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Modern science is undergoing what might arguably be
called a “data revolution,” manifested by a rapid growth
of observed and simulated data from complex systems, as
well as vigorous research on mathematical and computa-
tional frameworks for data analysis. In many scientific
branches, these efforts have led to the creation of statistical
models of complex systems that match or exceed the skill
of first-principles models. Yet, despite these successes, sta-
tistical models are oftentimes treated as black boxes, pro-
viding limited guarantees about stability and convergence
as the amount of training data increases. Black-box mod-
els also offer limited insights about the operating mecha-
nisms (physics), the understanding of which is central to
the advancement of science.

In this short review, we describe mathematical
techniques for statistical analysis and prediction of
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time-evolving phenomena, ranging from simple examples
such as an oscillator, to highly complex systems such as the
turbulent motion of the Earth’s atmosphere, the folding of
proteins, and the evolution of species populations in an
ecosystem. Our main thesis is that combining ideas from
the theory of dynamical systems with learning theory pro-
vides an effective route to data-driven models of complex
systems, with refinable predictions as the amount of train-
ing data increases, and physical interpretability through
discovery of coherent patterns around which the dynam-
ics is organized. Our article thus serves as an invitation to
explore ideas at the interface of the two fields.

This is a vast subject, and invariably a number of impor-
tant developments in areas such as deep learning, reservoir
computing, control, and nonautonomous/stochastic sys-
tems are not discussed here.! Our focus will be on topics
drawn from the authors’ research and related work.

Statistical Forecasting

and Coherent Pattern Extraction

Consider a dynamical system of the form ®' : Q — Q,
where Q is the state space and @', ¢ € R, the flow map. For
example, Q could be Euclidean space R, or a more general
manifold, and @’ the solution map for a system of ODEs

!See https://arxiv.org/abs/2002.07928 for a version of this article with
references to the literature on these topics.
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defined on Q. Alternatively, in a PDE setting, Q could be
an infinite-dimensional function space and & an evolu-
tion group acting on it. We consider that Q has the struc-
ture of a metric space equipped with its Borel g-algebra,
playing the role of an event space, with measurable func-
tions on Q acting as random variables, called observables.

In a statistical modeling scenario, we consider that avail-
able to us are time series of various such observables, sam-
pled along a dynamical trajectory which we will treat as be-
ing unknown. Specifically, we assume that we have access
to two observables, X : Q - X and Y : Q — Y, respec-
tively referred to as covariate and response functions, to-
gether with corresponding time series xg, X, ..., Xp—; and
Yos V1> YN—1, where x, = X(wy), y, = Y(w,), and w, =
®" 2 (w,). Here, X and Y are metric spaces, At is a pos-
itive sampling interval, and w, is an arbitrary point in Q
initializing the trajectory. We shall refer to the collection
{(x0,¥0)s - » (Xn—1,¥n—1)} s the training data. We require
that Y be a Banach space (so that one can talk about expec-
tations and other functionals applied to Y), but allow the
covariate space XX’ to be nonlinear.

Many problems in statistical modeling of dynamical sys-
tems can be expressed in this framework. For instance, in
a low-dimensional ODE setting, X and Y could both be
the identity map on Q = RY, and the task could be to
build a model for the evolution of the full system state.
Weather forecasting is a classical high-dimensional appli-
cation, where Q is the abstract state space of the climate
system, and X a (highly noninvertible) map represent-
ing measurements from satellites, meteorological stations,
and other sensors available to a forecaster. The response
Y could be temperature at a specific location, ¥ = R, il-
lustrating that the response space may be of considerably
lower dimension than the covariate space. In other cases,
e.g., forecasting the temperature field over a geographical
region, Y may be a function space. The two primary ques-
tions that will concern us here are:

Problem 1 (Statistical forecasting). Given the training
data, construct (“learn”) a function Z; : X — Y that pre-
dicts Y at a lead time ¢t > 0. That is, Z; should have the
property that Z, o X is closest to Y o ®' among all functions
in a suitable class.

Problem 2 (Coherent pattern extraction). Given the train-
ing data, identify a collection of observables zi: Q—Y
that have the property of evolving coherently under the dy-
namics. By that, we mean that z; o ®' should be relatable
to z; in a natural way.

These problems have an extensive history of study
from an interdisciplinary perspective spanning mathemat-
ics, statistics, physics, and many other fields. Here, our fo-
cus will be on nonparametric methods, which do not employ
explicit parametric models for the dynamics. Instead, they
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use universal structural properties of dynamical systems
to inform the design of data analysis techniques. From
a learning standpoint, Problems 1 and 2 can be thought
of as supervised and unsupervised learning, respectively. A
mathematical requirement we will impose on methods ad-
dressing either problem is that they have a well-defined no-
tion of convergence, i.e., they are refinable, as the number
N of training samples increases.

Analog and POD Approaches

Among the earliest examples of nonparametric forecast-
ing techniques is Lorenz's analog method [Lor69]. This
simple, elegant approach makes predictions by tracking
the evolution of the response along a dynamical trajectory
in the training data (the analogs). Good analogs are se-
lected according to a measure of geometrical similarity be-
tween the covariate variable observed at forecast initializa-
tion and the covariate training data. This method posits
that past behavior of the system is representative of its fu-
ture behavior, so looking up states in a historical record
that are closest to current observations is likely to yield a
skillful forecast. Subsequent methodologies have also em-
phasized aspects of state space geometry, e.g., using the
training data to approximate the evolution map through
patched local linear models, often leveraging delay coordi-
nates for state space reconstruction.

Early approaches to coherent pattern extraction include
the proper orthogonal decomposition (POD), which is
closely related to principal component analysis (PCA, in-
troduced in the early twentieth century by Pearson), the
Karhunen-Loéve expansion, and empirical orthogonal
function (EOF) analysis. Assuming that ¥ is a Hilbert

L
Y175 =
u;0;Y;. Arranging the data into a matrix Y = (g, -, yn—-1),
the g; are the singular values of Y (in decreasing order),
the u; are the corresponding left singular vectors, called
EOFs, and the 1; are given by projections of Y onto the
EOFs, ¢j(w) = (u;, Y(w))y. That is, the principal compo-
nent ¢ : Q — R is a linear feature characterizing the un-
supervised data {yy,..., yy_1}. If the data is drawn from a
probability measure y, as N — oo the POD expansion is
optimal in an I?(u) sense; that is, Y; has minimal [*(u)
error ||Y — Y;||z2(,) among all rank-L approximations of
Y. Effectively, from the perspective of POD, the important
components of Y are those capturing maximal variance.

Despite many successes in challenging applications
(e.g., turbulence), it has been recognized that POD may
not reveal dynamically significant observables, offering
limited predictability and physical insight. In recent years,
there has been significant interest in techniques that ad-
dress this shortcoming by modifying the linear map Y to
have an explicit dependence on the dynamics [BK86], or re-
placing it by an evolution operator [D]J99, Mez05]. Either

space, POD yields an expansion Y ~ Y; =
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directly or indirectly, these methods make use of operator-
theoretic ergodic theory, which we now discuss.

Operator-Theoretic Formulation

The operator-theoretic formulation of dynamical systems
theory shifts attention from the state-space perspective,
and instead characterizes the dynamics through its action
on linear spaces of observables. Denoting the vector space
of Y-valued functions on Q by F, for every time ¢t the dy-
namics has a natural induced action U* : ¥ — F given
by composition with the flow map, U'f = f o ®!. It
then follows by definition that U! is a linear operator; i.e.,
Ul(af +g) = aU' f + U'g for all observables f,g € F and
every scalar « € C. The operator U! is known as a com-
position operator, or Koopman operator after classical work
of Bernard Koopman in the 1930s [Koo31], which estab-
lished that a general (potentially nonlinear) dynamical sys-
tem can be characterized through intrinsically linear oper-
ators acting on spaces of observables. A related notion is
that of the transfer operator, P* : M — M, which describes
the action of the dynamics on a space of measures M via
the pushforward map, P‘m := ®.m = m o ®~¢. In a num-
ber of cases, ¥ and M are dual spaces to one another (e.g.,
continuous functions and Radon measures), in which case
U' and P! are dual operators.

If the space of observables under consideration is
equipped with a Banach or Hilbert space structure, and the
dynamics preserves that structure, the operator-theoretic
formulation allows a broad range of tools from spectral
theory and approximation theory for linear operators to be
employed in the study of dynamical systems. For our pur-
poses, a particularly advantageous aspect of this approach
is that it is amenable to rigorous statistical approximation,
which is one of our principal objectives. It should be kept
in mind that the spaces of observables encountered in ap-
plications are generally infinite-dimensional, leading to
behaviors with no counterparts in finite-dimensional lin-
ear algebra, such as unbounded operators and continuous
spectrum. In fact, as we will see below, the presence of
continuous spectrum is a hallmark of mixing (chaotic) dy-
namics.

In this review, we restrict attention to the operator-
theoretic description of measure-preserving, ergodic dynam-
ics. By that, we mean that there is a probability measure
1 on Q such that (i) u is invariant under the flow, i.e,
®Lu = w; and (ii) every measurable, ®-invariant set has
either zero or full u-measure. We also assume that y is a
Borel measure with compact support A C Q; this set is
necessarily ®'-invariant. An example known to rigorously
satisfy these properties is the Lorenz 63 (L63) system on
Q = R3, which has a compactly supported, ergodic in-
variant measure supported on the famous “butterfly” frac-
tal attractor; see Figure 1. L63 exemplifies the fact that a
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smooth dynamical system may exhibit invariant measures
with nonsmooth supports. This behavior is ubiquitous in
models of physical phenomena, which are formulated in
terms of smooth differential equations, but whose long-
term dynamics concentrate on lower-dimensional subsets
of state space due to the presence of dissipation. Our meth-
ods should therefore not rely on the existence of a smooth
structure for A.

In the setting of ergodic, measure-preserving dynam-
ics on a metric space, two relevant structures that the dy-
namics may be required to preserve are continuity and
u-measurability of observables. If the flow ®' is contin-
uous, then the Koopman operators act on the Banach
space ¥ = C(A, Y) of continuous, Y-valued functions on
A, equipped with the uniform norm, by isometries, i.e.,
WU fll# = |Ifll#. If @ is u-measurable, then U’ lifts to an
operator on equivalence classes of Y-valued functions in
IP(u, Y), 1 < p £ o, and acts again by isometries. If ¥ is a
Hilbert space (with inner product (-, -)y), the case p = 2 is
special, since I*(u, ¥) is a Hilbert space with inner product
(> @12(uy) = Jo(f (@), g(w))y du(w), on which Ulactsasa
unitary map, U%* = U~

Clearly, the properties of approximation techniques for
observables and evolution operators depend on the under-
lying space. For instance, C(A4, Y¥) has a well-defined no-
tion of pointwise evaluation at every w € Q by a contin-
uous linear map §,, : C(A4,Y) - Y, é,f = f(w), which
is useful for interpolation and forecasting, but lacks an
inner-product structure and associated orthogonal projec-
tions. On the other hand, I?>(x) has inner-product struc-
ture, which is very useful theoretically as well as for nu-
merical algorithms, but lacks the notion of pointwise eval-
uation.

Letting # stand for any of the C(A, Y) or IP(u, ¥) spaces,
the set U = {U! : F — ZF}cg forms a strongly con-
tinuous group under composition of operators. That is,
UloUS = U, U = U™, and U° = 1d, so that U
is a group, and for every f € ¥, U'f converges to f in
the norm of # as t — 0. A central notion in such evolu-
tion groups is that of the generator, defined by the #-norm
limit Vf = lim,_o(U'f — f)/t for all f € F for which the
limit exists. It can be shown that the domain D(V) of all
such f is a dense subspace of ¥, and V : D(V) - F isa
closed, unbounded operator. Intuitively, V' can be thought
of as a directional derivative of observables along the dy-
namics. For example, if ¥ = C, A is a C! manifold, and
the flow ®' : A — A is generated by a continuous vector
field V : A > TA, then the generator of the Koopman
group on C(A) has as its domain the space C}(A) C C(A)
of continuously differentiable, complex-valued functions,
and Vf = V. Vf for f € CYA). A strongly contin-
uous evolution group is completely characterized by its
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generator, as any two such groups with the same genera-
tor are identical.

The generator acquires additional properties in the set-
ting of unitary evolution groups on H = I?(u, ¥), where it
is skew-adjoint, V* = —V. Note that the skew-adjointness
of V holds for more general measure-preserving dynam-
ics than Hamiltonian systems, whose generator is skew-
adjoint with respect to Lebesgue measure. By the spectral
theorem for skew-adjoint operators, there exists a unique
projection-valued measure E : B(R) — B(H), giving the
generator and Koopman operator as the spectral integrals

V:fioch(cx), Ut =et” :fei“‘ dE(c).
R R

Here, B(R) is the Borel o-algebra on the real line, and B(H)
the space of bounded operators on H. Intuitively, E can
be thought of as an operator analog of a complex-valued
spectral measure in Fourier analysis, with R playing the
role of frequency space. That is, given f € H, the C-valued
Borel measure E¢(S) = (f, E(S)f)y is precisely the Fourier
spectral measure associated with the time-autocorrelation
function C;(¢) = (f, U'f)g. The latter admits the Fourier
representation Cr(t) = [, el dE (@)

The Hilbert space H admits a U'-invariant splitting H =
H, & H, into orthogonal subspaces H, and H, associ-
ated with the point and continuous components of E, re-
spectively. In particular, E has a unique decomposition
E = E, + E. with H, = ranE,(R) and H, = ranE.(R),
where E, is a purely atomic spectral measure, and E, is a
spectral measure with no atoms. The atoms of E, (i.e., the
singletons {a;} with E,({oj}) # 0) correspond to eigenfre-
quencies of the generator, for which the eigenvalue equa-
tion Vz; = iaz; has a nonzero solution z; € H,. Under er-
godic dynamics, every eigenspace of V' is one-dimensional,
so that if z; is normalized to unit I*(u) norm, E(ohf =
(zj» f12(w)Zj- Every such z; is an eigenfunction of the Koop-
man operator U’ at eigenvalue e/, and {zj}isan orthonor-
mal basis of H,. Thus, every f € H, has the quasiperiodic
evolution U'f = 3, i e'%t(z;, Frzwzj, and the autocorrela-
tion Cy(¢t) is also quasiperiodic. While H, always contains
constant eigenfunctions with zero frequency, it might not
have any nonconstant elements. In that case, the dynamics
is said to be weak-mixing. In contrast to the quasiperiodic
evolution of observables in H,, observables in the contin-
uous spectrum subspace exhibit a loss of correlation char-
acteristic of mixing (chaotic) dynamics. Specifically, for
every f € H, the time-averaged autocorrelation function
Cr(t) = fOt|Cf(S)| ds/t tends to 0 as |t| = oo, as do cross-
correlation functions (g, U’ f)12(,) between observables in
H, and arbitrary observables in [*(u).
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Data-Driven Forecasting

Based on the concepts introduced above, one can formu-
late statistical forecasting in Problem 1 as the task of con-
structing a function Z; : X — Y on covariate space X,
such that Z, o X optimally approximates U'Y among all
functions in a suitable class. We set ¥ = C, so the re-
sponse variable is scalar-valued, and consider the Koop-
man operator on I?(u), so we have access to orthogonal
projections. We also assume for now that the covariate
function X is injective, so Y; := Z, o X should be able
to approximate U'Y to arbitrarily high precision in I?(u)
norm. Indeed, let {uy,u;,...} be an orthonormal basis of
I2(v), where v = X,u is the pushforward of the invari-
ant measure onto X. Then, {¢g, ¢;,..} with ¢ = u; o X
is an orthonormal basis of I?(u). Given this basis, and
because U’ is bounded, we have U'Y = lim;_ UY,
where the partial sum U(Y := E;:;(UtY, ¢ 29 con-
verges in I?(u) norm. Here, U} is a finite-rank map
on I?(u) with range span{¢y, ..., $;_;}, represented by an
L x L matrix U(t) with elements Uy;(t) = {(¢;, U'¢$j)12(u)-
Defining ¥ = (Jo,..9-1)", § = (¢, U'Y)12() and
(2o(0), -, 21-1(D) = V), we have ULY = 37 5(0).
Since ¢; = u; o X, this leads to the estimator Z,1 € I*(v),
with ZAt,L = Zf:_(: %(t)uj

The approach outlined above tentatively provides a con-
sistent forecasting framework. Yet, while in principle ap-
pealing, it has three major shortcomings: (i) Apart from
special cases, the invariant measure and an orthonormal
basis of I?(u) are not known. In particular, orthogo-
nal functions with respect to an ambient measure on Q
(e.g., Lebesgue-orthogonal polynomials) will not suffice,
since there are no guarantees that such functions form a
Schauder basis of I?(u), let alone be orthonormal. Even
with a basis, we cannot evaluate U on its elements without
knowing ®°. (ii) Pointwise evaluation on I*(u) is not de-
fined, making Z; ; inadequate in practice, even if the coef-
ficients 2;(¢) are known. (iii) The covariate map X is often-
times noninvertible, and thus the ¢; span a strict subspace
of I?(u). We now describe methods to overcome these ob-
stacles using learning theory.
Sampling measures and ergodicity. The dynamical tra-
jectory {wg, ..., wy_1} in state space underlying the training
data is the support of a discrete sampling measure py :=
Z}::_()l d.,,/N. A key consequence of ergodicity is that for
Lebesgue-a.e. sampling interval At and u-a.e. starting point
wy € Q, as N - oo, the sampling measures uy weak-
converge to the invariant measure y; that is,

limffdyN=ffdy Vf e C(Q). (1)
Q Q

N-oo
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Since integrals against u) are time averages on dynam-
ical trajectories, [y fduy Zf:_ol f(w,)/N, ergodicity
provides an empirical means of accessing the statistics
of the invariant measure. In fact, many systems encoun-
tered in applications possess so-called physical measures,
where (1) holds for w, in a “larger” set of positive mea-
sure with respect to an ambient measure (e.g., Lebesgue
measure) from which experimental initial conditions are
drawn. Hereafter, we will let M be a compact subset of
Q, which is forward-invariant under the dynamics (i.e.,
®'(M) C M for all t > 0), and thus necessarily contains
A. For example, in dissipative dynamical systems such as
L63, M can be chosen as a compact absorbing ball.

Shift operators. Ergodicity suggests that appropriate data-
driven analogs are the I?(uy) spaces induced by the sam-
pling measures uy. Fora given N, [*(uy) consists of equiv-
alence classes of measurable functions f : Q — C hav-
ing common values at the sampled states w,, and the in-
ner product of two elements f,g € I*(uy) is given by
an empirical time-correlation, (f,g)., = Jo f*g8dun =
Zi::ol f*(w,)g(w,)/N. Moreover, if the w,, are distinct (as
we will assume for simplicity of exposition), I*(uy) has
dimension N, and is isomorphic as a Hilbert space to
CN equipped with a normalized dot product. Given that,
we can represent every f € I?(uy) by a column vector
f = (f(@p), ., flwny_1))T € CV, and every linear map
A : I*(uy) — I*(uy) by an N X N matrix A, so that
g=A f is the column vector representing g = Af. The
elements of f can also be understood as expansion coef-
ficients in the standard basis {eg n,...,en_1n} Of 2(un),
where ¢; n(w,) = NY28;,; that is, f(wn) = (€N Fr2(uy)-
Similarly, the elements of A correspond to the operator
matrix elements A;; = {e; x> A€j N)12(uy)-

Next, we would like to define a Koopman operator on
I*(up), but this space does not admit such an operator as a
composition map induced by the dynamical flow ® on Q.
This is because @' does not preserve null sets with respect
to un, and thus does not lead to a well-defined compo-
sition map on equivalence classes of functions in I*(uy).
Nevertheless, on I?(uy) there is an analogous construct to
the Koopman operator on I?(«), namely, the shift operator,
U @ P(un) = P(un), q € Z, defined as

f(a’n+q)’ 0<n+q<N-1,

U f(w,) =
SEACH) 0, otherwise.

Even though U\l is not a composition map, intuitively
it should have a connection with the Koopman operator
U492t One could consider, for instance, the matrix repre-
sentation Uyn(q) = [(e;n, Uﬁ,ej,N)Lz(uN)] in the standard
basis, and attempt to connect it with a matrix representa-
tion of U4%! in an orthonormal basis of I?(u). However,
the issue with this approach is that the ¢; 5 do not have
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N — oo limits in I*(u), meaning that there is no suitable
notion of N — oo convergence of the matrix elements of
Uy in the standard basis. In response, we will construct a
representation of the shift operator in a different orthonor-
mal basis with a well-defined N — oo limit. The main tools
that we will use are kernel integral operators, which we now
describe.

Kernel integral operators. In the present context, a kernel
function will be a real-valued, continuous function k : QX
Q — Rwith the property that there exists a strictly positive,
continuous function d : Q - R such that

d(w)k(w, ) = d(w)k(w',w) VYo,w € Q. (2)

Notice the similarity between (2) and the detailed balance
relation in reversible Markov chains. Now let p be any
Borel probability measure with compact support S C M
included in the forward-invariant set M. It follows by con-
tinuity of k and compactness of S that the integral operator
K, : I*(p) » C(M),

K.f = fQ k() (@) dp(@), 3)

is well-defined as a bounded operator mapping elements
of I*(p) into continuous functions on M. Using (,
C(M) — I?(p) to denote the canonical inclusion map, we
consider two additional integral operators, G, : I2(p) —
L~2(p) and G, : C(M) - C(M), with G, = 1,K, and
G, = K, respectively. i

The operators G, and G, are compact operators act-
ing with the same integral formula as K, in (3), but their
codomains and domains, respectively, are different. Nev-
ertheless, their nonzero eigenvalues coincide, and ¢ €
I*(p) is an eigenfunction of G, corresponding to a nonzero
eigenvalue 1 if and only if ¢ € C(M) with ¢ = K,¢/1 is an
eigenfunction of G, at the same eigenvalue. In effect, ¢ —
@ “interpolates” the I*(p) element ¢ (defined only up to p-
null sets) to the continuous, everywhere-defined function
@. It can be verified that if (2) holds, G, is a trace-class op-
erator with real eigenvalues, [1y] > |4;] > --- \, 07. More-
over, there exists a Riesz basis {¢g, ¢;, ..., } of [?(p) and a
corresponding dual basis {¢g, $1, ...} with (¢}, $j)12() = ;.
such that G,¢; = 4;¢; and G;¢j = 4;¢;. We say that the ker-
nel k is I*(p)-universal if G, has no zero eigenvalues; this
is equivalent to ran G, being dense in I*(p). Moreover, k
is said to be I?(p)-Markov if G, is a Markov operator, i.e.,
G, 20,G,f 20if f >0,and G1 = 1.

Observe now that the operators G, associated with
the sampling measures uy, henceforth abbreviated by
Gy, are represented by N X N kernel matrices Gy =
[{ei,n> Gnej N L2(un)] = [K(w;, ;)] in the standard basis of
I*(uy). Further, if k is a pullback kernel from covariate
space, i.e, k(w,0") = x(X(w),X(w'")) forx : X XX - R,
then Gy = [x(x;,x;)] is empirically accessible from the
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training data. Popular kernels in applications include the
covariance kernel x(x,x’) = (x,x’)y on an inner-product
space and the radial Gaussian kernel x(x, x') = e~IIx=x'l&/¢,
It is also common to employ Markov kernels constructed
by normalization of symmetric kernels [CLO6, BH16]. We
will use ky to denote kernels with data-dependent normal-
izations.

A widely used strategy for learning with integral oper-
ators [VLBBO8] is to construct families of kernels ky con-
verging in C(M X M) norm to k. This implies that for every
nonzero eigenvalue 4; of G = G, the sequence of eigen-
values 4y of Gy satisfies th—»oo/lj’N = 1. Moreover,

there exists a sequence of eigenfunctions ¢; y € (un)
corresponding to 4; n, whose continuous representatives,
¢jn = Kn¢jn/Ajn, converge in C(M) to ¢ = K¢j/A;,
where ¢; € I*(u) is any eigenfunction of G at eigen-
value ;. In effect, we use C(M) as a “bridge” to estab-
lish spectral convergence of the operators Gy, which act
on different spaces. Note that (1; n,9;n) does not con-
verge uniformly with respect to j, and for a fixed N, eigen-
values/eigenfunctions at larger j exhibit larger deviations
from their N — oo limits. Under measure-preserving, er-
godic dynamics, convergence occurs for u-a.e. starting state
wy € M, and wy in a set of positive ambient measure if y
is physical. In particular, the training states w,, need not
lie on A. See Figure 1 for eigenfunctions of Gy computed
from data sampled near the L63 attractor.

Diffusion forecasting. We now have the ingredients to
build a concrete statistical forecasting scheme based on
data-driven approximations of the Koopman operator. In
particular, note that if ¢; y,$; n are biorthogonal eigen-
functions of Gy, and Gy, respectively, at nonzero eigen-
values, we can evaluate the matrix element Uy ;j(q) =
(P N> U i N L2(uy) Of the shift operator using the contin-
uous representatives ¢; n, @j N

1 N-1-q
Un,ij(@ = N E ¢i N (@n)Pj N(@Wniq)
n=0
_N-gq

N /QCD{,NUW%,Nd#N—q,

where U4%! is the Koopman operator on C(M). Therefore,

if the corresponding eigenvalues 4;,4; of G are nonzero,
by the weak convergence of the sampling measures in (1)
and uniform convergence of the eigenfunctions, as N —
oo, U;j n(q) converges to the matrix element Uj;(qAf) =
(1, UTA )12,y of the Koopman operator on I*(u). This
convergence is not uniform with respect to i, j, but if we
fix a parameter L € N (which can be thought of as spec-
tral resolution) such that A;_; # 0, we can obtain a statisti-
cally consistent approximation of L X L Koopman operator
matrices, U(q At) = [U;j(q Ar)], by shift operator matrices,

OcroBer 2020

Un(q) = [Uy,j(@)], with i, j €{0,..., L — 1}. Checkerboard
plots of Un(q) for the L63 system are displayed in Figure 1.

This method for approximating matrix elements of
Koopman operators was proposed in a technique called
diffusion forecasting (named after the diffusion kernels em-
ployed) [BGH15]. Assuming that the response Y is contin-
uous and by spectral convergence of Gy, for every j € N,
such that 4; > 0, the inner products Yj’N = <¢},N’Y>;4N
converge, as N — oo, t0 ¥; = (#],Y)12(,). This implies

that for any L € N such that ;_; > 0, Zf:_; Yj’Ngoj,N
converges in C(M) to the continuous representative of
I1; Y, where IT;, is the orthogonal projection on I*(«) map-
ping into span{¢y,...,$;_1}. Suppose now that gy is a se-
quence of continuous functions converging uniformly to
¢ € C(M), such that gy are probability densities with re-
spect to uy (i.e, oy = 0 and |lon|lr1(uy) = 1). By simi-
lar arguments as for Y, as N — oo, the continuous func-

. L1, o ,
tion ijo éiNpjN With §; v = (goj,N, QN>L2(IMN) converges
to Il ¢ in I?(u). Putting these facts together, and setting

on = (Gons-r6r—1n)" and Yy = (Y n» s Y1 n) T, we
conclude that

>T 5 N-oo q At
ONUN(QYy —— (o, ITLUT Y )12, (4)

Here, the left-hand side is given by matrix-vector prod-
ucts obtained from the data, and the right-hand side
is equal to the expectation of IT, UY2!'Y with respect to
the probability measure p with density dp/du = ¢; i.e,
(Mo, I UMY )2y = E,(TILUIAY), where Eo(1) :=
Jo() dp.

What about the dependence of the forecast on L? As L
increases, I1; converges strongly to the orthogonal projec-
tionIlg : I?(u) — I?(u) onto the closure of the range of G.
Thus, if the kernel k is I2(u)-universal (i.e., ran G = I*(u)),
II; = Id, and under the iterated limit of L — oo after
N — o the left-hand side of (4) converges to E,UI4'Y.
In summary, implemented with an I*(u)-universal ker-
nel, diffusion forecasting consistently approximates the
expected value of the time-evolution of any continuous
observable with respect to any probability measure with
continuous density relative to u. An example of an I*(u)-
universal kernel is the pullback of a radial Gaussian ker-
nel on X = R™. In contrast, the covariance kernel is not
I*(u)-universal, as in this case the rank of G is bounded by
m. This illustrates that forecasting in the POD basis may
be subject to intrinsic limitations, even with full observa-
tions.

Kernel analog forecasting. While providing a flexible
framework for approximating expectation values of observ-
ables under measure-preserving, ergodic dynamics, diffu-
sion forecasting does not directly address the problem
of constructing a concrete forecast function, i.e., a func-
tion Z; X — C approximating U'Y as stated in
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Figure 1. Panel (a) shows eigenfunctions ¢; 5 of Gy for a dataset sampled near the L63 attractor. Panel (b) shows the action of
the shift operator Uﬁ, on the iN from (a) for g = 50 steps, approximating the Koopman operator U9At, Panels (c, d) show the
matrix elements (¢; ., U13¢j,N>uN of the shift operator for g = 5 and 50. The mixing dynamics is evident in the larger
far-from-diagonal components in g = 50 vs. ¢ = 5. Panel (e) shows the matrix representation of a finite-difference approximation
of the generator V, which is skew-symmetric. Panels (f, g) summarize the diffusion forecast (DF) and kernel analog forecast (KAF)
for lead time t = g At. In each diagram, the data-driven finite-dimensional approximation (top row) converges to the true forecast
(middle row). DF maps an initial state « € M C Q to the future expectation of an observable "qu(w)UtY = Eyrwy(w)Y, and KAF maps
a response function Y € C(M) to the conditional expectation E(U'Y | X).
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Problem 1. One way of defining such a function is to let
xn be an I?(vy)-Markov kernel on X for vy = X, uy, and
to consider the “feature map” ¥y : X - C(M) mapping
each point x € X in covariate space to the kernel section
Yy (x) = xn(x,X(+)). Then, Py (x) is a continuous proba-
bility density with respect to uy, and we can use diffusion

T S
forecasting to define Z; o,(x) = Wn(x) Un(q)Yy with no-
tation as in (4).

While this approach has a well-defined N — oo limit, it
does not provide optimality guarantees, particularly in sit-
uations where X is noninjective. Indeed, the I?(u)-optimal
approximation to U'Y of the form Z; o X is given by the
conditional expectation E(U'Y | X). In the present I? setting
we have E(U'Y | X) = TIxU'Y, where Iy is the orthog-
onal projection into I (u) 1= {f € [*(w) : f = go X}
That is, the conditional expectation minimizes the error
IIf —U"Y|lf2(,,) among all pullbacks f € L3 () from covari-
ate space. Even though E(U'Y | X = x) can be expressed
as an expectation with respect to a conditional probability
measure u(- | x) on Q, that measure will generally not have
an I*(u) density, and there is no map ¥ : X — C(M) such
that (¥(x), U'Y)12(y,) equals E(U'Y | X = Xx).

To construct a consistent estimator of the conditional
expectation, we require that k be a pullback of a kernel
x : X' XX — R on covariate space which is (i) symmet-
ric, x(x,x") = x(x', x) for all x,x" € X (so (2) holds); (ii)
strictly positive; and (iii) strictly positive-definite. The latter
means that for any sequence Xy, ..., x,,_; of distinct points
in X the matrix [x(x;, x;)] is strictly positive. These proper-
ties imply that there exists a Hilbert space H of complex-
valued functions on Q, such that (i) for every w € Q,
the kernel sections k,, = k(w,-) lie in J(; (ii) the evalu-
ation functional 6, : A — C is bounded and satisfies
Swf = (Ko, f)e; (iii) every f € H has the form f = goX
for a continuous function g : X — C; and (iv) ¢, J( lies
dense in L4 ().

A Hilbert space of functions satisfying (i) and (ii) above
is known as a reproducing kernel Hilbert space (RKHS), and
the associated kernel k is known as a reproducing kernel.
RKHSs have many useful properties for statistical learning
[CS02], not least because they combine the Hilbert space
structure of I? spaces with pointwise evaluation in spaces
of continuous functions. The density of 7 in I4(w) is a
consequence of the strict positive-definiteness of x. In par-
ticular, because the conditional expectation E(U'Y | X)
lies in IZ(u), it can be approximated by elements of J¢
to arbitrarily high precision in I?(x) norm, and every such
approximation will be a pullback ¥; = Z; o X of a continu-
ous function Z; that can be evaluated at arbitrary covariate
values.

We now describe a data-driven technique for construct-
ing such a prediction function, which we refer to as
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kernel analog forecasting (KAF) [AG20]. Mathematically,
KAF is closely related to kernel principal component re-
gression. To build the KAF estimator, we work again with
integral operators as in (3), with the difference that now
K, I*(p) = (M) takes values in the restriction of
H to the forward-invariant set M, denoted #((M). One
can show that the adjoint K} FH(M) — I*(p) coin-
cides with the inclusion map ¢, on continuous functions,
so that K maps f € H(M) C C(M) to its correspond-
ing I?(p) equivalence class. As a result, the integral oper-
ator G, : I*(p) — I*(p) takes the form G, = K3K,, be-
coming a self-adjoint, positive-definite, compact operator
with eigenvalues 15 > 4; > --- \, 0%, and a correspond-
ing orthonormal eigenbasis {¢y, ¢1, ...} of I*(0). Moreover,
{$0, ¥1, ..} with ¢ = pgbj//l}/z is an orthonormal set in
H(M). In fact, Mercer’s theorem provides an explicit repre-
sentation k(w, ') = Ej-o:o Pj(w)j(w’), where direct evalu-
ation of the kernel in the left-hand side (known as “kernel
trick”) avoids the complexity of inner-product computa-
tions between feature vectors ;. Here, our perspective is
to rely on the orthogonality of the eigenbasis to approxi-
mate observables of interest at fixed L, and establish con-
vergence of the estimator as L — oo. A similar approach
was adopted for density estimation on noncompact do-
mains, with Mercer-type kernels based on orthogonal poly-
nomials [ZHL19].

Now a key operation that the RKHS enables is the Nys-
trom extension, which interpolates I?(po) elements of appro-
priate regularity to RKHS functions. The Nystrom operator
N, + D(N,) — F(M) is defined on the domain D(NV,) =
{2268 © 2;lgI*/4; < oo} by linear extension of N,¢; =
l,bj//l}/z. Note that N,¢; = K¢;/4; = ¢j, so N, maps ¢; to its
continuous representative, and K;N, f = f, meaning that
Nof = f, p-a.e. While D(N,) may be a strict I*(p) subspace,

forany L with A;_; > 0 we define a spectrally truncated op-

L-1
erator Ny, : I2(0) = H(M), Neo Zj ¢ = ZFO cjz,lg//ljl-/z.

Then, as L increases, K; Ny, ,f converges to g, f in I2(p).
To make empirical forecasts, we set p = wy, compute the
expansion coefficients c; n(t) of U'Y in the {¢; x} basis of
I*(un), and construct Y; 1 y = Ny yU'Y € H(M). Because
¥jn are pullbacks of known functions u;jxy € C(X), we

L-1 1/2
have Yt,L,N = Zt,L,N OX, where Zt,L,N = Zj:O C"](t)u]’N//‘lJ’N

can be evaluated at any x € X.

The function Y; ; y is our estimator of the conditional
expectation E(U'Y | X). By spectral convergence of ker-
nel integral operators, as N — oo, Yy converges to
Y, := N U'Y in C(M) norm, where N, = N . Then,
as L — oo, K*Y; , converges in I?(1) norm to IIgU'Y. Be-
cause x is strictly positive-definite, G has dense range in
IA (), and thus TIgU'Y = T4 U'Y = E(U'Y | X). We
therefore conclude that Y; ; ; converges to the conditional
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Figure 2. KAF applied to the L63 state vector component

Y(w) = w; with full (blue) and partial (red) observations. In the
fully observed case, the covariate X is the identity map on

Q = R3. In the partially observed case, X(w) = w; is the
projection to the first coordinate. Top: Forecasts Z; ; n(x)
initialized from fixed x = X(w), compared with the true
evolution U'Y(w) (black). Shaded regions show error bounds
based on KAF estimates of the conditional standard deviation,
o;(x). Bottom: RMS forecast errors (solid lines) and o; (dashed
lines). The agreement between actual and estimated errors
indicates that o; provides useful uncertainty quantification.

expectation as L — oo after N — oo. Forecast results from
the L63 system are shown in Figure 2.

Coherent Pattern Extraction

We now turn to the task of coherent pattern extraction in
Problem 2. This is a fundamentally unsupervised learning
problem, as we seek to discover observables of a dynami-
cal system that exhibit a natural time evolution (by some
suitable criterion), rather than approximate a given observ-
able as in the context of forecasting. We have mentioned
POD as a technique for identifying coherent observables
through eigenfunctions of covariance operators. Kernel
PCA [SSM98] is a generalization of this approach utilizing
integral operators with potentially nonlinear kernels. For
data lying on Riemannian manifolds, it is popular to em-
ploy kernels approximating geometrical operators, such
as heat operators and their associated Laplacians. Exam-
ples include Laplacian eigenmaps [BN03], diffusion maps
[CLO6], and variable-bandwidth kernels [BH16]. Mean-
while, coherent pattern extraction techniques based on
evolution operators have also gained popularity in re-
cent years. These methods include spectral analysis of
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transfer operators for detection of invariant sets
[DJ99, DFS00], harmonic  averaging  [Mez05],
and dynamic mode  decomposition (DMD)

[RMB*09,Sch10, WKR15, KNK* 18] techniques for approx-
imating Koopman eigenfunctions, and Darboux kernels
for approximating spectral projectors [KPM20]. While nat-
ural from a theoretical standpoint, evolution operators
tend to have more complicated spectral properties than
kernel integral operators, including nonisolated eigenval-
ues and continuous spectrum. The following examples il-
lustrate distinct behaviors associated with the point (H,)
and continuous (H,) spectrum subspaces of I?(u).

Example 1 (Torus rotation). A quasiperiodic rotation on
the 2-torus, Q = T?, is governed by the system of ODEs
@ = V(w), where w = (0;,w,) € [0,27)%, V = (v,1),
and 1,7, € R are rationally independent frequency pa-
rameters. The resulting flow, ®'(w) = (w; + Vit, @, + Vt)
mod 27, has a unique Borel ergodic invariant probability
measure y given by a normalized Lebesgue measure. More-
over, there exists an orthonormal basis of I?(1) consisting
of Koopman eigenfunctions zj(w) = ellwrtkws) ke 7,
with eigenfrequencies aj = jv; + kv,. Thus, H, = I*(u),
and H, is the zero subspace. Such a system is said to have
a pure point spectrum.

Example 2 (Lorenz 63 system). The L63 system on Q = R3
is governed by a system of smooth ODEs with two qua-
dratic nonlinearities. This system is known to exhibit
a physical ergodic invariant probability measure ¢ sup-
ported on a compact set (the L63 attractor), with mixing
dynamics. This means that H,, is the one-dimensional sub-
space of [*(u) consisting of constant functions, and H, con-
sists of all I?(u) functions orthogonal to the constants (i.e.,
with zero expectation value with respect to u).

Delay-coordinate approaches. For the point spectrum
subspace H,, a natural class of coherent observables is
provided by the Koopman eigenfunctions. Every Koop-
man eigenfunction z; € H, evolves as a harmonic oscil-
lator at the corresponding eigenfrequency, Utzj = ei“J: tzj,
and the associated autocorrelation function, Czj(t) = el%t,
also has a harmonic evolution. Short of temporal invari-
ance (which only occurs for constant eigenfunctions un-
der measure-preserving ergodic dynamics), it is natural to
think of a harmonic evolution as being “maximally” coher-
ent. In particular, if z; is continuous, then for any w € A,
the real and imaginary parts of the time series t — Utzj(cu)
are pure sinusoids, even if the flow ®' is aperiodic. Further
attractive properties of Koopman eigenfunctions include
the facts that they are intrinsic to the dynamical system
generating the data, and they are closed under pointwise
multiplication, zjzy = zj,, allowing one to generate every
eigenfunction from a potentially finite generating set.
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Yet, consistently approximating Koopman eigenfunc-
tions from data is a nontrivial task, even for simple systems.
For instance, the torus rotation in Example 1 has a dense
set of eigenfrequencies by rational independence of the ba-
sic frequencies v; and »,. Thus, any open interval in R
contains infinitely many eigenfrequencies o, necessitat-
ing some form of regularization. Arguably, the term “pure
point spectrum” is somewhat of a misnomer for such sys-
tems since a nonempty continuous spectrum is present. In-
deed, since the spectrum of an operator on a Banach space
includes the closure of the set of eigenvalues, iR \ {ic}
lies in the continuous spectrum.

As a way of addressing these challenges, observe that if
G is a self-adjoint, compact operator commuting with the
Koopman group (i.e.,, U'G = GU!), then any eigenspace
W, of G corresponding to a nonzero eigenvalue A is in-
variant under U’, and thus under the generator V. More-
over, by compactness of G, W; has finite dimension. Thus,
for any orthonormal basis {¢y, ..., $;_1} of W}, the genera-
tor V on W, is represented by a skew-symmetric, and thus
unitarily diagonalizable, [ X I matrix V = [{(¢;, V$j)12¢,]-
The eigenvectors i = (ug,...,u;_;)" € C! of V then con-
tain expansion coefficients of Koopman eigenfunctions
z = 25_:1) u;¢; in Wy, and the eigenvalues corresponding
to u are eigenvalues of V.

On the basis of the above, since any integral operator G
on I*(u) associated with a symmetric kernel k € I?(uxu) is
Hilbert-Schmidt (and thus compact), and we have a wide
variety of data-driven tools for approximating integral op-
erators, we can reduce the problem of consistently approxi-
mating the point spectrum of the Koopman group on I?*(u)
to the problem of constructing a commuting integral op-
erator. As we now argue, the success of a number of tech-
niques, including singular spectrum analysis (SSA) [BK86],
diffusion-mapped delay coordinates (DMDC) [BCGFS13],
nonlinear Laplacian spectral analysis (NLSA) [GM12], and
Hankel DMD [BBP*17], in identifying coherent patterns
can at least be partly attributed to the fact that they em-
ploy integral operators that approximately commute with
the Koopman operator.

A common characteristic of these methods is that they
employ, in some form, delay-coordinate maps [SYCI1].
With our notation for the covariate function X : Q —
X and sampling interval At, the Q-step delay-coordinate
map is defined as Xg Q - X9 with Xo(w) =
(X(@o), X(@_1), ..., X(w_g+1)) and wq = @94 (w). That is,
X can be thought of as a lift of X, which produces “snap-
shots,” to a map taking values in the space X9 containing
“videos.” Intuitively, by virtue of its higher-dimensional
codomain and dependence on the dynamical flow, a delay-
coordinate map such as X should provide additional in-
formation about the underlying dynamics on Q over the
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raw covariate map X. This intuition has been made precise
in a number of “embedology” theorems [SYC91], which
state that under mild assumptions, for any compact sub-
set S C Q (including, for our purposes, the invariant set
A), the delay-coordinate map X, is injective on S for suffi-
ciently large Q. As a result, delay-coordinate maps provide
a powerful tool for state space reconstruction, as well as for
constructing informative predictor functions in the context
of forecasting.

Aside from considerations associated with topological
reconstruction, however, observe that a metricd : XXX —
R on covariate space pulls back to a distance-like function
do : QxQ — Rsuch that

Q-1

B, ) = % Y @(X(w_) X@.).  (5)
q=0

In particular, &é has the structure of an ergodic average of
a continuous function under the product dynamical flow
@' X ®! on Q X Q. By the von Neumann ergodic theorem,
as Q — oo, &Q converges in I?(u X u) norm to a bounded
function d,, which is invariant under the Koopman oper-
ator U! @ U! of the product dynamical system. Note that
d,, need not be i X u-a.e. constant, as ® x ®' need not
be ergodic, and aside from special cases it will not be con-
tinuous on A X A. Nevertheless, based on the I?(u X u)
convergence of dg to d,,, it can be shown [DG19] that for
any continuous function 4 : R — R, the integral operator
G4, on I*(u) associated with the kernel k, = h o d, com-
mutes with U? for any t € R. Moreover, as Q — oo, the
operators Gy associated with kg = h o dg converge to G,
in I?(1) operator norm, and thus in spectrum.

Many of the operators employed in SSA, DMDC, NLSA,
and Hankel DMD can be modeled after G, described
above. In particular, because Go is induced by a continu-
ous kernel, its spectrum can be consistently approximated
by data-driven operators Go x on I*(uy), as described in
the context of forecasting. The eigenfunctions of these
operators at nonzero eigenvalues approximate eigenfunc-
tions of G, which approximate in turn eigenfunctions of
G,, lying in finite unions of Koopman eigenspaces. Thus,
for sufficiently large N and Q, the eigenfunctions of G y at
nonzero eigenvalues capture distinct timescales associated
with the point spectrum of the dynamical system, provid-
ing physically interpretable features. These kernel eigen-
functions can also be employed in Galerkin schemes to
approximate individual Koopman eigenfunctions.

Besides the spectral considerations described above,
in [BCGFS13] a geometrical characterization of the
eigenspaces of G, was given based on Lyapunov metrics of
dynamical systems. In particular, it follows by Oseledets’s
multiplicative ergodic theorem that for y-a.e. w € M there
exists a decomposition T,M = F ,,@---@F, ,, where T,M
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is the tangent space at w € M, and F; ,, are subspaces satis-
fying the equivariance condition DCIDtFj,w = Fj ¢t (w)- More-
over, there exist A; > --- > A,, such that for every v € Fj
Aj = lim_ fot log||D®’ v|| ds/t, where ||-|| is the norm on
T,M induced by a Riemannian metric. The numbers A;
are called Lyapunov exponents, and are metric-independent.
Note that the dynamical vector field I7(w) lies in a subspace
Fj, «» with a corresponding zero Lyapunov exponent.
IfFj, ., is one-dimensional, and the norms |[D®" v|| obey
appropriate uniform growth/decay bounds with respect to
w € M, the dynamical flow is said to be uniformly hyper-
bolic. 1f, in addition, the support A of u is a differentiable
manifold, then there exists a class of Riemannian metrics,
called Lyapunov metrics, for which the F; ,, are mutually or-
thogonal at every w € A. In [BCGFS13], it was shown
that using a modification of the delay-distance in (5) with
exponentially decaying weights, as Q — oo, the top eigen-
functions ¢J-(Q) of G vary predominantly along the sub-
space F. ., associated with the most stable Lyapunov ex-
ponent. That is, for every w € Q and tangent vector
v € T,M orthogonal to F., with respect to a Lyapunov
metric, limg_ o, U - V¢]~(Q) =0.
RKHS approaches. While delay-coordinate maps are ef-
fective for approximating the point spectrum and associ-
ated Koopman eigenfunctions, they do not address the
problem of identifying coherent observables in the con-
tinuous spectrum subspace H,. Indeed, one can verify that
in mixed-spectrum systems the infinite-delay operator G,
which provides access to the eigenspaces of the Koopman
operator, has a nontrivial nullspace that includes H, as a
subspace. More broadly, there is no obvious way of iden-
tifying coherent observables in H, as eigenfunctions of an
intrinsic evolution operator. As a remedy to this problem,
we relax the problem of seeking Koopman eigenfunctions,
and consider instead approximate eigenfunctions. An observ-
able z € I?(u) is said to be an e-approximate eigenfunction
of Ut if there exists A; € C such that

Uz = 442l 12wy < €llzllL2(u)- (6)

The number 4, is then said to lie in the e-approximate spec-
trum of U*. A Koopman eigenfunction is an e-approximate
eigenfunction for every € > 0, so we think of (6) as a relax-
ation of the eigenvalue equation, U‘z — 4,z = 0. This sug-
gests that a natural notion of coherence of observables in
I*(u), appropriate to both the point and continuous spec-
trum, is that (6) holds fore << 1 and all t in a “large” inter-
val.

We now outline an RKHS-based approach [DGS18],
which identifies observables satisfying this condition
through eigenfunctions of a regularized operator V. on
I?(1) approximating V with the properties of (i) being
skew-adjoint and compact; and (ii) having eigenfunctions
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in the domain of the Nystrém operator, which maps them
to differentiable functions in an RKHS. Here, 7 is a posi-
tive regularization parameter such that, as 7 — 0%, V con-
verges to V in a suitable spectral sense. We will assume that
the forward-invariant, compact manifold M has C* regular-
ity, but will not require that the support A of the invariant
measure be differentiable.

With these assumptions, let k OXQ — Rbea
symmetric, positive-definite kernel, whose restriction on
M x M is continuously differentiable. Then, the corre-
sponding RKHS F(M) embeds continuously in the Ba-
nach space C(M) of continuously differentiable functions
on M, equipped with the standard norm. Moreover, be-
cause V is an extension of the directional derivative V-V as-
sociated with the dynamical vector field, every function in
H(M) lies, upon inclusion, in D(V). The key point here is
that regularity of the kernel induces RKHSs of observables
which are guaranteed to lie in the domain of the generator.
In particular, the range of the integral operator G = K*K
on I?(u) associated with k lies in D(V), so that A = VG
is well-defined. This operator is, in fact, Hilbert-Schmidt,
with Hilbert-Schmidt norm bounded by the C}(M x M)
norm of the kernel k. What is perhaps less obvious is
that G2V G2 (which “distributes” the smoothing by G
to the left and right of V), defined on the dense subspace
{f € (W) : GY2f € D(V)}, is also bounded, and thus
has a unique closed extension V : I*(u) — I*(u), which
turns out to be Hilbert-Schmidt. Unlike A, V is skew-
adjoint, and thus preserves an important structural prop-
erty of the generator. By skew-adjointness and compact-
ness of V, there exists an orthonormal basis {z:jez}tof
I?(u) consisting of its eigenfunctions Z;, with purely imagi-
nary eigenvalues i&;. Moreover, (i) all Z; corresponding to
nonzero & lie in the domain of the Nystrém operator, and
therefore have C! representatives in 7((M); and (ii) if k is
I?(u)-universal, Markov, and ergodic, then V has a simple
eigenvalue at zero, in agreement with the analogous prop-
erty of V.

Based on the above, we seek to construct a one-
parameter family of such kernels k;, with associated
RKHSs #(,(M), such that as 7 — 0%, the regularized genera-
tors V, converge to V in a sense suitable for spectral conver-
gence. Here, the relevant notion of convergence is strong
resolvent convergence; that is, for every element A of the re-
solvent set of V and every f € I*(u), (V. — 1)~!f must
converge to (V — 1)1 f. In that case, for every element ia
of the spectrum of V' (both point and continuous), there
exists a sequence of eigenvalues i&;_. of V. converging to
i as T — 010. Moreover, for any € > 0 and T > 0, there
exists 7, > 0 such that forall 0 < 7 < 7, and [t| < T, e/%e7!
lies in the e-approximate spectrum of U’ and 2 o Is an
e-approximate eigenfunction.
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In [DGS18], a constructive procedure was proposed for
obtaining the kernel family k, through a Markov semi-
group on I?(u). This method has a data-driven implemen-
tation, with analogous spectral convergence results for the
associated integral operators G,y on I*(uy) to those de-
scribed in the setting of forecasting. Given these opera-
tors, we approximate V; by V, v = GYR W GIR, where 1
is a skew-adjoint, finite-difference approximation of the gen-
erator. For example, Vi = (Uy — Uy*)/(2 At) is a second-
order finite-difference approximation based on the 1-step
shift operator Uy;. See Figure 1 for a graphical represen-
tation of a generator matrix for L63. As with our data-
driven approximations of U?, we work with a rank-L opera-
torV, := I N,LV; NI N1, where I, 1 is the orthogonal
projection to the subspace spanned by the first L eigenfunc-
tions of G; iy. This family of operators converges spectrally
to ¥ in a limit of N — 0, followed by At — 0 and L - o,
where we note that C! regularity of k, is important for the
finite-difference approximations to converge.

At any given 7, an a posteriori criterion for identify-
ing candidate eigenfunctions Z; ; satisfying (6) for small
€ is to compute a Dirichlet energy functional, D(Z;.) =
”Nr,Nﬁj,T||§{T(M)/”2j,r||i2(u,\,)- Intuitively, D assigns a mea-
sure of roughness to every nonzero element in the domain
of the Nystrom operator (analogously to the Dirichlet en-
ergy in Sobolev spaces on differentiable manifolds), and
the smaller D(Z; ;) is, the more coherent Z; ; is expected to
be. Indeed, as shown in Figure 3, the Z; ; corresponding to
low Dirichlet energy identify observables of the L63 system
with a coherent dynamical evolution, even though this sys-
tem is mixing and has no nonconstant Koopman eigen-
functions. Sampled along dynamical trajectories, the ap-
proximate Koopman eigenfunctions resemble amplitude-
modulated wavepackets, exhibiting a low-frequency mod-
ulating envelope while maintaining phase coherence and a
precise carrier frequency. This behavior can be thought of
as a “relaxation” of Koopman eigenfunctions, which gen-
erate pure sinusoids with no amplitude modulation.

Conclusions and Outlook

We have presented mathematical techniques at the inter-
face of dynamical systems theory and data science for sta-
tistical analysis and modeling of dynamical systems. One
of our primary goals has been to highlight a fruitful inter-
play of ideas from ergodic theory, functional analysis, and
differential geometry, which, coupled with learning the-
ory, provide an effective route for data-driven prediction
and pattern extraction, well-adapted to handle nonlinear
dynamics and complex geometries.

There are several open questions and future research di-
rections stemming from these topics. First, it should be
possible to combine pointwise estimators derived from
methods such as diffusion forecasting and KAF with the
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Figure 3. A representative eigenfunction 2; ; of the
compactified generator V; for the L63 system, with low
corresponding Dirichlet energy. Top: Scatterplot of Re 2; - on
the L63 attractor. Bottom: Time series of Re 2; . sampled
along a dynamical trajectory.

Mori-Zwanzig formalism so as to incorporate memory ef-
fects. Another potential direction for future development
is to incorporate wavelet frames, particularly when the
measurements or probability densities are highly localized.
Moreover, when the attractor A is not a manifold, appro-
priate notions of regularity need to be identified so as to
fully characterize the behavior of kernel algorithms such as
diffusion maps. While we suspect that kernel-based con-
structions will still be the fundamental tool, the choice of
kernel may need to be adapted to the regularity of the at-
tractor to obtain optimal performance. Finally, a number
of applications (e.g., analysis of perturbations) concern
the action of dynamics on more general vector bundles
besides functions, potentially with a noncommutative al-
gebraic structure, calling for the development of suitable
data-driven techniques for such spaces.
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