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In this paper, we extend the diffusion maps algorithm on a family of heat kernels
that are either local (having exponential decay) or nonlocal (having polynomial
decay), arising in various applications. For example, these kernels have been used as
a regularizer in various supervised learning tasks for denoising images. Importantly,
these heat kernels give rise to operators that include (but are not restricted to) the
generators of the classical Laplacian associated to Brownian processes as well as
the fractional Laplacian associated with S-stable Lévy processes. For local kernels,
while the method is a version of the diffusion maps algorithm, we show that the
applications with non-Gaussian local heat kernels approximate temporally rescaled
Laplace-Beltrami operators. For the non-local heat kernels, we modify the diffusion
maps algorithm to estimate fractional Laplacian operators. Here, the graph distance
is used to approximate the geodesic distance with appropriate error bounds. While
this approximation becomes numerically expensive as the number of data points
increases, it produces an accurate operator estimation that is robust to the choice of
the kernel bandwidth parameter value. In contrast, the local kernels are numerically
more efficient but more sensitive to the choice of kernel bandwidth parameter
value. In an application to estimate non-smooth regression functions, we find that
using the nonlocal kernel as a regularizer produces a more robust and accurate
estimate than using local kernels. For manifolds with boundary, we find that the
proposed fractional diffusion maps framework implemented with non-local kernels
approximates the regional fractional Laplacian.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

An important idea in machine learning and nonparametric regression is the so-called “kernel trick” in

which a linear algorithm is extended to capture nonlinear features by replacing occurrences of the Euclidean

dot product with the evaluation of a kernel function on all pairs of data points. Classical statistical learning

theory analysis would suggest that these kernel methods suffer from the curse-of-dimensionality in terms
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of the ambient dimension of the data, however, when the data can be assumed to lie near a submanifold
of the data space, the curse-of-dimensionality can be reduced to the intrinsic dimension of the manifold
[1,2]. Rigorous interpretation of these methods and their assumptions (especially in the limit of large data)
requires formulating the kernel as a regularization term that should be understood in terms of intrinsic
norms and operators on the underlying manifold. This regularization is determined by the choice of the
kernel function, for example, the Gaussian function is connected to the heat kernel of the Laplace-Beltrami
operator on a compact Riemannian manifold [1] and naturally introduces an H! regularization [3]. Thus,
a fundamental question in this branch of machine learning is: What regularizations can we achieve with
kernel methods and which kernels are associated with which regularizations?

The primary goal of this manuscript is to expand the range of regularizations accessible through kernel
methods to include the very powerful fractional Laplacian regularizers [4-6] for supervised learning of non-
smooth functions. In the process, we are able to exhibit a fundamental dichotomy in the types of kernel
functions based on their rate of decay, using recent advances in the understanding of heat kernels on
manifolds [7]. This dichotomy helps delineates the range of regularizations accessible to kernel methods.
In particular, it was shown that in locally compact separable spaces, the so-called stochastically complete,
B-scale invariant heat kernels are either local (having exponential decay) or non-local (having polynomial
decay). The class of local kernels includes the Gaussian kernel which yields an estimate of the heat kernel on
the manifold with error bounds that depend on the curvature and its derivatives [8]. The Gaussian kernel
was also used in the diffusion maps algorithm [1] to estimate the Laplace-Beltrami operator, A, which is
the generator of Brownian motion on a manifold. On the other hand, the class of nonlocal kernels includes
the Poisson kernel which gives rise to the generator (—A)'/2 in R™. In fact, the class of heat kernels with
polynomial decay in [7] is associated with the fractional Laplacian (—A)?/2 for 8 € (0,2). In other words,
these nonlocal kernels generate the S-stable Lévy processes in R™ [9]. Every heat kernel on a manifold must
be of either local or non-local type, so for a kernel-based manifold learning approach to have a well-defined
limit the kernel used must converge to either a local or non-local heat kernel.

In this paper we will develop consistent estimators for the two classes of semigroup operators arising in
the dichotomy of [7] using only samples of data that lie on or near an embedded manifold where neither the
manifold nor the embedding function is explicitly known. The key difficulty is that since we do not have
explicit knowledge of the embedding (or, equivalently, the Riemannian metric) we cannot directly evaluate
the geodesic distance on the manifold. Consequently, we cannot directly evaluate either of the two classes of
heat kernels in [7], which are both defined as functions of the geodesic distance. We will show that in order
to have a consistent estimator of a heat kernel, the method used for approximating the geodesic distances
will differ based on whether the desired heat kernel is local or non-local.

For local kernels, we will show that geodesic distances do not need to be explicitly estimated. We show this
by generalizing the theory of [1], which showed that kernels with exponential decay localize the interactions
between points so that the ambient Euclidean distance is sufficiently close to the geodesic distance (up to an
error proportional to the geodesic distance squared). This result was used in the diffusion maps algorithm
to show that the Laplace-Beltrami operator on a manifold can be estimated by a weighted graph Laplacians
(where the graph is constructed by connecting data points sampled on an embedding of the manifold in
Euclidean space). If a data set is assumed to lie on or near an embedded manifold, the diffusion maps result
provides a rigorous foundation for so-called ‘kernel methods’ used for unsupervised learning algorithms and
dimensional reduction. In particular, it approximates the semigroup associated with the Laplace-Beltrami
operator with a discretization of an integral operator, defined with any kernel functions that decay to zero
exponentially as the distance between data points increases. It was shown in [10] that this class of so-called
“local kernels” allows one to estimate non-symmetric Kolmogorov operators defined with respect to the
Riemannian metric inherited by the manifold from the ambient space.

For non-local heat kernels, we cannot use the Euclidean distance of the embedded data to approximate
the geodesic distance since this approximation is only valid locally. In this case, we consider the graph
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distance as an estimator for the geodesic distance, which is the idea behind the Isomap algorithm [11,12].
Numerically, the graph distance will be computed using Dijkstra’s algorithm which finds the shortest path
between the training data points. Using the error estimate for the geodesic distance approximation that
was formulated in [12], we derive error bounds for nonlocal kernels and their associated semigroups and
generators. We should note that since we require graph distances between all pairs of points, Dijkstra’s
algorithm may be improved by Johnson’s algorithm which requires O(NN?log N) computations, where N is
the number of data points. Since local kernels do not require this step, this shows that local kernels have an
advantage in computational complexity. On the other hand, while polynomial kernels are sometimes used in
practice without estimating geodesic distances, our results show that these will not have well-defined heat
kernel limits without this additional step.

The remainder of this paper will be organized as follows: In Section 2, we will briefly review the relevant
results from [7] which serves as the foundation for this work. In Section 3, we derive the theory for estimating
the semigroup operators in [7] using data sampled from an embedded manifold. In Section 4, we provide a
detailed numerical algorithm including the necessary modifications for application with non-local kernels.
In Section 5, we provide numerical examples to support the theoretical results deduced in Section 3. In
addition, we also compare the local and non-local heat kernels as regularizers in a kernel ridge regression
application. In Section 6, we close the paper with a summary and outlook of open problems. In order to
help guide future research in this direction we will occasionally comment on considerations that may become
relevant to such generalizations.

2. Notation and preliminaries
2.1. Notation

We will denote the Euclidean norm by | - | and reserve || - || for function space norms. Throughout this
paper we will consider a compact C? Riemannian manifold M, isometrically embedded into a Euclidean
space by a C? function ¢ : M — R"™. Equivalently, given an arbitrary embedding, we may say that we are
interested in the Riemannian geometry, g, inherited from the embedding.

We will denote by dy(x,y) the geodesic distance which is identical to the intrinsic distance on a compact
manifold, M, given by the infimum over piecewise differentiable paths + : [0,1] — M between v(0) = = and

(1) =y

dy(o.9) = int [ /o0 (210, 9(0))
0

Since the embedding ¢ is continuous and M is compact, the ratio between the Euclidean distance in the
embedding space and the geodesic distance,

(@) = uy)]
dg(z,y) ’

is bounded away from zero. Moreover, when y is sufficiently close to z we have the following relationship

R(xvy) =

between the geodesic distance and the Euclidean distance in the embedding space.

Lemma 2.1 (Distance comparison). Let x,y € M with dy(x,y) less than the injectivity radius at x and let
t: M — R™ be an isometric embedding, then

|(y) — (@) = dg(z,y)* + O(dy(,5)"?), (2.1)

for any o > 0.



148 H. Antil et al. / Appl. Comput. Harmon. Anal. 54 (2021) 145-175

The proof of Lemma 2.1 is in Appendix A. Equation (2.1) will be the key to connecting certain integral
operators with kernels defined in the embedding space to intrinsic heat kernels. Finally, since the injectivity
radius on M is bounded away from zero, on all sufficiently small balls, we have dy(x,y) < c|(z) — ¢(y)]
since R(x,y) is bounded away from zero, where ¢ > 0 is a positive constant. Thus from (2.1), we have

|e(y) = (@)™ = dg(z, )" + O(le(y) — o(x)]*T?) (2.2)
for dy(z,y) sufficiently small.

2.2. Dichotomy in heat kernel

In this section we briefly summarize a powerful result of [7] which will form the cornerstone of this paper.
We should note that these results hold for locally compact separable metric spaces [7], however we will
restrict our attention to Riemannian manifolds (M, g) here. We first state the definition of a heat kernel
following [7].

Definition 2.2 (Heat kernel). A function & : [0,00) x M x M — [0,00) is called a heat kernel if for almost
every x,y € M and all s,t > 0 we have

(a) Positivity: k(t,z,y) > 0.

(b) Total mass inequality: nyM k(t,z,y) dvol < 1.

(¢) Symmetry: k(t,z,y) = k(t,y, x).

(d) Semi-group: k(s +t,z,y) = [, k(s, 7, 2)k(t, 2,y) dvol.
(e) Approximation of identity:

lim / k(t,z,y)f(y) dvol — f(z) =0, for f € L*(M,g).

t—0+
yeM L2(M,g)

A heat kernel gives rise to an associated semigroup
Kif@) = [ k(o)1) dvol (23)
yeM

and we say that k is stochastically complete if IC;1 = 1 for all ¢ > 0. The semigroup gives rise to a quadratic
form

and a generator £f = lim;_,o+ £ _ftf , provided that the limit holds in L?(M, g). We say that ¢ is regular if
there exists a set C of continuous functions with compact support (C.(M)) that are also in the domain, D(§),
of £ (in other words C C C.(M) N D(&)) such that C is dense both in C.(M) and D(&) under appropriate
norms (see [7]). The results developed in [7] connect a large class of heat kernels to generators of important
Markov processes. Namely, we only need to assume that our heat kernel has the following type of scale
invariance.

Definition 2.3 (8-Scale invariant). We say that a heat kernel is S-scale invariant if for almost every z,y € M
and every t > 0 it satisfies
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tj}ﬁ (Cl t(l/ﬁy)> < k(t,x,y) < ch <02 t(1/5y)> 2.0

where 3, ¢1, ca, C1, Co are positive constants and ® : [0,00) — [0, 00) is monotone decreasing.

Here, M is a d-dimensional manifold (the result in [7] also applies to fractional dimensional sets). Then
we have the following result [Theorem 4.1 of [7]].

Theorem 2.4 (Heat kernel dichotomy [7]). Let all balls, defined with metric dg in M, to be relatively compact
and k(t,x,y) be a stochastically complete heat kernel with B-scale invariant such that the associated quadratic
form is reqular. Then 8 < d+ 1 and either

(a) k is local, meaning 8 > 2 and (2.4) holds with ®(a) = exp (—aﬁ/_il) or
(b) k is non-local, meaning 0 < 8 < 2 and (2.4) holds with ®(a) = (1 + a)~(@+F),

We can now connect the g-scale invariant heat kernels to the intrinsic fractional Laplacian operators on a
compact manifold. Let A denote the intrinsic (negative semi-definite) Laplacian-Beltrami operator. Since M
is compact [13, Theorem 3.2.1], the eigenvalue problem —Ag; = \;¢; has countably many eigenvalues with
orthonormal eigenfunctions in L?(M). The eigenvalues fulfill 0 = A\; < Ao < A3 < ... with lim; o \; = 0.
Moreover, the eigenfunction ¢; corresponding to A; is a constant. Finally for any f € L?(M) we have
flz) =302 (f. ) r2(m) @i(2). For a closed manifold M, one can define the spectral fractional Laplacian
as:

Definition 2.5 (Fractional Laplacian on closed manifolds). Let M be a compact manifold without boundary.
The intrinsic fractional Laplacian operator (—A)# is the generator of the semigroup e~ *(=2)" with heat kernel

s(t,x,y) = Ze N i () (y)e A /G t,x,y)f(y) dvol

and the fractional Laplacian can be written as

(—A) f(2) = SN (F:60) 12 an 91(2)

=1

for f in the domain of (—A)®.

In R™ and on a flat torus, the spectral fractional Laplacian coincides with the integral definition (see
e.g. [14] or [15, Pg. 15]). For general compact manifolds without boundary, the fractional Laplacian can be
approximately represented in a Cauchy Principal Value integral form (see [16, Theorem 1.2 and Theorem 1.4]
for the exact error term of this representation). For equivalent definitions of the fractional Laplacian, some
of which generalize to non-compact manifolds see [17-25].

For compact manifolds, the standard (s = 1) heat kernel has the expansion (see for example [8])

d 2
G (t,9) = (amt)2exp (- 200 (14 0(0)
which agrees with the S-scale invariant kernel with 5 = 2, ¢; = ¢9, and C; = Cy (again up to a constant
term and rescaling time) in the limit as ¢ — 0. Furthermore, [26, Theorem 4.2] shows that for any compact
manifold and any 0 < s < 1, we have
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—(d+2s)
C1 (dg('r7y) +1) —|—O(t) S Gs(tax7y)

a7 \ /@)
—(d+2s)
C2 dg(l',y)
< a7 ( s T + O(1).

Setting 8 = 2s this result shows that for all 0 < § < 2 as ¢t — 0 the [-scale invariant kernel in Definition 2.3
with ¢; = ¢z and C7 = Cs recovers the heat kernel G/, associated to the fractional Laplacian (—A)8/2,

Finally, we should note that if C; # C5 then the operator obtained can be very different. For example,
in [10] they consider kernels of the form e~ (@=v) " A@)(==9) where the symmetric matrix A(x) varies as a
function of x. Notice that as long as the eigenvalues of A(z) are bounded away from zero and infinity for all
x, inequalities (2.4) (with 8 = 2) hold with C} and C5 given by infimum and supremum of the eigenvalues
respectively. However, in [10] these kernels are shown to change the differential operator that is estimated,
or (equivalently) they can be viewed as changing the Riemannian metric on the manifold M. The theory
of [10] is developed for manifolds without boundary, but the estimates can be extended to manifolds with
boundary by restricting to Neumann functions as in [1].

We now turn to the theoretical and practical implications of Theorem 2.4 for manifold learning applica-
tions.

3. Dichotomy in diffusion maps

The dichotomy in the heat kernel is also reflected in the method that can be used in order to obtain
an estimate of the heat kernel from embedded data. The key point is that given data sampled from an
embedding (M) C R™ we will only have direct access to the ambient Euclidean metric, rather than the
intrinsic metric required for the construction of the heat kernel in the previous section. In order to obtain
an intrinsic operator on the data, we will need to follow very different strategies based on which type of
operator we are approximating.

For local diffusions, we will be able to simply use a kernel-based on the Euclidean distance in the
embedding space, and asymptotically (as ¢ — 0) we will recover the intrinsic heat kernel. On the other hand,
for nonlocal processes we will have to explicitly estimate the intrinsic distance using Dijkstra’s algorithm
in order to obtain a consistent estimator of the intrinsic heat kernel. These different approaches will have
significant consequences for both computational efficiency and quality of results as we will show in Section 5.
We first consider local processes in section 3.1 and then turn to nonlocal processes in section 3.2.

3.1. a-Local kernels

In this section we consider the local processes and show that they are generated by a class of kernel
functions which are defined on the ambient space R™. The class of kernels will be called a-local.

Definition 3.1 («-Local kernels). Let h : [0,00) x M x M — [0,00) then we say that h is an a-local kernel
if @ > 1 and if for some isometric embedding ¢ : M — R"™ we have

_ L@ =) _ L@ =]
ro—1 T

cie < h(t,z,y) < coe” o

for some c1,co > 0, and for all z,y € M.

Notice that the a-local kernels are defined on the intrinsic manifold M but instead of being intrinsically
bounded above and below, they are bounded in an embedding space R™ in terms of the ambient metric | - |.
The reason for this is that although we are interested in an intrinsic kernel defined on the manifold, we
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assume that we only have access to data points which are in the Euclidean space R™ which is the image of
t. For example a typical kernel would be of the form,

h(t,z,y) = e M@/t (3.1)

The a-local kernels (denoted by h) should be clearly differentiated from the intrinsic heat kernels (denoted
by k) which have the form,

dg(z,y)

a T,y %
k(t,x,y) == /8o (F5572)" = gymasp e~ (U0780) " Z p-aig (%)

for 1+ 1 < a <2 where 8 = -2 and ®(a) = exp <—a%) as in Theorem. 2.4(a).

We call these kernels a-local because the exponential decay implies fast decay of the tails. Crucially, this
decay is so fast that if we integrate outside of ball of radius t% for any v > 0, then as ¢ — 0" the integral
outside this ball will decay to zero faster than any power of ¢.

Lemma 3.2 (Fast decay of exponential tails). Let ¢,y > 0 and o > 1 then

. _ [e3
hm+t£ / e " dz =0
t—0

|z|>t=

for every £ € R.

The proof of Lemma 3.2 is straightforward and is included in Appendix A for completeness. Next, we show
that for a-local kernels we can localize the integral operator to a neighborhood of « where |y — z| < tl=t/e,
We do this by showing that the integral outside that region decays faster than any polynomial in ¢.

Lemma 3.3 (Localization of a-local kernels). Let h(t,xz,y) be an a-local kernel for some a > 1. For any
x,y € M and any f € LP(M) where p € (1, 00] we have

lim ¢ / h(t, z,y) f(y) dvol = 0
t—0t
yeM,|u(y)—(z)|>t1—1/a—>

for each v > 0 and for any £ € R.

Lemma 3.3 follows directly from application of Holder’s inequality, the proof is included in Appendix A.
Now that we have localized the kernel, we can connect the Euclidean distance in the embedding space to
the intrinsic/geodesic distance using the exponential coordinates y = exp,(s).

Theorem 3.4 (a-Local heat kernels). Let h be an a-local kernel of Definition 3.1 for some 1+ 1/d < a < 2,
then

ct=d18 / (t,2.) F(y) dvol = K, f () (14 O(/%)), (3.2)
yeM
for some ¢ > 0 and all x € M. Here, f € L?>(M) where 3 = =25 so that 2 < B < d+ 1. The operator K;
denotes the semigroup of a stochastically complete, B-scale invariant local kernel of part (a) in Theorem 2.4
and M is a d-dimensional compact manifold.
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) —e(@) [
1=/« | which appears in the upper and lower bounds of an

Proof. We first consider the kernel function e
a-local kernel. Applying Lemma 3.3 we localize the integral and then apply (2.2) to rewrite the Euclidean
distance in terms of the geodesic distance so that for any v > 0 we have,

t(y)—e(z)

L(y)—e(z) ‘D‘ Y,
$57E f(y) dvol + O(t)

/ e "= f(y)dvol = / e
yeM YEM,
[e(z)—e(y)|<tt—1/a=v
dg(z,9)*+0(|e(z)—e(y)|*1?2)
= / TS f(y) dvol + O(t%)
yeEM,

L(xr)—1t o —_
\'(Tt)aL(l?/)\ <t—ve

- / e~ £ (y) (1 +0 <W>> dvol + O(t%)

yeEM,
\L(Eggi(ly)\a <t—o

dg(z,y)

= (1+0(t*2)) / e_(tl‘l/“)af(y) dvol

yeEM

where we use [c(z) — t(y)| < t'~/ to rewrite the error in terms of ¢, and we choose ¢ large enough that the
O(t>~2/*) term dominates. In the last step we return the integral to the whole manifold which also incurs
an error which is higher order than any polynomial in ¢.

For f = 227 and 1+ é < a < 2 recall that,

o o(e9) ) FoT
Kty a,y) = e P (E572)" = gpmarse(“07) ™

is a stochastically complete S-invariant local kernel for some ¢ > 0; this is the local kernel in part (a) of
Theorem 2.4. That is,

Kil(z) = /k(t,m,y) dvol =1,
M
which implies that,

ct=4/8 / e ) f(y)dv01:< / k(t,a:,y)f(y)dvol)(l+(’)(t2’2/‘1))

yeM yeEM
= Kif(z)(1+ O ~2/)).

ty)—e(x)
1-1/a

W) —e(=) |*

Since the a-local kernel h differs from its bound, e | 11/

, by constants, the proof is complete. 0O

Theorem 3.4 shows that we can use a-local kernels to estimate the semigroup of a stochastically complete,
B-scale invariant local kernel of part (a) in Theorem 2.4. Thus, Theorem 3.4 achieves the first part of our
goal of developing consistent estimators for the two classes of heat kernels. In a general metric measure
space the associated generator of K; will depend on the choice of § = =% as shown in [7].

a—1
It was shown in Theorem 2 of [1] that for f € C3(M) and € > 0,

Hofw) =7 [ w (M) F(y) dvol

yeM
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m
=mof(z) + ef(w(x)f(x) — Af(x)) +O(), (3.3)
for any exponentially decaying function ¥ : [0,00) — [0,00) where my = [p.¥(2)dz and my =

Jra zJQ‘IJ(z) dz are moments of W. Since the upper and lower bounds on an a-local kernel h can be written
as

t(y)—e(x)
11/

e

R (M

t2—2/a

where ¥(s) = e"5|a/2, setting € = t22/® we have,

/ W(t, 2, y) f(y) dvol = ¢/, f (x),

yeEM

vy)—e(z) |
=1/a |

where h(t,z,y) =€
Substituting the above equation into (3.2), we have,

Kef (2)(1+ O 7%*)) = et~ P f ()
= ot~ YBHA2C=2/ 09y ) f(2)
= thd(71+1/6+1/a)7_[t2_2/m f(x)
= C/thfz/af(x), (34)

the last line is obtained from the fact that the exponent é + % —1 =0, which can be realized from = ~%5.

Since ;1 =1 for all ¢t one can show that ¢ = 1/mg. From the asymptotic expansion in (3.3), we obtain,

Kof (2)(1+O(*72) = f(a) + tQ’Q/Q%(w(z)f(x) — Af(x)) + O3 7).

This means,

flx) = Kif(x)

- = Ot~ (3.5)

which diverges as t — 0 for a < 2. This is critical since it shows that certain kernels do not have well-
defined limits and so may be inappropriate for machine learning applications. Moreover, we cannot access
the generator of K; for a < 2 using the kernel h. When o = 2, K;f(z)(1 + O(t)) = 2 (see e.g. [8]).
In this case, (3.4) implies that the integral operator H; approximates the semigroup of Laplace-Beltrami
operator. The associated generator can be obtained using an appropriate algebraic manipulation. That is,
we recover the standard diffusion maps algorithm (following [1] we assume msy/mo = 2 which is equivalent

to Cl = CQ = 1/4),

f(@) — (Hel(2)) " Hef (@)
t

= Af(x) + O(t).

Note that dividing by #H:1(x) cancels the constant ¢ and also removes the w(z) term (see Section 4.2 for
details). However we should note that the expansion in (3.3) holds only in the interior of a manifold with
boundary or for functions f satisfying Neumann boundary conditions [1].

If we follow the same algebraic manipulation for the case of 1 +1/d < a < 2, we obtain a rescaled
Laplacian,
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f(a:) B (,thiz/a1(]5:6))—1Ht272/af($) _ tl_g/aAf(I) + O(t2(2_2/a)_1), (36)

where 1+d < 1—-2/a < 0 and the higher order term is 11+3dd <2(2—-2/a)—1<1)soast— 0 the term on
the right goes to infinity when a # 2. This is due to the fact that the walk dimension of any Riemannian
manifold is 8 = 2 [9] (notice that § = 2 when o« = 2) and when S # 2 we do not obtain a semi-group
on the manifold. We should note that for real-valued functions, f, the time-rescaled Laplacian in (3.6)
is associated with the Fokker-Planck-Kolmogorov type operator [27] associated to stochastic differential
equations driven by driftless constant coefficient fractional Brownian motions (fBM) with Hurst parameter
1-— 1+1/d < H < 1/2; see e.g., Theorem 4.1 of Ité formula for fBM [28] with arbitrary Hurst parameter
0<H<1

Furthermore, for finite ¢ we can still obtain an estimation of the intrinsic Laplacian (up to scalar multiple
depending on t) on the manifold using any value of a. In particular, if we divide by e rather than ¢ (as in

the diffusion maps algorithm) we find

f@) = (Hip-2/al(@) " Hipo/a f(2) _ f(@) = (Hpz-2/a1(2) " Hiz2/0 f(2)

€ t272/a

= Af(z) + OE~22) = Af(z) + O (%) .

We demonstrate this surprising result numerically in Section 5 where the spectrum estimated by the diffusion
maps algorithm will be independent of the choice of « for local kernels.

This result has important implications for potential generalizations to non-smooth metric-measure spaces
where the walk dimension will typically be unknown. It suggests that we can use an a-local kernel with
any value of 1 + 1/d < a < 2 to approximate the intrinsic Laplacian operator up to a scalar multiple.
In particular, if this fact holds beyond the context of manifolds it would allow estimation of the intrinsic
Laplacian without needing to know the walk dimension of the space.

3.2. Nonlocal kernels

The goal of this section is to consider a class of nonlocal kernel functions on the embedding space R™
that gives rise to a semi-group which is an infinitesimal generator of a nonlocal process on the manifold.
The class of kernels will be called nonlocal kernels.

Definition 3.5 (Nonlocal kernels). The kernel k : [0, 00) x M x M — [0, 00) in Definition 2.3 is called nonlocal
if ® is given by

D(s) = (1 + )~ (@A),

The kernel in Definition 3.5 is associated with stable-like processes [29]. In particular when 8 € (0, 2)
the heat kernel of the -stable processes in R? is included here. Notice that the generator of the -stable
process is given by the fractional Laplacian £ = (—A)B/ 2. Moreover, for z,y € R, the heat kernel on R¢
when g =1 is given by

d+1
- d+1
k(t,z,y) = (1 + = yl) with cq =T <%) JdtD/2,

which immediately fulfills (2.4).
In the case of local kernels, as discussed in the previous section, we are able to construct a localization
argument which leads to an approximation of the geodesic distance d, by the Euclidean distance | - |.
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However, this is no longer the case for nonlocal kernels as we do not have exponential decay at the tails. In
particular, Lemma 3.3 relies on the a-local kernel decaying faster than all polynomials, and for any nonlocal
kernel (with polynomial decay) this result will fail. In particular, for ¢ sufficiently small we have

tf / =P (1 + M‘>_d_ﬁ dvol

t1/8
e(y)—e(2)[>/B=~

_ gt / (1+]s])"7 ds + hot.
|s|>t—>

_ O(tuv(d%))

where v € (0,1) and s = (x — y)/t'/# and the Jacobian of the transformation is ¢%/# up to higher order
terms. So for ¢ < —y(d + ) the expression above diverges as t — 0. Since the tail integrals are large for
nonlocal kernels we cannot localize the integral to a small region around x the way we could for local kernels.
This localization was the key to avoiding explicit estimation of geodesic distances (since in a sufficiently
small region the geodesic distance becomes well approximated by the Euclidean distance in the embedding
space). For nonlocal kernels this is no longer the case and we need an explicit estimator of the geodesic
distance.

As a result we are confronted with a problem of estimation of the geodesic distance d. In order to address
this problem, we step back from the continuous integral operators that we have been analyzing and return
to our initial assumption that we are given data sampled on the manifold. Ultimately, we estimate the
continuous integral operator using these discrete data sets, so we only need to evaluate the kernel functions
on pairs of discrete data points. Thus, we only need an approach to estimate the geodesic distances between
all pairs of data points. This pairwise geodesic distance approximation is the same problem that motivated
the Isomap algorithm [11,12]. As in the Isomap algorithm, we will approximate the geodesic distance with
the graph distance which is accessible using data sampled on the manifold.

Specifically, given a finite set of data points {z;} in M and a graph G with vertices {x;}, we can
approximate the geodesic distance, dg4, by the so-called graph distance given by

de(z,y) == min (|e(zo) — e(z1)| + -+ + [(zp-1) = e(z)])

where the minimum over all paths P can be computed using Dijkstra’s algorithm without prior knowledge of
the manifold M. Here z,y € {x;} and P = (zo, ..., z,) varies over all paths along the edges of G connecting
T =xo toy = xp.

In the remainder of this section, we will use the error estimate of this approximation, which was derived
in [12], to determine the error bound in approximating the nonlocal kernels from Definition 3.5 and their
associated semigroup operators and generators. To give a complete discussion, we state the following relevant
definition.

Definition 3.6 (Minimum branch separation). Let ro = ro(M) denote the minimum radius of curvature of
M. Then the minimum branch separation sy = so(M) is defined to be the largest positive number such
that if [o(z) — ¢(y)| < so then dg(z,y) < 7rg, for z,y € M.

We note that since M is assumed to be compact and C? the curvature is bounded above so r¢ > 0 is well-
defined, and similarly the minimum branch separation is well defined since ¢ is C3. After these preparations
we are now ready to state the main result of [12, Main Theorem A].
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Theorem 3.7. Let M be a compact manifold embedded in the Fuclidean space R™ with minimum radius of
curvature ro and minimum branch separation so. Let {x;} be a finite set of data points in M and they
generate a graph G. Let 0 < €1,e9 < 1. Under the following assumptions

(a) Graph condition I. G contains all edges xy so that

()~ )] < Oy, {o),
2

where C(dg, {x;}) := maxzepm ming,, y dy (@i, ).
(b) Graph condition II. The edges xy in G fulfill

le(x) — o(y)] < (2/m)rov/24e1 < sp.

(¢) The manifold M is geodesically convez, i.e., any two points x,y € M are connected by a geodesic of
length dg(z,y).

Then for all x,y € {x;} we have:

(1 —e1)dy(w,y) < dg(z,y) < (1+e2)dy(z,y). (3.7)

Remark 3.8 (Geodesically convex). In R™ convex domains are geodesically convex, so are compact Rieman-
nian manifolds without boundary. In general a compact Riemannian manifold is geodesically convex if and
only if its boundary is convex.

We should also note that the number of data points required to fulfill the assumptions of Theorem 3.7
will depend strongly on the uniformity of the sampling density. We assume that the manifold is the set of
points with positive sampling density and that this set is compact and the density is smooth, which implies
that the density is bounded away from zero (since it obtains its lower bound on the compact set and is
always positive). The positive lower bound on the sampling density insures that for a sufficiently large data
set, the minimum distance between points can be made arbitrarily small with high probability. Of course,
a smaller lower bound (meaning less uniform sampling) will lead to higher data requirements.

Notice that by controlling the tolerances €1, e2 one can control how well dg approximates dg. For simplicity
of exposition, we let £ := min{e1,e2} in Theorem 3.7 and we obtain the following estimate

lda(2,y) — dg(2,y)| < edy(z,y). (3.8)

We further emphasize that the constant C'(dy, {x;}) measures how well the points {z;} cover M and Graph
condition I implies that such a covering should be fine enough. The Graph condition I when compared to
condition IT implies that the covering scale should be small enough in comparison to the scales implied by
the radius of curvature and branch separation.

Next we will exploit the result of Theorem 3.7 to approximate the nonlocal kernels in Definition 3.5.

Theorem 3.9 (Approximation of nonlocal kernel). Let the assumptions of Theorem 3.7 hold and set 0 < € :=
min{ey,es} < 1. Then for every x,y € {z;} and t > 0, there exists a sufficiently small € > 0 such that,

_ (d+2) _ (d+4)
k(t2,9) = ka(ta,y)| < Cap dy(a,y)® (5757 ) + 0 (775762,

where kg(t,z,y) = Cd,ﬂt_d/ﬁ@(d‘;%y)),
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Proof. Let x,y € {x;} then for a positive constant Cy 3 we have
Cap dy(z,y) )~ dg(z,y)\ "7
k(tvxvy)ikG(taz7y)*W I+ tl/ﬂ - 1+W

From (3.8) we have that —edy(z,y) < dg(x,y) —dg(x,y) < edg(z,y) thus de(z,y) < (1+¢€)dy(x,y) whence
—(d+p) —(d+5)
(1+ 5 9m2) < (14 %552) T By denoting (1) =1+ %7, we obtain,

Cq,
[kt 2, ) = ka(t2,y)] < 275

x —(d+5)
C(t, )~ (<<t 8) + ,ﬁ/ﬁ”)

—(d+8)
—Cap e 0 1= (1re e D) L )
For a sufficiently small ¢, we can expand
- —(d+B) - ~
- (14 el0) =8 +0 (28057, (3.10)

where we have denoted (¢, 3) :

= /7 +d, (z.9)
is completed by substituting (3.10

C(t, B)~1(C(t, B) —1) = 2= 1 Since ¢(t, )~ (@) < 1, the proof
)) into the absolute value term in the right hand side of (3.9). O

Recall that the semigroup K, generated by the nonlocal kernel £ is defined as

Kif(z) = /k(t,x,y)f(y) dvol, Yz € M and f € L*(M,d,).
M

We shall approximate /C; by

Kicf(x) = Qlka(t,z,-)f()], Va e {xi}

where Q indicates a quadrature approximation of the integral in the definition of ;. Next we shall provide
approximation error estimate between K; and K .

Lemma 3.10 (Semigroup estimate). Let the assumptions of Theorem 3.9 hold. Then for every x € {x;} and
t > 0 we have

(d+4)

Kef (@) = Krof@)] < [Quady,, (D] + Cap t 5 e Q[dy(a, PIFO] + 0 (757 62)

where

Quad,, (1) := / K(t, 2, y) f(y) dvol — Q[k(t,z, ) ()] (3.11)

M

Proof. From the definition of K and K¢ we obtain that
Kif(@) - Kiofla / k(t, 2.9) f (y) dvol — Qlka(t,,) 1 ()]

= Quad,,.(t) + Q[(k(t,z, ) — ka(t,z,-)) f(-)]
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where Quad,,..(t) denotes the quadrature error (3.11). Using the error estimate in Theorem 3.9 we then
arrive at

(d+2) _dt)

Kef (@) = Koo f ()] < |Quad,,, (D] + Cas (7757 ) @ [dy(a, IS C)] + 0 (7757 &2)

and the proof is complete. 0O
We conclude this section with an error estimate for the generator.

Theorem 3.11. Let the assumptions of Lemma 3.10 hold. Then for every x € {z;}, we have

lim f(x) = Kiaf(x)

t—0 t

= (-A)Pf()
where (—A)P/? is a generator of Ky, provided t~ Quad,,,(t) converges to 0 ast — 0.

Proof. Consider the limit

L@ K@) | K@) - Kol (@)

t—0 t t—0 t t—0 t

— (—A)ﬁ/Qf(m) + lim Kif(x) — /Ct,Gf(l‘)

t—0 t

where (—A)P/2 is the generator of K; in compact manifold setting (see [26, Theorem 4.2]). It then remains
to show that,

o Ke (@) = Koo (@)
t—0 t

=0.

Using Lemma 3.10 we deduce that

IKif(z) — Kt,Gf('T”
t

(@+2) 4

<t |Quad,,, ()| + Capt™ 7 e

(d+2)
Choose ¢ > 0 such that lim; ot~ # ‘e = 0. Then the result follows after using the assumption

lim ot~ |Quad,,,(t)] = 0. O

The quadrature error depends on how the data points are generated, and will typically decay as the
number of data points increases and diverge as t — 0 for a fixed number of data points. Thus, insuring the
condition ¢t~ Quad,,.,.(t) converges to 0 as t — 0 will require assuming that the number of data points N
grows sufficiently fast as t — 0. We will discuss this issue more in the next section.

4. Application to diffusion maps allowing for non-local kernels

In this section we extend the diffusion maps algorithm for non-local kernels. In particular, the diffusion
maps algorithm is designed to be invariant to the sampling density of the data. We will show below that
the diffusion maps algorithm must be modified when non-local kernels in order to maintain this invari-
ance. Moreover, non-local kernels require approximation of geodesic distances on the manifold, and we use
Dijkstra’s algorithm to compute graph distances in order to approximate the geodesic distances.
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4.1. Compensating for non-uniform sampling of data (right normalization)

At this point we should explain that for data applications one typically assumes only that each data point
is sampled from a distribution having a smooth density function ¢ : M — (0,00) where ¢ is the density
relative to the natural volume form on the manifold dvol. Since the data points are the only information we
have about the manifold, the only quadrature rule that we have access to is the Monte-Carlo quadrature
which says that

1 N
lim N;f(xj)zﬁ[f(x)]: / F(w)aly) dvol.

N—oc0
yeEM

So given a kernel function £ we can estimate the kernel integral operator by

N—oc0 N—o0

N
lim Qk(t,z,)f(-)] = lim %Zk(t,x,zj)f(xj)

= / k(t,z,y) f(y)q(y) dvol = et(=2)7/2

yeM

(fo) (=),

where the last equality holds for nonlocal kernels k for 0 < 8 < 2 as well as the local (Gaussian) kernel
with § = 2. The fact that the sampling density, ¢, changes the operator as shown above was observed in the
original diffusion maps paper [1] and they introduced a method to correct this by pre-dividing by a kernel
density estimate. Namely, let J(¢, x,y) be any smooth kernel function which decays exponentially in |z — y|
(such as a standard Gaussian kernel), then we can use J to estimate the density ¢(x;) since

N
. 1
i 7 3 = [ 96w dvol < gl + O
- yeM

where the proportionality constant is due to the integral of the kernel J. A detailed analysis of the error of
the discrete estimate, §(z;) = & Zjvzl J(t,x;,x;), of g(z;) [2,30], shows that the error variance is of order
O(N~'7=174/2) where d is the dimension of the manifold. Notice that since the Monte-Carlo error diverges
as 7 — 0, one finds that the optimal 7 value is a function of the amount of data, N. Thus, we can pre-divide
by the estimate to fix our quadrature rule
N
Jin 23 HEE pa) o [ ke ) s o
J=1 yeM
and as long as t < min, ¢(y) then % ~ 1 and we will have a good estimate of the desired integral.
Often we only want to evaluate the kernel on the data points, so we compute the kernel matrix K;; =
k(t,z;,x;). In this case, pre-dividing by the density estimate corresponds to right multiplication by the
inverse of a diagonal matrix D;; = Zjvzl J(t,z;, ;). In fact, in the original diffusion maps algorithm, the
kernel matrix £ had exponential decay, so they actually set J = k and in this case the normalized kernel
matrix KD~ is simply dividing each column by the column sum (K is symmetric). We should note that
the diffusion maps algorithm uses a symmetric form of this normalization, D' K D~!, however the next
step (left normalization) cancels the effect of multiplying by D~! on the left. The symmetric version of the
‘right normalization’ is important for maintaining a symmetric matrix for numerical reasons, for a more
detailed explanation see Section 4.3 below and [10].
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Since polynomial kernels do not give density estimators with the same error as exponential kernels, we
will always set J to be a standard Gaussian kernel. The matrix K D~! is called the ‘right-normalized’ kernel
and is an estimator of the heat kernel in the sense that if f is a smooth function defined on the manifold,
then we can discretize f as f: = f(x;) and the matrix-vector product (K D! f) ~is a pointwise estimator

K3

of the operator et(_A)B/zf(aci) (up to a constant which may depend on t).
4.2. Removing proportionality constants and low order error terms (left normalization)

As we have seen above, the choice of kernel function and the normalizations to remove sampling bias
can introduce many constants of proportionality. In this section we motivate the ‘left normalization’ as a
method of removing the influence of these unknown constants. It turns out (as first shown in [1]), that
this normalization removes certain types of error terms. Recall that the heat semigroup was assumed to be
stochastically complete, namely KC;1(z) = 1 for all ¢. The discrete version of this property is that the matrix
which approximates the operator should be row stochastic (each row should sum to 1). Notice that even if
the appropriate constants in the expansion of IC; were used in constructing the discrete version, due to the
higher order error terms the resulting matrix would not be exactly row stochastic.

To motivate this normalization, assume that for a kernel function & we have

/’E(tv z,y)f(y) dvol = c(2)t* Ko f () (1 + " w(w) + O(t"))
M

for some a € R and by > b > 0. Since K;1 = 1, plugging f(z) = 1 into the above equation we have
[ k(t,@,y) dvol = c(x)t(1 + thw(z) + O(t*2)) so

Jyenm Btz y) fy) dvol K, f(2)(1 + thw(a) + O("2))

k(t,z,y)dvol (1 +thrw(z) + O(th2))

= Ko f (2)(1 + O(")).
Jyem

Notice that order-t’2> terms do not necessarily cancel since they could depend on derivatives of f, the
cancellation of the ** term is only valid since the function w(z) is assumed to be fixed and independent of
f. In fact, letting & to be h in (3.1), this equation is identical to (3.2) with by = 2 — 2/av.

The final step in the standard diffusion maps algorithm is motivated by the above computation, and
estimates the normalized heat kernel (thus removing any proportionality constants appearing in the kernel
or constants arising from the right normalization). Since KD~ is an estimator of the heat kernel, we can
estimate applying the kernel to the identity function by computing the row sums D;; = Zjvzl (K Dil)ij.
The diagonal matrix Dy; containing the row sums is then used to divide each row by the row sum, forming
the ‘left normalized’ kernel matrix D~*K D~!. This is the matrix we would like to compute the eigenvalues
and eigenvectors of, however it is clearly not symmetric, so in the next section we discuss a numerical scheme
which converts this to a symmetric eigenproblem.

4.8. Numerical dichotomy in the diffusion maps algorithm

Given data {c(z;)}Y, C (M) C R™ (where z; € M are sampled on the manifold but only their
embedded coordinates ¢(z;) are available as a data set) the first step of the algorithm will always be to
compute the matrix of pairwise distances d;; = |¢(x;) — ¢(z;)|. We should note that in fact the algorithm
will only require the distances to the k-nearest neighbors of each point, however determining an appropriate
neighbor parameter x will depend on the bandwidth chosen (with bandwidth parameter €), and so for
simplicity we will simply consider computing all of the pairwise distances.
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Next we need to choose a bandwidth € which will have ‘units’ of ‘distance-squared’, since we will ultimately
apply our kernel function ® to the ratio %. In the examples in the next section we will consider a large
range of bandwidth parameters to demonstrate how different kernel functions respond to the bandwidth.
For more information on tuning the bandwidth we refer the reader to [31]. We only mention that a good
heuristic is to take the average of squared distances from each point to its x-th nearest neighbor where « is
typically on the order of log V.

We now enter into the dichotomy, in the first case (local kernels) we can use the standard diffusion maps
algorithm [1] (described below). However, in the second case (nonlocal kernels) we will need to first apply
Dijkstra’s algorithm to estimate the geodesic distances, and we will also need to modify the normalization
procedure used in diffusion maps.

In the first case of the dichotomy we consider an a-local kernel such as ®(s) = e~*". In this case,
because the kernel has fast decay and localizes the distances, we can directly apply the kernel to the
matrix of pairwise distances to form the kernel matrix K;; = ® ( C\l;%) Here we are implicitly choosing
Ve =t = 1/8 50 we can define t = ¢%/2 (recall that § = —2-). Next, we apply the ‘right normalization’,

defining a diagonal matrix D;; = Zjvzl K;; and the normalized kernel matrix K = D"'KD~!. Notice that

instead of only dividing the columns by the column sums (as described in the previous section) we divide

both the rows and columns by the column sums. This is to maintain the symmetry of the matrix K,
and one can easily see that the left multiplication by D! will be canceled out in the ‘left normalization’
step.

The next step is the ‘left normalization’, where we define a diagonal matrix D, = Z;\le f(ij and
the final kernel matrix D~'K, however this would not yield a symmetric eigenproblem. (Notice that
D is not the same as ﬁ, but one can show that D™'K is the same as D"'KD~! from the previ-
ous section). Instead of solving the eigenproblem D 'Kv = v, we first multiply both sides by D'/2
to write the problem as D~Y/2KD~1Y2DY2y = XDY2y. Then setting w = DY2v, we see that we can

solve the symmetric eigenproblem for K = D~Y2KD~1/2

to find the eigenvalues n; and eigenvectors
; of the symmetric matrix K. Finally, to produce estimates of the eigenfunctions we form the vectors
p; = DY 21/Jj so that ¢; solves the original non-symmetric eigenvalue problem. Alternatively one can

use a generalized eigensolver, but we have found this approach to be more numerically stable. Finally, the

eigenvalues 7; estimate the eigenvalues of the semigroup e~'2, 50 to estimate the eigenvalues of A we set
N\, — —log(n) _ —log(n;)
] t eB/2

In the second case of the dichotomy, we consider a non-local kernel such as ®(x) = (1 + s)~(4+5). In
this case, because the kernel does not have fast decay, we need to first estimate the geodesic distances.
Since we only have access to the data in the embedding space, we first compute the Euclidean distances
dij = |u(z;) — t(x;)|, however only the short Euclidean distances will be good approximations of geodesic
distances. However, based on the results in Section 3.2, we can approximate the geodesic distance by first
building a weighted graph containing only edges between points with Euclidean distance less than § and then
computing the graph (shortest path) distance dg(¢(z;),t(z;)) between all pairs of points using Dijkstra’s
algorithm. Once we estimate the matrix of graph distances G;; = dg(¢(x;),t(z;)), then we can apply the

kernel @ to form the kernel matrix K;; = ® (?/é ) The algorithm then proceeds exactly as above, applying

the two normalizations and solving the symmetric eigenproblem. In this case, the eigenvalues n; estimate

the eigenvalues of the semigroup et(’A)ﬁ/Q, S0 to estimate the eigenvalues of (—A)?/2 we define A; the same

—log(n;) __ —log(n;)
t - eB/2

as above namely, \; =
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Algorithm 1 Fractional diffusion map algorithm.

Inputs: Data set, {¢ (%)}l,1 C (M) C R”, fractional power, 3, bandwidth, €, intrinsic dimension, d, and number of requested
eigenvectors, ¢

Outputs: N X N matrix, H, approximating the fractional heat kernel, eigenvectors v; and eigenvalues \; estimating the eigen-
functions and eigenvalues of the fractional Laplacian

Compute the N X N matrix of pairwise distances A;; = |¢(x;) — v(x;)]

—d/2 A2
Compute the N x 1 density estimate §; = % ZJN=1 exp (— 22)

Set t = ¢P/2
if B > 2 then
_ _B
Set a = g5
Compute the N x N local kernel matrix K;; = exp (7 (%) )
else

Zero out each entry of A with A;; > /e
Construct weighted graph G with N nodes and adjacency matrix A
Compute the N X N matrix dg of pairwise graph distances in G

5\ —d—8
Compute the N X N nonlocal kernel matrix K;; = (1 + %)

end if

Form the diagonal ‘right normalization’ matrix with D;; = ¢;
Perform the symmetric ‘right normalization’, K=D'KD™!
Form the diagonal ‘left normalization’ matrix with D;; = Zé\;l f(”
Define the Markov matrix, H = D™'K

Perform the symmetric ‘left normalization’, K =D"'?KD
Ensure numerical symmetry by setting K = (K + KT)/Q
Compute the £ + 1 eigenvectors vy, ..., ¢ of K with maximal eigenvalues

—1/2

l=noz2mz=---2mne

Compute the fractional Laplacian eigenvalues A; = —t Llogn;
Compute the approximate eigenfunctions ¢; = D~ wl
end
Return heat kernel H, approximate eigenfunctions ¢;, and eigenvalues \;, satisfying Hy; = e“’(pi

5. Numerical examples

In this section we show some numerical results to verify the above theory and to compare the different
kernel functions. In particular we will be interested in the effect of the number of data points, the bandwidth
parameter ¢, and how the data points are distributed on the manifold. Tuning the bandwidth ¢ is a matter
of balancing the bias error with the quadrature error. Specifically, the bias error is the O(t>~2/®) term in
Theorem 3.4, and the quadrature error is the O(t 7%8) term in Theorem 3.10, notice that e must depend
on t so that lim; ot~ 5 € = 0 so the bias term is decreased by taking ¢ small. For randomly sampled data
the variance/quadrature error is O(N~'t~1=%/2) as described in Section 4.1 above, and the variance term
is decreased by taking t large. As we will see below, the quadrature error is significantly smaller when the
data set is a uniform grid of points rather than randomly sampled data points. Thus for a uniform grid of
data points we will be able to take £ much smaller and obtain much lower error with very small data sets.
Of course, uniform grids are unlikely to occur in real data sets and so these results are intended only to
demonstrate and numerically validate the above theory. Results for the randomly sampled data are much
more indicative of what should be expected for most data sets.

Note that the analysis of diffusion maps begins with the pointwise convergence of [1] that is generalized
above, but a more subtle issue is the spectral convergence. A series of results starting with [32] and more
recently [33-36] show that for compact manifolds the eigenvectors of the discrete Laplacian matrix (con-
structed using the diffusion maps algorithm) converge to the eigenfunctions of the Laplacian operator on
the underlying manifold. Thus, the diffusion maps algorithm produces eigenvectors ¢; such that the i-th
entry is an estimate of the true eigenfunction evaluated on the data set i-th data point, so (¢;); = ¢;(x;).
Thus our standard measure of error will be the root mean squared error (RMSE) computed on the data
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Fig. 1. Laplacian eigenfunction reconstructions for a uniform grid of points sampled from the unit circle in the plane using various
values of 3 = 2s using exponential (red) and polynomial (blue) kernels. Left: For e = 2712 eigenspectra \; show good agreement
with the appropriate power laws (black dashed curves are, 32, j3/2, jl,jl/Q)‘ Right: Average RMSE of eigenfunctions compared to
the true Fourier functions as a function of the bandwidth e. (For interpretation of the colors in the figure(s), the reader is referred
to the web version of this article.)

set as (% Zil((%)l - ¢($i))2)1/2. To evaluate the accuracy of the eigenvalues, one aspect that we can
examine is the power law associated to the growth of eigenvalues. Weyl’s law states that the eigenvalues
of the Laplace-Beltrami operator have a power law growth A; o j2 for j large (for the examples under
consideration below this power law appears accurate for j fairly small, but generally it may require j large).
For the fractional Laplacians the eigenvalues are simply raised to the power §/2 so we have \; FLLS

Below we consider three examples. First, we consider a unit circle where the spectral fractional Laplacian
is identical to the integral definition [15]. The second example is a unit sphere in R?® where the spectral
fractional Laplacian can be closely represented in an integral form [16]. In these two cases, we can use the
spectral definition to verify the accuracy of the estimated eigenfunctions. In the third example, we consider
the closed and bounded unit interval for which the spectral fractional Laplacian is different from the integral
definition. In this case, we will numerically verify that our fractional diffusion maps implemented with the
non-local kernels yield estimates that are close to the regional fractional Laplacian. Finally, we include a
numerical example involving a supervised learning task and show how the nonlocal kernels are beneficial in
recovering non-smooth regression functions.

5.1. Example 1: circle

In this section we first verify the above theory numerically by applying the two different approaches
from the dichotomy to reconstruction various fractional Laplacians on the unit circle. We then compare
the exponential and polynomial kernels over a range of different methods of sampling data points from
the unit circle. For all 3, the eigenfunctions of (—A)#/2 are the Fourier functions, ¢; = 1, and $2;(0) =
sin j6, ¢o,+1(0) = cos j6 defined in the intrinsic coordinate 6 € [0, 27) on the unit circle and the associated
eigenvalues are A\; = 0 and Aoj = Agj41 = jP. Notice that the repeated eigenvalue is due to the rotational
symmetry, and the fact that each eigenspace is two dimensional means that a numerical eigensolver will
find two linear combinations of sin j6 and cosjf. Thus, in order to compute the error in the estimated
eigenfunctions, we first estimate the best linear transformation (a 2-by-2 matrix) which maps each pair of
the estimated eigenfunctions to the true eigenfunctions.

In order to verify the above theory, we first consider a grid of points uniformly spaced on the unit circle.
For N = 500 we generated an equally spaced grid of §; = 27wi/N for ¢ = 1,..., N and then mapped these
points onto the unit circle with the standard embedding x; = (cos(6;),sin(6;)) . As mentioned above, the
uniform grid yields a very low quadrature error and so the optimal choice of bandwidth ¢ was very small,
on the order of 107 as shown in Fig. 1(right). A surprising result for this data set was that the standard
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Fig. 2. Laplacian eigenfunction reconstructions for a non-uniform grid of points (top row) and for a uniformly random sample (bottom
row) of points on the unit circle in the plane using various values of s using exponential (red) and polynomial (blue) kernels. Left:
Spectra (as in Fig. 1). Middle: Average RMSE of eigenfunctions as a function of the bandwidth e. Right: Number of eigenfunctions
with RMSE less than 0.2 (top) and 0.4 (bottom) as a function of the bandwidth e. Note that the polynomial kernel has a more
consistent performance over a larger range of bandwidths, but the exponential kernel has the best performance with an optimally
tuned bandwidth.

Gaussian kernel, § = 2s = 2, was the least robust with respect to e. Since the manifold is one-dimensional,
Weyl’s law for the Laplace-Beltrami operator gives eigenvalues A; o j2. Notice that since 3/2 = 1,5/4,3/2
are all local kernels, the generator of each of these kernels is the Laplace-Beltrami operator (since we divide
by €7/2 as described in Section 3.1). Thus, all of the spectra estimated from exponential kernels (red color
in Fig. 1) have the same power law growth, namely j2. We note that the error in the estimates of the
eigenvalue grows as the eigenvalues increase, which explains the deviations from the power law for the
largest eigenvalues; as the amount of data is increased and the bandwidth is decreased these eigenvalues
would become more accurate and approach the power law. On the other hand, the polynomial kernel (blue
color in Fig. 1)) produces spectra power close to their corresponding /2 = 1/4,1/2,3/4.

Next we consider a non-uniform grid of points by applying the nonlinear mapping 6; = 6; — sin(6;)/2
and then defining the data set x; = (cos 6;,sin él)—r We say this is a ‘grid’ since the points are not pseudo-
random, but it is non-uniform in the sense that the grid spacing is non-uniform. The results for this data
set are shown in the top row of Fig. 2. For this dataset the errors in many of the eigenfunctions increase
significantly, however the eigenfunctions associated to small eigenvalues are still reasonably well estimated
(see Fig. 3). To give a better measure of performance, we also plot the number of eigenfunctions that have
RMSE less than 0.2 in Fig. 2(top, right). As in the previous example, the results of the polynomial kernels
was more robust to the choice of bandwidth than the exponential kernels. However, in this example the
performance of the exponential kernel (particularly with 8 = 2) was significantly better than the polynomial
kernels when the bandwidth is optimally tuned for each kernel. This is not surprising since the fractional
Laplacian in this setting (that takes L? functions defined on flat and periodic domain) is exactly the spectral
fractional Laplacian as defined in Definition 2.5 where the Gaussian kernel is the heat kernel of the semigroup
of Laplacian.

Finally, in the bottom row of Fig. 2 we show the results for a pseudo-random data set 8; = 2wr; where r;
is a pseudo-random value sampled uniformly from [0,1). Again, the polynomial kernels are more robust to
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Fig. 3. Comparison of exponential (red) and polynomial (blue) kernels in terms of eigenfunction RMSE with optimal bandwidth for
each kernel. Left: For uniform grid sampled form the unit circle performance of the two kernels is comparable when well-tuned.
Right: For a uniformly random sample of points on the unit circle, the polynomial kernel has the best reconstruction for the low
frequency eigenfunctions, and the exponential kernel has the best reconstruction for the middle frequency eigenfunctions.

choice of bandwidth, but for the optimally tuned bandwidth the § = 2 kernel has a pronounced advantage.
In Fig. 3 we show that for the eigenfunctions associated to the smallest eigenvalues the polynomial kernel
actually has the smallest error (the error is often less than half that of the exponential kernel). However,
for non-uniform or pseudo-random data the exponential kernel maintains a lower error for higher frequency
eigenfunctions.

5.2. Example 2: sphere

The unit circle is a simple yet instructive test example to analyze since it is one-dimensional and has no
curvature, which means that reasonably accurate results can be obtained with very small data sets. In this
example we consider the sphere which is two-dimensional and has non-zero curvature and thus will require
much larger data sets. This is particularly problematic for the polynomial kernels because of our reliance on
Dijkstra’s algorithm to compute graph distances which approximate geodesic distances. Optimized methods
for computing the graph distances between all pairs of points still have computational complexity which
grows cubically with the number of data points, which quickly becomes computationally infeasible. However,
a nice feature of the unit sphere in R3 is that the geodesic distance between points 2,y on the manifold can
easily be computed as cos™!(u(z) - ¢t(y)) (where ¢(),:(y) € R? are the embedded data points). While this
is obviously not a method which can be used for real data sets, it is helpful in this context to verify the
theoretical results above. Moreover, we expect that thorough error analysis may reveal that, for a given ¢,
only pairs of points with sufficiently small graph distances may need to be computed, which could allow the
computational complexity to be reduced below cubic growth in the number of data points. In the examples
below we will use Dijkstra’s algorithm to estimate the geodesic distances except when using polynomial
kernels with N = 10242 data points in the bottom row of Fig. 5.

Another challenge of the sphere is generating a uniform or approximately uniform grid of data points.
To solve this problem we used a Matlab package called GridSphere written by the authors of [37] which
describes their method. We should note that this method produces an approximately uniform grid, so for
example, with N = 2562 data points, each point has 6 nearest neighbors whose distances differ on the order
of 107* (see Fig. 4 middle and right for the N = 2562 grid).

Finally, in order to define a ground truth for comparison, we first generated an approximately uniform
grid of N = 40962 data points, and used the exponential kernel with 8 = 2 to estimate the eigenfunctions.
Since the N = 2562 and N = 10242 grids are subsets of the N = 40962 grid, we were able to decimate these
eigenfunctions to find their values on the subgrids. See Fig. 4 for the estimate of ¢1¢ on the N = 40962 grid
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Fig. 4. The 10-th Laplacian eigenfunction, ¢10(6, ¢), estimated for a nearly uniform grid of points sampled from the unit sphere in
R? using s = 1 (exponential kernel) with N = 40962 points (left) which is then subsampled to a nearly uniform grid of N = 2562
points (middle, right). Sample points were generated using the Matlab GridSphere package [37]. Eigenfunction is shown as a
function of the polar coordinates (0, ¢) € [0,27) X [0, 7) for the sphere (left, middle) and on the embedded sphere (right).

(left) and the decimated estimate on the N = 2562 grid (middle). We used these estimates as our ‘truth’
for the eigenfunctions.

Next we apply the diffusion maps algorithm for the exponential (red) and polynomial (blue) kernels with
various values of 8 and various values of € (see Fig. 5 first two rows N = 2562, third row N = 10242). In
Fig. 5 (top, left) we show the eigenvalues for N = 2562 have good agreement with Weyl’s law; since the
sphere is 2-dimensional the Laplacian eigenvalues grow like A; oc j4/? = j'. This power law was observed
for 8 > 2 since all the exponential kernels recover the Laplace-Beltrami operator, and for 5 < 2 we observe
reasonable agreement with the theoretical growth of A; o 3P,

An additional challenge was the repeated eigenvalues due to the symmetry of the sphere leading to
multidimensional eigenspaces. We used the eigenvalues from the N = 40962 grid to detect repeated eigen-
values (with a threshold of 107°) and applied the same method as for the circle. Namely, for each group
of eigenfunctions having the same eigenvalue we estimated the linear transformation (a ¢ x £ matrix where
¢ is the dimension of the eigenspace) that optimally mapped the estimated eigenfunctions onto the true
eigenfunctions before computing the RMSE.

As with the circle, the best results were obtained with 5 = 2, however the § = 5/2 and § = 3 results
were much closer to 8 = 2 on the sphere than on the circle. We expect that this is due to the curvature on
the sphere; namely, since the unit circle has zero curvature the kernel e~da(@¥)?/t iy exactly the heat kernel
(up to constants and rescaling time), whereas on a curved manifold the heat kernel will be equal to this
exponential multiplied by a polynomial with coefficients that depend on the curvature and its derivatives.
In other words, on a flat manifold (such as the circle) the 5 = 2 exponential kernel has fewer error terms
than other values of 3, but this does not hold for general manifolds (such as the sphere). Finally we note
that as N increases the difference advantage of the exponential kernel in terms of optimal RMSE appears
to decrease. However, the exponential kernels maintain a significant computational advantage since they do
not require one to estimate the geodesic distance.

5.8. Flat manifold with boundary
So far our focus has been compact manifolds M without boundaries. Recall that when the manifold M
is a flat torus or R™, the spectral fractional Laplacian given in Definition 2.5 is equivalent (up to constants)

to the so-called integral fractional Laplacian (see [15, Pg. 15]) defined for v € C°(M) (i.e., u is compactly
supported on M C R") as

—A)Yu(x) =c¢ M
(~AYu(x) = ens P.V.R[ e dy (5.1)
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Fig. 5. Laplacian eigenvalue/eigenfunction estimates (corresponding to the smallest 500 eigenvalues) for a nearly uniform grid of
N = 2562 points on the unit sphere in R® using various values of s using exponential (red) and polynomial (blue) kernels. Top, left:
Spectra compared to the power laws j, j?’/47 j1/2, j1/4. Top, right: Average RMSE of eigenfunctions as a function of the bandwidth
€. Second row, left: Number of eigenfunctions with RMSE less than 0.1 as a function of the bandwidth e. Second row, right:
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Bottom row, same as second row but with N = 10242 data points.

for every z € M. In the above equation, “P.V.” stands for the “Cauchy Principle Value”, i.e., we understand
(5.1) as

Soul) — : u(z) — u(y)
<_A)Iu(‘r) = Cn,s lslﬂ)l / —_ dy

|z —y[r+2e
R7\B(z,e)

522:F( n«ng)
w2 (1—s)

of this section is to consider flat manifolds M with boundaries. Our main goal is to understand whether
the approximate generator in the nonlocal case is the spectral or integral fractional Laplacian. As it was

Here ¢, s = is a normalization constant depending only on n and s, see [38-40]. The purpose

thoroughly discussed in [41] these two operators are completely different in general. Before we embark on



168 H. Antil et al. / Appl. Comput. Harmon. Anal. 54 (2021) 145-175

our journey we also recall that our data lies on the manifold and not outside the manifold. Indeed using
(5.1) we have that

1
(=A)ju(r) = cu s P.V. / o — |n+25 dy + s u() / [z — |2 dy, (5.2)

Rn\M

where in the last integral we have used the fact that u is supported only on M. In other words, we can
only expect to recover the integral over M in (5.2) unless we consider points in R™ \ M. We shall illustrate
with the help of a numerical example that the proposed fractional diffusion maps algorithm estimates the
integral over M in (5.2), which is also known as the regional fractional Laplacian:

( A)Ru( = Cn,s PV/| |n+29 Y. (53)

Notice that (—A)% and (—A)% differ only by a potential term, nevertheless this term is difficult to manip-
ulate.

Next we provide a numerical example to support this claim. We consider the following configuration:
M = [0,1] with boundary at 0 and 1. Moreover, we set u(z) = 2® and s = 1. Using the definition of P.V.
according to (5.3) we arrive at

(~A)qu(a) = cy.q lim / u@) —uly)

|z — gyt
(0,)\(z—e,z+¢)

. Tty
= Cn,s lalﬁ)l / dy

r—=y
(0,1)\(z—e,z+¢)

where in the last step we have used the definition of u in conjunction with the facts that n =1 and s = 1.

2
Whence

(_A)i?,“(x) = Cn,s lglﬁ)l (_2x IOg(y - {E) - y) |(0,1)\(ac—a,x+a)

=Cns (—1+2xlog (1 f$)> (5.4)

where the last equality follows after basic algebraic manipulations.

We note that local kernels can only approximate eigenfunctions ¢ of the Neumann-Laplacian on M =
[0,1], which are ¢y (z) = cos(rkz) with eigenvalues A\, = 72k%. In order to obtain the ground truth for
(—A)%u, we compute the spectral fractional Laplacian using these analytic eigenfunctions instead of using
the diffusion maps estimated eigenfunctions. That is, we compute (—A)gu = 22/121 Ao () with 4 =
(u, 1) /||Px||?, where the inner product involves integral of functions u(z) = 2 and the analytic ¢y () that
can be done explicitly. Numerically, we found nearly identical results using various M = 500, 1000, 2000.

In Fig. 6, the estimation of the spectral fractional Laplacian (—A)%u with analytic eigenfunctions and the
explicit solution of the regional fractional Laplacian, (—A)%u in (5.4) are compared to the results of applying
the fractional diffusion maps algorithm with a polynomial kernel. In this figure, we have normalized the
minimum of all the functions to —1 to cancel the effect of multiplicative constants. Notice that the numerical
estimates obtained from the non-local heat kernel are much closer to the regional fractional Laplacian. This
result leads us to hypothesize that polynomial kernels are estimating the regional fractional Laplacian
which is inaccessible using local kernels. While this result is encouraging, it stimulates a more thorough
investigation for improving the approximation, especially near the boundaries, which is beyond the scope
of the current paper.
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Fig. 6. Let M = [0, 1] with boundary at 0 and 1. We let n = 1, u(z) = 22, and s = % In the above panel we compare the application
of spectral fractional Laplacian (cf. Definition 2.5) and regional fractional Laplacian (cf. (5.3)) onto u(z). We observe that with our
approach we are recovering the regional fractional Laplacian. We emphasize that boundary behavior of our dichotomy approach is
part of the future work.

5.4. Application to kernel ridge regression

A common application of kernel methods in machine learning is the kernel ridge regression. The goal
is to learn an unknown function f : R™ — R given noisy data y; = f(x;) + w; for i = 1,..., N. A kernel
regression is an approximation of f based on a kernel k : R™ x R™ — R given by,

N

fz) = Z k(z,z;)cs, fla:) = (Ko),.

i=1

We note that the kernel function & is typically chosen to be positive definite so that K is invertible and
the space of such functions f is a finite dimensional Reproducing Kernel Hilbert Space (RKHS). A kernel
regression would simply set ¢ = K14 where ; = y; is the vector of noisy data. However, when we have
certain a priori knowledge about the unknown function f, for instance, it is known to be regular (for example
we may know that f is k-times continuously differentiable) we can improve our estimate using a kernel ridge
regression which is defined by the optimization problem,

min {|7 ~ Ko + 010} = min {|77- g + 51K 1) (55)
which has solution ¢ = (KTK + 6I)"'K "4 that defines the function ¢; = f(mz) with § = K¢. A significant
issue is the choice of kernel function, k, and the type of regularity imposed by various kernel choices. Two
common choices of kernel functions are the radial basis functions kernel with Gaussian exponential decay
(corresponding to 5 = 2) and polynomial decay kernels (corresponding to 8 < 2).

For simplicity we will assume that z; C (M) C R™ are uniformly distributed on a smooth compact
submanifold ¢(M). When K approximates a heat kernel, in the limit of large N we have

A

(K™'9)i = K_of(z:) (5.6)

where K_; is the “backward-in-time” semigroup. In view of (5.6), we can formally interpret the finite-
dimensional kernel ridge regression optimization problem (5.5), as an approximation to the following
optimization problem
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Fig. 7. Kernel ridge regression on the unit circle S! to learn the indicator function f(8) = 1[0,(8). We show the expected regression
function for the polynomial kernel (blue, solid, 8 = 1) and exponential kernel (red, dashed, 8 = 2) for N € {100, 500, 2500} (left
to right) and mean zero Gaussian noise with standard deviation 0.05 (top row) and 0.005 (bottom row). The exponential kernel is
associated to the classical Laplacian and the regression function is forced into a space of high regularity which creates oscillations
at the discontinuity, whereas the fractional Laplacian associated to the polynomial kernel imposes less regularity and gives a better
fit.

min — fI1? + 8||K_ . fII? , 5.7
o, {0 = A+ 0N F e (5.7)

in function spaces. A rigorous proof of the limiting behavior of (5.5) to (5.7) will be part of a forthcoming
work. The notation H CC L?(M) indicates a compact embedding of the function space H in L*(M). In
other words, the second term in (5.7) enforces certain smoothness onto f. Indeed, in case of exponential
kernel, we are enforcing Laplacian type regularization onto f , i.e., two derivatives. On the other hand, in
the nonlocal case, we are enforcing a fractional Laplacian type regularization, i.e., § = 2s derivatives. We
demonstrate the advantage of a polynomial kernel, due to reduced imposition of regularity, in the following
example.

Consider the case of the unit circle, M = S*, and the indicator function f(0) = 1j (0). In Fig. 7 we show
f as a function of 4, along with various data sets with N € {100, 500, 2500} (left to right) with independent
Gaussian noise with mean zero and standard deviation 0.05 (top) and 0.005 (bottom) where we have zoomed
to focus on the discontinuity. In order to compare the exponential (8 = 2) and polynomial (8 = 1) kernels,
we used a data set of N points to learn the parameters € and § by minimizing the cross-validation error.
In particular, for a grid of values of € € [1072,10°] and § € [1072°,1072] we split the data set in half and
learned ¢ from half of the data points and computed the error on the other half of the data points. We
then chose the optimal pair (¢,0) and we computed the expected value of the regression function by setting
girie = f(z;) and € = (K'K + 0I) 1K T§* . Note that this is the expected value of the regression since
7 = 1 + @, the mean of w is zero, and ¢ is linear in .

In Fig. 7 we compare the expected regression function for the exponential (red, dashed, 8 = 2) and
polynomial (blue, solid, § = 1) kernels. Notice that the exponential kernel exhibits oscillations near the
discontinuity due to higher smoothness, this can be seen from its connection to Laplacian (—A) as argued
in (5.7). On the other hand, the heat kernel associated to the polynomial kernel is connected to the fractional
Laplacian (—A)/? and which imposes far less smoothness. This results in the polynomial kernel regression
function having much smaller oscillation near the discontinuity, which also decreases as the noise decreases
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(bottom row). This example shows how understanding the large data limit of various kernel functions can
improve our understanding of the behavior of a kernel based learning algorithm.

6. Conclusion and future work

The geometric understanding of certain kernel-based algorithms advanced by diffusion maps has given a
valuable new perspective on what these algorithms are constructing and how to use it to understand the
underlying data. For example, by interpreting the kernel eigenfunctions as eigenfunctions of the intrinsic
Laplacian operator on a manifold, we can use the associated eigenvalues to enforce regularity restrictions or
Sobolev norm regularity conditions on interpolation problems. However, diffusion maps (and generalizations
[10]) are restricted to kernels with exponential decay, whereas kernel methods used in statistical learning
theory may require general kernels. The fractional diffusion maps approach extends the geometric under-
standing of data to a much larger class of kernels (including the well-known polynomial kernels). At the
same time, the fractional diffusion maps algorithm offers a new way to estimate certain fractional Laplacian
operators on manifolds.

This kernel-based perspective is related to the popular Isomap and Parallel Transport Unfolding (PTU)
algorithms. Isomap [11,12] and PTU [42] can be easily interpreted under the restrictive assumptions of
manifolds that are both topologically trivial (contractible) and geometrically trivial (developable, which
implies flat in the Riemannian sense). However, Isomap and PTU are still useful for many examples that
do not satisfy these assumptions, and in these contexts, there is a limited theoretical interpretation of
their behavior. While our analysis cannot address these algorithms directly, our kernel-based algorithms are
closely related, and we rely on their methods for the key step of approximating geodesic distances. Thus, our
results give an alternative final step to Isomap and PTU, by replacing Multi-Dimensional Scaling (MDS)
with a rigorously interpretable kernel method.

Many directions of future work remain open. For many data sets (such as data generated by a chaotic
dynamical system) the assumption of an underlying manifold may be unrealistic, whereas a metric measure
space would be a much less stringent assumption. The parallel between the dichotomies in the heat kernel and
the associated fractional diffusion maps algorithm suggests that a generalization to a larger class of metric
measure spaces may be possible. Another important direction for future work would be the generalization
to manifolds with boundary and other boundary conditions, possibly using the ghost points [43] when
the points at the boundary are given or using the distance to boundary estimator introduced in [44] and
uniform expansions near the boundary [45] when the boundary points are not given. This generalization may
make fractional diffusion maps a reasonable method for solving equations involving fractional Laplacians
on domains that are difficult to mesh, generalizing the local kernels to solve elliptic PDE’s on smooth
manifolds as proposed in [46,47,43]. Generalizing to allow anisotropic kernels as in [10] may provide access
to geometries that are not inherited from the embedding, and variable bandwidth kernels [30] may allow
for data sampled from non-compact manifolds with finite volume. Another possible research direction is to
implement the non-local kernels with improved geodesic distance estimator [42], which consistency requires
a careful treatment of the error analysis.
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Appendix A. Proofs of technical lemmas
A.1. Proof of Lemma 2.1

Proof. If we let s be the exponential coordinates for y centered at = so that y = exp, (s) then we can Taylor
expand t(exp,(s)) around s = 0. We first note that since exp,(0) = x and D exp,(0) = I xq we have

Dsi(exp,(s))lo = Di(exp,(s))D exp,(s)|o = Di(exp,(0))D exp, (0) = Di(x).
Next, since D2 exp,(0) = 0 we have
Du(exp,(s))]y = Dexpy(s) " H(1)(exp,(s)) D exp,(s) + Di(exp,(s)) D? exp,(s)], = H(1)(@).
Together these equalities give the Taylor expansion
U(y) = tlexpy(s)) = u(x) + De(x)s + H(1)(z)(s, 5) + O(|s]).

A key feature of this expansion is that the Hessian H(:) of the embedding is orthogonal to the tangent [8]
space, so when computing the norm we have

|e(y) — (@) = [De(w)s + H(1)()(s,5) + O(s7)[* = |De(a)s]* + O(|s[*)

where the only third order term is the cross term (Du(z)s, H(¢)(z)(s, s)) = 0 by the orthogonality mentioned
above. Note that the term O(|s|*) assumes that the Hessian and the third derivative of the embedding are
bounded, so we require the manifold and embedding to be C3. Since ¢ is isometric, the columns of Di(z)
are orthonormal, so |Du(z)s| = |s| = d4(x,y) meaning

|(y) — u(@)|* = dy(@,y)* + O(dy(2,y)**?). O
A.2. Proof of Lemma 5.2

Proof. Since v > 0, the radius of the ball |y| = t~7 is expanding and thus we are integrating over the tail
of an exponential, which decays faster than any polynomial in ¢ for any 7. To see this we first make the
change of variables w; = yza /2 50 that

2 2

a/4 a/4
ly|* = (Zf) = (wa/a> = wli/q
i

%

and since dy = 2 [], w/ !

Wy dw we have

L / e=elwllya [T w?/* " duw
% 1

_ %
ly|>t=> |w|i;z>t*7

2 _ 2 2/a—1
< - e~erlvl Hwi/ dw
o ;
colw|>t=7e/2 v

for some ¢;, co > 0 where the last inequality follows by equivalence of norms we have a|w| < |w|4/q < blw|.
Next we further expand the domain of integration to allow us to split up the integrals. Notice that the cube
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with sides |w;| < & ;1/: fits inside the ball of radius £

—va/2

so we can extend the integral to the outside of

the cube and it W111 only get larger. Over this domain we can split up the integral and the integrals are the

same over each variable w;,

so continuing the previous inequality we have

2 2 -1 _ 2
< — Hwi/a e~ dwy, ..., dwg
«
colw;|>t—re/2/21/d ¢
d
2 2 -1 _ 2
= — wi/o‘ e~ i dw;
«
co|w;|>t—va/2/21/d
d
2 clw
< — w;e i dw;
«
co|w;|>t—va/2/21/d
d
S W 12
= g 1 e 22/dc§t
a \ 2c1
_ <4
= cze O (A1)

for constants cs, ¢y > 0, where the last inequality follows from the fact that o > 1 so that 2/ — 1 <1 and

2/a—1
w?/®

< wy; for t sufficiently small so that w; > 1 on the domain of integration. Since ya > 0, as t — 0%

the final term goes to zero faster than any polynomial. 0O

A.3. Proof of Lemma 3.3

Proof. Substituting the upper bound for a-local kernels we have the upper bound

/ tle=elli=1/a z) dvol
zZEM,
|u(2)—z| >ttt/ @
p—1
P
1 =l v :
< ||fHLp(M)t e P t dvol
EM,|u(z)—z|>tt-1/ =Y
p—1
P
) _cp ||z=y
< ”fHLP(M)t e 1|1/ dy
y—z|>tl—1/a=v
p—1
P
= HfHLP(M)te / e vl 4d1=1/2) gy

w|>t=Y

< lzraat™ / ol gy
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where we applied Hélder’s inequality and then extend the integral to all of y € R™ outside the ball of radius
t=7. We then set w = 57+ so that dw = t=4(=1/2)qy. Since a > 1 the result follows from Lemma 3.2. O
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