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Abstract

Interactive reinforcement learning (IRL) agents use hu-
man feedback or instruction to help them learn in com-
plex environments. Often, this feedback comes in the
form of a discrete signal that’s either positive or neg-
ative. While informative, this information can be diffi-
cult to generalize on its own. In this work, we explore
how natural language advice can be used to provide a
richer feedback signal to a reinforcement learning agent
by extending policy shaping, a well-known IRL tech-
nique. Usually policy shaping employs a human feed-
back policy to help an agent to learn more about how
to achieve its goal. In our case, we replace this human
feedback policy with policy generated based on natu-
ral language advice. We aim to inspect if the generated
natural language reasoning provides support to a deep
RL agent to decide its actions successfully in any given
environment. So, we design our model with three net-
works: first one is the experience driven, next is the ad-
vice generator and third one is the advice driven. While
the experience driven RL agent chooses its actions be-
ing influenced by the environmental reward, the advice
driven neural network with generated feedback by the
advice generator for any new state selects its actions to
assist the RL agent to better policy shaping.

Introduction
Reinforcement learning (RL) is a machine learning approach
that teaches agents to exhibit behaviors that maximize a nu-
meric reward signal through trial-and-error. RL has proven
that it can train agents in complex environments with un-
known information. There are situations, however, where
RL agents struggle to learn. For example, it is well known
that environments with sparse reward signals can prove dif-
ficult for classic RL agents. In these situations, some re-
searchers have sought to augment classic RL approaches
with additional human knowledge in the way of direct feed-
back or instruction. These approaches, called interactive re-
inforcement learning (IRL) techniques, utilize this human
knowledge to better enable agents to learn in especially com-
plex environments. Typically, humans provide this knowl-
edge by either providing demonstrations of positive behav-
ior or by providing numeric feedback on the quality of the
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actions taken by the agent during training. These, however,
can be difficult for humans to provide in a way that is useful
to the RL agent, especially when provided by teachers with
little or no machine learning or artificial intelligence exper-
tise.

To address this limitation of IRL, we explore the possi-
bility of using natural human advice as a means to provide
feedback to an IRL system. Specifically, our approach in-
volves using this advice to train a computational advice gen-
erator which the agent can then use to determine the qual-
ity of potential future actions. This will enable the agent to
receive targeted feedback commenting on the quality of ac-
tions or suggestions for future actions to take while allow-
ing humans to provide feedback in a natural way. Our work
extends previous work performed by Harrison et al. (Harri-
son, Ehsan, and Riedl 2018) in which they show that nat-
ural language can be used to help simple agents general-
ize knowledge to unseen environments. However, their ap-
proach utilizes highly structured language that was gener-
ated using a synthetic grammar, and they limited their study
to grid world environments. In this work, we present a sys-
tem for Automated Advice Aided Policy Shaping, or A3PS,
an end-to-end system for training agents in complex envi-
ronments that combines deep reinforcement learning tech-
niques with generated advice trained on human advice given
in natural language. This is done by modifying the policy
shaping algorithm, an IRL algorithm that learns from hu-
man critique (Griffith et al. 2013b).

To evaluate this system, we explore its effectiveness us-
ing the arcade game Frogger. In contrast to the work by
Harrison et al., however, we evaluate our approach using a
Frogger environment that utilizes a pixel state environment
rather than a simpler grid-based one. We compare our ap-
proach against state-of-the-art RL baselines and show that
the inclusion of natural language can significantly enhance
learning even when rewards are sparse.

Related Works
The goal of IRL is to use human knowledge to help an
autonomous agent learn in uncertain environments. One
way that this can be done is by having a human teacher
directly specify the reward function for an agent in var-
ious ways (Isbell et al. 2001; Hyeong Soo Chang 2006;
Tenorio-González, Morales, and Villaseñor-Pineda 2010;



Knox and Stone 2008; Thomaz and Breazeal 2006). While
these methods have proven effective, specifying a reward
function directly can be difficult for humans as often it is
unclear how reward signals directly translate into behaviors.

To alleviate this, researchers developed methods for using
human feedback to augment environmental reward. These
approaches would use machine learning or deep learning
methods to merge various forms of human feedback with
environmental reward in a way that often balances between
the two (Knox and Stone 2010; 2012; Arakawa et al. 2018).
Ultimately, however, the goal of these approaches is to use
human feedback to help an agent learn to maximize environ-
mental reward.

These approaches still have limitations as they do not take
into account the fact that human feedback signals are often
inconsistent. One explanation for this is that humans have
their own policy for providing said feedback. One way to
address this limitation is to use human demonstrations of
positive behavior to train an autonomous agent (Ng and Rus-
sell 2000; Abbeel and Ng 2004; Taylor, Suay, and Chernova
2011; Suay et al. 2016). This enables the agent to see exam-
ples of desirable behavior and learn from them. This can be
problematic for humans as it can be difficult to specify what
types of demonstrations will best help an agent learn.

Another option is to attempt to model how a human
teacher provides feedback. This is the basis of the policy
shaping algorithm (Griffith et al. 2013a; Cederborg et al.
2015), which seeks to model the feedback policy of a hu-
man trainer and then combine it with a policy derived from
an agent’s experience in an effort to guide exploration. The
ultimate goal is still to train an agent that maximizes en-
vironmental reward, but this better enables it to understand
human feedback. While this method has proven effective in
practice, it is limited to working with discrete feedback. In
this work, we aim to extend it to better incorporate natural
language instructions.

As mentioned previously, our A3PS algorithm was in-
spired by the work of Harrison et al. (Harrison, Ehsan, and
Riedl 2018) in which they show that natural language can be
used to help guide IRL agents in unknown environments.
While they showed that their method was effective, their
work was limited in that the language that they investigated
was highly structured as it was generated by a synthetic
grammar. In addition, they limited their investigation to grid-
based environments. In this work, we explore how natural
language provided by humans can be used to improve learn-
ing in a complex environment that uses pixel information as
state.

Background
Reinforcement Learning
Reinforcement learning (RL) is a machine learning tech-
nique where an agent’s target is to solve a Markov Decision
Process (MDP) by interacting with an environment through
a trial and error process. A MDP can be expressed as a tu-
ple of < S,A, T,R, γ > where S and A are sets of possi-
ble states in an environment and actions an agent can take
respectively. T describes how actions transition the agent

from one state to another. R is a numeric reward function
that describes the quality of a state. γ is known as the dis-
count factor which determines how much emphasis an agent
places on short-term versus long-term rewards. The goal of
an agent in a MDP is to learn a policy π that specifies the
action that should be taken in each state that maximizes ex-
pected long-term reward.

Proximal Policy Optimization
Our A3PS algorithm builds on Proximal Policy Optimiza-
tion (PPO) (Schulman et al. 2017). PPO formulates vanilla
policy gradient in a way that provides more stable yet re-
liable action probabilities for a RL agent. Instead of using
log probability to define the action’s impact on the agent’s
current policy, importance of the action from current policy
over the previous policy’s action is measured (equation 1).
rt(θ) differentiates between the old policy πθold(at|st) and
current policy πθ(at|st). Then clipping is done on the es-
timated advantage function Ât to avoid choosing the most
expected actions for current policy (equation 2).

rt(θ) =
πθ(at|st)
πθold(at|st)

(1)

LClip(θ) = Êt[min(it(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (2)

Policy Shaping
The idea behind policy shaping is first introduced by Grif-
fith et al. (Griffith et al. 2013b; Cederborg et al. 2015) where
both rewards and a numeric human feedback signal are
combined to ultimately determine the agent’s policy. Policy
shaping does this by modeling the human’s feedback policy
as a probability distribution over potential actions. By mod-
eling the human feedback policy in this way, it is possible
to merge it with the agent’s action policy. This mixed pol-
icy, thus, takes into account elements of both environmental
reward and human feedback. In our work, we are employ-
ing a variant of policy shaping. Instead of human involve-
ment, the human’s feedback policy is determined through
natural language advice by an agent rather than a numeric
feedback signal. There are two primary advantages to this
technique. The first of these is that language is a more natu-
ral way for humans to provide guidance. The second is that
language should help the agent generalize this advice over
many states.

Methods
In this paper, we propose a variant policy shaping method,
Automated Advice Aided Policy Shaping (A3PS) (see Fig-
ure 1). By combining human advice with RL, our method
should better enable agents to learn in complex environ-
ments and environments with sparse rewards. Our proposed
network A3PS is composed of three main modules: the Ex-
perience Driven Agent (EDA), the Advice Generator, and
the Advice Driven Agent (ADA). The EDA is a Reinforce-
ment learning agent that uses PPO to learn a distribution
over future actions that maximizes expected future rewards.



Figure 1: Architecture of Automated Advice Aided Policy Shaping (A3PS)

Figure 2: Network architecture of Experience Driven RL
Agent

Thus, the EDA encapsulates knowledge learned through ex-
perience and is primarily driven by environmental reward.
The ADA is a multi-modal deep neural network that uses
pixel-based game state and advice texts as inputs from the
pretrained advice generator and is responsible for producing
the action score vector. The action score vector is meant to
represent the utility of actions based on human advice. The
output of these modules are then combined to produce a final
distribution that combines the knowledge gained from both
human advice and the agent’s own experience. This is then
used to guide an agent during exploration in RL. We discuss
each of these modules in greater detail below.

Experience Driven RL Agent (EDA)
The Experience Driven Agent (EDA) is a reinforcement
learning agent implemented using the Proximal Policy Op-
timization (PPO) algorithm. The network architecture of the
EDA is shown in Figure 2. At every time step, it takes
two inputs: 1) Four consecutive frames of the environment
(St1, ..St4) and 2) A vector Sg representing the status of
completion of all the intermediate and final goals in the envi-
ronment. We take 4 consecutive frames, so that the network
can better capture the motion and direction of the environ-
ment objects. Each frame of input is passed through a Con-
volutional Neural Network that encodes the image frame to
an embedding vector labeled as emb in Figure 2. The goal
state vector Sg keeps the agent updated about its completed
goals and remaining goals. For each iteration, whenever a
goal position is explored by the PPO agent, flag for the goal
is set to 1. This information encourages the agent to remain

task oriented in situations where subgoals may be repeat-
able.

The Actor-Critic model of EDA uses two deep neural net-
works: An Actor network gives action distribution from state
and A Critic network tries to estimate the value for state-
action combination. In our case, the state is composed of
embedding vectors emb1..emb4. The four embedding vec-
tors are sent to a LSTM (Hochreiter and Schmidhuber 1997)
iteratively in both Actor and Critic networks. The final out-
put of the LSTM is concatenated with the goal state vector
Sg before sending it to a fully connected(FC) layer. The FC
layer of Actor model populates action probabilities which
assist the calculation of action ratio rt(θ) (equation 1) and
the Critic model generates a value which takes part in esti-
mating the advantage function Ât of PPO algorithm. Later
PPO with clipped objective is applied to the estimated Ât
to avoid drastically changing the policy. Equation 2 refers
to the mathematical representation of the clipping process.
In each iteration, this module generates action distribution
vector Aexp as outcome.

Advice Generator
One of the issues present in (Harrison, Ehsan, and Riedl
2018) is that it was difficult to determine which advice has
to be applied to a state at any given time. In our method, we
address this limitation by using the advice generator. The
Advice Generator module is a deep neural network which
accepts the game state(current frame) as input and generates
advice regarding the state. As the task is similar to image
captioning, we adopt the image captioning model utilized
in (Xu et al. 2015) to implement the Advice generator. Our
advice generator is trained using a paired dataset of environ-
ment states and human generated advice utterances.

Advice Driven Agent (ADA)
The ADA agent utilizes the advice generated from the ad-
vice generator combined with state information to learn
an action distribution based on human feedback. Figure
3 shows how we design this agent. In this work, we use
Resnet-101 module to extracts the features from each state



Figure 3: Network architecture of Advice Driven Agent

frame. Pretrained GloVe embeddings (Pennington, Socher,
and Manning 2014) are used to convert the text generated by
the advice generator into vector representations. From these
embedded words, LSTM cells capture advice context infor-
mation in vector form. Then these two vectors of Resnet and
LSTM features are concatenated and advanced through mul-
tiple linear layers and ReLu activation layers to gather the
decoded action scores Aadv of the ADA module.

Automated Advice Aided Policy Shaping (A3PS)
Figure 1 shows the overall architecture of A3PS. As you can
see in the figure, environmental state is used as an input to
all three modules. These inputs are then processed via their
respective networks to produce the action distributions Aexp
and Aadv which we have already discussed in the previous
segments of this section. From the two predicted action dis-
tributions, the final action distribution is calculated using the
equation 3. Here α is a weight variable to control how much
weight will be given to the results of individual network. We
decay the value of α over the training iterations. That means
at starting point, the pretrained ADA network gets more im-
portance with higher α value, but as the agent keeps explor-
ing, (1 − α) gets higher, hence EDA gains priority over the
ADA module. Thus, the agent will prioritize human advice
early during exploration and then rely on its own experience
later on.

a = softmax(α ∗Aadv + (1− α) ∗Aexp) (3)

At each time step, the agent chooses the most probable
action according to this combined action distribution to exe-
cute. A note to mention, during training the A3PS architec-
ture, pretrained networks for both the advice generator and
ADA are utilized, so weights of the parameters of these two
modules remain unchanged. Only the EDA is updated dur-
ing RL as it is the only module that relies on environmental
reward.

Experimental Setup
Game Environment
We test the A3PS system in the arcade game, Frogger (see
Figure 4). We chose Frogger because the game is easy
enough for humans to provide high quality feedback while
still being somewhat difficult for a RL agent to solve. In
Frogger, an agent must move from the bottom of the level
to the top of the level while dodging car obstacles that ap-
proach from the left and right of the screen. In total, there
are eight rows in the environment before the agent reaches

Figure 4: Frogger game state with generated advice “moved
left get better position next move forward get around tun-
nel”.

Figure 5: Average episode reward for EDA and A3PS in
dense reward setting (smoothed with 100 episodes moving
window).

the goal. The agent can move left, right, up, down, or choose
to take no action at any time step. Also included in the en-
vironment is a tunnel in the center row that blocks the agent
from moving through it. Cars, however, approaching on that
row can move through it. For training purpose for all mod-
ules, the environmental state consists of the RGB values for
100x100 resized images of the game environment.

Reward Function

We assign the highest reward of +400 if the agent reaches
the goal in the game environment. The agent also receives
rewards if it reaches certain rows for the first time. For ex-
ample, once the agent reaches the second row in the environ-
ment for the first time, the agent will receive +10 reward. In
addition, as there is an obstacle in level 5, a reward of +100
has given if the agent is able to reach the level by success-
fully overcoming the tunnel. In addition, whenever an agent
goes one level up regardless of whether the agent has per-
formed same action before, +1 is rewarded.

Penalties are given to the agent for taking the wait action.
If the agent waits in the starting row, −5 reward is given to
the agent. The wait action results in −1 reward otherwise.
If the agent moves off the side of the environment or the
tunnel, then −2 is rewarded. If the agent is hit by a car, the
agent receives −20 reward and the episode ends.



Figure 6: Average episode reward for EDA and A3PS in
sparse reward setting (smoothed with 100 episodes moving
window).

Dataset
To train the A3PS agent, we require a corpus of human
advice describing actions to take in various game states.
In this paper, we utilize the dataset used in (Ehsan et al.
2019). This dataset contains examples of state/action in-
formation paired with natural language explanations about
why an action should be performed in a given state gath-
ered from users on Mechanical Turk. In total, the dataset
contains 1935 unique examples. To train the ADA, we split
this data into two parts using a ratio of 90 by 10. 90 percent
of the dataset contains 1741 examples and is used for train-
ing the advice related modules. The remaining 10 percent
is used for parameter tuning these models. Each piece of
human advice contained in this dataset is preprocessed be-
fore utilizing them in the training process. After discarding
the special characters from the natural language texts, the
NLTK-tokenizer is applied to each line of the texts. Then
stop words are removed before adding the texts in the vo-
cabulary dictionary. This removal task is done to make sure
that our advice driven agent only focuses on the necessary
elements of the natural language advice.

Network Parameters
Adam optimizer is used in all the networks as the optimiza-
tion algorithm. However, as learning rate, for the EDA, 1e−4

works best. Similarly, the ADA module and advice genera-
tor use learning rate of 1e−3 and 4e−4 respectively. For all
networks, the LSTM size is fixed to 512. And the value for
image embedding size for EDA network is set to 512. All
the experiments have been done using 2 Nvidia GTX 1080Ti
GPUs.

Evaluation & Discussion
In our experiments, we compare against the EDA network
with no access to language as a baseline. Thus, we are eval-
uating if our A3PS algorithm can utilize human advice to the
point where it can outperform a baseline RL agent. We com-
pare in the Frogger environment described earlier under two
conditions. The first of these uses a dense reward function
while the other uses a much more sparse reward function.

This will allow us to see if the presence of language can
make up for deficiencies in the environmental reward func-
tion to enable an agent to learn.

Experiment 1: Dense Reward
For this experiment, we have trained both standalone EDA
network and A3PS network for 10,500 episodes. Both of the
models utilize the reward function that has been discussed
in the Experimental Setup section. Also, the weight decay-
ing procedure takes place after each 2000 episodes from the
starting episode until around 6000 episodes and decay hap-
pens by 0.2 each time. As a result of this decay strategy, the
A3PS agent solely uses a policy derived from environmental
reward for the last 4500 episodes. Figure 5 depicts the visu-
alization of experiment 1. As can be seen from the figure, the
A3PS very quickly learns a decent policy and can quickly
begin optimizing that policy. This shows that the A3PS agent
is able to successfully interpret the advice from human train-
ers and synthesize it into useful policy information. On the
contrary, the baseline EDA model struggles to build a pol-
icy to reach the goal for the starting 3000 episodes. Though
the baseline model starts to learn from its experience which
is visible at around episode 4000, it still takes some time
before it matches the performance of the A3PS agent. This
shows how powerful natural language as a source of human
guidance can be. The agent in this situation was able to uti-
lize this human advice to make up for its lack of experience.
As time went on, the agent was able to refine this policy us-
ing its experience to learn an overall better policy.

Experiment 2: Sparse Reward
In this experiment, we investigate the learning performance
between the agents in the case of sparse or ill-defined reward
function. For this experiment, we define the reward function
differently than the first experiment. The agent will get a
positive reward (+400) only when it reaches the goal and a
negative -20 reward when it dies. No other rewards are given
or deducted from the agent. From Figure 6 we see that the
baseline agent EDA initially gets some negative rewards but
later it gets neither positive nor negative rewards. This im-
plies that the agent tries to explore further into the environ-
ment, but soon dies and receives the negative reward. This
causes the agent to prefer to take no action as receiving no
reward is preferable to the possibility of a negative reward.
This illustrates why environments with sparse rewards can
be difficult for RL agents.

In contrast, the A3PS agent is able to supplement this
sparse reward with a denser signal from the ADA mod-
ule. This encourages the agent to explore the environment
and discover positive environmental reward. After 6000
episodes, the A3PS agent does not take guidance from the
ADA module and chooses actions only based on its experi-
ence. As we see from Figure 6, still the agent can reach goal
with its learned policy. Though the agent does not get any
immediate rewards for its actions, automated guidance helps
it to stay on the direction and shape its policy to the optimal
convergence where it can take right policy after not being
guided by the ADA module as well. In contrast, in baseline
EDA network, without the guidance, the policy converges



into local optima and consequently agent does not explore
to reach the goal.

Conclusion
In this paper we present A3PS, an IRL algorithm that uti-
lizes natural language advice combined with environmental
reward to train agents in complex environments. By using
pixel based game states and associative advice texts, we have
shown its efficacy in the arcade game, Frogger. We evalu-
ated A3PS system against a baseline deep-RL method and
showed that A3PS outperforms it for both dense and sparse
reward functions, showing the effectiveness of our model
and natural language as a source of instruction for IRL meth-
ods.
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