. Then, by the length estimates
(26) and (32), followed by inequality (30), we obtain that

len(y) < len(yo) + > _len(y")
ieN
<wd(z, Q) +v Y di < 2wd(z, Q) < Nd(z, Q).
ieN
From this it follows that v € I'(X) iV oc; we remark that the required continuity and connecting
properties of v are straightforward establish, and we omit the details. Also, by inequalities
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(26), (28), (30) and (34), we have

/gds-/ g(olt dt+Z/gds

< Mrvd(z,Q°) + 3CA MOTs M~ 0P d(z, Q)
< (M™v + 3CA M™)7d(z,Q°)
< Std(z,Q°) .
In the present case, we have now constructed a curve 7 such that inequality (23) holds, even
without the absorption term. Hence, we are done in the first case of (29).
Next we consider the slightly more complicated case O = (ag, by) U ;o (@i, b;), in which

there is also a final gap (ap,by) such that by = len(v) and 7o(by) € Q. As in the previous
case, for each ¢ € N, we can first construct curves v": [a;, b;] — X such that

len(~") < wd(yo(a:), (b)) = vd; (35)
and

/ gds < 3Cad(vo(a;), vo(b;)) M1 = 3CAM™7d; . (36)
v

For i = 0 we have to be more careful, since vo(by) & 2\ E;,. We now proceed as follows. By
using (30) and the equality K0 = k, we first observe that

Kd(rolao), ) < Kd(ro(ao), v0(bo)) = Kdo < Kd(z, ) < rd(z, ).
On the other hand, we still have that yo(ag) € Q\ E;,, and thus
M kd(yo(a)2)9(V0(a0)) < Mg raeog(vo(ag)) < M7
From this it follows that ¢ € grMor . By definition (19) of the function o, q(N, K, M),

4,70(a0),2
we obtain a curve v°: [ag, by] — X connecting vo(ag) € © to Q¢ such that

len(~°) < Nd(yo(ao), 2°) < Nd(y(ao),v(bo)) = Ndg (37)

and

/ gds < d(%(QO)aQC)O‘qﬂ(Na K, MiOT) +Td({L',QC)
" =0 (38)

< doargo(N, K, M"7) + 7d(z, ).

Now we define v as in the first case but using also the final gap (aq, by) by setting v(t) = +°(t)
for every t € (ag, bo]. Then by (26), (30), (37), and our choice of N and §, we obtain

len(v) <len(vo) + len(~°) + Z len(y
1€N

< (v +IN +v)d(xz,Q°) < Nd(z,9Q°) .

Thus, we find that v € I'(X)q.. Finally, by inequalities (26), (28), (30), (36), and (38) we
have

fygds:/Tg(yo(t))dt+2//igds+/{ogds

< M 7vd(z,Q°) + 3CA M 7d(x,Q°) + docrg o N, K, M7) + 7d(z, Q)
< S7d(z, Q) + SM~°Pa, o(N, K, M 7)d(x, Q).

Recall that ig € {1,...,k}. Hence, the desired estimate (23) for v follows and thus the proof
is complete. O
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5. MAIN RESULTS

As a consequence of Theorem 4.1 and Lemma 3.4, we obtain the following theorem. It is
the main result of the present paper.

Theorem 5.1. Let 1 < p' < p < oo. Assume that X supports a p'-Poincaré inequality (5).
Let ) #£ Q C X be an open set that satisfies a pointwise p-Hardy inequality (4). Then there
exists an exponent q € (p',p) such that Q) satisfies a pointwise q-Hardy inequality.

Remark 5.2. The conclusion of Theorem 5.1 reads as follows: there exists ¢ € (p/,p) such
that () satisfies a pointwise ¢-Hardy inequality. We can establish a more quantitative result.
Indeed, by examining the proof of Theorem 4.1, we see that it runs through if p, p’ and ¢
satisfy the following inequalities

max{1,p/2} <p' <qg<p and SMMF <1,

where M =4, § = i and N > k > (2p5_pC§D5)P_11. Here Cr > 0 is the constant appearing
in inequality (14). This inequality characterizes the pointwise p-Hardy inequality. Thus, we
can choose

k= [(8Cr) 1 D71 417 > (8Cr)71 Do-1 = (26 PCRD)iT .

Then M5 <1 e 4% <4 & p—q < £. On the other hand, by examining the proof
of Lemma 3.1, we have Cr = 4Cy, where Cy > 0 is the constant in the assumed pointwise
p-Hardy inequality (4). All in all, we find that if the assumptions of Theorem 5.1 hold,

p
[(32Cy)7 1D T +17
then () satisfies a pointwise ¢g-Hardy inequality. Rather similar quantitative bounds for the
self-improvement of p-Poincaré inequalities can be found in [4].

max{1l,p/2} <p' <qg<p and p—q<

Theorem 5.3. Let 1 < p/ < p < oo. Assume that X supports a p'-Poincaré inequality. Let
) £ Q C X be an open set. Then the following conditions are equivalent:

(A) The open set Q) satisfies a pointwise p-Hardy inequality;

(B) There are constants v > Cqc, & > 1 and C,, > 0 such that, for any T > 0, we have

ap oV, k,T) < Cot.

(C) There are constants Cr > 0, v > Cqc and k > 1 such that for each non-negative and
bounded g € LCy(Q2) and every x € 2, we have

inf /gdS < Cp d(ﬂ?, Qc) (Mp7ﬁd($7gc)g($)) .

YEL(X)Y qe J~

Proof. The implication from (A) to (B) follows from Theorem 4.1 and the pointwise estimate
ap0 < a4q that trivially is valid if p > ¢. The converse follows from Theorem 3.4. The
implication from (A) to (C) is a consequence of Lemma 3.1. On the other hand, by inspecting
the proof of Theorem 4.1, we find that condition (C) implies (A). In particular, the test
function h that is constructed in the proof actually belongs to LCy(£2). U

Remark 5.4. By combining Theorem 5.1 and Theorem 5.3 one obtains self-improvement of
further inequalities (B) and (C) in Theorem 5.3; these inequalities are both equivalent with
the pointwise p-Hardy inequality. We remark that inequality (C) differs from the character-
izing condition appearing in Lemma 3.1 in that the test functions g in (C) are required to
vanish outside §2. The self-improvement results for the conditions (B) and (C) are naturally
also subject to a better p’-Poincaré inequality; we omit the explicit formulations.



14 S.ERIKSSON-BIQUE AND A.V. VAHAKANGAS

REFERENCES

[1] A. Bjorn and J. Bjorn. Nonlinear potential theory on metric spaces, volume 17 of EMS Tracts in Math-
ematics. European Mathematical Society (EMS), Ziirich, 2011.

[2] J. Bjorn, P. MacManus, and N. Shanmugalingam. Fat sets and pointwise boundary estimates for p-
harmonic functions in metric spaces. J. Anal. Math., 85:339-369, 2001.

[3] J. Cheeger. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal.,
9(3):428-517, 1999.

[4] S. Eriksson-Bique. Alternative proof of Keith-Zhong self-improvement and connectivity.
arXiv:1610.02129, 2016. Accepted to Ann. Acad. Sci. Fenn. Math.

[5] G. B. Folland. Real analysis: Modern techniques and their applications. Pure and Applied Mathematics
(New York). John Wiley & Sons, Inc., New York, 1984.

[6] P. Hajlasz. Pointwise Hardy inequalities. Proc. Amer. Math. Soc., 127(2):417-423, 1999.

[7] J. Heinonen, T. Kilpeldinen, and O. Martio. Nonlinear potential theory of degenerate elliptic equations.
Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1993.

[8] S. Keith and X. Zhong. The Poincaré inequality is an open ended condition. Ann. of Math. (2),
167(2):575-599, 2008.

[9] J. Kinnunen and R. Korte. Characterizations for the Hardy inequality. In Around the research of Viadimir
Maz’ya. I, volume 11 of Int. Math. Ser. (N. Y.), pages 239-254. Springer, New York, 2010.

[10] J. Kinnunen and O. Martio. Hardy’s inequalities for Sobolev functions. Math. Res. Lett., 4(4):489-500,
1997.

[11] R. Korte, J. Lehrbéck, and H. Tuominen. The equivalence between pointwise Hardy inequalities and
uniform fatness. Math. Ann., 351(3):711-731, 2011.

[12] P. Koskela and X. Zhong. Hardy’s inequality and the boundary size. Proc. Amer. Math. Soc.,
131(4):1151-1158 (electronic), 2003.

[13] J. Lehrbéck, H. Tuominen, and A. V. Vihdkangas. Self-improvement of uniform fatness revisited. Math.
Ann., 368(3-4):1439-1464, 2017.

[14] A. K. Lerner and C. Pérez. A new characterization of the Muckenhoupt A, weights through an extension
of the Lorentz-Shimogaki theorem. Indiana Univ. Math. J., 56(6):2697-2722, 2007.

[15] J. L. Lewis. Uniformly fat sets. Trans. Amer. Math. Soc., 308(1):177-196, 1988.

[16] V. Maz’ya. Sobolev spaces with applications to elliptic partial differential equations, volume 342 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer, Heidelberg, augmented edition, 2011.

[17] P. Mikkonen. On the Wolff potential and quasilinear elliptic equations involving measures. Ann. Acad.
Sci. Fenn. Math. Diss., (104):71, 1996.

(S.E.-B.) DEPARTMENT OF MATHEMATICS, UCLA, 520 PorTOoLA PLAZA, LOS ANGELES CA 90095,
USA
E-mail address: syerikss@math.ucla.edu

(A.V.V.) UNIVERSITY OF JYVASKYLA, DEPARTMENT OF MATHEMATICS AND STATISTICS, P.O. Box 35,
FI-40014 UNIVERSITY OF JYVASKYLA, FINLAND
E-mail address: antti.vahakangas@iki.fi



	1. Introduction
	2. Notation and auxiliary results
	3. Characterization by curves
	4. Key theorem for self-improvement
	5. Main results
	References

