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Modern science is undergoing what might arguably be
called a “data revolution,” manifested by a rapid growth
of observed and simulated data from complex systems, as
well as vigorous research on mathematical and computa-
tional frameworks for data analysis. In many scientific
branches, these efforts have led to the creation of statistical
models of complex systems that match or exceed the skill
of first-principles models. Yet, despite these successes, sta-
tistical models are oftentimes treated as black boxes, pro-
viding limited guarantees about stability and convergence
as the amount of training data increases. Black-box mod-
els also offer limited insights about the operating mecha-
nisms (physics), the understanding of which is central to
the advancement of science.

In this short review, we describe mathematical
techniques for statistical analysis and prediction of
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time-evolving phenomena, ranging from simple examples
such as an oscillator, to highly complex systems such as the
turbulent motion of the Earth’s atmosphere, the folding of
proteins, and the evolution of species populations in an
ecosystem. Our main thesis is that combining ideas from
the theory of dynamical systems with learning theory pro-
vides an effective route to data-driven models of complex
systems, with refinable predictions as the amount of train-
ing data increases, and physical interpretability through
discovery of coherent patterns around which the dynam-
ics is organized. Our article thus serves as an invitation to
explore ideas at the interface of the two fields.

This is a vast subject, and invariably a number of impor-
tant developments in areas such as deep learning, reservoir
computing, control, and nonautonomous/stochastic sys-
tems are not discussed here.1 Our focus will be on topics
drawn from the authors’ research and related work.

Statistical Forecasting
and Coherent Pattern Extraction
Consider a dynamical system of the form Φ𝑡 ∶ Ω → Ω,
whereΩ is the state space and Φ𝑡, 𝑡 ∈ ℝ, the flow map. For
example,Ω could be Euclidean spaceℝ𝑑, or amore general
manifold, and Φ𝑡 the solution map for a system of ODEs

1See https://arxiv.org/abs/2002.07928 for a version of this article with
references to the literature on these topics.
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defined on Ω. Alternatively, in a PDE setting, Ω could be
an infinite-dimensional function space and Φ𝑡 an evolu-
tion group acting on it. We consider that Ω has the struc-
ture of a metric space equipped with its Borel 𝜎-algebra,
playing the role of an event space, with measurable func-
tions on Ω acting as random variables, called observables.

In a statistical modeling scenario, we consider that avail-
able to us are time series of various such observables, sam-
pled along a dynamical trajectory which we will treat as be-
ing unknown. Specifically, we assume that we have access
to two observables, 𝑋 ∶ Ω → 𝒳 and 𝑌 ∶ Ω → 𝒴, respec-
tively referred to as covariate and response functions, to-
gether with corresponding time series 𝑥0, 𝑥1, … , 𝑥𝑁−1 and
𝑦0, 𝑦1, … , 𝑦𝑁−1, where 𝑥𝑛 = 𝑋(𝜔𝑛), 𝑦𝑛 = 𝑌(𝜔𝑛), and 𝜔𝑛 =
Φ𝑛∆𝑡(𝜔0). Here, 𝒳 and 𝒴 are metric spaces, Δ𝑡 is a pos-
itive sampling interval, and 𝜔0 is an arbitrary point in Ω
initializing the trajectory. We shall refer to the collection
{(𝑥0, 𝑦0), … , (𝑥𝑁−1, 𝑦𝑁−1)} as the training data. We require
that 𝒴 be a Banach space (so that one can talk about expec-
tations and other functionals applied to 𝑌), but allow the
covariate space 𝒳 to be nonlinear.

Many problems in statisticalmodeling of dynamical sys-
tems can be expressed in this framework. For instance, in
a low-dimensional ODE setting, 𝑋 and 𝑌 could both be
the identity map on Ω = ℝ𝑑, and the task could be to
build a model for the evolution of the full system state.
Weather forecasting is a classical high-dimensional appli-
cation, where Ω is the abstract state space of the climate
system, and 𝑋 a (highly noninvertible) map represent-
ing measurements from satellites, meteorological stations,
and other sensors available to a forecaster. The response
𝑌 could be temperature at a specific location, 𝒴 = ℝ, il-
lustrating that the response space may be of considerably
lower dimension than the covariate space. In other cases,
e.g., forecasting the temperature field over a geographical
region, 𝒴 may be a function space. The two primary ques-
tions that will concern us here are:

Problem 1 (Statistical forecasting). Given the training
data, construct (“learn”) a function 𝑍𝑡 ∶ 𝒳 → 𝒴 that pre-
dicts 𝑌 at a lead time 𝑡 ≥ 0. That is, 𝑍𝑡 should have the
property that 𝑍𝑡 ∘𝑋 is closest to 𝑌 ∘Φ𝑡 among all functions
in a suitable class.

Problem 2 (Coherent pattern extraction). Given the train-
ing data, identify a collection of observables 𝑧𝑗 ∶ Ω → 𝒴
that have the property of evolving coherently under the dy-
namics. By that, we mean that 𝑧𝑗 ∘ Φ𝑡 should be relatable
to 𝑧𝑗 in a natural way.

These problems have an extensive history of study
from an interdisciplinary perspective spanning mathemat-
ics, statistics, physics, and many other fields. Here, our fo-
cus will be on nonparametric methods, which do not employ
explicit parametric models for the dynamics. Instead, they

use universal structural properties of dynamical systems
to inform the design of data analysis techniques. From
a learning standpoint, Problems 1 and 2 can be thought
of as supervised and unsupervised learning, respectively. A
mathematical requirement we will impose onmethods ad-
dressing either problem is that they have a well-defined no-
tion of convergence, i.e., they are refinable, as the number
𝑁 of training samples increases.

Analog and POD Approaches
Among the earliest examples of nonparametric forecast-
ing techniques is Lorenz’s analog method [Lor69]. This
simple, elegant approach makes predictions by tracking
the evolution of the response along a dynamical trajectory
in the training data (the analogs). Good analogs are se-
lected according to a measure of geometrical similarity be-
tween the covariate variable observed at forecast initializa-
tion and the covariate training data. This method posits
that past behavior of the system is representative of its fu-
ture behavior, so looking up states in a historical record
that are closest to current observations is likely to yield a
skillful forecast. Subsequent methodologies have also em-
phasized aspects of state space geometry, e.g., using the
training data to approximate the evolution map through
patched local linear models, often leveraging delay coordi-
nates for state space reconstruction.

Early approaches to coherent pattern extraction include
the proper orthogonal decomposition (POD), which is
closely related to principal component analysis (PCA, in-
troduced in the early twentieth century by Pearson), the
Karhunen–Loève expansion, and empirical orthogonal
function (EOF) analysis. Assuming that 𝒴 is a Hilbert

space, POD yields an expansion 𝑌 ≈ 𝑌𝐿 = ∑𝐿
𝑗=1 𝑧𝑗, 𝑧𝑗 =

𝑢𝑗𝜎𝑗𝜓𝑗. Arranging the data into a matrix 𝐘 = (𝑦0, … , 𝑦𝑁−1),
the 𝜎𝑗 are the singular values of 𝐘 (in decreasing order),
the 𝑢𝑗 are the corresponding left singular vectors, called
EOFs, and the 𝜓𝑗 are given by projections of 𝑌 onto the
EOFs, 𝜓𝑗(𝜔) = ⟨𝑢𝑗 , 𝑌(𝜔)⟩𝒴 . That is, the principal compo-
nent 𝜓𝑗 ∶ Ω → ℝ is a linear feature characterizing the un-
supervised data {𝑦0, … , 𝑦𝑁−1}. If the data is drawn from a
probability measure 𝜇, as 𝑁 → ∞ the POD expansion is
optimal in an 𝐿2(𝜇) sense; that is, 𝑌𝐿 has minimal 𝐿2(𝜇)
error ‖𝑌 − 𝑌𝐿‖𝐿2(𝜇) among all rank-𝐿 approximations of
𝑌 . Effectively, from the perspective of POD, the important
components of 𝑌 are those capturing maximal variance.

Despite many successes in challenging applications
(e.g., turbulence), it has been recognized that POD may
not reveal dynamically significant observables, offering
limited predictability and physical insight. In recent years,
there has been significant interest in techniques that ad-
dress this shortcoming by modifying the linear map 𝐘 to
have an explicit dependence on the dynamics [BK86], or re-
placing it by an evolution operator [DJ99,Mez05]. Either
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directly or indirectly, these methods make use of operator-
theoretic ergodic theory, which we now discuss.

Operator-Theoretic Formulation
The operator-theoretic formulation of dynamical systems
theory shifts attention from the state-space perspective,
and instead characterizes the dynamics through its action
on linear spaces of observables. Denoting the vector space
of 𝒴-valued functions on Ω by ℱ, for every time 𝑡 the dy-
namics has a natural induced action 𝑈𝑡 ∶ ℱ → ℱ given
by composition with the flow map, 𝑈𝑡𝑓 = 𝑓 ∘ Φ𝑡. It
then follows by definition that 𝑈𝑡 is a linear operator; i.e.,
𝑈𝑡(𝛼𝑓 + 𝑔) = 𝛼𝑈𝑡𝑓 +𝑈𝑡𝑔 for all observables 𝑓, 𝑔 ∈ ℱ and
every scalar 𝛼 ∈ ℂ. The operator 𝑈𝑡 is known as a com-
position operator, or Koopman operator after classical work
of Bernard Koopman in the 1930s [Koo31], which estab-
lished that a general (potentially nonlinear) dynamical sys-
tem can be characterized through intrinsically linear oper-
ators acting on spaces of observables. A related notion is
that of the transfer operator, 𝑃𝑡 ∶ ℳ → ℳ, which describes
the action of the dynamics on a space of measures ℳ via
the pushforward map, 𝑃𝑡𝑚 ∶= Φ𝑡

∗𝑚 = 𝑚 ∘ Φ−𝑡. In a num-
ber of cases, ℱ andℳ are dual spaces to one another (e.g.,
continuous functions and Radon measures), in which case
𝑈𝑡 and 𝑃𝑡 are dual operators.

If the space of observables under consideration is
equipped with a Banach or Hilbert space structure, and the
dynamics preserves that structure, the operator-theoretic
formulation allows a broad range of tools from spectral
theory and approximation theory for linear operators to be
employed in the study of dynamical systems. For our pur-
poses, a particularly advantageous aspect of this approach
is that it is amenable to rigorous statistical approximation,
which is one of our principal objectives. It should be kept
in mind that the spaces of observables encountered in ap-
plications are generally infinite-dimensional, leading to
behaviors with no counterparts in finite-dimensional lin-
ear algebra, such as unbounded operators and continuous
spectrum. In fact, as we will see below, the presence of
continuous spectrum is a hallmark of mixing (chaotic) dy-
namics.

In this review, we restrict attention to the operator-
theoretic description of measure-preserving, ergodic dynam-
ics. By that, we mean that there is a probability measure
𝜇 on Ω such that (i) 𝜇 is invariant under the flow, i.e.,
Φ𝑡
∗𝜇 = 𝜇; and (ii) every measurable, Φ𝑡-invariant set has

either zero or full 𝜇-measure. We also assume that 𝜇 is a
Borel measure with compact support 𝐴 ⊆ Ω; this set is
necessarily Φ𝑡-invariant. An example known to rigorously
satisfy these properties is the Lorenz 63 (L63) system on
Ω = ℝ3, which has a compactly supported, ergodic in-
variant measure supported on the famous “butterfly” frac-
tal attractor; see Figure 1. L63 exemplifies the fact that a

smooth dynamical system may exhibit invariant measures
with nonsmooth supports. This behavior is ubiquitous in
models of physical phenomena, which are formulated in
terms of smooth differential equations, but whose long-
term dynamics concentrate on lower-dimensional subsets
of state space due to the presence of dissipation. Ourmeth-
ods should therefore not rely on the existence of a smooth
structure for 𝐴.

In the setting of ergodic, measure-preserving dynam-
ics on a metric space, two relevant structures that the dy-
namics may be required to preserve are continuity and
𝜇-measurability of observables. If the flow Φ𝑡 is contin-
uous, then the Koopman operators act on the Banach
space ℱ = 𝐶(𝐴, 𝒴) of continuous, 𝒴-valued functions on
𝐴, equipped with the uniform norm, by isometries, i.e.,
‖𝑈𝑡𝑓‖ℱ = ‖𝑓‖ℱ . If Φ𝑡 is 𝜇-measurable, then 𝑈𝑡 lifts to an
operator on equivalence classes of 𝒴-valued functions in
𝐿𝑝(𝜇, 𝒴), 1 ≤ 𝑝 ≤ ∞, and acts again by isometries. If 𝒴 is a
Hilbert space (with inner product ⟨⋅, ⋅⟩𝒴), the case 𝑝 = 2 is
special, since 𝐿2(𝜇, 𝒴) is a Hilbert space with inner product
⟨𝑓, 𝑔⟩𝐿2(𝜇,𝒴) = ∫Ω⟨𝑓(𝜔), 𝑔(𝜔)⟩𝒴 𝑑𝜇(𝜔), on which 𝑈𝑡 acts as a
unitary map, 𝑈𝑡∗ = 𝑈−𝑡.

Clearly, the properties of approximation techniques for
observables and evolution operators depend on the under-
lying space. For instance, 𝐶(𝐴, 𝒴) has a well-defined no-
tion of pointwise evaluation at every 𝜔 ∈ Ω by a contin-
uous linear map 𝛿𝜔 ∶ 𝐶(𝐴, 𝒴) → 𝒴, 𝛿𝜔𝑓 = 𝑓(𝜔), which
is useful for interpolation and forecasting, but lacks an
inner-product structure and associated orthogonal projec-
tions. On the other hand, 𝐿2(𝜇) has inner-product struc-
ture, which is very useful theoretically as well as for nu-
merical algorithms, but lacks the notion of pointwise eval-
uation.

Lettingℱ stand for any of the 𝐶(𝐴, 𝒴) or 𝐿𝑝(𝜇, 𝒴) spaces,
the set 𝑈 = {𝑈𝑡 ∶ ℱ → ℱ}𝑡∈ℝ forms a strongly con-
tinuous group under composition of operators. That is,
𝑈𝑡 ∘ 𝑈𝑠 = 𝑈𝑡+𝑠, 𝑈𝑡,−1 = 𝑈−𝑡, and 𝑈0 = Id, so that 𝑈
is a group, and for every 𝑓 ∈ ℱ, 𝑈𝑡𝑓 converges to 𝑓 in
the norm of ℱ as 𝑡 → 0. A central notion in such evolu-
tion groups is that of the generator, defined by the ℱ-norm
limit 𝑉𝑓 = lim𝑡→0(𝑈𝑡𝑓 − 𝑓)/𝑡 for all 𝑓 ∈ ℱ for which the
limit exists. It can be shown that the domain 𝐷(𝑉) of all
such 𝑓 is a dense subspace of ℱ, and 𝑉 ∶ 𝐷(𝑉) → ℱ is a
closed, unbounded operator. Intuitively, 𝑉 can be thought
of as a directional derivative of observables along the dy-
namics. For example, if 𝒴 = ℂ, 𝐴 is a 𝐶1 manifold, and
the flow Φ𝑡 ∶ 𝐴 → 𝐴 is generated by a continuous vector
field ⃗𝑉 ∶ 𝐴 → 𝑇𝐴, then the generator of the Koopman
group on 𝐶(𝐴) has as its domain the space 𝐶1(𝐴) ⊂ 𝐶(𝐴)
of continuously differentiable, complex-valued functions,
and 𝑉𝑓 = ⃗𝑉 ⋅ ∇𝑓 for 𝑓 ∈ 𝐶1(𝐴). A strongly contin-
uous evolution group is completely characterized by its
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generator, as any two such groups with the same genera-
tor are identical.

The generator acquires additional properties in the set-
ting of unitary evolution groups on 𝐻 = 𝐿2(𝜇, 𝒴), where it
is skew-adjoint, 𝑉∗ = −𝑉 . Note that the skew-adjointness
of 𝑉 holds for more general measure-preserving dynam-
ics than Hamiltonian systems, whose generator is skew-
adjoint with respect to Lebesgue measure. By the spectral
theorem for skew-adjoint operators, there exists a unique
projection-valued measure 𝐸 ∶ ℬ(ℝ) → 𝐵(𝐻), giving the
generator and Koopman operator as the spectral integrals

𝑉 = ∫
ℝ
𝑖𝛼 𝑑𝐸(𝛼), 𝑈𝑡 = 𝑒𝑡𝑉 = ∫

ℝ
𝑒𝑖𝛼𝑡 𝑑𝐸(𝛼).

Here,ℬ(ℝ) is the Borel 𝜎-algebra on the real line, and 𝐵(𝐻)
the space of bounded operators on 𝐻. Intuitively, 𝐸 can
be thought of as an operator analog of a complex-valued
spectral measure in Fourier analysis, with ℝ playing the
role of frequency space. That is, given 𝑓 ∈ 𝐻, the ℂ-valued
Borel measure 𝐸𝑓(𝑆) = ⟨𝑓, 𝐸(𝑆)𝑓⟩𝐻 is precisely the Fourier
spectral measure associated with the time-autocorrelation
function 𝐶𝑓(𝑡) = ⟨𝑓, 𝑈𝑡𝑓⟩𝐻 . The latter admits the Fourier
representation 𝐶𝑓(𝑡) = ∫ℝ 𝑒𝑖𝛼𝑡 𝑑𝐸𝑓(𝛼).

The Hilbert space𝐻 admits a𝑈𝑡-invariant splitting𝐻 =
𝐻𝑎 ⊕ 𝐻𝑐 into orthogonal subspaces 𝐻𝑎 and 𝐻𝑐 associ-
ated with the point and continuous components of 𝐸, re-
spectively. In particular, 𝐸 has a unique decomposition
𝐸 = 𝐸𝑎 + 𝐸𝑐 with 𝐻𝑎 = ran𝐸𝑎(ℝ) and 𝐻𝑐 = ran𝐸𝑐(ℝ),
where 𝐸𝑎 is a purely atomic spectral measure, and 𝐸𝑐 is a
spectral measure with no atoms. The atoms of 𝐸𝑎 (i.e., the
singletons {𝛼𝑗} with 𝐸𝑎({𝛼𝑗}) ≠ 0) correspond to eigenfre-
quencies of the generator, for which the eigenvalue equa-
tion 𝑉𝑧𝑗 = 𝑖𝛼𝑧𝑗 has a nonzero solution 𝑧𝑗 ∈ 𝐻𝑎. Under er-
godic dynamics, every eigenspace of 𝑉 is one-dimensional,
so that if 𝑧𝑗 is normalized to unit 𝐿2(𝜇) norm, 𝐸({𝛼𝑗})𝑓 =
⟨𝑧𝑗 , 𝑓⟩𝐿2(𝜇)𝑧𝑗. Every such 𝑧𝑗 is an eigenfunction of the Koop-
manoperator𝑈𝑡 at eigenvalue 𝑒𝑖𝛼𝑗𝑡, and {𝑧𝑗} is an orthonor-
mal basis of 𝐻𝑎. Thus, every 𝑓 ∈ 𝐻𝑎 has the quasiperiodic
evolution 𝑈𝑡𝑓 = ∑𝑗 𝑒

𝑖𝛼𝑗𝑡⟨𝑧𝑗 , 𝑓⟩𝐿2(𝜇)𝑧𝑗, and the autocorrela-
tion 𝐶𝑓(𝑡) is also quasiperiodic. While 𝐻𝑎 always contains
constant eigenfunctions with zero frequency, it might not
have any nonconstant elements. In that case, the dynamics
is said to be weak-mixing. In contrast to the quasiperiodic
evolution of observables in 𝐻𝑎, observables in the contin-
uous spectrum subspace exhibit a loss of correlation char-
acteristic of mixing (chaotic) dynamics. Specifically, for
every 𝑓 ∈ 𝐻𝑐 the time-averaged autocorrelation function
̄𝐶𝑓(𝑡) = ∫𝑡

0 |𝐶𝑓(𝑠)| 𝑑𝑠/𝑡 tends to 0 as |𝑡| → ∞, as do cross-
correlation functions ⟨𝑔, 𝑈𝑡𝑓⟩𝐿2(𝜇) between observables in
𝐻𝑐 and arbitrary observables in 𝐿2(𝜇).

Data-Driven Forecasting
Based on the concepts introduced above, one can formu-
late statistical forecasting in Problem 1 as the task of con-
structing a function 𝑍𝑡 ∶ 𝒳 → 𝒴 on covariate space 𝒳,
such that 𝑍𝑡 ∘ 𝑋 optimally approximates 𝑈𝑡𝑌 among all
functions in a suitable class. We set 𝒴 = ℂ, so the re-
sponse variable is scalar-valued, and consider the Koop-
man operator on 𝐿2(𝜇), so we have access to orthogonal
projections. We also assume for now that the covariate
function 𝑋 is injective, so ̂𝑌𝑡 ∶= 𝑍𝑡 ∘ 𝑋 should be able
to approximate 𝑈𝑡𝑌 to arbitrarily high precision in 𝐿2(𝜇)
norm. Indeed, let {𝑢0, 𝑢1, …} be an orthonormal basis of
𝐿2(𝜈), where 𝜈 = 𝑋∗𝜇 is the pushforward of the invari-
ant measure onto 𝒳. Then, {𝜙0, 𝜙1, …} with 𝜙𝑗 = 𝑢𝑗 ∘ 𝑋
is an orthonormal basis of 𝐿2(𝜇). Given this basis, and
because 𝑈𝑡 is bounded, we have 𝑈𝑡𝑌 = lim𝐿→∞𝑈𝑡

𝐿𝑌 ,

where the partial sum 𝑈𝑡
𝐿𝑌 ∶= ∑𝐿−1

𝑗=0⟨𝑈𝑡𝑌, 𝜙𝑗⟩𝐿2(𝜇)𝜙𝑗 con-

verges in 𝐿2(𝜇) norm. Here, 𝑈𝑡
𝐿 is a finite-rank map

on 𝐿2(𝜇) with range span{𝜙0, … , 𝜙𝐿−1}, represented by an
𝐿 × 𝐿 matrix 𝐔(𝑡) with elements 𝑈𝑖𝑗(𝑡) = ⟨𝜙𝑖, 𝑈𝑡𝜙𝑗⟩𝐿2(𝜇).
Defining ⃗𝑦 = ( ̂𝑦0, … , ̂𝑦𝐿−1)⊤, ̂𝑦𝑗 = ⟨𝜙𝑗 , 𝑈𝑡𝑌⟩𝐿2(𝜇), and

( ̂𝑧0(𝑡), … , ̂𝑧𝐿−1(𝑡))⊤ = 𝐔(𝑡) ⃗𝑦, we have 𝑈𝑡
𝐿𝑌 = ∑𝐿−1

𝑗=0 ̂𝑧𝑗(𝑡)𝜙𝑗.
Since 𝜙𝑗 = 𝑢𝑗 ∘ 𝑋 , this leads to the estimator ̂𝑍𝑡,𝐿 ∈ 𝐿2(𝜈),
with ̂𝑍𝑡,𝐿 = ∑𝐿−1

𝑗=0 ̂𝑧𝑗(𝑡)𝑢𝑗.
The approach outlined above tentatively provides a con-

sistent forecasting framework. Yet, while in principle ap-
pealing, it has three major shortcomings: (i) Apart from
special cases, the invariant measure and an orthonormal
basis of 𝐿2(𝜇) are not known. In particular, orthogo-
nal functions with respect to an ambient measure on Ω
(e.g., Lebesgue-orthogonal polynomials) will not suffice,
since there are no guarantees that such functions form a
Schauder basis of 𝐿2(𝜇), let alone be orthonormal. Even
with a basis, we cannot evaluate𝑈𝑡 on its elements without
knowing Φ𝑡. (ii) Pointwise evaluation on 𝐿2(𝜇) is not de-
fined, making ̂𝑍𝑡,𝐿 inadequate in practice, even if the coef-
ficients ̂𝑧𝑗(𝑡) are known. (iii) The covariate map 𝑋 is often-
times noninvertible, and thus the 𝜙𝑗 span a strict subspace
of 𝐿2(𝜇). We now describe methods to overcome these ob-
stacles using learning theory.
Sampling measures and ergodicity. The dynamical tra-
jectory {𝜔0, … , 𝜔𝑁−1} in state space underlying the training
data is the support of a discrete sampling measure 𝜇𝑁 ∶=
∑𝑁−1

𝑛=0 𝛿𝜔𝑛/𝑁. A key consequence of ergodicity is that for
Lebesgue-a.e. sampling intervalΔ𝑡 and 𝜇-a.e. starting point
𝜔0 ∈ Ω, as 𝑁 → ∞, the sampling measures 𝜇𝑁 weak-
converge to the invariant measure 𝜇; that is,

lim
𝑁→∞

∫
Ω
𝑓 𝑑𝜇𝑁 = ∫

Ω
𝑓 𝑑𝜇 ∀𝑓 ∈ 𝐶(Ω). (1)
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Since integrals against 𝜇𝑁 are time averages on dynam-

ical trajectories, ∫Ω 𝑓 𝑑𝜇𝑁 = ∑𝑁−1
𝑛=0 𝑓(𝜔𝑛)/𝑁, ergodicity

provides an empirical means of accessing the statistics
of the invariant measure. In fact, many systems encoun-
tered in applications possess so-called physical measures,
where (1) holds for 𝜔0 in a “larger” set of positive mea-
sure with respect to an ambient measure (e.g., Lebesgue
measure) from which experimental initial conditions are
drawn. Hereafter, we will let 𝑀 be a compact subset of
Ω, which is forward-invariant under the dynamics (i.e.,
Φ𝑡(𝑀) ⊆ 𝑀 for all 𝑡 ≥ 0), and thus necessarily contains
𝐴. For example, in dissipative dynamical systems such as
L63, 𝑀 can be chosen as a compact absorbing ball.
Shift operators. Ergodicity suggests that appropriate data-
driven analogs are the 𝐿2(𝜇𝑁) spaces induced by the sam-
plingmeasures 𝜇𝑁 . For a given𝑁, 𝐿2(𝜇𝑁) consists of equiv-
alence classes of measurable functions 𝑓 ∶ Ω → ℂ hav-
ing common values at the sampled states 𝜔𝑛, and the in-
ner product of two elements 𝑓, 𝑔 ∈ 𝐿2(𝜇𝑁) is given by
an empirical time-correlation, ⟨𝑓, 𝑔⟩𝜇𝑁 = ∫Ω 𝑓∗𝑔 𝑑𝜇𝑁 =
∑𝑁−1

𝑛=0 𝑓∗(𝜔𝑛)𝑔(𝜔𝑛)/𝑁. Moreover, if the 𝜔𝑛 are distinct (as
we will assume for simplicity of exposition), 𝐿2(𝜇𝑁) has
dimension 𝑁, and is isomorphic as a Hilbert space to
ℂ𝑁 equipped with a normalized dot product. Given that,
we can represent every 𝑓 ∈ 𝐿2(𝜇𝑁) by a column vector
⃗𝑓 = (𝑓(𝜔0), … , 𝑓(𝜔𝑁−1))⊤ ∈ ℂ𝑁 , and every linear map

𝐴 ∶ 𝐿2(𝜇𝑁) → 𝐿2(𝜇𝑁) by an 𝑁 × 𝑁 matrix 𝐀, so that
⃗𝑔 = 𝐀 ⃗𝑓 is the column vector representing 𝑔 = 𝐴𝑓. The

elements of ⃗𝑓 can also be understood as expansion coef-
ficients in the standard basis {𝑒0,𝑁 , … , 𝑒𝑁−1,𝑁 } of 𝐿2(𝜇𝑁),
where 𝑒𝑗,𝑁(𝜔𝑛) = 𝑁1/2𝛿𝑗𝑛; that is, 𝑓(𝜔𝑛) = ⟨𝑒𝑛,𝑁 , 𝑓⟩𝐿2(𝜇𝑁).
Similarly, the elements of 𝐀 correspond to the operator
matrix elements 𝐴𝑖𝑗 = ⟨𝑒𝑖,𝑁 , 𝐴𝑒𝑗,𝑁 ⟩𝐿2(𝜇𝑁).

Next, we would like to define a Koopman operator on
𝐿2(𝜇𝑁), but this space does not admit such an operator as a
composition map induced by the dynamical flow Φ𝑡 onΩ.
This is because Φ𝑡 does not preserve null sets with respect
to 𝜇𝑁 , and thus does not lead to a well-defined compo-
sition map on equivalence classes of functions in 𝐿2(𝜇𝑁).
Nevertheless, on 𝐿2(𝜇𝑁) there is an analogous construct to
the Koopman operator on 𝐿2(𝜇), namely, the shift operator,
𝑈𝑞
𝑁 ∶ 𝐿2(𝜇𝑁) → 𝐿2(𝜇𝑁), 𝑞 ∈ ℤ, defined as

𝑈𝑞
𝑁𝑓(𝜔𝑛) = {𝑓(𝜔𝑛+𝑞), 0 ≤ 𝑛 + 𝑞 ≤ 𝑁 − 1,

0, otherwise.

Even though 𝑈𝑞
𝑁 is not a composition map, intuitively

it should have a connection with the Koopman operator
𝑈𝑞∆𝑡. One could consider, for instance, the matrix repre-
sentation 𝐔̃𝑁(𝑞) = [⟨𝑒𝑖,𝑁 , 𝑈𝑞

𝑁𝑒𝑗,𝑁 ⟩𝐿2(𝜇𝑁)] in the standard
basis, and attempt to connect it with a matrix representa-
tion of 𝑈𝑞∆𝑡 in an orthonormal basis of 𝐿2(𝜇). However,
the issue with this approach is that the 𝑒𝑗,𝑁 do not have

𝑁 → ∞ limits in 𝐿2(𝜇), meaning that there is no suitable
notion of 𝑁 → ∞ convergence of the matrix elements of
𝑈𝑞
𝑁 in the standard basis. In response, we will construct a

representation of the shift operator in a different orthonor-
mal basis with awell-defined𝑁 → ∞ limit. Themain tools
that we will use are kernel integral operators, which we now
describe.
Kernel integral operators. In the present context, a kernel
function will be a real-valued, continuous function 𝑘 ∶ Ω×
Ω → ℝwith the property that there exists a strictly positive,
continuous function 𝑑 ∶ Ω → ℝ such that

𝑑(𝜔)𝑘(𝜔, 𝜔′) = 𝑑(𝜔′)𝑘(𝜔′, 𝜔) ∀𝜔, 𝜔′ ∈ Ω. (2)

Notice the similarity between (2) and the detailed balance
relation in reversible Markov chains. Now let 𝜌 be any
Borel probability measure with compact support 𝑆 ⊆ 𝑀
included in the forward-invariant set𝑀. It follows by con-
tinuity of 𝑘 and compactness of 𝑆 that the integral operator
𝐾𝜌 ∶ 𝐿2(𝜌) → 𝐶(𝑀),

𝐾𝜌𝑓 = ∫
Ω
𝑘(⋅, 𝜔)𝑓(𝜔) 𝑑𝜌(𝜔), (3)

is well-defined as a bounded operator mapping elements
of 𝐿2(𝜌) into continuous functions on 𝑀. Using 𝜄𝜌 ∶
𝐶(𝑀) → 𝐿2(𝜌) to denote the canonical inclusion map, we
consider two additional integral operators, 𝐺𝜌 ∶ 𝐿2(𝜌) →
𝐿2(𝜌) and ̃𝐺𝜌 ∶ 𝐶(𝑀) → 𝐶(𝑀), with 𝐺𝜌 = 𝜄𝜌𝐾𝜌 and
̃𝐺𝜌 = 𝐾𝜌𝜄𝜌, respectively.
The operators 𝐺𝜌 and ̃𝐺𝜌 are compact operators act-

ing with the same integral formula as 𝐾𝜌 in (3), but their
codomains and domains, respectively, are different. Nev-
ertheless, their nonzero eigenvalues coincide, and 𝜙 ∈
𝐿2(𝜌) is an eigenfunction of𝐺𝜌 corresponding to a nonzero
eigenvalue 𝜆 if and only if 𝜑 ∈ 𝐶(𝑀) with 𝜑 = 𝐾𝜌𝜙/𝜆 is an
eigenfunction of ̃𝐺𝜌 at the same eigenvalue. In effect, 𝜙 ↦
𝜑 “interpolates” the 𝐿2(𝜌) element 𝜙 (defined only up to 𝜌-
null sets) to the continuous, everywhere-defined function
𝜑. It can be verified that if (2) holds, 𝐺𝜌 is a trace-class op-
erator with real eigenvalues, |𝜆0| ≥ |𝜆1| ≥ ⋯ ↘ 0+. More-
over, there exists a Riesz basis {𝜙0, 𝜙1, … , } of 𝐿2(𝜌) and a
corresponding dual basis {𝜙′0, 𝜙′1, …} with ⟨𝜙′𝑖 , 𝜙𝑗⟩𝐿2(𝜌) = 𝛿𝑖𝑗,
such that 𝐺𝜌𝜙𝑗 = 𝜆𝑗𝜙𝑗 and 𝐺∗

𝜌𝜙′𝑗 = 𝜆𝑗𝜙′𝑗 . We say that the ker-
nel 𝑘 is 𝐿2(𝜌)-universal if 𝐺𝜌 has no zero eigenvalues; this
is equivalent to ran𝐺𝜌 being dense in 𝐿2(𝜌). Moreover, 𝑘
is said to be 𝐿2(𝜌)-Markov if 𝐺𝜌 is a Markov operator, i.e.,
𝐺𝜌 ≥ 0, 𝐺𝜌𝑓 ≥ 0 if 𝑓 ≥ 0, and 𝐺1 = 1.

Observe now that the operators 𝐺𝜇𝑁 associated with
the sampling measures 𝜇𝑁 , henceforth abbreviated by
𝐺𝑁 , are represented by 𝑁 × 𝑁 kernel matrices 𝐆𝑁 =
[⟨𝑒𝑖,𝑁 , 𝐺𝑁𝑒𝑗,𝑁 ⟩𝐿2(𝜇𝑁)] = [𝑘(𝜔𝑖, 𝜔𝑗)] in the standard basis of
𝐿2(𝜇𝑁). Further, if 𝑘 is a pullback kernel from covariate
space, i.e., 𝑘(𝜔, 𝜔′) = 𝜅(𝑋(𝜔), 𝑋(𝜔′)) for 𝜅 ∶ 𝒳 × 𝒳 → ℝ,
then 𝐆𝑁 = [𝜅(𝑥𝑖, 𝑥𝑗)] is empirically accessible from the
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training data. Popular kernels in applications include the
covariance kernel 𝜅(𝑥, 𝑥′) = ⟨𝑥, 𝑥′⟩𝒳 on an inner-product
space and the radial Gaussian kernel 𝜅(𝑥, 𝑥′) = 𝑒−‖𝑥−𝑥′‖2𝒳/𝜖.
It is also common to employ Markov kernels constructed
by normalization of symmetric kernels [CL06,BH16]. We
will use 𝑘𝑁 to denote kernels with data-dependent normal-
izations.

A widely used strategy for learning with integral oper-
ators [vLBB08] is to construct families of kernels 𝑘𝑁 con-
verging in 𝐶(𝑀×𝑀) norm to 𝑘. This implies that for every
nonzero eigenvalue 𝜆𝑗 of 𝐺 ≡ 𝐺𝜇, the sequence of eigen-
values 𝜆𝑗,𝑁 of 𝐺𝑁 satisfies lim𝑁→∞𝜆𝑗,𝑁 = 𝜆𝑗. Moreover,

there exists a sequence of eigenfunctions 𝜙𝑗,𝑁 ∈ 𝐿2(𝜇𝑁)
corresponding to 𝜆𝑗,𝑁 , whose continuous representatives,
𝜑𝑗,𝑁 = 𝐾𝑁𝜙𝑗,𝑁/𝜆𝑗,𝑁 , converge in 𝐶(𝑀) to 𝜑𝑗 = 𝐾𝜙𝑗/𝜆𝑗,
where 𝜙𝑗 ∈ 𝐿2(𝜇) is any eigenfunction of 𝐺 at eigen-
value 𝜆𝑗. In effect, we use 𝐶(𝑀) as a “bridge” to estab-
lish spectral convergence of the operators 𝐺𝑁 , which act
on different spaces. Note that (𝜆𝑗,𝑁 , 𝜑𝑗,𝑁) does not con-
verge uniformly with respect to 𝑗, and for a fixed 𝑁, eigen-
values/eigenfunctions at larger 𝑗 exhibit larger deviations
from their 𝑁 → ∞ limits. Under measure-preserving, er-
godic dynamics, convergence occurs for 𝜇-a.e. starting state
𝜔0 ∈ 𝑀, and 𝜔0 in a set of positive ambient measure if 𝜇
is physical. In particular, the training states 𝜔𝑛 need not
lie on 𝐴. See Figure 1 for eigenfunctions of 𝐺𝑁 computed
from data sampled near the L63 attractor.
Diffusion forecasting. We now have the ingredients to
build a concrete statistical forecasting scheme based on
data-driven approximations of the Koopman operator. In
particular, note that if 𝜙′𝑖,𝑁 , 𝜙𝑗,𝑁 are biorthogonal eigen-
functions of 𝐺∗

𝑁 and 𝐺𝑁 , respectively, at nonzero eigen-
values, we can evaluate the matrix element 𝑈𝑁,𝑖𝑗(𝑞) ∶=
⟨𝜙′𝑖,𝑁 , 𝑈

𝑞
𝑁𝜙𝑗,𝑁 ⟩𝐿2(𝜇𝑁) of the shift operator using the contin-

uous representatives 𝜑′𝑖,𝑁 , 𝜑𝑗,𝑁 ,

𝑈𝑁,𝑖𝑗(𝑞) =
1
𝑁

𝑁−1−𝑞
∑
𝑛=0

𝜙′𝑖,𝑁(𝜔𝑛)𝜙𝑗,𝑁(𝜔𝑛+𝑞)

= 𝑁 − 𝑞
𝑁 ∫

Ω
𝜑′𝑖,𝑁𝑈𝑞∆𝑡𝜑𝑗,𝑁 𝑑𝜇𝑁−𝑞,

where 𝑈𝑞∆𝑡 is the Koopman operator on 𝐶(𝑀). Therefore,
if the corresponding eigenvalues 𝜆𝑖, 𝜆𝑗 of 𝐺 are nonzero,
by the weak convergence of the sampling measures in (1)
and uniform convergence of the eigenfunctions, as 𝑁 →
∞, 𝑈𝑖𝑗,𝑁(𝑞) converges to the matrix element 𝑈𝑖𝑗(𝑞 Δ𝑡) =
⟨𝜙𝑖, 𝑈𝑞∆𝑡𝜙𝑗⟩𝐿2(𝜇) of the Koopman operator on 𝐿2(𝜇). This
convergence is not uniform with respect to 𝑖, 𝑗, but if we
fix a parameter 𝐿 ∈ ℕ (which can be thought of as spec-
tral resolution) such that 𝜆𝐿−1 ≠ 0, we can obtain a statisti-
cally consistent approximation of 𝐿×𝐿 Koopman operator
matrices, 𝐔(𝑞Δ𝑡) = [𝑈𝑖𝑗(𝑞 Δ𝑡)], by shift operator matrices,

𝐔𝑁(𝑞) = [𝑈𝑁,𝑖𝑗(𝑞)], with 𝑖, 𝑗 ∈ {0, … , 𝐿 − 1}. Checkerboard
plots of𝐔𝑁(𝑞) for the L63 system are displayed in Figure 1.

This method for approximating matrix elements of
Koopman operators was proposed in a technique called
diffusion forecasting (named after the diffusion kernels em-
ployed) [BGH15]. Assuming that the response 𝑌 is contin-
uous and by spectral convergence of 𝐺𝑁 , for every 𝑗 ∈ ℕ0
such that 𝜆𝑗 > 0, the inner products ̂𝑌𝑗,𝑁 = ⟨𝜙′𝑗,𝑁 , 𝑌⟩𝜇𝑁
converge, as 𝑁 → ∞, to ̂𝑌𝑗 = ⟨𝜙′𝑗 , 𝑌⟩𝐿2(𝜇). This implies

that for any 𝐿 ∈ ℕ such that 𝜆𝐿−1 > 0, ∑𝐿−1
𝑗=0

̂𝑌𝑗,𝑁𝜑𝑗,𝑁
converges in 𝐶(𝑀) to the continuous representative of
Π𝐿𝑌 , whereΠ𝐿 is the orthogonal projection on 𝐿2(𝜇)map-
ping into span{𝜙0, … , 𝜙𝐿−1}. Suppose now that 𝜚𝑁 is a se-
quence of continuous functions converging uniformly to
𝜚 ∈ 𝐶(𝑀), such that 𝜚𝑁 are probability densities with re-
spect to 𝜇𝑁 (i.e., 𝜚𝑁 ≥ 0 and ‖𝜚𝑁‖𝐿1(𝜇𝑁) = 1). By simi-
lar arguments as for 𝑌 , as 𝑁 → ∞, the continuous func-

tion ∑𝐿−1
𝑗=0 ̂𝜚𝑗,𝑁𝜑𝑗,𝑁 with ̂𝜚𝑗,𝑁 = ⟨𝜑′𝑗,𝑁 , 𝜚𝑁 ⟩𝐿2(𝜇𝑁) converges

to Π𝐿𝜚 in 𝐿2(𝜇). Putting these facts together, and setting
⃗𝜚𝑁 = ( ̂𝜚0,𝑁 , … , ̂𝜚𝐿−1,𝑁)⊤ and ⃗𝑌𝑁 = ( ̂𝑌0,𝑁 , … , ̂𝑌𝐿−1,𝑁)⊤, we

conclude that

⃗𝜚⊤𝑁𝐔𝑁(𝑞) ⃗𝑌𝑁
𝑁→∞−−−−→ ⟨Π𝐿𝜚,Π𝐿𝑈𝑞∆𝑡𝑌⟩𝐿2(𝜇). (4)

Here, the left-hand side is given by matrix–vector prod-
ucts obtained from the data, and the right-hand side
is equal to the expectation of Π𝐿𝑈𝑞∆𝑡𝑌 with respect to
the probability measure 𝜌 with density 𝑑𝜌/𝑑𝜇 = 𝜚; i.e.,
⟨Π𝐿𝜚,Π𝐿𝑈𝑞∆𝑡𝑌⟩𝐿2(𝜇) = 𝔼𝜌(Π𝐿𝑈𝑞∆𝑡𝑌), where 𝔼𝜌(⋅) ∶=
∫Ω(⋅) 𝑑𝜌.

What about the dependence of the forecast on 𝐿? As 𝐿
increases, Π𝐿 converges strongly to the orthogonal projec-
tionΠ𝐺 ∶ 𝐿2(𝜇) → 𝐿2(𝜇) onto the closure of the range of 𝐺.
Thus, if the kernel 𝑘 is 𝐿2(𝜇)-universal (i.e., ran𝐺 = 𝐿2(𝜇)),
Π𝐺 = Id, and under the iterated limit of 𝐿 → ∞ after
𝑁 → ∞ the left-hand side of (4) converges to 𝔼𝜌𝑈𝑞∆𝑡𝑌 .
In summary, implemented with an 𝐿2(𝜇)-universal ker-
nel, diffusion forecasting consistently approximates the
expected value of the time-evolution of any continuous
observable with respect to any probability measure with
continuous density relative to 𝜇. An example of an 𝐿2(𝜇)-
universal kernel is the pullback of a radial Gaussian ker-
nel on 𝒳 = ℝ𝑚. In contrast, the covariance kernel is not
𝐿2(𝜇)-universal, as in this case the rank of 𝐺 is bounded by
𝑚. This illustrates that forecasting in the POD basis may
be subject to intrinsic limitations, even with full observa-
tions.
Kernel analog forecasting. While providing a flexible
framework for approximating expectation values of observ-
ables under measure-preserving, ergodic dynamics, diffu-
sion forecasting does not directly address the problem
of constructing a concrete forecast function, i.e., a func-
tion 𝑍𝑡 ∶ 𝒳 → ℂ approximating 𝑈𝑡𝑌 as stated in
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ℋ𝑁 𝐿2(𝜇𝑁 ) 𝐿2(𝜇𝑁 ) span({𝜙𝑖,𝑁 }𝐿𝑖=1) 𝒴
𝑀 ⊆ Ω

ℋ(𝑀) 𝐿2(𝜇) 𝐿2(𝜇) 𝒴
𝜔 Ψ(𝜔) 𝑈𝑡∗Ψ(𝜔) 𝔼Ψ(𝜔)𝑈𝑡𝑌

𝜄𝑁 𝑈𝑞∗
𝑁 Π𝐿 𝔼(⋅)𝑌

error

Ψ𝑁

Ψ
𝜄 𝑈𝑡∗ 𝔼(⋅)𝑌

∈

(f)

𝐿2(𝜇𝑁 ) 𝐿2(𝜇𝑁 ) 𝐿2𝑋 (𝜇𝑁 ) ℋ𝑁 𝐿2𝑋 (𝜇)
𝐶(𝑀)

𝐿2(𝜇) 𝐿2(𝜇) 𝐿2𝑋 (𝜇)

𝑌 𝑈𝑡𝑌 𝑍𝑡 ∘ 𝑋 = 𝔼(𝑈𝑡𝑌 ∣ 𝑋)

𝑈𝑞
𝑁 Π𝑋 𝒩𝑁 𝜄

error

𝜄𝑁

𝜄
𝑈𝑡 Π𝑋

∈

(g)

Figure 1. Panel (a) shows eigenfunctions 𝜙𝑗,𝑁 of 𝐺𝑁 for a dataset sampled near the L63 attractor. Panel (b) shows the action of
the shift operator 𝑈𝑞

𝑁 on the 𝜙𝑗,𝑁 from (a) for 𝑞 = 50 steps, approximating the Koopman operator 𝑈𝑞∆𝑡. Panels (c, d) show the
matrix elements ⟨𝜙𝑖,𝑁 , 𝑈𝑞

𝑁𝜙𝑗,𝑁 ⟩𝜇𝑁 of the shift operator for 𝑞 = 5 and 50. The mixing dynamics is evident in the larger
far-from-diagonal components in 𝑞 = 50 vs. 𝑞 = 5. Panel (e) shows the matrix representation of a finite-difference approximation
of the generator 𝑉 , which is skew-symmetric. Panels (f, g) summarize the diffusion forecast (DF) and kernel analog forecast (KAF)
for lead time 𝑡 = 𝑞Δ𝑡. In each diagram, the data-driven finite-dimensional approximation (top row) converges to the true forecast
(middle row). DF maps an initial state 𝜔 ∈ 𝑀 ⊆ Ω to the future expectation of an observable 𝔼Ψ(𝜔)𝑈𝑡𝑌 = 𝔼𝑈𝑡∗Ψ(𝜔)𝑌 , and KAF maps
a response function 𝑌 ∈ 𝐶(𝑀) to the conditional expectation 𝔼(𝑈𝑡𝑌 ∣ 𝑋).
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Problem 1. One way of defining such a function is to let
𝜅𝑁 be an 𝐿2(𝜈𝑁)-Markov kernel on 𝒳 for 𝜈𝑁 = 𝑋∗𝜇𝑁 , and
to consider the “feature map” Ψ𝑁 ∶ 𝒳 → 𝐶(𝑀) mapping
each point 𝑥 ∈ 𝒳 in covariate space to the kernel section
Ψ𝑁(𝑥) = 𝜅𝑁(𝑥, 𝑋(⋅)). Then, Ψ𝑁(𝑥) is a continuous proba-
bility density with respect to 𝜇𝑁 , and we can use diffusion

forecasting to define 𝑍𝑞∆𝑡(𝑥) = Ψ⃗𝑁(𝑥)
⊤
𝐔𝑁(𝑞) ⃗𝑌𝑁 with no-

tation as in (4).
While this approach has a well-defined 𝑁 → ∞ limit, it

does not provide optimality guarantees, particularly in sit-
uations where 𝑋 is noninjective. Indeed, the 𝐿2(𝜇)-optimal
approximation to 𝑈𝑡𝑌 of the form 𝑍𝑡 ∘ 𝑋 is given by the
conditional expectation 𝔼(𝑈𝑡𝑌 ∣ 𝑋). In the present 𝐿2 setting
we have 𝔼(𝑈𝑡𝑌 ∣ 𝑋) = Π𝑋𝑈𝑡𝑌 , where Π𝑋 is the orthog-
onal projection into 𝐿2𝑋(𝜇) ∶= {𝑓 ∈ 𝐿2(𝜇) ∶ 𝑓 = 𝑔 ∘ 𝑋}.
That is, the conditional expectation minimizes the error
‖𝑓−𝑈𝑡𝑌‖2𝐿2(𝜇) among all pullbacks 𝑓 ∈ 𝐿2𝑋(𝜇) from covari-
ate space. Even though 𝔼(𝑈𝑡𝑌 ∣ 𝑋 = 𝑥) can be expressed
as an expectation with respect to a conditional probability
measure 𝜇(⋅ ∣ 𝑥) onΩ, thatmeasure will generally not have
an 𝐿2(𝜇) density, and there is no map Ψ ∶ 𝒳 → 𝐶(𝑀) such
that ⟨Ψ(𝑥), 𝑈𝑡𝑌⟩𝐿2(𝜇) equals 𝔼(𝑈𝑡𝑌 ∣ 𝑋 = 𝑥).

To construct a consistent estimator of the conditional
expectation, we require that 𝑘 be a pullback of a kernel
𝜅 ∶ 𝒳 × 𝒳 → ℝ on covariate space which is (i) symmet-
ric, 𝜅(𝑥, 𝑥′) = 𝜅(𝑥′, 𝑥) for all 𝑥, 𝑥′ ∈ 𝒳 (so (2) holds); (ii)
strictly positive; and (iii) strictly positive-definite. The latter
means that for any sequence 𝑥0, … , 𝑥𝑛−1 of distinct points
in 𝒳 the matrix [𝜅(𝑥𝑖, 𝑥𝑗)] is strictly positive. These proper-
ties imply that there exists a Hilbert space ℋ of complex-
valued functions on Ω, such that (i) for every 𝜔 ∈ Ω,
the kernel sections 𝑘𝜔 = 𝑘(𝜔, ⋅) lie in ℋ; (ii) the evalu-
ation functional 𝛿𝜔 ∶ ℋ → ℂ is bounded and satisfies
𝛿𝜔𝑓 = ⟨𝑘𝜔, 𝑓⟩ℋ ; (iii) every 𝑓 ∈ ℋ has the form 𝑓 = 𝑔 ∘ 𝑋
for a continuous function 𝑔 ∶ 𝒳 → ℂ; and (iv) 𝜄𝜇ℋ lies
dense in 𝐿2𝑋(𝜇).

A Hilbert space of functions satisfying (i) and (ii) above
is known as a reproducing kernel Hilbert space (RKHS), and
the associated kernel 𝑘 is known as a reproducing kernel.
RKHSs have many useful properties for statistical learning
[CS02], not least because they combine the Hilbert space
structure of 𝐿2 spaces with pointwise evaluation in spaces
of continuous functions. The density of ℋ in 𝐿2𝑋(𝜇) is a
consequence of the strict positive-definiteness of 𝜅. In par-
ticular, because the conditional expectation 𝔼(𝑈𝑡𝑌 ∣ 𝑋)
lies in 𝐿2𝑋(𝜇), it can be approximated by elements of ℋ
to arbitrarily high precision in 𝐿2(𝜇) norm, and every such
approximation will be a pullback ̂𝑌𝑡 = 𝑍𝑡 ∘ 𝑋 of a continu-
ous function 𝑍𝑡 that can be evaluated at arbitrary covariate
values.

We now describe a data-driven technique for construct-
ing such a prediction function, which we refer to as

kernel analog forecasting (KAF) [AG20]. Mathematically,
KAF is closely related to kernel principal component re-
gression. To build the KAF estimator, we work again with
integral operators as in (3), with the difference that now
𝐾𝜌 ∶ 𝐿2(𝜌) → ℋ(𝑀) takes values in the restriction of
ℋ to the forward-invariant set 𝑀, denoted ℋ(𝑀). One
can show that the adjoint 𝐾∗

𝜌 ∶ ℋ(𝑀) → 𝐿2(𝜌) coin-
cides with the inclusion map 𝜄𝜌 on continuous functions,
so that 𝐾∗

𝜌 maps 𝑓 ∈ ℋ(𝑀) ⊂ 𝐶(𝑀) to its correspond-
ing 𝐿2(𝜌) equivalence class. As a result, the integral oper-
ator 𝐺𝜌 ∶ 𝐿2(𝜌) → 𝐿2(𝜌) takes the form 𝐺𝜌 = 𝐾∗

𝜌𝐾𝜌, be-
coming a self-adjoint, positive-definite, compact operator
with eigenvalues 𝜆0 ≥ 𝜆1 ≥ ⋯ ↘ 0+, and a correspond-
ing orthonormal eigenbasis {𝜙0, 𝜙1, …} of 𝐿2(𝜌). Moreover,
{𝜓0, 𝜓1, …} with 𝜓𝑗 = 𝐾𝜌𝜙𝑗/𝜆1/2𝑗 is an orthonormal set in
ℋ(𝑀). In fact, Mercer’s theorem provides an explicit repre-
sentation 𝑘(𝜔, 𝜔′) = ∑∞

𝑗=0 𝜓𝑗(𝜔)𝜓𝑗(𝜔′), where direct evalu-
ation of the kernel in the left-hand side (known as “kernel
trick”) avoids the complexity of inner-product computa-
tions between feature vectors 𝜓𝑗. Here, our perspective is
to rely on the orthogonality of the eigenbasis to approxi-
mate observables of interest at fixed 𝐿, and establish con-
vergence of the estimator as 𝐿 → ∞. A similar approach
was adopted for density estimation on noncompact do-
mains, withMercer-type kernels based on orthogonal poly-
nomials [ZHL19].

Now a key operation that the RKHS enables is the Nys-
tröm extension, which interpolates 𝐿2(𝜌) elements of appro-
priate regularity to RKHS functions. The Nyström operator
𝒩𝜌 ∶ 𝐷(𝒩𝜌) → ℋ(𝑀) is defined on the domain 𝐷(𝒩𝜌) =
{∑𝑗 𝑐𝑗𝜙𝑗 ∶ ∑𝑗|𝑐𝑗|2/𝜆𝑗 < ∞} by linear extension of 𝒩𝜌𝜙𝑗 =
𝜓𝑗/𝜆1/2𝑗 . Note that𝒩𝜌𝜙𝑗 = 𝐾𝜌𝜙𝑗/𝜆𝑗 = 𝜑𝑗, so𝒩𝜌 maps 𝜙𝑗 to its
continuous representative, and 𝐾∗

𝜌𝒩𝜌𝑓 = 𝑓, meaning that
𝒩𝜌𝑓 = 𝑓, 𝜌-a.e. While𝐷(𝒩𝜌)may be a strict 𝐿2(𝜌) subspace,
for any 𝐿with 𝜆𝐿−1 > 0we define a spectrally truncated op-

erator𝒩𝐿,𝜌 ∶ 𝐿2(𝜌) → ℋ(𝑀),𝒩𝐿,𝜌∑𝑗 𝑐𝑗𝜙𝑗 = ∑𝐿−1
𝑗=0 𝑐𝑗𝜓𝑗/𝜆

1/2
𝑗 .

Then, as 𝐿 increases, 𝐾∗
𝜌𝒩𝐿,𝜌𝑓 converges to Π𝐺𝜌𝑓 in 𝐿2(𝜌).

To make empirical forecasts, we set 𝜌 = 𝜇𝑁 , compute the
expansion coefficients 𝑐𝑗,𝑁(𝑡) of 𝑈𝑡𝑌 in the {𝜙𝑗,𝑁 } basis of
𝐿2(𝜇𝑁), and construct 𝑌𝑡,𝐿,𝑁 = 𝒩𝐿,𝑁𝑈𝑡𝑌 ∈ ℋ(𝑀). Because
𝜓𝑗,𝑁 are pullbacks of known functions 𝑢𝑗,𝑁 ∈ 𝐶(𝒳), we

have 𝑌𝑡,𝐿,𝑁 = 𝑍𝑡,𝐿,𝑁 ∘𝑋 , where 𝑍𝑡,𝐿,𝑁 = ∑𝐿−1
𝑗=0 𝑐𝑗(𝑡)𝑢𝑗,𝑁/𝜆

1/2
𝑗,𝑁

can be evaluated at any 𝑥 ∈ 𝒳.
The function 𝑌𝑡,𝐿,𝑁 is our estimator of the conditional

expectation 𝔼(𝑈𝑡𝑌 ∣ 𝑋). By spectral convergence of ker-
nel integral operators, as 𝑁 → ∞, 𝑌𝑡,𝐿,𝑁 converges to
𝑌𝑡,𝐿 ∶= 𝒩𝐿𝑈𝑡𝑌 in 𝐶(𝑀) norm, where 𝒩𝐿 ≡ 𝒩𝐿,𝜇. Then,
as 𝐿 → ∞, 𝐾∗𝑌𝑡,𝐿 converges in 𝐿2(𝜇) norm to Π𝐺𝑈𝑡𝑌 . Be-
cause 𝜅 is strictly positive-definite, 𝐺 has dense range in
𝐿2𝑋(𝜇), and thus Π𝐺𝑈𝑡𝑌 = Π𝑋𝑈𝑡𝑌 = 𝔼(𝑈𝑡𝑌 ∣ 𝑋). We
therefore conclude that 𝑌𝑡,𝐿,𝑁 converges to the conditional
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Figure 2. KAF applied to the L63 state vector component
𝑌(𝜔) = 𝜔1 with full (blue) and partial (red) observations. In the
fully observed case, the covariate 𝑋 is the identity map on
Ω = ℝ3. In the partially observed case, 𝑋(𝜔) = 𝜔1 is the
projection to the first coordinate. Top: Forecasts 𝑍𝑡,𝐿,𝑁(𝑥)
initialized from fixed 𝑥 = 𝑋(𝜔), compared with the true
evolution 𝑈𝑡𝑌(𝜔) (black). Shaded regions show error bounds
based on KAF estimates of the conditional standard deviation,
𝜎𝑡(𝑥). Bottom: RMS forecast errors (solid lines) and 𝜎𝑡 (dashed
lines). The agreement between actual and estimated errors
indicates that 𝜎𝑡 provides useful uncertainty quantification.

expectation as 𝐿 → ∞ after 𝑁 → ∞. Forecast results from
the L63 system are shown in Figure 2.

Coherent Pattern Extraction
We now turn to the task of coherent pattern extraction in
Problem 2. This is a fundamentally unsupervised learning
problem, as we seek to discover observables of a dynami-
cal system that exhibit a natural time evolution (by some
suitable criterion), rather than approximate a given observ-
able as in the context of forecasting. We have mentioned
POD as a technique for identifying coherent observables
through eigenfunctions of covariance operators. Kernel
PCA [SSM98] is a generalization of this approach utilizing
integral operators with potentially nonlinear kernels. For
data lying on Riemannian manifolds, it is popular to em-
ploy kernels approximating geometrical operators, such
as heat operators and their associated Laplacians. Exam-
ples include Laplacian eigenmaps [BN03], diffusion maps
[CL06], and variable-bandwidth kernels [BH16]. Mean-
while, coherent pattern extraction techniques based on
evolution operators have also gained popularity in re-
cent years. These methods include spectral analysis of

transfer operators for detection of invariant sets
[DJ99, DFS00], harmonic averaging [Mez05],
and dynamic mode decomposition (DMD)
[RMB+09,Sch10,WKR15,KNK+18] techniques for approx-
imating Koopman eigenfunctions, and Darboux kernels
for approximating spectral projectors [KPM20]. While nat-
ural from a theoretical standpoint, evolution operators
tend to have more complicated spectral properties than
kernel integral operators, including nonisolated eigenval-
ues and continuous spectrum. The following examples il-
lustrate distinct behaviors associated with the point (𝐻𝑎)
and continuous (𝐻𝑐) spectrum subspaces of 𝐿2(𝜇).

Example 1 (Torus rotation). A quasiperiodic rotation on
the 2-torus, Ω = 𝕋2, is governed by the system of ODEs
𝜔̇ = ⃗𝑉(𝜔), where 𝜔 = (𝜔1, 𝜔2) ∈ [0, 2𝜋)2, ⃗𝑉 = (𝜈1, 𝜈2),
and 𝜈1, 𝜈2 ∈ ℝ are rationally independent frequency pa-
rameters. The resulting flow, Φ𝑡(𝜔) = (𝜔1 + 𝜈1𝑡, 𝜔2 + 𝜈2𝑡)
mod 2𝜋, has a unique Borel ergodic invariant probability
measure 𝜇 given by a normalized Lebesguemeasure. More-
over, there exists an orthonormal basis of 𝐿2(𝜇) consisting
of Koopman eigenfunctions 𝑧𝑗𝑘(𝜔) = 𝑒𝑖(𝑗𝜔1+𝑘𝜔2), 𝑗, 𝑘 ∈ ℤ,
with eigenfrequencies 𝛼𝑗𝑘 = 𝑗𝜈1 + 𝑘𝜈2. Thus, 𝐻𝑎 = 𝐿2(𝜇),
and 𝐻𝑐 is the zero subspace. Such a system is said to have
a pure point spectrum.

Example 2 (Lorenz 63 system). The L63 systemonΩ = ℝ3

is governed by a system of smooth ODEs with two qua-
dratic nonlinearities. This system is known to exhibit
a physical ergodic invariant probability measure 𝜇 sup-
ported on a compact set (the L63 attractor), with mixing
dynamics. This means that𝐻𝑎 is the one-dimensional sub-
space of 𝐿2(𝜇) consisting of constant functions, and𝐻𝑐 con-
sists of all 𝐿2(𝜇) functions orthogonal to the constants (i.e.,
with zero expectation value with respect to 𝜇).

Delay-coordinate approaches. For the point spectrum
subspace 𝐻𝑎, a natural class of coherent observables is
provided by the Koopman eigenfunctions. Every Koop-
man eigenfunction 𝑧𝑗 ∈ 𝐻𝑎 evolves as a harmonic oscil-
lator at the corresponding eigenfrequency, 𝑈𝑡𝑧𝑗 = 𝑒𝑖𝛼𝑗𝑡𝑧𝑗,
and the associated autocorrelation function, 𝐶𝑧𝑗 (𝑡) = 𝑒𝑖𝛼𝑗𝑡,
also has a harmonic evolution. Short of temporal invari-
ance (which only occurs for constant eigenfunctions un-
der measure-preserving ergodic dynamics), it is natural to
think of a harmonic evolution as being “maximally” coher-
ent. In particular, if 𝑧𝑗 is continuous, then for any 𝜔 ∈ 𝐴,
the real and imaginary parts of the time series 𝑡 ↦ 𝑈𝑡𝑧𝑗(𝜔)
are pure sinusoids, even if the flowΦ𝑡 is aperiodic. Further
attractive properties of Koopman eigenfunctions include
the facts that they are intrinsic to the dynamical system
generating the data, and they are closed under pointwise
multiplication, 𝑧𝑗𝑧𝑘 = 𝑧𝑗+𝑘, allowing one to generate every
eigenfunction from a potentially finite generating set.
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Yet, consistently approximating Koopman eigenfunc-
tions fromdata is a nontrivial task, even for simple systems.
For instance, the torus rotation in Example 1 has a dense
set of eigenfrequencies by rational independence of the ba-
sic frequencies 𝜈1 and 𝜈2. Thus, any open interval in ℝ
contains infinitely many eigenfrequencies 𝛼𝑗𝑘, necessitat-
ing some form of regularization. Arguably, the term “pure
point spectrum” is somewhat of a misnomer for such sys-
tems since a nonempty continuous spectrum is present. In-
deed, since the spectrum of an operator on a Banach space
includes the closure of the set of eigenvalues, 𝑖ℝ ⧵ {𝑖𝛼𝑗𝑘}
lies in the continuous spectrum.

As a way of addressing these challenges, observe that if
𝐺 is a self-adjoint, compact operator commuting with the
Koopman group (i.e., 𝑈𝑡𝐺 = 𝐺𝑈𝑡), then any eigenspace
𝑊𝜆 of 𝐺 corresponding to a nonzero eigenvalue 𝜆 is in-
variant under 𝑈𝑡, and thus under the generator 𝑉 . More-
over, by compactness of 𝐺,𝑊𝜆 has finite dimension. Thus,
for any orthonormal basis {𝜙0, … , 𝜙𝑙−1} of 𝑊𝜆, the genera-
tor 𝑉 on 𝑊𝜆 is represented by a skew-symmetric, and thus
unitarily diagonalizable, 𝑙 × 𝑙 matrix 𝐕 = [⟨𝜙𝑖, 𝑉𝜙𝑗⟩𝐿2(𝜇)].
The eigenvectors 𝑢⃗ = (𝑢0, … , 𝑢𝑙−1)⊤ ∈ ℂ𝑙 of 𝐕 then con-
tain expansion coefficients of Koopman eigenfunctions

𝑧 = ∑𝑙−1
𝑗=0 𝑢𝑗𝜙𝑗 in 𝑊𝜆, and the eigenvalues corresponding

to 𝑢⃗ are eigenvalues of 𝑉 .
On the basis of the above, since any integral operator 𝐺

on 𝐿2(𝜇) associated with a symmetric kernel 𝑘 ∈ 𝐿2(𝜇×𝜇) is
Hilbert–Schmidt (and thus compact), and we have a wide
variety of data-driven tools for approximating integral op-
erators, we can reduce the problem of consistently approxi-
mating the point spectrumof the Koopman group on 𝐿2(𝜇)
to the problem of constructing a commuting integral op-
erator. As we now argue, the success of a number of tech-
niques, including singular spectrum analysis (SSA) [BK86],
diffusion-mapped delay coordinates (DMDC) [BCGFS13],
nonlinear Laplacian spectral analysis (NLSA) [GM12], and
Hankel DMD [BBP+17], in identifying coherent patterns
can at least be partly attributed to the fact that they em-
ploy integral operators that approximately commute with
the Koopman operator.

A common characteristic of these methods is that they
employ, in some form, delay-coordinate maps [SYC91].
With our notation for the covariate function 𝑋 ∶ Ω →
𝒳 and sampling interval Δ𝑡, the 𝑄-step delay-coordinate
map is defined as 𝑋𝑄 ∶ Ω → 𝒳𝑄 with 𝑋𝑄(𝜔) =
(𝑋(𝜔0), 𝑋(𝜔−1), … , 𝑋(𝜔−𝑄+1)) and 𝜔𝑞 = Φ𝑞∆𝑡(𝜔). That is,
𝑋𝑄 can be thought of as a lift of 𝑋 , which produces “snap-
shots,” to a map taking values in the space 𝒳𝑄 containing
“videos.” Intuitively, by virtue of its higher-dimensional
codomain and dependence on the dynamical flow, a delay-
coordinate map such as 𝑋𝑄 should provide additional in-
formation about the underlying dynamics on Ω over the

raw covariate map 𝑋 . This intuition has beenmade precise
in a number of “embedology” theorems [SYC91], which
state that under mild assumptions, for any compact sub-
set 𝑆 ⊆ Ω (including, for our purposes, the invariant set
𝐴), the delay-coordinate map 𝑋𝑄 is injective on 𝑆 for suffi-
ciently large 𝑄. As a result, delay-coordinate maps provide
a powerful tool for state space reconstruction, as well as for
constructing informative predictor functions in the context
of forecasting.

Aside from considerations associated with topological
reconstruction, however, observe that ametric 𝑑 ∶ 𝒳×𝒳 →
ℝ on covariate space pulls back to a distance-like function
̃𝑑𝑄 ∶ Ω × Ω → ℝ such that

̃𝑑2𝑄(𝜔, 𝜔′) =
1
𝑄

𝑄−1
∑
𝑞=0

𝑑2(𝑋(𝜔−𝑞), 𝑋(𝜔′−𝑞)). (5)

In particular, ̃𝑑2𝑄 has the structure of an ergodic average of
a continuous function under the product dynamical flow
Φ𝑡 × Φ𝑡 on Ω ×Ω. By the von Neumann ergodic theorem,
as 𝑄 → ∞, ̃𝑑𝑄 converges in 𝐿2(𝜇 × 𝜇) norm to a bounded
function ̃𝑑∞, which is invariant under the Koopman oper-
ator 𝑈𝑡 ⊗ 𝑈𝑡 of the product dynamical system. Note that
̃𝑑∞ need not be 𝜇 × 𝜇-a.e. constant, as Φ𝑡 × Φ𝑡 need not

be ergodic, and aside from special cases it will not be con-
tinuous on 𝐴 × 𝐴. Nevertheless, based on the 𝐿2(𝜇 × 𝜇)
convergence of ̃𝑑𝑄 to ̃𝑑∞, it can be shown [DG19] that for
any continuous function ℎ ∶ ℝ → ℝ, the integral operator
𝐺∞ on 𝐿2(𝜇) associated with the kernel 𝑘∞ = ℎ ∘ 𝑑∞ com-
mutes with 𝑈𝑡 for any 𝑡 ∈ ℝ. Moreover, as 𝑄 → ∞, the
operators 𝐺𝑄 associated with 𝑘𝑄 = ℎ ∘ 𝑑𝑄 converge to 𝐺∞
in 𝐿2(𝜇) operator norm, and thus in spectrum.

Many of the operators employed in SSA, DMDC, NLSA,
and Hankel DMD can be modeled after 𝐺𝑄 described
above. In particular, because 𝐺𝑄 is induced by a continu-
ous kernel, its spectrum can be consistently approximated
by data-driven operators 𝐺𝑄,𝑁 on 𝐿2(𝜇𝑁), as described in
the context of forecasting. The eigenfunctions of these
operators at nonzero eigenvalues approximate eigenfunc-
tions of 𝐺𝑄, which approximate in turn eigenfunctions of
𝐺∞ lying in finite unions of Koopman eigenspaces. Thus,
for sufficiently large𝑁 and𝑄, the eigenfunctions of𝐺𝑄,𝑁 at
nonzero eigenvalues capture distinct timescales associated
with the point spectrum of the dynamical system, provid-
ing physically interpretable features. These kernel eigen-
functions can also be employed in Galerkin schemes to
approximate individual Koopman eigenfunctions.

Besides the spectral considerations described above,
in [BCGFS13] a geometrical characterization of the
eigenspaces of𝐺𝑄 was given based on Lyapunov metrics of
dynamical systems. In particular, it follows by Oseledets’s
multiplicative ergodic theorem that for 𝜇-a.e. 𝜔 ∈ 𝑀 there
exists a decomposition 𝑇𝜔𝑀 = 𝐹1,𝜔⊕⋯⊕𝐹𝑟,𝜔, where 𝑇𝜔𝑀
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is the tangent space at 𝜔 ∈ 𝑀, and 𝐹𝑗,𝜔 are subspaces satis-
fying the equivariance condition 𝐷Φ𝑡𝐹𝑗,𝜔 = 𝐹𝑗,Φ𝑡(𝜔). More-
over, there exist Λ1 > ⋯ > Λ𝑟, such that for every 𝑣 ∈ 𝐹𝑗,𝜔,
Λ𝑗 = lim𝑡→∞ ∫𝑡

0 log‖𝐷Φ𝑠 𝑣‖ 𝑑𝑠/𝑡, where ‖⋅‖ is the norm on
𝑇𝜔𝑀 induced by a Riemannian metric. The numbers Λ𝑗
are called Lyapunov exponents, and are metric-independent.
Note that the dynamical vector field ⃗𝑉(𝜔) lies in a subspace
𝐹𝑗0,𝜔 with a corresponding zero Lyapunov exponent.

If 𝐹𝑗0,𝜔 is one-dimensional, and the norms ‖𝐷Φ𝑡 𝑣‖ obey
appropriate uniform growth/decay bounds with respect to
𝜔 ∈ 𝑀, the dynamical flow is said to be uniformly hyper-
bolic. If, in addition, the support 𝐴 of 𝜇 is a differentiable
manifold, then there exists a class of Riemannian metrics,
called Lyapunov metrics, for which the 𝐹𝑗,𝜔 are mutually or-
thogonal at every 𝜔 ∈ 𝐴. In [BCGFS13], it was shown
that using a modification of the delay-distance in (5) with
exponentially decaying weights, as 𝑄 → ∞, the top eigen-
functions 𝜙(𝑄)𝑗 of 𝐺𝑄 vary predominantly along the sub-
space 𝐹𝑟,𝜔 associated with the most stable Lyapunov ex-
ponent. That is, for every 𝜔 ∈ Ω and tangent vector
𝑣 ∈ 𝑇𝜔𝑀 orthogonal to 𝐹𝑟,𝜔 with respect to a Lyapunov

metric, lim𝑄→∞ 𝑣 ⋅ ∇𝜙(𝑄)𝑗 = 0.
RKHS approaches. While delay-coordinate maps are ef-
fective for approximating the point spectrum and associ-
ated Koopman eigenfunctions, they do not address the
problem of identifying coherent observables in the con-
tinuous spectrum subspace𝐻𝑐. Indeed, one can verify that
in mixed-spectrum systems the infinite-delay operator 𝐺∞,
which provides access to the eigenspaces of the Koopman
operator, has a nontrivial nullspace that includes 𝐻𝑐 as a
subspace. More broadly, there is no obvious way of iden-
tifying coherent observables in 𝐻𝑐 as eigenfunctions of an
intrinsic evolution operator. As a remedy to this problem,
we relax the problem of seeking Koopman eigenfunctions,
and consider instead approximate eigenfunctions. An observ-
able 𝑧 ∈ 𝐿2(𝜇) is said to be an 𝜖-approximate eigenfunction
of 𝑈𝑡 if there exists 𝜆𝑡 ∈ ℂ such that

‖𝑈𝑡𝑧 − 𝜆𝑡𝑧‖𝐿2(𝜇) < 𝜖‖𝑧‖𝐿2(𝜇). (6)

The number 𝜆𝑡 is then said to lie in the 𝜖-approximate spec-
trumof𝑈𝑡. A Koopman eigenfunction is an 𝜖-approximate
eigenfunction for every 𝜖 > 0, so we think of (6) as a relax-
ation of the eigenvalue equation, 𝑈𝑡𝑧 − 𝜆𝑡𝑧 = 0. This sug-
gests that a natural notion of coherence of observables in
𝐿2(𝜇), appropriate to both the point and continuous spec-
trum, is that (6) holds for 𝜖 ≪ 1 and all 𝑡 in a “large” inter-
val.

We now outline an RKHS-based approach [DGS18],
which identifies observables satisfying this condition
through eigenfunctions of a regularized operator ̃𝑉𝜏 on
𝐿2(𝜇) approximating 𝑉 with the properties of (i) being
skew-adjoint and compact; and (ii) having eigenfunctions

in the domain of the Nyström operator, which maps them
to differentiable functions in an RKHS. Here, 𝜏 is a posi-
tive regularization parameter such that, as 𝜏 → 0+, ̃𝑉𝜏 con-
verges to𝑉 in a suitable spectral sense. Wewill assume that
the forward-invariant, compactmanifold𝑀 has𝐶1 regular-
ity, but will not require that the support 𝐴 of the invariant
measure be differentiable.

With these assumptions, let 𝑘 ∶ Ω × Ω → ℝ be a
symmetric, positive-definite kernel, whose restriction on
𝑀 × 𝑀 is continuously differentiable. Then, the corre-
sponding RKHS ℋ(𝑀) embeds continuously in the Ba-
nach space 𝐶1(𝑀) of continuously differentiable functions
on 𝑀, equipped with the standard norm. Moreover, be-
cause𝑉 is an extension of the directional derivative ⃗𝑉 ⋅∇ as-
sociated with the dynamical vector field, every function in
ℋ(𝑀) lies, upon inclusion, in 𝐷(𝑉). The key point here is
that regularity of the kernel induces RKHSs of observables
which are guaranteed to lie in the domain of the generator.
In particular, the range of the integral operator 𝐺 = 𝐾∗𝐾
on 𝐿2(𝜇) associated with 𝑘 lies in 𝐷(𝑉), so that 𝐴 = 𝑉𝐺
is well-defined. This operator is, in fact, Hilbert–Schmidt,
with Hilbert–Schmidt norm bounded by the 𝐶1(𝑀 × 𝑀)
norm of the kernel 𝑘. What is perhaps less obvious is
that 𝐺1/2𝑉𝐺1/2 (which “distributes” the smoothing by 𝐺
to the left and right of 𝑉), defined on the dense subspace
{𝑓 ∈ 𝐿2(𝜇) ∶ 𝐺1/2𝑓 ∈ 𝐷(𝑉)}, is also bounded, and thus
has a unique closed extension ̃𝑉 ∶ 𝐿2(𝜇) → 𝐿2(𝜇), which
turns out to be Hilbert–Schmidt. Unlike 𝐴, ̃𝑉 is skew-
adjoint, and thus preserves an important structural prop-
erty of the generator. By skew-adjointness and compact-
ness of ̃𝑉 , there exists an orthonormal basis { ̃𝑧𝑗 ∶ 𝑗 ∈ ℤ} of
𝐿2(𝜇) consisting of its eigenfunctions ̃𝑧𝑗, with purely imagi-
nary eigenvalues 𝑖𝛼̃𝑗. Moreover, (i) all ̃𝑧𝑗 corresponding to
nonzero 𝛼̃𝑗 lie in the domain of the Nyström operator, and
therefore have 𝐶1 representatives in ℋ(𝑀); and (ii) if 𝑘 is
𝐿2(𝜇)-universal, Markov, and ergodic, then ̃𝑉 has a simple
eigenvalue at zero, in agreement with the analogous prop-
erty of 𝑉 .

Based on the above, we seek to construct a one-
parameter family of such kernels 𝑘𝜏, with associated
RKHSsℋ𝜏(𝑀), such that as 𝜏 → 0+, the regularized genera-
tors ̃𝑉𝜏 converge to 𝑉 in a sense suitable for spectral conver-
gence. Here, the relevant notion of convergence is strong
resolvent convergence; that is, for every element 𝜆 of the re-
solvent set of 𝑉 and every 𝑓 ∈ 𝐿2(𝜇), ( ̃𝑉𝜏 − 𝜆)−1𝑓 must
converge to (𝑉 − 𝜆)−1𝑓. In that case, for every element 𝑖𝛼
of the spectrum of 𝑉 (both point and continuous), there
exists a sequence of eigenvalues 𝑖𝛼̃𝑗𝜏,𝜏 of ̃𝑉𝜏 converging to
𝑖𝛼 as 𝜏 → 0+0. Moreover, for any 𝜖 > 0 and 𝑇 > 0, there
exists 𝜏∗ > 0 such that for all 0 < 𝜏 < 𝜏∗ and |𝑡| < 𝑇, 𝑒𝑖𝛼𝑗𝜏,𝜏𝑡
lies in the 𝜖-approximate spectrum of 𝑈𝑡 and ̃𝑧𝑗𝜏,𝜏 is an
𝜖-approximate eigenfunction.
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In [DGS18], a constructive procedure was proposed for
obtaining the kernel family 𝑘𝜏 through a Markov semi-
group on 𝐿2(𝜇). This method has a data-driven implemen-
tation, with analogous spectral convergence results for the
associated integral operators 𝐺𝜏,𝑁 on 𝐿2(𝜇𝑁) to those de-
scribed in the setting of forecasting. Given these opera-
tors, we approximate ̃𝑉𝜏 by ̃𝑉𝜏,𝑁 = 𝐺1/2

𝜏,𝑁𝑉𝑁𝐺1/2
𝜏,𝑁 , where 𝑉𝑁

is a skew-adjoint, finite-difference approximation of the gen-
erator. For example, 𝑉𝑁 = (𝑈1

𝑁 − 𝑈1∗
𝑁 )/(2 Δ𝑡) is a second-

order finite-difference approximation based on the 1-step
shift operator 𝑈1

𝑁 . See Figure 1 for a graphical represen-
tation of a generator matrix for L63. As with our data-
driven approximations of𝑈𝑡, we work with a rank-𝐿 opera-
tor ̂𝑉𝜏 ∶= Π𝜏,𝑁,𝐿𝑉𝜏,𝑁Π𝜏,𝑁,𝐿, where Π𝜏,𝑁,𝐿 is the orthogonal
projection to the subspace spanned by the first 𝐿 eigenfunc-
tions of 𝐺𝜏,𝑁 . This family of operators converges spectrally
to 𝑉𝜏 in a limit of 𝑁 → 0, followed by Δ𝑡 → 0 and 𝐿 → ∞,
where we note that 𝐶1 regularity of 𝑘𝜏 is important for the
finite-difference approximations to converge.

At any given 𝜏, an a posteriori criterion for identify-
ing candidate eigenfunctions ̂𝑧𝑗,𝜏 satisfying (6) for small
𝜖 is to compute a Dirichlet energy functional, 𝒟( ̂𝑧𝑗,𝜏) =
‖𝒩𝜏,𝑁 ̂𝑧𝑗,𝜏‖2ℋ𝜏(𝑀)/‖ ̂𝑧𝑗,𝜏‖2𝐿2(𝜇𝑁). Intuitively, 𝒟 assigns a mea-
sure of roughness to every nonzero element in the domain
of the Nyström operator (analogously to the Dirichlet en-
ergy in Sobolev spaces on differentiable manifolds), and
the smaller𝒟( ̂𝑧𝑗,𝜏) is, the more coherent ̂𝑧𝑗,𝜏 is expected to
be. Indeed, as shown in Figure 3, the ̂𝑧𝑗,𝜏 corresponding to
lowDirichlet energy identify observables of the L63 system
with a coherent dynamical evolution, even though this sys-
tem is mixing and has no nonconstant Koopman eigen-
functions. Sampled along dynamical trajectories, the ap-
proximate Koopman eigenfunctions resemble amplitude-
modulated wavepackets, exhibiting a low-frequency mod-
ulating envelopewhilemaintaining phase coherence and a
precise carrier frequency. This behavior can be thought of
as a “relaxation” of Koopman eigenfunctions, which gen-
erate pure sinusoids with no amplitude modulation.

Conclusions and Outlook
We have presented mathematical techniques at the inter-
face of dynamical systems theory and data science for sta-
tistical analysis and modeling of dynamical systems. One
of our primary goals has been to highlight a fruitful inter-
play of ideas from ergodic theory, functional analysis, and
differential geometry, which, coupled with learning the-
ory, provide an effective route for data-driven prediction
and pattern extraction, well-adapted to handle nonlinear
dynamics and complex geometries.

There are several open questions and future research di-
rections stemming from these topics. First, it should be
possible to combine pointwise estimators derived from
methods such as diffusion forecasting and KAF with the

Figure 3. A representative eigenfunction ̂𝑧𝑗,𝜏 of the
compactified generator ̂𝑉𝜏 for the L63 system, with low
corresponding Dirichlet energy. Top: Scatterplot of Re ̂𝑧𝑗,𝜏 on
the L63 attractor. Bottom: Time series of Re ̂𝑧𝑗,𝜏 sampled
along a dynamical trajectory.

Mori–Zwanzig formalism so as to incorporate memory ef-
fects. Another potential direction for future development
is to incorporate wavelet frames, particularly when the
measurements or probability densities are highly localized.
Moreover, when the attractor 𝐴 is not a manifold, appro-
priate notions of regularity need to be identified so as to
fully characterize the behavior of kernel algorithms such as
diffusion maps. While we suspect that kernel-based con-
structions will still be the fundamental tool, the choice of
kernel may need to be adapted to the regularity of the at-
tractor to obtain optimal performance. Finally, a number
of applications (e.g., analysis of perturbations) concern
the action of dynamics on more general vector bundles
besides functions, potentially with a noncommutative al-
gebraic structure, calling for the development of suitable
data-driven techniques for such spaces.
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