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a b s t r a c t

A nonparametric method to predict non-Markovian time series of partially observed dynamics is
developed. The prediction problem we consider is a supervised learning task of finding a regression
function that takes a delay-embedded observable to the observable at a future time. When delay-
embedding theory is applicable, the proposed regression function is a consistent estimator of the
flow map induced by the delay-embedding. Furthermore, the corresponding Mori–Zwanzig equation
governing the evolution of the observable simplifies to only a Markovian term, represented by the
regression function. We realize this supervised learning task with a class of kernel-based linear
estimators, the kernel analog forecast (KAF), which are consistent in the limit of large data. In a scenario
with a high-dimensional covariate space, we employ a Markovian kernel smoothing method which is
computationally cheaper than the Nyström projection method for realizing KAF. In addition to the
guaranteed theoretical convergence, we numerically demonstrate the effectiveness of this approach
on higher-dimensional problems where the relevant kernel features are difficult to capture with the
Nyström method. Given noisy training data, we propose a nonparametric smoother as a de-noising
method. Numerically, we show that the proposed smoother is more accurate than EnKF and 4Dvar in
de-noising signals corrupted by independent (but not necessarily identically distributed) noise, even
if the smoother is constructed using a data set corrupted by white noise. We show skillful prediction
using the KAF constructed from the denoised data.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

A long-standing issue in the applications of dynamical systems
s to predict time series of observables given partial observations.
his problem has classically been studied from various angles
nder different names in the literature (i.e. reduced-order mod-
ling, closure modeling, subgrid parameterization, etc.), but more
ecently it has also been viewed as a machine learning problem.
n particular, at the core of this modeling problem is a supervised
earning task to find a map that takes appropriate covariate data
an observable in the past and/or present times) to the desired
esponse function (an observable at the future times). When
he covariate data is a delay-embedded observable, the target
ap provides a non-Markovian prediction model. The realizations
f this problem with state-of-art machine learning algorithms
nvolving deep/recurrent neural networks have reported superb
umerical performances even when the underlying dynamics are
ighly nonlinear and high-dimensional [1–4]. In the context of
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artially known dynamics, the recent work in [4] formulated
he target function as a conditional expectation associated with
n appropriate probability space and showed that the corre-
ponding supervised learning framework (which is similar to the
ne proposed in [3,5]) produces an approximate closure model
hose solutions converge (strongly) to those of the underlying
ynamics for finite time when both models are initialized with
he same initial conditions. Building on this positive result, one
f the goals of this paper is to understand the regression problem
orresponding to the supervised learning task from the viewpoint
f dynamical systems theory and reduced-order modeling.
Due to the classical theory of dynamical systems, this

odeling framework is closely related to the delay-embedding
heorem [6] which has served as a foundation for attractor re-
onstruction from time series. We will argue that when the
mbedding theorem is satisfied, the regression (or target) func-
ion is theoretically consistent with the component of the flow
nduced by the delay-coordinate map. From the reduced-order
odeling viewpoint, the same learning task can be formulated
s a problem of deriving, from first principles, a set of effec-
ive equations that determines the evolution of the observable
e.g., [7–11]).
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The Mori–Zwanzig (MZ) formalism [12,13] has been proposed
by this community as a natural framework for deriving such a set
of effective equations for forecasting the time series of partially
observed dynamical systems. The appeal of using the MZ formal-
ism is that the resulting system is represented by an equation that
involves projected linear evolution operators. In contrast to geo-
metrical state-space approaches, the operator-theoretic approach
focuses on the induced linear action of dynamical systems on ap-
propriately chosen spaces of observables despite the nonlinearity
of the flow map. In the context of the MZ formalism, this allows
one to compartmentalize the contribution of the observable at
the present time (the Markovian term), the observable in the past
(the memory/non-Markovian term), and the orthogonal dynamics
of the trajectory of the observables at the future times with a
collection of linear operators.

While such a representation is attractive for understanding
the modeling mechanism, it may not be easily translated into
an efficient numerical method. This issue arises due to the fact
that the MZ formula states the dependence of the observable
at the future time on the entire history of observables and the
initial condition. Besides, it is usually difficult to specify the
memory kernel as it requires the solution of the high-dimensional
orthogonal dynamics [7,14]. Ultimately, the desired computa-
tional objective is to have a finite memory approximation. This
issue has given rise to many parametric approximations of the
memory kernel, such as the delta function approximation [15],
Krylov subspace approximation [16], series expansion [17,18],
and rational approximation [19], just to name a few. While these
approaches have shown positive results when addressing spe-
cific applications, they either require the knowledge of the full
model and/or they are subjected to modeling error when the
memory kernel is not adequately represented by the specified
parametric model. We will argue that if the hypotheses of the
delay-embedding theorems are satisfied, the representation of
the MZ equation with the projection operator obtained through
the corresponding regression framework can be simplified to a
computationally tractable model. In particular, the MZ equation
consists of only the ‘‘Markovian’’ term associated with the delay-
embedded sequences, which is exactly the regression function
given by the supervised learning framework. The connection be-
tween supervised learning, delay-embedding theory, and the MZ
formalism suggests that the regression framework is indeed a
natural approach for predicting time series of partially observed
dynamics.

We should point out that this connection partially explains the
empirical successes reported in [1–4] since they all adopted this
regression modeling paradigm. One unexplained component of
these empirical successes is the consistency of their estimators. In
these papers, the authors approximated the target function using
a neural network model (which is in the form of a composition
of activation functions) which depends nonlinearly on possibly
a very large number of parameters (depending on the depth
and width of the neural network architecture). Thus, the training
phase often involves a nonlinear, highly non-convex, optimization
problem, and finding the global optimizer for such a problem
can be a difficult task given that most solvers convergence is
guaranteed locally. While this is an interesting direction, we will
not explore it here. In this paper, we study a class of linear
estimators that can be translated into computational algorithms
with theoretical guarantees. In particular, we consider the kernel
analog forecast (KAF) which has found applications in finance [20]
and climate sciences [21–24]. KAF is a kernel regression method
designed for the purpose of predicting time series generated by
an observable of a dynamical system. The term ‘‘analog’’ refers
to the fact that KAF is a generalization of the classical ana-

log forecasting method proposed by Lorenz [25], for which the s

2

prediction is determined based on the affinity of the present
states and the historical analog. In this context, the so-called
‘‘kernel trick’’ allows one to identify the analogs (feature space)
with an appropriately chosen kernel. This, in turn, allows one
to access an estimator that lies in a Reproducing Kernel Hilbert
Space (RKHS) induced by the associated kernel features, with
universal approximation properties. A key advantage of the RKHS
formulation is that properties of the elements of the space are
inherited by corresponding properties of the kernel. In particular,
if the kernel is bounded, then functions in the RKHS are also
bounded. Likewise, functions in an RKHS inherit the regularity
of the kernel. This important property allows one to establish
uniform convergence of the estimator, which justifies the use
of KAF as an interpolator. In the context of dynamical systems
forecasting, the natural function space (e.g., an L2 space associated
with an invariant measure) is usually not known explicitly, yet
relationships between kernel integral operators and RKHSs allow
one to empirically access the subspace of L2 through a set of
rthogonal basis functions corresponding to ordered eigenvalues.
n this case, there is a natural mapping of the L2 basis vec-
ors corresponding to nonzero eigenvalues to orthogonal RKHS
unctions, and, under appropriate positivity conditions on the
ernel, the latter span a dense subspace of the corresponding
2 space. With orthogonality at hand, one can control the accu-
acy of the estimate by a finite eigenbasis representation and,
imultaneously, avoid the large matrix inversion problem with
he radial-type kernels. Finally, the RKHS structure allows one
o evaluate the estimator on new data points using a classical
nterpolator, the Nyström projection method. It should be noted
hat this construction does not require that the covariate time
eries is Markovian, and is therefore well suited to forecasting
nder partial observations; e.g., see [26] for applications of KAF to
rediction of slow components of multiscale systems exhibiting
veraging or homogenization.
While KAF is theoretically sound [27], it may face practical

imitations, especially when both the covariate space and the
upport of the pushforward of the invariant measure on the
ovariate space are high dimensional. This issue is mainly due to
ack of guarantees that the leading eigenfunctions induced by a
eneric kernel on a high-dimensional covariate space adequately
apture the response (predictand) variable of interest. To alleviate
his limitation, while also reducing computational complexity,
e propose to realize KAF with a kernel smoothing technique,
hose basic idea is to apply a discrete convolution of a Markov
perator on the response functions. We show that the proposed
ernel smoothing method is a consistent estimator of the opti-
al regression function, i.e., the conditional expectation of the

esponse given the covariate data. Using the variable-bandwidth
ernels introduced in [28], we numerically demonstrate the effec-
iveness of kernel smoothing compared to the Nyström method
n estimating the full discrete MZ equation in situations where
he covariate space is relatively high-dimensional. On the other
and, when the covariate space is low dimensional, the Nyström
ethod is generally a better choice since the response variable is
ore likely to be well represented by the leading empirical kernel

eatures.
Another critical issue that often arises in practical applications

s that the available observables are subjected to noises (of possi-
ly unknown nature). This poses a question in the accuracy of the
AF estimators since the noises in the response and covariate data
ay yield an ill-posed regression problem. In this paper, we pro-
ose a non-parametric smoother, constructed using the Nyström
rojection method, to denoise observables corrupted by inde-
endent (but not necessarily identically distributed) noises. In
ur applications, we will show the effectiveness of the proposed

moother in denoising signals corrupted by various noise types,
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ncluding time varying noise, even if the smoother is constructed
sing a data set corrupted by independent and identically dis-
ributed (i.i.d.) Gaussian noise. From our numerical tests, we
ill find that the proposed smoother produces more accurate
stimates than two popular data assimilation methods that are
resently used in operational weather forecasts: the Ensemble
alman filter [29] and the 4D-Variational approach [30], both
f which require the true governing equations of the observed
omponents. Using the smoothed data, we numerically verify
hat the kernel smoothing method is effective in predicting the
esponse variable. We will show that this blended ‘‘projection-
moothing’’ approach is able to produce a reasonably accurate
rediction from purely noisy observables.
This paper is organized as follows. In Section 2, we review

he kernel-based regression framework for supervised learning
asks. In Section 2.1, we discuss the Nyström projection method.
hile the presentation follows closely that in [27], in the current
iscussion, we do not present the regression problem for time
eries generated by ergodic dynamical systems and only describe
t on i.i.d. training data. We complete the discussion in Section 2.1
ith a simple statistical error bound. In Section 2.2, we present
he kernel smoothing method, and prove its consistency and
ssociated error bounds using variable bandwidth kernels [28].
n Section 3, we discuss the problem of predicting observables of
ime series generated by dynamical systems. Since the only avail-
ble training data is the time series of the relevant observables,
e briefly review the discrete MZ formalism for reduced-order
odeling in Section 3.1. In Section 3.2, we focus on estimating

the solution operator of the projected discrete MZ equation with
the KAF estimator. We demonstrate the performance of the esti-
mator on a Hamiltonian system and the five-dimensional chaotic
Lorenz-96 dynamical system. In Section 3.3, we discuss the con-
nection of the proposed nonparametric regression framework
with the delay-embedding and MZ formalism. In particular, we
will show that if the hypothesis in the delay-embedding theory
is satisfied, the regression function is indeed a component of the
flow map. Furthermore, the MZ equation derived using the pro-
jection operator obtained by the regression framework consists
of only the ‘‘Markovian’’ term and it is exactly represented by the
corresponding regression function. Supporting numerical exam-
ples on the two same dynamical systems are given. In Section 4,
we consider data corrupted by independently distributed noises.
A non-parametric smoother based on the Nyström projection
method is presented as a denoising method in Section 4.1. Subse-
quently, in Section 4.2, we numerically verify the prediction skill
of the KAF estimator when it is trained using the smoothed data.
In Section 5, we close this paper with a summary and outlook of
open problems.

2. Nonparametric regression

Given spaces X and Y , a basic problem of supervised learning
is to construct a map F : X → Y from samples of labeled data,
{(xi, yi) ∈ X × Y}i=1,...,N , such that F (xi) optimally approximates
yi in a suitable sense. Here, we require that Y be a Hilbert space
so that we can apply orthogonal projections, as well as compute
expectations and other statistical functionals. On the other hand,
we allow X to be nonlinear. In order for the target function F
to be predictive, we relate xi and yi by assuming that they are
realizations of random variables X and Y with common domain
Ω . We assume that Ω is a probability space equipped with a
σ -algebra B(Ω) and probability measure µ. We call X the co-
variate space and Y the response space. The corresponding maps
X and Y are called the covariate map and the response map,
respectively.
3

Consider the Hilbert spaces H =
{
f : Ω → Y |

∫
Ω
f 2(ω) dµ(ω)

< ∞
}
, V = {g : X → Y : g ◦ X ∈ H}, and HX = {f ∈ H :

f = g ◦ X for some g ∈ V }. Note that H = L2(µ) and V = L2(ν)
where ν = X∗µ is the pushforward of µ via X . Moreover, HX is
the Hilbert subspace of L2(µ) that contains equivalence classes of
square-integrable functions which are measurable with respect
to the σ -algebra generated by X . In general, there are many
ways to construct a predictive map F . The least-squares approach
is to construct an F that minimizes the mean square error. A
standard result from statistics is that this estimator is given by
the regression function, which is also known as the conditional
expectation function. That is,

E[Y |·] = F := argmin
g∈V

∥Y − g ◦ X∥
2
H , (1)

where the conditional expectation E[·|X] can be seen as an or-
thogonal projection of H onto HX . In this paper, we will denote
the orthogonal projection P : H → HX as the conditional expecta-
tion E[·|X]. In appropriate context, we will also use P : H → SX ⊆

HX , to denote an arbitrary orthogonal projection onto its range
space, SX = ran(P) such that S⊥

X = null(P) and H = SX⊕S⊥

X , where
the orthogonality is defined with respect to the inner product of
H .

When X is not injective, as in many applications, one can-
not approximate the response Y ∈ H to arbitrary precision
by elements of HX . However, one can still construct an optimal
estimator of Y using the target function F ∈ V . In the remainder
of this section, we discuss two methods for estimating E[Y |·]

from samples of labeled data {(xi, yi) ∈ X × Y, }i=1,...,N . The
first one is the Nyström method which is an interpolation of an
eigenbasis representation of the estimator. The second method
is the kernel smoothing that employs a convolution operation
associated with a Markov kernel. For the remainder of this sec-
tion, we restrict our discussion to real-valued functions, so that
Y = R and H = {f : Ω → R |

∫
Ω
f 2(ω) dµ(ω) < ∞}. Since

our applications involve Y = Rn, a componentwise generalization
to the finite-dimensional vector-valued case is immediate.

2.1. Nyström method

If V is equipped with an orthonormal basis {uj}j∈N and X is
injective, then {φj = uj ◦ X}j∈N forms an orthonormal basis of H .
In this case, any Y ∈ H can be arbitrarily estimated, in H-norm,
by

EL[Y |X] :=

L∑
j=0

⟨Y , φj⟩Hφj, (2)

up to any desirable precision by taking L → ∞. Due to the
properties of orthogonal projection, the estimator

EL[Y |·] =

L∑
j=0

⟨Y , φj⟩Huj, (3)

is an optimal estimator from span{φ0, . . . , φL} ⊂ H . As mentioned
above, when X is not injective, span{φj}j∈N ⊊ H so one cannot
recover arbitrary target functions Y ∈ H . However, EL[Y |·] is
a consistent estimator of E[Y |·] ∈ V so that limL→∞ EL[Y |·] =

E[Y |·] in V .
A practical issue in employing the estimator (3) is that or-

thonormal bases of H as well as V are not available. The whole
point of nonparametric regression is to construct an estimator for
{φ0, φ1, . . .} from the random samples of observables {xi : i =

1, . . . ,N}, where xi = X(ωi) are realizations of the covariate map
X . Kernel-based algorithms [28,31] are often used to obtain the
function value uj(xi) = uj◦X(ωi) = φj(ωi), which can subsequently

be used to estimate the inner product in (3). For our purposes, we
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lso need to evaluate the estimator in (3) on new covariate data
hat do not lie in the (finite) training data set. This evaluation
an be done using an interpolation scheme such as the Nyström
ethod that extends uj on new covariate data disjoint from the

inite sample of observations. To justify the validity of such an
nterpolation method, uniform convergence of the estimator is
sually required rather than V -norm convergence.
One way to ensure uniform convergence is to construct an

stimator in a reproducing kernel Hilbert space (RKHS) H of
ontinuous functions such that H is dense in HX . In particular,
et k : Ω ×Ω → R be the pullback of a kernel κ : X × X → R
n the covariate space. That is, k is symmetric positive definite
nd k(ω,ω′) = κ(X(ω), X(ω′)). By the Moore–Aronszajn theorem,
here exists a unique Hilbert space H (the RKHS), of real valued
unctions f : Ω → R with the reproducing property: H =

span{k(ω, ·),∀ω ∈ Ω} and every f ∈ H and ω ∈ Ω satisfies
(ω) = ⟨k(ω, ·), f ⟩H. Since the kernel k is a pullback kernel
f κ , every function f ∈ H can be expressed as f = g ◦ X

for some continuous function g : X → R. If Ω is compact
nd k is continuous, one can show that H-norm convergence
mplies uniform convergence so that H ⊂ C(Ω). For non-compact
omains, a bounded kernel ensures that H ⊂ Cb(Ω) [32].
While it is convenient to represent functions in H as a linear

superposition of kernel sections, namely, f =
∑

∞

i=1 aik(ωi, ·)
ith ωi ∈ Ω , empirical representations involve a partial sum-

mation of N terms, where N denotes the number of training
samples. For large datasets, as in our applications, specification
of the coefficients ai involves an inversion of a large matrix and
the repetitive function evaluation is numerically expensive. If a
radial-type kernel is chosen, as in many applications, then we
arrive at the so-called kernel ridge regression or radial basis
function interpolation, depending on the literature. The estimator
in (3) is proposed as an alternative to avoid this computational
issue by leveraging the inner product structure of H . To that end,
onsider the reproducing kernel k from the perspective of an
ntegral operator Kµ : H → H defined as

Kµf =

∫
Ω

k(·, ω)f (ω)dµ(ω), (4)

where µ is assumed to be compactly supported on M ⊂ Ω . This
is a compact operator with adjoint K ∗

µ : H → H that is also
ompact. By the spectral theorem, the compact, self-adjoint and
ositive-definite integral operator Gµ := K ∗

µKµ : H → H has
igenvalues λ0 ≥ λ1 ≥ · · · ↘ 0+ so that the corresponding
igenfunctions {φ0, φ1, . . .} form an orthonormal basis of H . In

fact, defining, ψj = Kµφj/λ
1/2
j for λj > 0, we have,

⟨ψi, ψj⟩H =
1

λ
1/2
i λ

1/2
j

⟨Kµφi, Kµφj⟩H =
1

λ
1/2
i λ

1/2
j

⟨K ∗

µKµφi, φj⟩H

=
λ
1/2
i

λ
1/2
j

⟨φi, φj⟩H = δij,

which means that {ψ0, ψ1, . . .} is an orthonormal set in H. By
Mercer’s theorem, we have an explicit representation k(ω,ω′) =

∞

j=0 λjϕj(ω)ϕj(ω
′) =

∑
∞

j=0 ψj(ω)ψj(ω′), converging uniformly
for (ω,ω′) ∈ M × M , where ϕj = λ

−1/2
j ψj denotes the con-

tinuous representative of eigenfunction φj. The so-called ‘‘kernel
trick’’ specifies an explicit choice of kernel k, such as the Gaus-
sian kernel, to avoid computing the ℓ2 inner-product between
feature vectors (ψ0(ω), ψ1(ω), . . .) and (ψ0(ω′), ψ1(ω′), . . .). Our
perspective is to rely on the orthogonality of the eigenbasis to
approximate the target function of interest through the represen-
tation in (3) and use the RKHS theory to establish the convergence
of the estimator as L → ∞.

One of the most important aspects of the integral operator

Kµ is that we can define an interpolation (Nyström) operator r

4

Nµ : D(Nµ) → H as Nµφj := ψj/λ
1/2
j = Kµφj/λj := ϕj, whose

domain D(Nµ) = {f =
∑

ckφk ∈ H|
∑

k c
2
k /λk < ∞} contains

functions of higher regularity than arbitrary elements of H . Note
that if D(Nµ) is equipped with the norm ∥f ∥2

=
∑

k c
2
k /λk, then

it is isometrically isomorphic to H(M), the restriction of H to the
support M . Notice that the operator Nµ maps the eigenfunction
φj ∈ D(Nµ) to the continuous function ϕj. As a result, f ∈ D(Nµ)
has a continuous representation Nµf =

∑
j cjNµφj =

∑
j cjϕj.

Moreover, the map K ∗
µ is a left inverse of Nµ since

K ∗

µNµf =

∑
j

cjK ∗

µϕj =

∑
j

cjK ∗

µKµ
φj

λj
=

∑
j

cjφj = f . (5)

This means that the map K ∗
µNµ : D(Nµ) → ranKµ identifies

functions in D(Nµ) with their continuous representation in H
through the Nyström operator, as a function in ranKµ.

In our case, the target function is E[Y |·] ∈ V or E[Y |X] ∈ HX .
hus we can consider the operator (4) but with domain HX . In this

case, an orthonormal set of continuous functions {ψ0, . . . , ψL} in
H satisfies ψj = uj ◦X for some continuous functions {u0, . . . , uL}

that can be approximated from the covariate data. Using this
basis, for each EL[Y |X] ∈ D(Nµ), one can build an estimator for
NµEL[Y |X] ∈ H which can be represented as

NµEL[Y |·] =

L∑
j=0

⟨Y , φj⟩H
uj

λ
1/2
j

. (6)

It is important to note that if the reproducing kernel k of the RKHS
H is a pullback of a strictly positive definite kernel κ : X×X → R,
then the domain D(Nµ) is dense in HX . To see this, take any
function f ∈ HX and, since span{φ0, φ1, . . .} is dense in HX , we
ave that f =

∑
k ckφk, where each eigenfunction is associated

with a strictly positive eigenvalue. Furthermore,
∞∑
k=0

ck2

λk
=

∞∑
k=0

ck2

λk
⟨φk, φk⟩HX =

∞∑
k=0

ck2

λk
⟨Kµφk, Kµφk⟩H

=

∞∑
k=0

ck2⟨ψk, ψk⟩H =

∞∑
k=0

ck2 = ∥f ∥2
HX
< ∞,

and we conclude that any function f ∈ HX can be approximated
by a function in D(Nµ) at arbitrary precision. From (5), one can
see that the operator K ∗

µNµ : D(Nµ) → D(Nµ) is an identity
map (a bounded operator). By the bounded linear transformation
theorem, the closed extension of K ∗

µNµ is the identity map on
D(Nµ) = HX . This means that any function in HX can be approx-
imated to arbitrary precision in H-norm by a function in K ∗

µH =

(Nµ). In particular, as L → ∞, the estimator in (6) converges
to the target function in H-norm, i.e., limL→∞ K ∗

µNµEL[Y |X] =

[Y |X]. If it now happens that E[Y |X] has a representative in H,
hen the estimator converges to that representative in H-norm,
nd thus uniformly, on the support of µ.
As mentioned above, in practice, we have no access to the

asis functions {φ0, . . . , φL} or {u0, . . . , uL}. Given the pairs of
abeled data points {(xi, yi)}i=1,...,N , where xi are i.i.d. samples of
, we first describe an empirical estimate of φj(ωi) = uj(xi). Let
µN := K ∗

µN
KµN , where KµN : HN → H and K ∗

µN
: H → HN

re defined as in (4) and the corresponding adjoint with H =
2(µN ) replaced by HN := L2(µN ). Here, µN =

∑N
j=1 δωj/N is

he discrete sampling measure, and L2(µN ) the corresponding
inite-dimensional Hilbert space equipped with the inner prod-
ct ⟨f , g⟩HN =

1
N

∑N
i=1 f (ωi)g(ωi). For simplicity of exposition,

e will assume that all sampled states ωi are distinct, so HN
s an N-dimensional Hilbert space, isomorphic to RN equipped
ith a normalized dot product. In that case, the operator GµN is
epresented by an N × N kernel matrix G = [⟨e ,G e ⟩ ]
N i,N µN j,N HN
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[κ(xi, xj)], where ej,N are the standard orthonormal basis vec-
ors of HN with ej,N (ωi) = N1/2δij.

Let {λj,N , φj,N} be the jth eigenvalue and eigenvectors of GN ,
respectively. It is well known that the approximation of G by Gn
is spectrally consistent [33]; that is the sequence of eigenvalues
λj,N → λj, as N → ∞. Moreover, the continuous representative,
NµNφj,N = ψj,N/λ

1/2
j,N converges to Nµφj = ψj/λ

1/2
j as N → ∞ in

H. Denoting y⃗ = (y1, . . . , yN )⊤ ∈ RN , we have

⟨y⃗, φj,N⟩L2(µN ) =
1
N

N∑
i=1

yiφj,N (ωi) =

∫
Ω

Y (ω)NµNφj,N (ω)dµN (ω)

−→

∫
Ω

Y (ω)Nµφj(ω)dµ(ω) = ⟨Y , φj⟩H ,

as N → ∞, where we have used the law of large numbers for
i.i.d. samples. For each j,

Eµ[⟨y⃗, φj,N⟩L2(µN )] =
1
N

N∑
i=1

Eµ[YNµNφj,N ]

= Eµ[YNµNφj,N ] = Eµ[Yφj] + O(δ), (7)

where δ is an error bound of the eigenfunction estimation. In
the proposition below, we will specify δ on a manifold with-
out boundary based on the L2 result from [34]. The standard
Monte-Carlo error suggests that

Eµ
[(

⟨y⃗, φj,N⟩L2(µN ) − Eµ[YNµNφj,N ]
)2]

=
1
N
Eµ

[
(YNµNφj,N − Eµ[YNµNφj,N ])2

]
=

Var[YNµNφj,N ]

N
.

Without loss of generality, suppose that Eµ[Y ] = Eµ[φj] = 0. If
Y is continuous on M ⊂ Ω , the compact support of µ, then

Var[YNµNφj,N ] = Eµ[Y 2(NµNφj,N )2] ≤ ∥Y 2
∥∞Eµ[(NµNφj,N )2]

≤ ∥Y 2
∥∞(Eµ[φ2

j ] + O(δ2)) = ∥Y 2
∥∞(1 + O(δ2)),

where we have used the Hölder inequality and the orthonormal-
ity of φj. Together with (7), we have

Eµ
[(

⟨y⃗, φj,N⟩L2(µN ) − Eµ[Yφj]
)2]

≤ C
(

1
N

+
δ2

N
+ δ2

)
, (8)

for some constant C > 0.
We should point out that if the samples {ωi} form a time series

generated by an ergodic and stationary dynamical system, then
the convergence can still be achieved via the Birkhoff ergodic
theorem, but the convergence rate would depend on the mixing
rate of the underlying processes [35,36]. Together with the con-
vergence of the continuous representative, we can conclude that
the discrete estimator

EL,N [Y |X] :=

L∑
j=0

⟨y⃗, φj,N⟩L2(µN )φj,N ,

has a continuous representative

NµNEL,N [Y |X] =

L∑
j=0

⟨y⃗, φj,N⟩L2(µN )ψj,N/λj,N (9)

that converges in H-norm to NµEL[Y |X] as N → ∞. Also, the
left pseudo-inverse, K ∗

µNµNEL,N [Y |X] → K ∗
µNµEL[Y |X] = EL[Y |X]

as N → ∞ in HX . Taking L → ∞ after N → ∞, we estab-
lish the consistency of the estimator with the target function,
NµNEL,N [Y |X] → E[Y |X] ∈ HX .

Let νN = µN ◦ X−1 be the pushforward of the sampling
measure on covariate space X . Computationally, we can estimate
the discrete orthonormal basis {u , u , . . . , u } with respect
0,N 1,N L,N

5

to L2(νN ) by solving an eigenvalue problem associated with a
Markov operator GµN ,ϵ constructed using a decreasing kernel kϵ
defined with bandwidth parameter ϵ (see also remark 3 of [34]).
Note that the pullback is given as φj,N,ϵ = uj,N,ϵ ◦ X . If X
is a d-dimensional compact smooth manifold embedded in Rn,
then NµN uj,N,ϵ converges to the eigenfunctions uj of the Laplace–
Beltrami operator (positive definite with respect to V ) as N → ∞

and ϵ → 0. If νN has a smooth density with respect to the volume
form, then the Laplace–Beltrami is defined with a conformally
changed Riemannian metric inherited by X from the ambient
space Rn. In this case, we have:

Proposition 2.1. Let X be a d-dimensional compact smooth Rie-
mannian manifold with no boundary. Let Y := F ◦ X such that
F : X → Y belongs to a Sobolev class, Hβ (X ) := {F ∈ V |F̂j :=

⟨F , uj⟩V ,
∑

j ζ
β

j F̂
2
j < ∞, β > 0}, where ζj is the eigenvalue of the

Laplace–Beltrami operator associated with eigenfunction uj, approx-
imated with uj,N,ϵ as discussed in the preceding paragraph. Assume
also that Y ∈ C(M), where M ⊂ Ω denotes the compact support
of the invariant measure µ. Then, with µN =

∑N
j=1 δωj/N and

NµEL,N [Y |·] defined as in (9), we have

Eν
[
(NµNEL,N [Y |·] − E[Y |·])2

]
= O(LN−1, log(N)pdN−

1
d , L−

2β
d ),

here pd = 3/4 for d = 2 and pd = 1/d for d ≥ 3.

roof. To compute the error rate, we split the error into the
ariance error term that arises due to discrete data and the bias
erm that arises due to the truncation of eigenfunctions:

Eν
[
(NµNEL,N [Y |·] − E[Y |·])2

]
≤ Eν

[
(NµNEL,N [Y |·] − K ∗

µNµEL[Y |·])2
]

+ Eν
[
(K ∗

µNµEL[Y |·] − E[Y |·])2
]

≤ Eν
[( L∑

j=0

(
⟨y⃗, φj,N,ϵ⟩L2(µN ) − ⟨Y , φj⟩H

)
NµN uj,N,ϵ

)2]
. . .

Eν
[( L∑

j=0

⟨Y , φj⟩H (NµN uj,N,ϵ − K ∗

µNµuj)
)2]

+ Eν
[(∑

j>L

⟨Y , φj⟩Huj
)2]

≤
L
N
Eµ[Y 2

] + C
( log(N)pd

N
1
d

)
+

∑
j>L

⟨Y , φj⟩
2
H ,

for some constant C that is independent of ϵ,N, d but can de-
pend on L. In the second equality above for the variance term,
we isolate the errors due to Monte-Carlo approximation of the
expansion coefficients (which is computed in (8)), where we
suppressed the order δ2/N term since it is dominated by the error
of order-δ2 in the discrete approximation of the eigenfunctions.
Using the recent result in [34] for compact manifolds without
boundary, the L2-error bound for each eigenfunction (as ϵ → 0)

is given by δ = O
(

log(N)pd
N1/d

) 1
2
, where d denotes the intrinsic

dimension of X and pd = 3/4 for d = 2 and pd = 1/d for d ≥ 3.
For all Y = F ◦ X , we have that ⟨Y , φj⟩H = ⟨F , uj⟩V = F̂j, and

since F ∈ Hβ (X ), we have∑
j>L

⟨Y , φj⟩
2
H =

∑
j>L

F̂j ≤
1

ζ
β

L+1

∞∑
j=0

ζ
β

j F̂
2
j ≤ C2ζ

−β

L+1,

or some constant C2 > 0. The proof follows by using the Weyl
symptotic estimate for the eigenvalue of the Laplace–Beltrami
perator on compact Riemannian manifolds [37], ζL+1 ∼ L2/d. □

We should point out that balancing the first and last er-
or rates yields the famous minimax optimal rate, O(N−

2β
2β+d )

for linear estimators [38]. Thus, unless the response function is
highly smooth (e.g, β = d), such an estimator is subject to
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he curse of dimension. In practice, the second error rate (cor-
esponding to the estimation of eigenvectors) will dominate in
igh-dimensional problems even if the target function is smooth.

.2. Kernel smoothing estimator

In the previous subsection, we approximated E[Y |X] with,
EL,N [Y |X], a superposition of eigenvectors of GN and then used
Nyström extension (9) to evaluate this representation on an out-
of-sample point. In this subsection we show that the condi-
tional expectation can also be approximated by an appropriate
smoothing function in H .

The main idea is motivated by the fact that if X is a smooth
manifold, any measurable function g ∈ V can be represented as

g(x) = Eδx [g],

where δx denotes the Dirac mass centered at x. We can then
attempt to regularize this integral operation by approximating δx
with an appropriate family of Markov kernels that have a smooth
density with respect to the pushforward measure ν.

To that end, we assume that X = Rm and the support of ν is
a smooth, compact d-dimensional submanifold M ⊆ X . We then
start with a kernel Sϵ : X × X → R, where ϵ > 0 is a bandwidth
parameter, and perform a sequence of normalizations that yield,
asymptotically, the kernel κϵ so that

Gϵg(x) :=

∫
X
κϵ(x, x′)g(x′)dν(x′) = g(x) + O(ϵ), (10)

holds for g ∈ V and x ∈ M. The integral operator Gϵ can then
be approximated by a matrix–vector multiplication. In this paper,
we use the variable bandwidth construction of the kernel given
in [28]. This expansion starts with a kernel Sϵ on X × X of the
form

Sϵ(x, x′) = ϵ−d/2 exp
(

−
∥x − x′

∥
2

ϵρ(x)ρ(x′)

)
,

here ρ > 0 is a bandwidth function that is chosen to be
inversely proportional to a power of the sampling density as
in [28].

For completeness, we describe the construction of the discrete
pproximation of the operator in (10). Let x1, . . . , xN be the ob-
erved m-dimensional data in X . Then the following steps (which
are the diffusion maps normalizations [28]) yield a discrete ap-
proximation GN,ϵ of the integral operator Gϵ , whose discrete rep-
esentation is denoted by the matrix GN,ϵ = [⟨ei,N ,GN,ϵej,N⟩L2(µN )]

= [κϵ(xi, xj)],

qϵ(xi) :=

N∑
j=1

Sϵ(xi, xj)
ρ(xi)d

, Sϵ,α(xi, xj) :=
Sϵ (xi,xj)

qϵ (xi)αqϵ (xj)α
,

qϵ,α(xi, xj) :=

N∑
j=1

Sϵ,α(xi, xj) GN,ϵ(xi, xj) :=
Sϵ,α (xi,xj)
qϵ,α (xi)

.

(11)

he two steps in the first row above are the ‘‘right-normalization’’
teps taken to de-bias the possibly non-uniform sampling distri-
ution of the data with a parameter α. In our numerics,
e set α = −d/4 and ρ = q−1/2

ϵ as in [28]. The two ‘‘left-
ormalization’’ steps in the second row of (11) turn GN,ϵ into

a stochastic matrix. Note that the resulting kernel κϵ from (11)
is given in Appendix A5 of [28]. Based on the result in [28], for
{x1, . . . , xN} ⊂ M with sampling density q = dν/dvol, where vol
is the volume form on M through its embedding in X , for fixed
ϵ, we have the convergence rate(
GN,ϵ g⃗

)
i = Gϵg(xi) + O

(
q(xi)1/2+d/4

1/2 2+d/4 ,
q(xi)d(d/2−1/4)

1/2 1/2+d/4

)
, (12)
N ϵ N ϵ

6

as N → ∞. The second term in the error bound is due to the
error in the discrete estimate and the first term is to ensure an
order-ϵ2estimate of qϵ .

Our choice of normalization is to ensure an asymptotically
unbiased (up to order ϵ) estimate of g in (10). For many ap-
plications, it suffices to start with the standard Gaussian kernel
with constant bandwidth (ρ = 1) and apply the steps in the
second row in (11) to create a valid transition density. However,
in this paper, we will always construct the integral operator in
(10) using the variable bandwidth kernels due to their accurate
estimation of densities in sparsely sampled regions. To tune the
kernel bandwidth parameter ϵ, we use the auto-tuning algorithm
in [28] which was found to be more effective for variable band-
width kernels than the Gaussian kernel with a fixed bandwidth
(ρ = 1). Furthermore, we have

Proposition 2.2. Let P be the orthogonal projection of H onto HX .
Then for any g ∈ V and xi = X(ωi) ∈ M, the relationship(
GN,ϵ g⃗

)
i = Pg(xi) + O

(
ϵ,

q(xi)1/2+d/4

N1/2ϵ2+d/4 ,
q(xi)d(d/2−1/4)

N1/2ϵ1/2+d/4

)
, (13)

holds in high probability.

Proof. Note that for any g ∈ V , where f = g ◦ X ∈ HX , ν = X∗µ,
nd xi = X(ωi) ∈ M, a change of variables shows that

ϵg(xi) =

∫
X
κϵ(xi, x′)g(x′)dν(x′)

=

∫
Ω

κϵ(X(ωi), X(ω′))(g ◦ X)(ω′)dµ(ω′) := Jϵ f (ωi). (14)

Let kϵ,ωi := kϵ(ωi, ·) = κϵ(X(ωi), X(·)). Since f ∈ HX , we see that
Jϵ f (ωi) = JϵPf (ωi). Thus, for each ωi ∈ Ω ,

JϵPf (ωi) = (GϵPg) ◦ X(ωi) = Pg ◦ X(ωi) + O(ϵ) = Pf (ωi) + O(ϵ),

as ϵ → 0, due to the asymptotic expansion in (10). Together with
(12) and (14), we have(
GN,ϵ g⃗

)
i − Pg(xi) =

((
GN,ϵ g⃗

)
i − Gϵg(xi)

)
+ (Gϵg(xi) − Pg(xi))

=
((
GN,ϵ g⃗

)
i − Gϵg(xi)

)
+ (Jϵ f (ωi) − Pf (ωi))

= O
(
ϵ,

q(xi)1/2+d/4

N1/2ϵ2+d/4 ,
q(xi)d(d/2−1/4)

N1/2ϵ1/2+d/4

)
.

For a function g⃗ whose components are function values at
the training data {x1, . . . , xN}, the kernel smoothing estimate of
g(xout ) on a new point xout is given by GNout ,ϵ g⃗ , where GNout ,ϵ

s a row vector consisting of κϵ(xout , xi) for i = 1, . . . ,N . The
efinition of Gϵ can be extended to g ∈ Rn, where n > 1
omponentwise. That is, if g(x) = (g1(x), . . . , gn(x)), where gi(x) ∈

R for 1 ≤ i ≤ n then Gϵg(x) := (Gϵg1(x), . . . ,Gϵgn(x)). Then,
he componentwise convergence in probability holds due to the
receding proposition. The discrete estimator then becomes a
atrix–matrix multiplication, GN,ϵg, where the ijth component of

he matrix g is given by gi(xj).
The kernel smoothing estimate is conceptually simple and

omputationally fast to construct. While naive, we will show in
he next section that the kernel smoothing estimate of the con-
itional expectation performs well when accurate estimation of
he eigenbasis of V is not available, especially when the covariate
pace is high-dimensional.

. Predicting the dynamics of observables

In this section, we discuss the problem of predicting observ-
bles (e.g.,partial components) of a measure preserving discrete
ime dynamical system. We start by reviewing the MZ formal-
sm [39], which is a classical reduced-order modeling framework
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ften used for this task. The MZ formalism expresses the evolu-
ion of the desired reduced order dynamics in terms involving
arkovian, non-Markovian, and orthogonal dynamics through

he use of an orthogonal projection operator. The total con-
ributions of the Markovian and non-Markovian terms in this
ecomposition will coincide with the optimal solution to the
egression problem with observables at initial and future times as
ovariate and response data, respectively. For a low-dimensional
ovariate space, we show that the regression estimator can be ac-
urately constructed using the Nyström method in Section 3.2. In
ection 3.3, we argue that if the hypotheses of delay-embedding
heorems are satisfied [6,40], the MZ-equations can be simplified
o only a ‘‘Markovian’’ term, whose representation is precisely
he regression function that maps the delay-embedded observ-
ble to the observable at a future time. This regression function,
hich can be estimated by KAF, is nothing but the component
f the flow map induced by the lag embedding. In such high-
imensional covariate space regression problems, we numeri-
ally demonstrate that the kernel smoothing estimate is a more
ccurate estimator than the Nyström method.

.1. Mori–Zwanzig formalism for reduced order modeling

Let (Ω,Φ) be a discrete-time deterministic dynamical system,
generated by an invertible map Φ : Ω → Ω . Furthermore,
e assume that there is a Φ-invariant probability measure µ :

(Ω) → [0, 1], where B(Ω) is the Borel σ -algebra on Ω . That is,
or all B ∈ B(Ω), µ(Φ−1(B)) = µ(B). As in Section 2, we assume
hat µ is supported on a compact set M ⊆ Ω . For a given ω0 ∼ µ,
we let ωi := Φ i(ω0).

In what follows, we assume that only partial observations xi ∈

Rn of ωi are available and they are defined through a measurable
function X : Ω → X = Rn such that xi := X(ωi) = X ◦ Φ i(ω0).
Since our goal is to use the observed time series of {xi} to estimate
xi+t ∈ X for some t ∈ N, we set the response space equals
to the covariate space, Y = X , and consider the response map
Y = Xt : Ω → X , where Xt = X ◦ Φ t ; that is, Xt (ω0) = X(ωt ).
Note that since X = Y = Rn, we have H = {f : Ω → X :∫
Ω

∥f 2(ω)∥2dµ(ω) < ∞}, V = {g : X → X : g ◦ X ∈ H}, and
HX = {f ∈ H : f = g ◦ X for some g ∈ V }.

Let us define an orthogonal projection operator P : H → SX ⊆

HX ⊆ H , where SX = ran(P) is a closed subspace of HX , and
let Q = I − P be the orthogonal projection onto the orthogonal
space, S⊥

X = null(P). With these projection operators, we have
H = SX ⊕S⊥

X . Let U : H → H be the Koopman operator defined as
Uf = f ◦Φ , for all f ∈ H . Then by ‘‘the Dyson’s formula’’ [41,42],
the map U i

: H → H given by U if = f ◦Φ i can be written as,

U i+1
=

i∑
k=0

U i−kPU(QU)k + (QU)i+1. (15)

Applying (15) on X ∈ H , we obtain the discrete MZ equation
hat describes the evolution of xi = X(ωi). In detail, letting Ξi :=

QU)iX and noting that

U i+1X = Xi+1
i−kPU(QU)kX = PU(QU)kX ◦Φ i−k

= P(Ξk ◦Φ)(X ◦Φ i−k)

(QU)i+1X = Ξi+1,

long with the fact that PQ = 0, yields

i+1(ω0) = (PUX ◦Φ i)(ω0)+
i∑

k=1

P(Ξk ◦Φ)◦ (X ◦Φ i−k)(ω0)+Ξi+1(ω0).

(16)

Since PUX ∈ SX , there exists anM0 ∈ V such that PUX = M0◦X ,

y the definition of SX . Similarly, since P(Ξk ◦ Φ) ◦ X ∈ SX , there

7

xists Mk ∈ V such that P(Ξk◦Φ)◦X = Mk◦X . Therefore, Eq. (16)
an be written in terms of the observable values xi as

i+1 = M0(xi) +

i∑
k=1

Mk(xi−k) +Ξi+1(ω0). (17)

Note that (17) decomposes xi+1 into the Markovian term M0,
he memory terms Mi and a term Ξi that is orthogonal to SX .

.2. Approximation of the projected Mori–Zwanzig equation

If we consider the specific choice SX = HX , and thus the projec-
ion operator P := E[·|X], we obtain the projected MZ-equation,

[Xi+1|x0] = M0(xi) +

i∑
k=1

Mk(xi−k), (18)

ince Mk ◦ X ∈ HX , and the orthogonal term PΞi+1 = 0 since
i+1 ∈ H⊥

X . In this case, notice that E[Xi+1 | ·] is precisely the
inimizer in (1) with Xi+1 in place of Y . The main takeaway here

s that the solutions of the projected MZ-equation in (18) is the
egression function, E[Xi+1|·], of the dynamical map X0 ↦→ Xi+1.
he importance of this observation is that one can approximate
[Xi+1|X0] from the historical data {xi}. In the next two examples,
e will numerically verify this claim with the two nonparametric
stimators discussed in Section 2, the Nyströmmethod and kernel
moothing.
Hamiltonian system: First, consider the 16-dimensional dy-

amical system given by the Hamiltonian

(ω) =
1
2

( 16∑
i=1

ω2
(i) +

7∑
i=1

ω2
(2i−1)ω

2
(2i+1)

)
, (19)

here (ω(2i−1), ω(2i)) for i = 1, . . . , 8 are the canonical conjugate
variables and ω = (ω(1), . . . , ω(16)) ∈ R16. Thus the full system is
derived through the relations

dω(2i−1)

dt
=
∂H(ω)
∂ω(2i)

,
dω(2i)

dt
=

∂H(ω)
∂ω(2i−1)

. (20)

n addition to the subscript-(i) used to denote the ith component
f ω ∈ R16, we will use the notation ωj to denote the jth
ample of Ω with sampling measure dµ

dω ∝ e−H(ω), where ωj =

ωj,(1), . . . , ωj,(16)). We should point out that this example is a
high-dimensional version of the main example in [7].

Suppose we are interested in the conditional expectation
E[ω(1)(t), ω(2)(t) | ω(1)(0), ω(2)(0)], where the expectation is
rawn from the canonical invariant density µ corresponding to
with fixed ω(1)(0) and ω(2)(0). We can view the problem of

stimating the conditional density in the regression framework
s follows. Let us define the covariate map X : Ω → X by
(ω(0)) = (ω(1)(0), ω(2)(0)) := x0 ∈ X and the response variable
t (ω) = X(ω(i∆t)) = (ω(1)(i∆t), ω(2)(i∆t)), where ∆t > 0 is a
ixed time step.

In this example, we will consider estimates based on the
yström method with L = 100 and the kernel smoothing esti-
ator. For this application, let x⃗0 = (x0,1, . . . , x0,N ) and x⃗out0 =

xout0,1, . . . , x
out
0,Nout

) be two vectors that will be used for training
nd verification, respectively. Each component of these vectors
s an i.i.d sample of X0, that is, x0,j = X0(ωj), where ωj is drawn
ndependently from µ. Let x⃗t := (xt,1, . . . , xt,N ) be a vector of the
raining time series with components given by xt,j = U t

◦ X0(ωj).
In the following numerical experiments, the time series {xt,1,

. . , xt,N}t=0,1,... was observed at the sampling interval ∆t = .1
ime units, and the initial conditions {x0,1, . . . , x0,N} are samples
f the invariant density ν = X∗µ. We verify the quality of the
stimators on N = 1000 out-of-sample initial conditions, also
out
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Fig. 1. Hamiltonian Example: (a) Comparison of the kernel smoothing estimate (Smoothing), the Nyström method estimate, and the MC empirical estimate (which
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ampled from ν. To verify the performance of the two estimators,
e compare them to the empirical conditional expectation ob-
ained from a Monte-Carlo simulation. This calculation requires
amples of the conditional distribution of (ω(3)(0), . . . , ω(16)(0))
given each out-of-sample initial condition, (ω(1)(0), ω(2)(0)) = x0,j,
where j = 1, . . . ,Nout . Numerically, we obtain these samples,
denoted by (ω(k)

(3),j(0), . . . , ω
(k)
(16),j(0)), using the Hamiltonian Monte

Carlo method [43] on the reduced Hamiltonian in (19) with fixed
ω(1)(0), ω(2)(0)) = x0,j. Concatenating these samples and the
ixed x0,j, we define ω(k)

j = (x0,j, ω
(k)
(3),j(0), . . . , ω

(k)
(16),j(0)), for j =

, . . . ,Nout , k = 1, . . . ,NMC . In the numerical result below, we
se NMC = 20,000 samples for each initial condition x0,j. Given
hese samples, the Monte-Carlo approximation of E[Xt | ·] is
iven by

[Xt | x0,j] ≈
1

NMC

NMC∑
k=1

U t
◦ X(ω(k)

j ) =
1
N

NMC∑
k=1

X ◦Φ t (ω(k)
j ), (21)

where each realization Φ t (ω(k)
j ) is the solution of the full dy-

namics with solution map denoted by Φ . Note that the solution
map of (19) is the result of a temporal discretization of the
Hamiltonian dynamics in (20); in our numerics, we use the
Runge–Kutta-4 (RK4) method.

In Fig. 1, we show a comparison of the Nyström method and
the kernel smoothing estimate of the conditional expectation,
constructed using N = 20,000 training samples and the empir-
ical Monte-Carlo estimate in (21) for a particular out-of-sample
data (which is considered as the truth). Notice that the Nyström
method is significantly more accurate than the kernel smooth-
ing estimate. In Fig. 1(b), we also show the Root-Mean-Square-
Errors (RMSEs) between the two estimators and the empirical
Monte-Carlo estimate of the conditional expectation, averaged
over Nout = 1000 out-of-sample initial conditions for training
data sizes, N = 10,000 and 20,000. Besides the clear advantage
of the Nyström method over kernel smoothing, notice that both
estimators are improved as the size of training data, N , increases.

Although the Nyström method performs better than the ker-
nel smoothing estimate, the former is computationally more
expensive. For both methods we construct GN,ϵ using the steps
in (11). To alleviate memory and computation costs associated
with full N × N kernel matrices for N ≫ 1, in practice a
k-nearest neighbor algorithm is employed so the resulting ma-
trix GN,ϵ is sparse with approximately k nonzero entries on
each row. To predict on a new data point using the kernel
 t

8

smoothing method, one only needs to extend GN,ϵ to the new
point and multiply the extended row vector by the column of the
response training data. On the other hand, the Nyström method
requires the eigenvectors of the matrix GN,ϵ and then employs the
Nyström extension method to approximate the eigenfunctions
evaluated on the new out of sample data points. Thus, after
constructing GN,ϵ , the computational cost of the kernel smoothing
method is O(k) where k is the number of nearest neighbors em-
ployed, while the cost for the Nyström method is O(kL)+O(E.D.),
where L is the number of eigenfunctions used and O(E.D.) is the
cost of acquiring the L eigenvectors.

The Lorenz-96 model: Next, we consider the Lorenz-96 model
[44] given by

dω(i)

dt
= (ω(i+1) − ω(i−2))ω(i−1) − ω(i) + F (22)

for i = 1, . . . , 5, forcing parameter F = 8 and, with periodic
oundary condition, ω(−1) = ω(4), ω(0) = ω(5), and ω(6) = ω(1).
n this regime, the dynamics is chaotic with attractor dimension
.9 and two positive Lyapunov exponents as reported in [45].
e estimate the conditional expectation E[Xt | X0], where the

ovariate function is X(ω) = ω(1)(0), the response function is
t (ω) = X(Φ t (ω)) = ω(1)(t), and the initial conditions are
rawn from the standard Gaussian distribution. Note that this
istribution is not invariant under the dynamics of the system.
ere Φ is given by the RK4 discretization of (22) with time step
/64.
Numerically, we generate N = 20,000 and Nout = 1000 initial

onditions for training and verification, respectively, from the
tandard five-dimensional multivariate Gaussian and integrate
he training data forward 2.5 time units to generate training time
eries observations. Subsequently, we used only the first compo-
ent, ω(1), of the initial conditions and the training time series
o construct, both, the Nyström and kernel smoothing estimates
f the conditional expectation. For the Nyström method, we use
= 300 eigenfunctions. Both estimators are compared to an em-
irical estimator which is obtained by averaging (21) over ω(k)

j =

x0,j, ω
(k)
(2),j(0), . . . , ω

(k)
(5),j(0)), for j = 1, . . . ,Nout , k = 1, . . . ,NMC =

0,000 samples of initial conditions. Here, the first component of
ach initial condition, x0,j = X(ω(k)

j ), is one of the Nout = 1000
erification samples and the other components are drawn from
he four-dimensional standard Gaussian. In Fig. 2(a), we show
he evolution of one of the 1000 verification samples. Comparing
he three estimates, notice the closer agreement between the
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Fig. 2. The Lorenz-96 example: (a) Comparison of the kernel smoothing estimate (Smoothing) and the Nyström method of the conditional expectation of the first
component of a particular out-of-sample trajectory, trained using N = 20,000 training data. (b) The RMSEs (based on Nout = 2000) of both estimators as functions
f lead time forecast, constructed using N = 20,000 data points.
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yström and the empirical estimates. In Fig. 2(b) one can see
hat the RMSE (based on averaging over Nout = 1000 out-of-
ample points) of the Nyström-based estimate is more accurate
han the kernel smoothing estimate. This result is consistent with
he previous example.

Next, we will show that the full MZ equation (16) can be
constructed by an optimal least squares estimator of a regression
framework with appropriate choice of covariate space.

3.3. Mori–Zwanzig projection and delay-coordinate maps

In the preceding subsection, we considered estimating the
conditional expectation E[Xt | X0] and showed that it can be
numerically approximated using the time series data. In this
subsection, we are interested in predicting the realization of xt
in (17). While the MZ representation suggests that the solution
depends on the entire historical data, for practical computa-
tion, finite-memory models to collectively represent these terms
as a finitely supported function is desirable. Since the memory
terms depend on the orthogonal dynamics (see Eq. (16)), such
an approximation can be achieved, e.g., by delta function ap-
proximation [15], Krylov subspace approximation [16], rational
approximation [19], or a series representation of the orthogonal
dynamics [17,18]. Note that while a finite-dimensional (matrix)
representation is the computational object of interest, a series
representation may not converge since it involves expansion of
semigroups generated by unbounded operators.

On the other hand, we should point out that depending on the
choice of the projection operator P , the explicit representation of
he terms in the MZ equation, (Mj)t−1

j=0 as well as the orthogonal
ynamicsΞt , may or may not be easily translated into an efficient
lgorithm that yields a consistent approximation. As we showed
n the preceding subsection, choosing P = E[·|X] as an estimator
ill not yield an accurate approximation to xt since this estimator
runcates the orthogonal dynamics. Other common choice of pro-
ection operators can be found in [7,39]. For example, while the
opular Mori projection, defined as P = ⟨X, X⟩

−1
H ⟨·, X⟩HX , yields

linear model for (Mj)t−1
j=0 , the representation of the orthogonal

ynamics in such a basis expansion may not be computationally
ractable [10].

Recently, it was shown in [42] that by choosing P to be the
iener projection, one can simplify the MZ equation so that
nly the Markovian term M0 and orthogonal terms Ξt remain,
here M0 is now a function that takes a delay coordinate of the
bservable. Building on this result, our intuition is to construct a
on-decreasing sequence of projection operators {Pm : m ∈ N}

hich allows one to access the entire function space H with a
9

finite m and a simple representation of the MZ equation. In what
follows, we argue that delay-embedding theorem [6] provides a
natural candidate for achieving this goal.

To that end, we define the delay coordinate map Xm : Ω →
m by Xm(ω) = (X−m+1(ω), . . . , X−1(ω), X0(ω)), Xi = U i

◦X , which
we will consider as the covariate function. Simultaneously, we
consider the response function Xt : Ω → X , where X is the
response space as in the preceding sections. Note that the optimal
estimator for the map Xm ↦→ Xt is given by the conditional
expectation PmXt := E[Xt | Xm]. Under mild assumptions on
the covariate X , the dynamical flow Φ , and the sampling interval
∆t , the theory of delay-coordinate maps [6,40] states that Xm
is a homeomorphism between the support, M , of the invariant
measure and Xm for sufficiently large m. Consequently, the Borel
sigma algebra on M is identical to the sigma algebra generated
by Xm, σ (Xm). Thus, Xt is measurable with respect to the sigma
lgebra generated by Xm, which means that PmXt := E[Xt | Xm] =

t is the identity map for sufficiently large m.
Let m be such that the embedding result stated above holds.

hen, letting P = Pm in (16), the memory and the orthogonal
erms vanish since they involve QmUX = (I−Pm)UX = 0. While Pm
s an identity operator, the MZ equation reduces to a contribution
f a Markovian term,

i+1 = (PmUX ◦Φ i)(ω0) = E[UX |Xm(ωi)] = M0(xi−m, . . . , xi),

or some M0 ∈ Vm := {f : Xm
→ X : f ◦ Xm ∈ H}. If we define

he flow map T on Xm induced by Φ as T ◦Xm(ωi) := Xm ◦Φ(ωi),
then M0 is the mth component of the flow map T , which is also
the regression function of the supervised learning task Xm ↦→ Xt .

In light of this connection, we will employ the nonparametric
stimators discussed in Section 2 to approximate the regres-

sion function M0 and numerically show that true trajectory of
the observables can be recovered with adequate accuracy for
sufficiently large m.

Hamiltonian system: As an example, consider again the
Hamiltonian system in (19)–(20). Here, we are interested in
approximating E[ω(1)(t) | ω(1)(−m+ 1), . . . , ω(1)(−1), ω(1)(0)] for

∈ Z+. Letting the response function be Xt (ω) = ω(1)(t) = xt
nd the covariate function be Xm := (X−m+1, X−1, X0), we can
ewrite the conditional expectation of interest as, E[Xt |Xm(ω)].
s before, we approximate this conditional expectation using
he Nyström method with L = 300 eigenfunctions and the
ernel smoothing estimator. The training data was generated by
volving N = 20,000 initial conditions {ω

(k)
0 }k=1,...,N , drawn from

he invariant measure µ, for m units in time, using RK4 with the
ame specification as in the previous example. Fig. 3(a) shows a
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Fig. 3. Hamiltonian Example: (a) The trajectory of the first component, ω(1)(t) for a particular out-of-sample initial condition along with the kernel smoothing
estimates using m = 4, 12, and 48 past observations. (b) The RMSE between the true trajectory and the kernel smoothing estimates of the conditional expectation,
calculated over 10,000 out-of-sample points. (c) A comparison of the kernel smoothing estimate and the Nyström estimate of the trajectory using m = 48 past data
points. (d) The RMSEs of the Nyström and the kernel smoothing estimates of the trajectory for m = 4, 12, 32, and 48. Note that the RMSE plots show the RMSE for
he lead time and omits the respective training windows for each m.
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articular out-of-sample trajectory along with the kernel smooth-
ng estimates of the trajectory for various choices of m. Notice
hat as m increases, the kernel smoothing estimator E[Xt |Xm]

pproaches the true trajectory. In Fig. 3(b), we show the RMSE,
veraged over Nout = 10 000 out-of-sample verification points.
otice that the RMSEs are smaller as m increases except at
nitial time. The worse performance at initial time is not so
urprising since the kernel smoothing is not an interpolation
ethod, and thus will not be consistent with the given initial
onditions. In panel (c), we show the quality of the prediction
or m = 48 for a particular trajectory. Notice that while the
rajectory is well estimated by both methods up to about 6 time
nits, the kernel smoothing method is more accurate compared
o the Nyström method. The improved prediction of the kernel
moothing method compared to the Nyström method at longer
imes is consistent for different length of memory, m, as shown
y the RMSE metric in panel (d), computed over Nout = 10,000
ut-of-sample verification points.

he Lorenz-96 model: In this example, we consider predicting
he first component ω(1)(t) of the five-dimensional Lorenz-96
odel given by (22), again with F = 8. As in the previous
xample, we will compare the Nyström method with L = 300
igenfunctions and the kernel smoothing method in approximat-
ng E[Xt |Xm(ω)], where Xt (ω) = ω(1)(t). In this example, the
elay-embedded data, Xm(ω), are sampled from the invariant dis-
ribution of the system by running initial conditions sufficiently
orward in time. In particular, we take N = 20,000 samples
rom the invariant distribution and construct the conditional
xpectation using observations of the first component of the
10
samples. Here, the time series U t
◦X(ω1) used for constructing the

stimator were observed at time steps of ∆t = 1/64. In Fig. 4(a),
we show a prediction of a particular out-of-sample realization of
ω(1)(t). Notice, as with the previous example, that the quality of
the kernel smoothing estimator increases with m, except at the
initial time as seen in Fig. 4(b). The RMSE in 4(b) was calculated
over Nout = 10,000 out-of-sample initial conditions, also sampled
from the invariant measure. As one can see, the kernel smoothing
estimator is consistently more accurate than the Nyström method
for similar m.

In principle, we should point out that the Nyström method can
be improved with a larger number of eigenfunctions L. However,
there is a practical issue in realizing improved accuracies. In our
numerical tests, we do not find any meaningful improvement
using any larger L compared to the present results with L = 300.
We suspect that as the covariate space dimension increases (here,
controlled by the number of delays m), the Nyström method
requires an increasingly higher number of eigenfunctions L to
econstruct the response at a given level of accuracy, and for
he available number of training samples N , these eigenfunctions
cannot be accurately estimated. Thus, unless a mechanism is in
place to ensure that the response is well approximated by the
leading kernel eigenfunctions, or the eigenfunctions correspond-
ing to large L can be robustly estimated with modest amounts
f data (both of which are highly nontrivial problems), there
ay be practical limitations to improving the performance of

he Nyström method simply by increasing the number of eigen-
unctions employed. From these numerical results, we conclude
hat the kernel smoothing method (which requires much less
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omputational effort) is an effective alternative when an accurate
stimation of the eigenfunctions is not available.

. Smoothing and predicting with noisy data

To apply the prediction framework discussed in preceding
ection to real applications, one has to take into account that the
vailable data set is most likely corrupted by noise. To overcome
his issue, we design a nonparametric state estimation method,
hich we will call a smoother, to denoise the data. We should
oint out that we adopted the terminology smoother since the
bject of interest is the conditional expectation of the classical
ayesian smoothing problem [46], which is different than the
ernel smoothing method described in Section 2. In Section 4.1,

we describe a nonparametric smoother, formulated using the
nonparametric regression framework discussed in Section 2. Sub-
sequently, in Section 4.2, we numerically verify the prediction
skill of the framework in Section 2 where the estimator is trained
using the smoothed data obtained from the method in Section 4.1.

4.1. A nonparametric smoother

We consider smoothing noisy time series observations of the
form

zt = xt + θt , t = 1, . . . ,N,

where θt := Θt (α) are realizations of a centered random variable
Θt : A → X that is independent of xt . As in Section 3, xt = Xt (ω)
where Xt : Ω → X , Ω ⊂ Rn, X = Rp and p ≤ n. The goal here is
to construct the smoother E[Xk | z1, . . . , zm], where 0 ≤ k ≤ m−

1, and use it as an estimator for xk. In this application, we assume
that the full vector ω0 of initial conditions is drawn from an in-
variant density. To pose this smoothing problem in the regression
framework presented in Section 2, we take the covariate space
Zm = (Rp)m to be the range of the covariate mapping Zm : A ×

Ω → Zm given by Zm(α, ω) := {Z1(α, ω), Z2(α, ω), . . . , Zm(α, ω)},
where Zk(α, ω) = Xk(ω) +Θk(α). We also let the response space
Xk to be the range of Xk = Rp. Then the least squares estimator is
given by E[Xk | Zm]. If the distribution of xk is invariant, then the
covariate space Zm and the response space Xk do not depend on
time so the optimal estimator can be trained once using training
data drawn from the invariant density.

In general, the noise-free time series xt is not available for
training. Given this constraint, we consider estimating E[Zk | Zm]

instead. Denote the available noisy data by z⃗ = {z1, . . . , zN} and
let x⃗ = {x1, . . . , xN}, and θ⃗ = {θ1, . . . , θN} be the uncorrupted
data, and the noise, respectively. We employ the VBDM algorithm
to obtain the basis functions ûj,N (zi+1, . . . , zi+m) = φ̂j,N (αi, ωi), for
i = 1, . . . ,N and then represent E[Zk | Zm] as a superposition of
these basis functions. We motivate the construction of this con-
ditional expectation by noting that the diffusion maps algorithm
is robust to low noise perturbations (see Criterion 5 of [31]);
more specifically, the error in the spectrum of the graph Laplacian
can be controlled as long as the size of perturbation |θt | <

√
ϵ.

ssuming that this argument holds for the estimation of the
igenvectors, we can reasonably expect that ûj,N (zi+1, . . . , zi+m) =

φ̂j,N (αi, ωi) ≈ φj,N (ωi) = uj,N (xi+1, . . . , xi+m) when the noise size
is smaller than

√
ϵ.

For a particular class of dynamical systems, the noise ro-
bustness of the graph-theoretic techniques can be considerably
strengthened by performing delays. In [47], it was shown that
if the Koopman operator of the dynamical system on Ω has
a pure point spectrum, and the noise is i.i.d. with finite first
four moments, the pointwise estimator for the graph Laplacian
determined from the noisy data can be made to agree with the
noise-free estimator at any desired tolerance by increasing the
 t

11
embedding window length m. Here, we do not assume that the
dynamics has pure point spectrum, so the estimates in [47] do
not necessarily apply, but we can heuristically deduce that,

⟨z⃗, φ̂j,N⟩L2(µ̂N ) :=
1
N

N∑
i=1

ziûj,N (zi+1, . . . , zi+m)

≈
1
N

N∑
i=1

ziuj,N (xi+1, . . . , xi+m)

=
1
N

N∑
i=1

xiuj,N (xi+1, . . . , xi+m)

+
1
N

N∑
i=1

θiuj,N (xi+1, . . . , xi+m)

= ⟨x⃗, φj,N⟩L2(µN ),

due to the fact that θi is independent of xi. Here, µ̂N =∑N
i=1 δαi,ωi/N is the discrete sampling measure on noisy data,

whereas µN is the discrete sampling measure on uncorrupted
data. This suggests that we can approximate the smoother EL,N
[Xk | Zm] as,

EL,N [Xk | Zm] :=

L∑
j=0

⟨x⃗, φj,N⟩L2(µN )φj,N ≈

L∑
j=0

⟨z⃗, φ̂j,N⟩L2(µ̂N )φj,N

= EL,N [Zk | Zm].

Here, the approximation is due to the fact that the construction
of the estimator is based solely on the noisy data. A more detailed
error analysis is an open problem that is beyond the scope of
this paper. Note that the kernel smoothing estimator discussed
in Section 2.2 does not possess the robustness-to-noise property
hat the VBDM basis does and furthermore the kernel smoothing
stimate of zk is not an approximation of the kernel smoothing
stimate trained using xk. Thus, an application of the kernel
moothing estimator discussed in Section 2.2 trained solely on
oisy data would not yield a good approximation to the desired
moother, E[Xk | Zm].
In the remainder of this subsection, we will demonstrate the

ffectiveness of this smoother in recovering xk from an out-
f-sample sequence (z1, . . . , zm) of noisy observations. We will
how numerically that choosing m > 1 reduces the RMSE when
stimating xk. We will also demonstrate the sensitivity of the
MSE as the parameter k is varied. To verify the accuracy of the
roposed smoother, we compare the RMSE of this method to the
MSEs of the Ensemble Kalman Filter [29] and 4D-Var [30], both
f which are very popular data assimilation methods that are
perationally used in weather forecasting.

moothing noisy observations of the Lorenz-63 system: Con-
ider the Lorenz-63 system given by

dω(1)

dt
= σ (ω(2) − ω(1))

dω(2)

dt
= ω(1)(ρ − ω(3)) − ω(1) (23)

dω(3)

dt
= ω(1)ω(2) − βω(3)

with the standard parameters σ = 10, ρ = 28 and β = 8/3
hat give rise to the famous ‘‘butterfly’’-like attractor [48]. In this
xample, we are interested in estimating ω(1), from observations

of the form Zt (ω(0)) = ω(1)(t)+θt , and we will use the VBDM algo-
ithm to construct the smoother EL,N [Zk | Zm]. Practically, given
n out-of-sample sequence zoutt,m = (zoutt+1, . . . , z

out
t+m) of consecu-

ive noisy observations, we use the Nyström method to evaluate
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Fig. 4. 5D Lorenz-96 example: (a) Predicting a particular out-of-sample trajectory of the 5-d Lorenz-96 system with F = 8 via the kernel smoothing estimate of the
onditional expectation using m = 4, 12, and 48 past observations. The training and testing data were both drawn from the invariant distribution. (b) The empirical
MSE of the kernel smoothing estimates with m past observations, calculated over 10,000 out-of-sample points. (c) The Empirical RMSE of both the Nyström and
he kernel smoothing estimate for m = 4, 12, 32 and 48.
L,N [Xt+k|zoutt,m], where k = 1, . . . ,m and use this as an estimator
or xoutt+k. To smooth a long sequence of noisy observations, we
ndependently apply the constructed conditional expectation on
ach t and the corresponding zoutt,m sequence of the trajectory. In
ll of the following numerical experiments, the training data Zm
s constructed by taking sequential m observations of ω(1)(t) and
dding θt to each of these elements.
In the first experiment, we use N = 12,000 observations of

t with θt ∼ N (0, 4) and construct the conditional expectation
stimators, EL,N [Zk|Zm], with m = 5 and k = 1, . . . , 5 using

L = 120 eigenfunctions. The observation time step for zt is ∆t =

.1. We evaluate this smoothing operator on an out-of-sample
rajectory of length Nout = 10,000, corrupted by four noise types
ith variance approximately 4 : (1) Gaussian noises N (0, 4),
2) Student’s-t noises with 8/3 degrees of freedom, (3) Uniformly
istributed noises over (−

√
48/2,

√
48/2), and (4) Time varying

oises of the type 2 sin(tU), where U is uniformly distributed over
−1/2, 1/2]. In each of the following experiments, the basis is
onstructed using data corrupted by N (0, 4) noise. This choice of
standard deviation, 2, is roughly 25% of the climatological stan-
dard deviation, 7.9246. Table 1 shows the RMSEs of the smoothers
E[Zk|Z5] when the observed component is corrupted byN (0, 4)
noise for 1 ≤ k ≤ 5. From Table 1, one can see that the smallest
error is obtained for k = 2. Table 2 shows the RMSEs of the
smoother E[Z2 | Z5] in the cases when the observed component
is corrupted by the four noise types mentioned previously. In
Fig. 5, we show the smoothed trajectories compared to the truth
and noisy observations. We should point out that the k = 2
smoother forces us to discard the first and the last Nout − (m− 2)
observations in the trajectory. Note that the RMSEs shown in each
of these tables are the errors in recovering ω(1), computed by
averaging the errors of time indices k to Nout − (m − k).

As seen in Table 2, the smoother, EL,N [Z2|Z5] performs bet-
ter than an ensemble Kalman filter with 64 ensemble mem-
bers constrained to observing the same one-dimensional noisy
component ω(1) used for training the smoother (denoted by
1 observation in the table). We also found that the proposed
smoother is more accurate than 4D-Var constrained to using
only one observation (ω(1) only) or two observations (both ω(1)(t)
and ω(2)(t)). In this table, for diagnostic purpose, we also report
the RMSEs of EnKF and 4D-Var when noisy observations of all
three components are available. One can see that, in this case,
4D-Var is superior; however, when only one component is ob-
served, the proposed smoother (which requires no knowledge of
the dynamics) is more accurate than both EnKF and 4D-Var. We
12
Table 1
RMSEs of the smoother for the ω(1) component of the Lorenz-63 subjected to
i.i.d N (0, 4) noise. The smoother EL,N [Zk|Zm] was constructed using N = 12,000
training data points, consisting of m = 5 sequential observations and L = 120
eigenfunctions. Each RMSE is averaged over out-of-sample data points with
indices k to Nout−(m−k) , where Nout = 10,000 data points.

k 1 2 3 4 5

RMSE 1.3591 1.0663 1.1243 1.2394 1.4928

Table 2
RMSEs of the smoother for the ω(1) component of the Lorenz-63 model subjected
to: (1) Gaussian noises N (0, 4), (2) Student’s-t noises with 8/3 degrees of
freedom, (3) Uniformly distributed noises over (−

√
48/2,

√
48/2), and (4) Time

varying noise of the type 2 sin(tU), where U is uniformly distributed over
[−1/2, 1/2]. The smoothing operator was constructed, as in Table 1, by using
N = 12,000 training data points consisting of m = 5 sequential observations,
corrupted by Gaussian noise and L = 120 eigenfunctions. The RMSEs were also
calculated the same way as in Table 1. The same underlying trajectory was used
for all of the RMSE calculations. The last six rows report benchmark results
of applying the EnKF with 64 ensemble members and 4D-Var with m = 5,
observing one to three noisy components, respectively.

Gaussian Student’s-t Uniform Time varying

Smoother m = 5, k = 2 1.0663 1.1339 1.1406 1.1455
EnKF (1 obs) 1.3439 1.6589 1.4055 1.3704
EnKF(2 obs) .7435 0.7871 .7282 .7538
EnKF(3 obs) .6343 .7806 .6242 .6674
4D-VAR (1 obs) 2.0935 2.2131 2.3187 2.3145
4D-VAR (2 obs) 1.4971 1.4099 1.6088 1.7032
4D-VAR (3 obs) .5436 .6437 .5198 .7785

should point out that in these numerical experiments the 4D-Var
is implemented with m = 5 so that the configuration is similar
to that of the non-parametric smoother.

Finally, we note here that if we instead use the kernel smooth-
ing estimator described in Section 2.2 to approximate the
smoother E[Zk | Zm], we find that the RMSE of smoothing the
same observations with Gaussian noise (as in Table 2) is 1.5605.
Therefore, while the smoothed time series are less noisy than the
observed data, the kernel smoothing based smoother performs
worse than the EnKF with only 1 observation.

Smoothing noisy observations of the Lorenz-96 system: We
consider the proposed smoother for k = 2 to estimate the first
component ω(1)(t) of the 40-dimensional Lorenz-96 system (22)
with F = 8. In this numerical experiment, the training data
consist of observations of ω(1)(t) perturbed by Gaussian noise,
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Fig. 5. Smoothed trajectories of ω(1) , compared to the truth and noisy observations. Here, the same smoother, constructed using data corrupted by Gaussian noise
(0, 4), was used to recover out-of-sample data corrupted by: (a) Gaussian noises N (0, 4); (b) Student’s-t noises with 8/3 degrees of freedom; (c) Uniformly
istributed noises over (−

√
48/2,

√
48/2); and (d) Time varying noises of the type 2 sin(tU), where U is uniformly distributed over [−1/2, 1/2]. See Tables 1 and 2

or the RMSEs.
T
R
s
o
f
o
e
o
t
n

(0, 1) but, as in Lorenz-63 example, we apply the filter to out-
f-sample trajectories with various noise types with variance
lose to 1. This choice of noise standard deviation, 1, is roughly
5% of the climatological standard deviation, 3.5868.
For brevity, we only report the results for m = 6, k = 3, L =

00, and N = 12,000 training data, which we verified on three
ut-of-sample trajectories, each of length Nout = 10,000 sequen-
ial observations. These three trajectories were respectively gen-
rated by perturbing a single out-of-sample trajectory of length
out with N (0, 1) noise, Student’s-t noise with 10 degrees of
reedom, and noise drawn uniformly from [−1.8, 1.8]. The train-
ng and testing time series were generated using RK4 with an
bservation time step of 0.05. See Table 3 for the RMSEs as well
s benchmark results of applying EnKF and 4D-VAR in the same
oise regimes. Note that the proposed smoother, EL,N [Z3 | Z6],
erforms better than both EnKF and 4D-Var even when the these
wo schemes were allowed to observe 30 noisy components.

Finally, we consider a more chaotic regime with F = 16. We
onstruct an estimator to smooth observations of ω1(t) corrupted
ith Gaussian noise, N (0, 1). The smoother is trained with pa-
ameters L = 300,N = 20,000 and m = 6 using a set of training
ata corrupted by Gaussian noise, N (0, 1). The RMSE is computed
ver Nout = 10,000 verification data which was generated by
erturbing the true ω(1) component of a trajectory by Gaussian
oise, N (0, 1).
In Table 4, we report the RMSEs of the smoothing estimates

sing various choices of 1 ≤ k ≤ 6. Fig. 6 shows the results of
he smoother with k = 3. As a benchmark, we report the results
13
able 3
MSEs of the smoother for the ω(1) component of the Lorenz-96, with F = 8,
ubjected to: (1) Gaussian noise N (0, 1); (2) Student’s-t noise with 10 degrees
f freedom; (3) uniform noise drawn from [−1.8, 1.8]. The smoothing operator
or k = 3 was constructed using N = 12,000 training data points consisting
f m = 6 sequential observations constructed by Gaussian noise and L = 200
igenfunctions. The RMSEs are calculated using the same underlying trajectory
f length Nout = 10,000. The last six rows report benchmark results of applying
he EnKF with 64 ensemble members and 4D-Var with m = 6, observing 10−40
oisy components, respectively.

Gaussian Student’s-t Uniform

Smoother m = 6, k = 3 .5958 .6100 .5968
EnKF (10 obs) .7234 0.7387 .7151
EnKF (30 obs) .6229 .6785 .6416
EnKF (40 obs) .2492 .2428 .2211
4D-VAR (10 obs) 2.4722 2.5051 2.4691
4D-VAR (30 obs) 2.0373 2.0764 2.0141
4D-VAR (40 obs) .2933 .2983 .2822

of applying EnKF with 64 ensemble members and 4D-Var with
m = 6, observing 10, 30 and 40 components of the system in
Table 5. Note that the estimator, which is solely constructed using
noisy data ω(1), with k = 3 performs better than both the EnKF
and 4D-Var estimates observing 30 noisy components.

4.2. Prediction with smoothed training data

In the preceding subsection, we introduced a smoother for
denoising an out-of-sample sequence of noisy observations. In
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able 4
MSEs for smoothing the ω(1) component of Lorenz-96 with F = 16 subject to
.i.d N (0, 1) noise. The smoother is constructed using L = 300 eigenfunctions,
stimated from N = 20,000 training data points consisting of m = 6 sequential
bservations. The RMSEs are calculated over a noisy trajectory consisting of
0,000 data points. The same out-of-sample trajectory was used for each of
he RMSE calculations.
k 1 2 3 4 5 6

RMSE .8768 .6688 .6543 .7321 .7946 .8935

Table 5
RMSEs for smoothing ω(1) component of Lorenz-96 with F = 16 subject to i.i.d

(0, 1) noise. The configuration here is similar to that in Table 4.
No. Observation 10 30 40

EnKF .90558 .8802 .35061
4D-Var m = 6 4.1632 4.052 .36414

this subsection, we first denoise the noisy time series data using
the smoother and then use the smoothed data as a surrogate
for the true data to construct a kernel smoothing estimator as
discussed in Section 2.2. In the following numerical result, we
erify the prediction skill of employing these two steps given
oisy time series observations of the five-dimensional Lorenz-96
xample from Section 3.3 and compare it with the true prediction

model.
The training data consists of N = 20,000 sequences, each

consisting of sequential observations of the ω(1) component of the
5D Lorenz-96 model observed at time steps of ∆t = 1/64. How-
ever, unlike the example in Section 3.3, these observations are
generated by perturbing the true ω(1)(t) component by N (0, 1)
noise. We also generate an additional Nout = 10,000 sequences
as above for verification. We denoise both the noisy training and
verification data using the smoother EL,N [Zk|Zms ] with k = 3,
ms = 6 and L = 120. Here, we defined ms in place of m to
avoid the conflict of notation in the later discussion which refers
to m as the memory length in the kernel smoothing estimates.
The smoothed training data is then used to construct the kernel
smoothing estimator described in Section 2.2. Subsequently, the
kernel smoothing estimator is evaluated at each of the smoothed
verification data. We should point out that while each smoothed
verification data point required ms − k = 3 future observations,
the numerical experiments below, which evaluate the prediction
skill beyond 3∆t = 3/64 time units, are still valid prediction
tests.

In Fig. 7(a), we show the kernel smoothing estimates for dif-
ferent memory length, m, and the true trajectory, all starting from
a particular out-of-sample initial condition. While the prediction
is less accurate than the one obtained from the kernel smoothing
estimator constructed using noise-free data (see panel (c) form =

48), one can still see that the prediction is somewhat improved
as the memory length m is increased. This is also confirmed by
the RMSEs plot in panel (b). In panel (d), we overlay the RMSEs
in panel (b) with those corresponding to the prediction model
constructed from the noise-free data (as in Fig. 4). While the
model constructed from the noise-free data is more accurate, the
discrepancy between the noise-free model and the noisy model
decreases as m increases.

5. Summary

In this paper, we have studied aspects of forecasting and de-
noising of non-Markovian time series generated by partially ob-
served dynamical systems. Within the context of kernel methods,
where there is a mature theory on the consistency of empirical
14
Fig. 6. Smoothed trajectories of ω(1) compared to the truth and noisy observa-
tions. The smoother is constructed as described in Table 4 for m = 6, k = 3.
The RMSE is .6543.

estimators, we have explored two distinct approaches, namely
projection-based methods using the Nyström out-of-sample ex-
tension approach and smoothing methods using Markov integral
operators. We refer collectively to these approaches as kernel
analog forecasting (KAF) [21], since in many ways they can be
viewed as kernel-based generalizations of the classical analog
forecasting approach proposed by Lorenz in 1969 [25].

Previously, the consistency of KAF in the large-data limit
was studied from the perspective of the Nyström approach [27],
where it was shown that, under suitable ergodicity assumptions,
the KAF estimator approximates the conditional expectation of
observables of partially observed systems acted upon by the
Koopman operator, thus yielding statistically optimal forecasts
in the L2 (root mean square error) sense. Here, we have shown
that an analogous consistency property also holds if KAF is im-
plemented using a one-parameter family of Markovian kernels
in a limit of vanishing kernel bandwidth. The advantages of this
smoothing approach over the Nyström estimator are that it is
positivity-preserving, and avoids the need for a kernel eigen-
decomposition. The latter carries the risk that the number of
eigenfunctions needed to approximate the conditional expecta-
tion is larger than what can be feasibly computed, both in terms
of computational cost and statistical robustness. This practical
limitation of the Nyström method is particularly prone to oc-
cur when the covariate space is high-dimensional, as we have
demonstrated with numerical experiments involving a Hamilto-
nian system and the L96 system. In problems were the regression
function for the response (predictand) projects well onto the
leading kernel eigenfunctions, the Nyström method is still the
method of choice, however.

Next, we studied the connection between KAF and the Mori–
Zwanzig (MZ) framework for reduced dynamical modeling with
memory. In particular, a major challenge in MZ approaches is
to construct appropriate projection operators onto the covari-
ate space (resolved dynamics), simplifying the structure of the
memory kernel and rendering it amenable to approximation. We
have argued that kernel methods provide a natural way of con-
structing improved projections by embedding the covariate data
into a higher-dimensional space using delay-coordinate maps.
This leads to a family of projections whose ranges are nested
subspaces of the L2 space associated with the invariant measure,
increasing with the number of delays, and recovering the whole
of L2 using finitely-many delays. Correspondingly, the MZ equa-
tion in this limit involves only a Markovian term, which was
estimated here nonparametrically.
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Fig. 7. Result of applying the kernel smoothing estimate on noisy observations of the first component of the 5D Lorenz-96 model with F = 8. The observations
ere first denoised using the nonparametric smoother and subsequently used for training the kernel smoothing estimator discussed in Section 2.2. (a) Trajectory
f a particular out-of-sample prediction using the smoothed data for various memory lengths; (b) The corresponding RMSEs as functions of lead time for the
ernel smoothing estimator constructed using smoothed observations; (c) A comparison of the predicted trajectory against that constructed from the corresponding
oise-free data set for m = 48; (d) The RMSEs in panel (b) overlaid with the corresponding RMSEs obtained from noise-free data experiment (exactly the RMSEs in
ig. 4(b)).
Our third topic of study was smoothing and predicting with
oisy data. We proposed a scheme whereby delay-coordinate
aps are used to obtain high-quality kernel eigenfunctions from
oisy data, which are then used for denoising via subspace pro-
ection. Using again the L96 model as a testbed, we demonstrated
hat this nonparametric denoising scheme oftentimes outper-
orms classical state-estimation methods such as the ensemble
alman filter and the 4D-VAR approach. Once denoised, the data
an be used to train skillful forecast models via the Nyström or
moothing formulations of KAF.
Possible directions for future research include data-informed

ethods for kernel design that bias the leading eigenspaces of
he corresponding integral operators such that they capture the
esponse variable with minimal loss, thus improving the perfor-
ance of Nyström-based forecasting in high-dimensional covari-
te spaces. In addition, the efficacy of delay-coordinate maps in
mproving prediction skill of non-Markovian time series moti-
ates the development of non-parametric kernel-based method-
logies to estimate individual terms in the MZ equation.
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