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A nonparametric method to predict non-Markovian time series of partially observed dynamics is
developed. The prediction problem we consider is a supervised learning task of finding a regression
function that takes a delay-embedded observable to the observable at a future time. When delay-
embedding theory is applicable, the proposed regression function is a consistent estimator of the
flow map induced by the delay-embedding. Furthermore, the corresponding Mori-Zwanzig equation
governing the evolution of the observable simplifies to only a Markovian term, represented by the
regression function. We realize this supervised learning task with a class of kernel-based linear
estimators, the kernel analog forecast (KAF), which are consistent in the limit of large data. In a scenario
with a high-dimensional covariate space, we employ a Markovian kernel smoothing method which is
computationally cheaper than the Nystrom projection method for realizing KAF. In addition to the
guaranteed theoretical convergence, we numerically demonstrate the effectiveness of this approach
on higher-dimensional problems where the relevant kernel features are difficult to capture with the
Nystrom method. Given noisy training data, we propose a nonparametric smoother as a de-noising
method. Numerically, we show that the proposed smoother is more accurate than EnKF and 4Dvar in
de-noising signals corrupted by independent (but not necessarily identically distributed) noise, even
if the smoother is constructed using a data set corrupted by white noise. We show skillful prediction
using the KAF constructed from the denoised data.
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1. Introduction

A long-standing issue in the applications of dynamical systems
is to predict time series of observables given partial observations.
This problem has classically been studied from various angles
under different names in the literature (i.e. reduced-order mod-
eling, closure modeling, subgrid parameterization, etc.), but more
recently it has also been viewed as a machine learning problem.
In particular, at the core of this modeling problem is a supervised
learning task to find a map that takes appropriate covariate data
(an observable in the past and/or present times) to the desired
response function (an observable at the future times). When
the covariate data is a delay-embedded observable, the target
map provides a non-Markovian prediction model. The realizations
of this problem with state-of-art machine learning algorithms
involving deep/recurrent neural networks have reported superb
numerical performances even when the underlying dynamics are
highly nonlinear and high-dimensional [1-4]. In the context of
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partially known dynamics, the recent work in [4] formulated
the target function as a conditional expectation associated with
an appropriate probability space and showed that the corre-
sponding supervised learning framework (which is similar to the
one proposed in [3,5]) produces an approximate closure model
whose solutions converge (strongly) to those of the underlying
dynamics for finite time when both models are initialized with
the same initial conditions. Building on this positive result, one
of the goals of this paper is to understand the regression problem
corresponding to the supervised learning task from the viewpoint
of dynamical systems theory and reduced-order modeling.

Due to the classical theory of dynamical systems, this
modeling framework is closely related to the delay-embedding
theorem [6] which has served as a foundation for attractor re-
construction from time series. We will argue that when the
embedding theorem is satisfied, the regression (or target) func-
tion is theoretically consistent with the component of the flow
induced by the delay-coordinate map. From the reduced-order
modeling viewpoint, the same learning task can be formulated
as a problem of deriving, from first principles, a set of effec-
tive equations that determines the evolution of the observable

(e.g., [7-11]).
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The Mori-Zwanzig (MZ) formalism [12,13] has been proposed
by this community as a natural framework for deriving such a set
of effective equations for forecasting the time series of partially
observed dynamical systems. The appeal of using the MZ formal-
ism is that the resulting system is represented by an equation that
involves projected linear evolution operators. In contrast to geo-
metrical state-space approaches, the operator-theoretic approach
focuses on the induced linear action of dynamical systems on ap-
propriately chosen spaces of observables despite the nonlinearity
of the flow map. In the context of the MZ formalism, this allows
one to compartmentalize the contribution of the observable at
the present time (the Markovian term), the observable in the past
(the memory/non-Markovian term), and the orthogonal dynamics
of the trajectory of the observables at the future times with a
collection of linear operators.

While such a representation is attractive for understanding
the modeling mechanism, it may not be easily translated into
an efficient numerical method. This issue arises due to the fact
that the MZ formula states the dependence of the observable
at the future time on the entire history of observables and the
initial condition. Besides, it is usually difficult to specify the
memory kernel as it requires the solution of the high-dimensional
orthogonal dynamics [7,14]. Ultimately, the desired computa-
tional objective is to have a finite memory approximation. This
issue has given rise to many parametric approximations of the
memory kernel, such as the delta function approximation [15],
Krylov subspace approximation [16], series expansion [17,18],
and rational approximation [19], just to name a few. While these
approaches have shown positive results when addressing spe-
cific applications, they either require the knowledge of the full
model and/or they are subjected to modeling error when the
memory kernel is not adequately represented by the specified
parametric model. We will argue that if the hypotheses of the
delay-embedding theorems are satisfied, the representation of
the MZ equation with the projection operator obtained through
the corresponding regression framework can be simplified to a
computationally tractable model. In particular, the MZ equation
consists of only the “Markovian” term associated with the delay-
embedded sequences, which is exactly the regression function
given by the supervised learning framework. The connection be-
tween supervised learning, delay-embedding theory, and the MZ
formalism suggests that the regression framework is indeed a
natural approach for predicting time series of partially observed
dynamics.

We should point out that this connection partially explains the
empirical successes reported in [1-4] since they all adopted this
regression modeling paradigm. One unexplained component of
these empirical successes is the consistency of their estimators. In
these papers, the authors approximated the target function using
a neural network model (which is in the form of a composition
of activation functions) which depends nonlinearly on possibly
a very large number of parameters (depending on the depth
and width of the neural network architecture). Thus, the training
phase often involves a nonlinear, highly non-convex, optimization
problem, and finding the global optimizer for such a problem
can be a difficult task given that most solvers convergence is
guaranteed locally. While this is an interesting direction, we will
not explore it here. In this paper, we study a class of linear
estimators that can be translated into computational algorithms
with theoretical guarantees. In particular, we consider the kernel
analog forecast (KAF) which has found applications in finance [20]
and climate sciences [21-24]. KAF is a kernel regression method
designed for the purpose of predicting time series generated by
an observable of a dynamical system. The term “analog” refers
to the fact that KAF is a generalization of the classical ana-
log forecasting method proposed by Lorenz [25], for which the
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prediction is determined based on the affinity of the present
states and the historical analog. In this context, the so-called
“kernel trick” allows one to identify the analogs (feature space)
with an appropriately chosen kernel. This, in turn, allows one
to access an estimator that lies in a Reproducing Kernel Hilbert
Space (RKHS) induced by the associated kernel features, with
universal approximation properties. A key advantage of the RKHS
formulation is that properties of the elements of the space are
inherited by corresponding properties of the kernel. In particular,
if the kernel is bounded, then functions in the RKHS are also
bounded. Likewise, functions in an RKHS inherit the regularity
of the kernel. This important property allows one to establish
uniform convergence of the estimator, which justifies the use
of KAF as an interpolator. In the context of dynamical systems
forecasting, the natural function space (e.g., an L? space associated
with an invariant measure) is usually not known explicitly, yet
relationships between kernel integral operators and RKHSs allow
one to empirically access the subspace of I? through a set of
orthogonal basis functions corresponding to ordered eigenvalues.
In this case, there is a natural mapping of the [? basis vec-
tors corresponding to nonzero eigenvalues to orthogonal RKHS
functions, and, under appropriate positivity conditions on the
kernel, the latter span a dense subspace of the corresponding
L? space. With orthogonality at hand, one can control the accu-
racy of the estimate by a finite eigenbasis representation and,
simultaneously, avoid the large matrix inversion problem with
the radial-type kernels. Finally, the RKHS structure allows one
to evaluate the estimator on new data points using a classical
interpolator, the Nystrom projection method. It should be noted
that this construction does not require that the covariate time
series is Markovian, and is therefore well suited to forecasting
under partial observations; e.g., see [26] for applications of KAF to
prediction of slow components of multiscale systems exhibiting
averaging or homogenization.

While KAF is theoretically sound [27], it may face practical
limitations, especially when both the covariate space and the
support of the pushforward of the invariant measure on the
covariate space are high dimensional. This issue is mainly due to
lack of guarantees that the leading eigenfunctions induced by a
generic kernel on a high-dimensional covariate space adequately
capture the response (predictand) variable of interest. To alleviate
this limitation, while also reducing computational complexity,
we propose to realize KAF with a kernel smoothing technique,
whose basic idea is to apply a discrete convolution of a Markov
operator on the response functions. We show that the proposed
kernel smoothing method is a consistent estimator of the opti-
mal regression function, i.e., the conditional expectation of the
response given the covariate data. Using the variable-bandwidth
kernels introduced in [28], we numerically demonstrate the effec-
tiveness of kernel smoothing compared to the Nystrom method
in estimating the full discrete MZ equation in situations where
the covariate space is relatively high-dimensional. On the other
hand, when the covariate space is low dimensional, the Nystrém
method is generally a better choice since the response variable is
more likely to be well represented by the leading empirical kernel
features.

Another critical issue that often arises in practical applications
is that the available observables are subjected to noises (of possi-
bly unknown nature). This poses a question in the accuracy of the
KAF estimators since the noises in the response and covariate data
may yield an ill-posed regression problem. In this paper, we pro-
pose a non-parametric smoother, constructed using the Nystrom
projection method, to denoise observables corrupted by inde-
pendent (but not necessarily identically distributed) noises. In
our applications, we will show the effectiveness of the proposed
smoother in denoising signals corrupted by various noise types,
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including time varying noise, even if the smoother is constructed
using a data set corrupted by independent and identically dis-
tributed (i.i.d.) Gaussian noise. From our numerical tests, we
will find that the proposed smoother produces more accurate
estimates than two popular data assimilation methods that are
presently used in operational weather forecasts: the Ensemble
Kalman filter [29] and the 4D-Variational approach [30], both
of which require the true governing equations of the observed
components. Using the smoothed data, we numerically verify
that the kernel smoothing method is effective in predicting the
response variable. We will show that this blended “projection-
smoothing” approach is able to produce a reasonably accurate
prediction from purely noisy observables.

This paper is organized as follows. In Section 2, we review
the kernel-based regression framework for supervised learning
tasks. In Section 2.1, we discuss the Nystrom projection method.
While the presentation follows closely that in [27], in the current
discussion, we do not present the regression problem for time
series generated by ergodic dynamical systems and only describe
it on i.i.d. training data. We complete the discussion in Section 2.1
with a simple statistical error bound. In Section 2.2, we present
the kernel smoothing method, and prove its consistency and
associated error bounds using variable bandwidth kernels [28].
In Section 3, we discuss the problem of predicting observables of
time series generated by dynamical systems. Since the only avail-
able training data is the time series of the relevant observables,
we briefly review the discrete MZ formalism for reduced-order
modeling in Section 3.1. In Section 3.2, we focus on estimating
the solution operator of the projected discrete MZ equation with
the KAF estimator. We demonstrate the performance of the esti-
mator on a Hamiltonian system and the five-dimensional chaotic
Lorenz-96 dynamical system. In Section 3.3, we discuss the con-
nection of the proposed nonparametric regression framework
with the delay-embedding and MZ formalism. In particular, we
will show that if the hypothesis in the delay-embedding theory
is satisfied, the regression function is indeed a component of the
flow map. Furthermore, the MZ equation derived using the pro-
jection operator obtained by the regression framework consists
of only the “Markovian” term and it is exactly represented by the
corresponding regression function. Supporting numerical exam-
ples on the two same dynamical systems are given. In Section 4,
we consider data corrupted by independently distributed noises.
A non-parametric smoother based on the Nystrém projection
method is presented as a denoising method in Section 4.1. Subse-
quently, in Section 4.2, we numerically verify the prediction skill
of the KAF estimator when it is trained using the smoothed data.
In Section 5, we close this paper with a summary and outlook of
open problems.

2. Nonparametric regression

Given spaces X and ), a basic problem of supervised learning
is to construct a map F : X — Y from samples of labeled data,
{(xi,¥i) € X X Y}i=1,..n, such that F(x;) optimally approximates
y; in a suitable sense. Here, we require that ) be a Hilbert space
so that we can apply orthogonal projections, as well as compute
expectations and other statistical functionals. On the other hand,
we allow X to be nonlinear. In order for the target function F
to be predictive, we relate x; and y; by assuming that they are
realizations of random variables X and Y with common domain
£2. We assume that §2 is a probability space equipped with a
o-algebra B(£2) and probability measure u. We call X the co-
variate space and Y the response space. The corresponding maps
X and Y are called the covariate map and the response map,
respectively.
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Consider the Hilbert spaces H = {f : 2 — ¥ | [,, f*(w) du(w)
<oo},V={g:x > Yy:goXeH),andHy = {f € H:
f =g oXfor some g € V}. Note that H = [?(i) and V = [*(v)
where v = X, u is the pushforward of p via X. Moreover, Hy is
the Hilbert subspace of L?(1) that contains equivalence classes of
square-integrable functions which are measurable with respect
to the o-algebra generated by X. In general, there are many
ways to construct a predictive map F. The least-squares approach
is to construct an F that minimizes the mean square error. A
standard result from statistics is that this estimator is given by
the regression function, which is also known as the conditional
expectation function. That is,

E[Y|]=F := argmin ||Y — g o X||Z, (1)
gev

where the conditional expectation E[-|X] can be seen as an or-
thogonal projection of H onto Hy. In this paper, we will denote
the orthogonal projection P : H — Hy as the conditional expecta-
tion E[-|X]. In appropriate context, we will also use P : H — Sy C
Hy, to denote an arbitrary orthogonal projection onto its range
space, Sy = ran(P) such that Sy = null(P) and H = Sx®Sy, where
the orthogonality is defined with respect to the inner product of
H.

When X is not injective, as in many applications, one can-
not approximate the response Y € H to arbitrary precision
by elements of Hx. However, one can still construct an optimal
estimator of Y using the target function F € V. In the remainder
of this section, we discuss two methods for estimating E[Y]-]
from samples of labeled data {(x;,y;) € X X Y, }i=1

first one is the Nystrom method which is an interpolation of an
eigenbasis representation of the estimator. The second method
is the kernel smoothing that employs a convolution operation
associated with a Markov kernel. For the remainder of this sec-
tion, we restrict our discussion to real-valued functions, so that
Y=RandH = {f : 2 - R | [,f*w) du(w) < oo}. Since
our applications involve Y = R", a componentwise generalization
to the finite-dimensional vector-valued case is immediate.

2.1. Nystrom method

If V is equipped with an orthonormal basis {uj}jen and X is
injective, then {¢; = u; o X}jen forms an orthonormal basis of H.
In this case, any Y € H can be arbitrarily estimated, in H-norm,
by

L
EL[YIX] =) (Y. ¢, (2)

Jj=0

up to any desirable precision by taking L — oo. Due to the
properties of orthogonal projection, the estimator

L

ELYIT=) (Y, ¢u, 3)
j=0

is an optimal estimator from span{¢o, . .., ¢} C H. As mentioned

above, when X is not injective, span{¢;}jex C H so one cannot

recover arbitrary target functions Y € H. However, E/[Y]|-] is

a consistent estimator of E[Y|-] € V so that lim;_, . E/[Y]-] =

E[Y[-] in V.

A practical issue in employing the estimator (3) is that or-
thonormal bases of H as well as V are not available. The whole
point of nonparametric regression is to construct an estimator for
{¢o, ¢1, ...} from the random samples of observables {x; : i =
1, ..., N}, where x; = X(w;) are realizations of the covariate map
X. Kernel-based algorithms [28,31] are often used to obtain the
function value u;(x;) = ujoX(w;) = ¢j(w;), which can subsequently
be used to estimate the inner product in (3). For our purposes, we



F. Gilani, D. Giannakis and J. Harlim

also need to evaluate the estimator in (3) on new covariate data
that do not lie in the (finite) training data set. This evaluation
can be done using an interpolation scheme such as the Nystrém
method that extends u; on new covariate data disjoint from the
finite sample of observations. To justify the validity of such an
interpolation method, uniform convergence of the estimator is
usually required rather than V-norm convergence.

One way to ensure uniform convergence is to construct an
estimator in a reproducing kernel Hilbert space (RKHS) # of
continuous functions such that # is dense in Hy. In particular,
let k : £2 x £2 — R be the pullback of a kernel « : ¥ x ¥ — R
on the covariate space. That is, k is symmetric positive definite
and k(w, o') = k(X(w), X(«')). By the Moore-Aronszajn theorem,
there exists a unique Hilbert space # (the RKHS), of real valued
functions f : 2 — R with the reproducing property: # =
span{k(w, -),Vw € 2} and every f € H and w € £ satisfies
flw) = (klw,-),f)s. Since the kernel k is a pullback kernel
of k, every function f € H can be expressed as f = g o X
for some continuous function g : X — R. If £ is compact
and k is continuous, one can show that #-norm convergence
implies uniform convergence so that # C C($2). For non-compact
domains, a bounded kernel ensures that # C Cy(£2) [32].

While it is convenient to represent functions in A as a linear
superposition of kernel sections, namely, f = Zf’:"l aik(w;, +)
with w; € £2, empirical representations involve a partial sum-
mation of N terms, where N denotes the number of training
samples. For large datasets, as in our applications, specification
of the coefficients a; involves an inversion of a large matrix and
the repetitive function evaluation is numerically expensive. If a
radial-type kernel is chosen, as in many applications, then we
arrive at the so-called kernel ridge regression or radial basis
function interpolation, depending on the literature. The estimator
in (3) is proposed as an alternative to avoid this computational
issue by leveraging the inner product structure of H. To that end,
consider the reproducing kernel k from the perspective of an
integral operator K, : H — H defined as

K.f = f K, ) (0)du(o), @)
2

where u is assumed to be compactly supported on M C $2. This
is a compact operator with adjoint K; : # — H that is also
compact. By the spectral theorem, the compact, self-adjoint and
positive-definite integral operator G, = K:KM : H — H has
eigenvalues Ag > Ay > --- N\, 0" so that the corresponding
eigenfunctions {¢g, ¢1, ...} form an orthonormal basis of H. In
fact, defining, ¥; = Kuqu/)\j]/2 for A; > 0, we have,

1 1
(Y, Yi)w = W(Kmﬁi, K, ¢j)n = T]/Z(KZK/@"’ Ol
)‘i )\.j )\.i )‘j
A2
= 77 (b0 Bi)u = b,

A

which means that {y, ¥, ...} is an orthonormal set in H. By
Mercer’s theorem, we have an explicit representation k(w, ®') =
ZJO:OO rigj(w)pi(w') = Zjﬁo Vi(w)yi(w'), converging uniformly
for (w,w') € M x M, where ¢; = AJ71/2¢j denotes the con-
tinuous representative of eigenfunction ¢;. The so-called “kernel
trick” specifies an explicit choice of kernel k, such as the Gaus-
sian kernel, to avoid computing the ¢, inner-product between
feature vectors (Yo(w), ¥1(w), ...) and (Yo(w'), ¥1(@'), ...). Our
perspective is to rely on the orthogonality of the eigenbasis to
approximate the target function of interest through the represen-
tation in (3) and use the RKHS theory to establish the convergence
of the estimator as L — oo.

One of the most important aspects of the integral operator
K, is that we can define an interpolation (Nystrém) operator
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Nyt DINV,) — H as N,¢j = 1//1-/);/2 = K.¢j/Aj = ¢j, whose
domain D(V,,)) = {f = Y. g € H|Y., c2/h < oo} contains
functions of higher regularity than arbitrary elements of H. Note
that if D(\V,) is equipped with the norm |f]? = Y, c,f/)w then
it is isometrically isomorphic to H(M), the restriction of A to the
support M. Notice that the operator A, maps the eigenfunction
¢; € D(NV,,) to the continuous function ¢;. As a result, f € D(V,,)
has a continuous representation N.f = > . GN.¢; = ;G
Moreover, the map Kj; is a left inverse of A, since

¢.
KiNuf =Y cKrgj=) ch;K,L;{ =Y g =F. (5)
i i T

This means that the map K;N, : D(V,) — ranK, identifies
functions in D(N,,) with their continuous representation in %
through the Nystrom operator, as a function in rank),.

In our case, the target function is E[Y|-] € V or E[Y|X] € Hy.
Thus we can consider the operator (4) but with domain Hy. In this
case, an orthonormal set of continuous functions {vrq, ..., ¥} in
H satisfies ¥ = u;0X for some continuous functions {ug, ..., u}
that can be approximated from the covariate data. Using this
basis, for each E;[Y|X] € D(N,), one can build an estimator for
NLE([Y|X] € H which can be represented as

L

NELY]] = Z(Y, d’j)H%' ©)
Jj=0 )\'J

It is important to note that if the reproducing kernel k of the RKHS
‘H is a pullback of a strictly positive definite kernel ¥ : X xx — R,
then the domain D(V,) is dense in Hx. To see this, take any
function f € Hx and, since span{¢y, ¢1, ...} is dense in Hx, we
have that f = )", ck¢pr, where each eigenfunction is associated
with a strictly positive eigenvalue. Furthermore,

[o ] C 2 o0 C 2 o0 C 2
k k k
; N ’; S (O By = > T Ko Kbedoe

k=0
o0 o0
— 2 _ 2 _ 2
= & W vdn = ) al = IIf 17, < oo,
k=0 k=0

and we conclude that any function f € Hx can be approximated
by a function in D(W,,) at arbitrary precision. From (5), one can
see that the operator K;A,, : D(WV,) — D(V,) is an identity
map (a bounded operator). By the bounded linear transformation
theorem, the closed extension of K A, is the identity map on

D(N,,) = Hx. This means that any function in Hy can be approx-
imated to arbitrary precision in H-norm by a function in K;H =
D(N,,). In particular, as L — oo, the estimator in (6) converges
to the target function in H-norm, i.e., lim;_ I(;NM]EL[Y|X] =
E[Y|X]. If it now happens that E[Y|X] has a representative in A,
then the estimator converges to that representative in H-norm,
and thus uniformly, on the support of .

As mentioned above, in practice, we have no access to the
basis functions {¢g, ..., ¢;} or {ug,...,u;}. Given the pairs of
labeled data points {(x;, yi)}i=1,..n, where x; are i.i.d. samples of
X, we first describe an empirical estimate of ¢;(w;) = u;(x;). Let
Guy = K K.\, where K, : Hy — #H and K} : H — Hy
are defined as in (4) and the corresponding adjoint with H =
L*(uy) replaced by Hy := L[*(uy). Here, uy = Zf; 8y /N is
the discrete sampling measure, and L?(uy) the corresponding
finite-dimensional Hilbert space equipped with the inner prod-
uct (f,guy, = %Zf'ﬂf(a)i)g(w,-). For simplicity of exposition,
we will assume that all sampled states w; are distinct, so Hy
is an N-dimensional Hilbert space, isomorphic to RN equipped
with a normalized dot product. In that case, the operator G, is
represented by an N x N kernel matrix Gy = [(ein, Gy €j,N)Hy]
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= [x(xi, x;)], where ¢; y are the standard orthonormal basis vec-
tors of Hy with ej y(w;) = NV/2§;.

Let {Ajn. ®jn} be the jth eigenvalue and eigenvectors of Gy,
respectively. It is well known that the approximation of G by G,
is spectrally consistent [33]; that is the sequence of eigenvalues
AN = AjasN —> oo Moreover, the continuous representative,
Nuy®in = Yin/A N converges to NV, ¢; = wj/kl/z as N — oo in
7. Denoting y = (y1, ...,yn)T € RN, we have

. ) 200y = Zym )= [ YW din@din(o)

AG

as N — oo, where we have used the law of large numbers for
i.i.d. samples. For each j,

w)Nugj(w)dp(@) = (Y, ¢j)n.

N
1
5 O EulY Ny i
i=1
= Eu[YNuytin] = EulY @] + O(6), (7)
where § is an error bound of the eigenfunction estimation. In
the proposition below, we will specify § on a manifold with-

out boundary based on the L? result from [34]. The standard
Monte-Carlo error suggests that

Eu[ (G Bz — Bl Niy@in)’]

1 Var[Y N, ¢jn]
- NE“[(YNMN(pf-N - EM[YNMN@’N])Z] - +JN

Without loss of generality, suppose that E,[Y] = E,[¢;] = 0. If
Y is continuous on M C £2, the compact support of p, then
Var[Y Ny $in] = EulY2(Nouy $n)°T < 1Y 2 oo B[Ny B8 )]

1Y [l oo(Ep [0 + 0(82)) = Y2 [loo(1 + O(5%),

where we have used the Holder inequality and the orthonormal-
ity of ¢;. Together with (7), we have

]E;L[<;’v ¢ij>L2(NN)] =

IA

2
Eu[ (G #indizg — BulYei)’] = C ( s ) (8)
for some constant C > 0.

We should point out that if the samples {w;} form a time series
generated by an ergodic and stationary dynamical system, then
the convergence can still be achieved via the Birkhoff ergodic
theorem, but the convergence rate would depend on the mixing
rate of the underlying processes [35,36]. Together with the con-
vergence of the continuous representative, we can conclude that
the discrete estimator

L
ELn[YIXT =) (7, @) 20 Bin-

Jj=0

has a continuous representative

L
Z@, BN 2 WiN /AN (9)

j=0

NuyELn[YIX] =

that converges in #-norm to N, E;[Y|X] as N — oo. Also, the
left pseudo-inverse, I(;NMNIELN[HX] — K:NM]EL[Y|X] = E;[Y|X]
as N — oo in Hy. Taking L — oo after N — oo, we estab-
lish the consistency of the estimator with the target function,
N ELnlYIX] — E[Y|X] € Hy.

Let yw = un o X~! be the pushforward of the sampling
measure on covariate space X. Computationally, we can estimate
the discrete orthonormal basis {ug n, U1.n, - - ., ULy} With respect
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to L*(vy) by solving an eigenvalue problem associated with a
Markov operator G, . constructed using a decreasing kernel k.
defined with bandwidth parameter ¢ (see also remark 3 of [34]).
Note that the pullback is given as ¢jne = ujne o X. If X
is a d-dimensional compact smooth manifold embedded in R",
then WV, uj . converges to the eigenfunctions u; of the Laplace-
Beltrami operator (positive definite with respect to V) as N — oo
and € — 0. If vy has a smooth density with respect to the volume
form, then the Laplace-Beltrami is defined with a conformally
changed Riemannian metric inherited by X from the ambient
space R". In this case, we have:

Proposition 2.1. Let X be a d-dimensional compact smooth Rie-
mannian manifold with no boundary. Let Y = F o X suchAthat
F:x — y belongs to a Sobolev class, H*(x) == {F € V|F; :

(F, uj)v, Q PE2 0o, B > 0}, where ¢; is the eigenvalue of the
Laplace Belltraml operator associated with eigenfunction u;, approx-
imated with u; y . as discussed in the preceding paragraph. Assume
also that Y € C(M), where M C 2 denotes the compact support
of the invariant measure p. Then, with uy = Z}Vzl 8w /N and
NuEr n[Y]-] defined as in (9), we have

B[ (N ELalY 1] — BLY D2 =
where py = 3/4 ford =2 and pg = 1/d for d > 3.

O(LN~", log(N YN~ L= ),

Proof. To compute the error rate, we split the error into the
variance error term that arises due to discrete data and the bias
term that arises due to the truncation of eigenfunctions:

B [N ELalY ] = ELY |17

| /\

Ny ELnIY 1] = KEAGELY [P | 4+ B [(GALELLY 1] — BLY 7]

L

=
Ev[(Z(@ BNz — (Vs B)1) Ny uj,Nf)z} e
[

IA

j=0

+

E, (i(y BNy Ui c —K;Nﬂuj))z] +E[ (O dpuw)’]

=0 j>L

L log(N )Pd

Jj>L

IA

for some constant C that is independent of €, N, d but can de-
pend on L. In the second equality above for the variance term,
we isolate the errors due to Monte-Carlo approximation of the
expansion coefficients (which is computed in (8)), where we
suppressed the order 82 /N term since it is dominated by the error
of order-8 in the discrete approximation of the eigenfunctions.
Using the recent result in [34] for compact manifolds without
boundary, the L%-error bound for each eigenfunction (as € — 0)

1
is given by § = O 10;5\,(4\’/?1” 2, where d denotes the intrinsic

dimension of X and py = 3/4 ford = 2 and ps = 1/d for d > 3.
For all Y = F o X, we have that (Y, ¢;)y = (F, uj)y = F;, and
since F € HP(x), we have

. 1 o 4n _
D= F< 7 Y B <l

j>L j>L L+1 j=0

for some constant C; > 0. The proof follows by using the Weyl
asymptotic estimate for the eigenvalue of the Laplace-Beltrami
operator on compact Riemannian manifolds [37], ¢,4q ~ [¥4. O

We should point out that balancing the first and lastzer—

ror rates yields the famous minimax optimal rate, O(N~ 25+d)
for linear estimators [38]. Thus, unless the response function is
highly smooth (e.g, 8 = d), such an estimator is subject to
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the curse of dimension. In practice, the second error rate (cor-
responding to the estimation of eigenvectors) will dominate in
high-dimensional problems even if the target function is smooth.

2.2. Kernel smoothing estimator

In the previous subsection, we approximated E[Y|X] with,
E; n[Y|X], a superposition of eigenvectors of Gy and then used
Nystréom extension (9) to evaluate this representation on an out-
of-sample point. In this subsection we show that the condi-
tional expectation can also be approximated by an appropriate
smoothing function in H.

The main idea is motivated by the fact that if X is a smooth
manifold, any measurable function g € V can be represented as

g(x) = Es,[2],

where §, denotes the Dirac mass centered at x. We can then
attempt to regularize this integral operation by approximating &y
with an appropriate family of Markov kernels that have a smooth
density with respect to the pushforward measure v.

To that end, we assume that X = R™ and the support of v is
a smooth, compact d-dimensional submanifold M C X. We then
start with a kernel S, : X x X — R, where € > 0 is a bandwidth
parameter, and perform a sequence of normalizations that yield,
asymptotically, the kernel «. so that

Geg(x) = / Kke(x, X )g(x)dv(x') = g(x) + O(e), (10)
X

holds for g € V and x € M. The integral operator G, can then
be approximated by a matrix-vector multiplication. In this paper,
we use the variable bandwidth construction of the kernel given
in [28]. This expansion starts with a kernel S, on X x X of the
form

X —x 2
Se(x, ) =€ Y% exp (—7” ”/ ) ,
ep(x)p(x')

where p > 0 is a bandwidth function that is chosen to be
inversely proportional to a power of the sampling density as
in [28].

For completeness, we describe the construction of the discrete
approximation of the operator in (10). Let x4, ..., xy be the ob-
served m-dimensional data in X. Then the following steps (which
are the diffusion maps normalizations [28]) yield a discrete ap-
proximation Gy . of the integral operator G,, whose discrete rep-
resentation is denoted by the matrix Gy,e = [{€in, GN,¢€N)12()]
= [Kke(xi, %7)],

N
Se(xi, X]) Se(%i.%;)
qe(xi) = Z o) , se,a(xivxj) = e
=1
5 (11)
Se,a(Xi.X})
Qeo(Xi, X)) = Zse,a(xisxj) Gy (i, X)) = qmi(lxl)j

j=1
The two steps in the first row above are the “right-normalization”
steps taken to de-bias the possibly non-uniform sampling distri-
bution of the data with a parameter «. In our numerics,
we set « = —d/4 and p = qZ]/z as in [28]. The two “left-
normalization” steps in the second row of (11) turn Gy, into
a stochastic matrix. Note that the resulting kernel «, from (11)
is given in Appendix A5 of [28]. Based on the result in [28], for
{x1, ..., xy} C M with sampling density g = dv/dvol, where vol
is the volume form on M through its embedding in X, for fixed
€, we have the convergence rate

B qlx;) /2 g )Ad2=1/4)
(GNfg)i = Geglxi) + 0 <N1/262+d/4 * N1/2¢1/2+d/a )

(12)
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as N — oo. The second term in the error bound is due to the
error in the discrete estimate and the first term is to ensure an
order-e%estimate of g..

Our choice of normalization is to ensure an asymptotically
unbiased (up to order ¢) estimate of g in (10). For many ap-
plications, it suffices to start with the standard Gaussian kernel
with constant bandwidth (o = 1) and apply the steps in the
second row in (11) to create a valid transition density. However,
in this paper, we will always construct the integral operator in
(10) using the variable bandwidth kernels due to their accurate
estimation of densities in sparsely sampled regions. To tune the
kernel bandwidth parameter €, we use the auto-tuning algorithm
in [28] which was found to be more effective for variable band-
width kernels than the Gaussian kernel with a fixed bandwidth
(p = 1). Furthermore, we have

Proposition 2.2. Let P be the orthogonal projection of H onto Hy.
Then for any g € V and x; = X(w;) € M, the relationship

. q(xi)]/2+d/4 q(Xi)d(d/2_1/4)
(Gn.c8); = Pg(xi) + O (e, N12e2+d/d " N121 2/ )

holds in high probability.

(13)

Proof. Note that for any g € V, where f = g o X € Hx, v = X,p,
and x; = X(w;) € M, a change of variables shows that

Goglx) = f (0, X g )dv(X)
X

= [ k(e X(6 e o X0 Mulof) = Lf ) (14)
2
Let ke o; == ke(w;, -) = ke(X(@;), X(+)). Since f € Hy, we see that
Jf (wi) = JPf(w;). Thus, for each w; € £2,
JePf(wi) = (GePg) o X(wi) = Pg o X(wi) + O(€) = Pf(w;) + O(¢),

as € — 0, due to the asymptotic expansion in (10). Together with
(12) and (14), we have

(Gn.&); — Pg(xi) = ((Gn.&), — Geg(xi)) + (Geg(xi) — Pg(xi)
((Gn.c8), — Geg(x) + (cf (i) — Pf(y))

o q(xi)1/2+d/4 q(Xi)d(d/2_1/4)
’ N1/2¢2+d/4 ’ N1/2¢1/2+d/4 !

For a function g whose components are function values at
the training data {xq, ..., xy}, the kernel smoothing estimate of
2(Xoyt) ON a new point X, is given by GNout-€§‘ where Gy, e
is a row vector consisting of k.(Xou, X;) for i = 1,...,N. The
definition of G, can be extended to g € R", where n > 1
componentwise. That is, if g(x) = (g1(x), .. ., g.(x)), where g;(x) €
R for 1 < i < n then G.g(x) = (Gcg1(x), ..., Gegn(x)). Then,
the componentwise convergence in probability holds due to the
preceding proposition. The discrete estimator then becomes a
matrix-matrix multiplication, Gy g, where the ijth component of
the matrix g is given by g;(x;).

The kernel smoothing estimate is conceptually simple and
computationally fast to construct. While naive, we will show in
the next section that the kernel smoothing estimate of the con-
ditional expectation performs well when accurate estimation of
the eigenbasis of V is not available, especially when the covariate
space is high-dimensional.

3. Predicting the dynamics of observables

In this section, we discuss the problem of predicting observ-
ables (e.g.,partial components) of a measure preserving discrete
time dynamical system. We start by reviewing the MZ formal-
ism [39], which is a classical reduced-order modeling framework
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often used for this task. The MZ formalism expresses the evolu-
tion of the desired reduced order dynamics in terms involving
Markovian, non-Markovian, and orthogonal dynamics through
the use of an orthogonal projection operator. The total con-
tributions of the Markovian and non-Markovian terms in this
decomposition will coincide with the optimal solution to the
regression problem with observables at initial and future times as
covariate and response data, respectively. For a low-dimensional
covariate space, we show that the regression estimator can be ac-
curately constructed using the Nystrom method in Section 3.2. In
Section 3.3, we argue that if the hypotheses of delay-embedding
theorems are satisfied [6,40], the MZ-equations can be simplified
to only a “Markovian” term, whose representation is precisely
the regression function that maps the delay-embedded observ-
able to the observable at a future time. This regression function,
which can be estimated by KAF, is nothing but the component
of the flow map induced by the lag embedding. In such high-
dimensional covariate space regression problems, we numeri-
cally demonstrate that the kernel smoothing estimate is a more
accurate estimator than the Nystrém method.

3.1. Mori-Zwanzig formalism for reduced order modeling

Let (£2, @) be a discrete-time deterministic dynamical system,
generated by an invertible map ¢ : 2 — £2. Furthermore,
we assume that there is a @-invariant probability measure u :
B(£2) — [0, 1], where B(£2) is the Borel o-algebra on £2. That is,
for all B € B(£2), w(®~(B)) = w(B). As in Section 2, we assume
that u is supported on a compact set M C 2. For a given wy ~ u,
we let w; == ®!(wp).

In what follows, we assume that only partial observations x; €
R" of w; are available and they are defined through a measurable
function X : £2 — x = R" such that x; := X(w;) = X o ®i(wp).
Since our goal is to use the observed time series of {x;} to estimate
Xxi.¢ € X for some t € N, we set the response space equals
to the covariate space, Y = X, and consider the response map
Y =X : 2 — X, where X; = X o ®¢; that is, X;(wg) = X(w;).
Note that since ¥ = Y = R", wehave H = {f : 2 —> X :
fQ If2()IPdu(w) < o0}, V ={g : ¥ - X : goX € H}, and
Hy ={f €eH:f =goX for some g € V}.

Let us define an orthogonal projection operator P : H — Sx C
Hx C H, where Sx = ran(P) is a closed subspace of Hy, and
let Q = I — P be the orthogonal projection onto the orthogonal
space, S)% = null(P). With these projection operators, we have
H = Sx EBS)J(-. Let U : H — H be the Koopman operator defined as
Uf =f o @, for all f € H. Then by “the Dyson’s formula” [41,42],
the map U’ : H — H given by Uif = f o &' can be written as,

1
Ui+] — Z UikaU(QU)k + (Qu)H»]. (15)
k=0

Applying (15) on X € H, we obtain the discrete MZ equation
that describes the evolution of x; = X(w;). In detail, letting Z; :=
(QU)X and noting that

U™'X = Xipy
U*PU(QU X = PU(QU X 0 @™ ¥ = P(E} 0 @)X o &%)
(QUY*'X = Eip1,
along with the fact that PQ = 0, yields

Xiz1(@o) = (PUX 0 &' Ywo)+ Y _ P(Eko®)o(X 0 &' )wo)+ Eiy1(wo).

k=1
(16)

Since PUX € Sy, there exists an My € V such that PUX = MyoX,
by the definition of Sy. Similarly, since P(Z} o @) o X € Sx, there
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exists My € V such that P(Eyo®)oX = MyoX. Therefore, Eq. (16)
can be written in terms of the observable values x; as

1
Xiy1 = Mo(x;) + ZMk(xi—k) + Eiy1(wo). (17)
=1

Note that (17) decomposes x;.1 into the Markovian term M,
the memory terms M; and a term &j that is orthogonal to Sx.

3.2. Approximation of the projected Mori-Zwanzig equation

If we consider the specific choice Sy = Hy, and thus the projec-
tion operator P := E[-|X], we obtain the projected MZ-equation,

1

E[Xi11/%0] = Mo(xi) + > Mi(xix), (18)
k=1

since My o X € Hy, and the orthogonal term PZ;,; = O since
Eipq € H)%. In this case, notice that E[X;; | -] is precisely the
minimizer in (1) with X, in place of Y. The main takeaway here
is that the solutions of the projected MZ-equation in (18) is the
regression function, E[X;,1]-], of the dynamical map Xy — Xi 1.
The importance of this observation is that one can approximate
E[Xi+1|Xo] from the historical data {x;}. In the next two examples,
we will numerically verify this claim with the two nonparametric
estimators discussed in Section 2, the Nystrom method and kernel
smoothing.

Hamiltonian system: First, consider the 16-dimensional dy-
namical system given by the Hamiltonian

16 7
1
Hw) = » (Z 2ty wgzi_l)wgziﬂ)), (19)
i=1 i=1

where (w(2i—1), wei) for i =1, ..., 8 are the canonical conjugate
variables and o = (w1, . .., wue)) € R'6. Thus the full system is
derived through the relations

dw(zi,U _ BH(w) da)(zl') _ aH(w)
dt - aa)(z,') ’ dt

In addition to the subscript-(i) used to denote the ith component
of @ € R®, we will use the notation w; to denote the jth
sample of £2 with sampling measure % o e H@) where w; =
(wj1), - - -, wj,(16)). We should point out that this example is a
high-dimensional version of the main example in [7].

Suppose we are interested in the conditional expectation
Elw1)(t), w2)(t) | @1y(0), w2)(0)], where the expectation is
drawn from the canonical invariant density p corresponding to
H with fixed w(1)(0) and w(z)(0). We can view the problem of
estimating the conditional density in the regression framework
as follows. Let us define the covariate map X : 2 — X by
X(w(0)) = (w(1)(0), @2)(0)) := xo € X and the response variable
Xe(w) = X(w(iAt)) = (wq)(iAt), wp)(iAt)), where At > 0 is a
fixed time step.

In this example, we will consider estimates based on the
Nystrom method with L = 100 and the kernel smoothing esti-
mator. For this application, let X, = (Xo,1,...,Xon) and X" =
(x4, - Xg'N,,. ) be two vectors that will be used for training
and verification, respectively. Each component of these vectors
is an i.i.d sample of Xy, that is, xo; = Xo(w;), where wj; is drawn
independently from w. Let X, := (X;.1, ..., X.n) be a vector of the
training time series with components given by x; ; = U" o Xo(j;).

In the following numerical experiments, the time series {x; 1,
... Xt N}t=0.1,.. Was observed at the sampling interval At = .1
time units, and the initial conditions {1, ..., Xon} are samples
of the invariant density v = X,u. We verify the quality of the
estimators on N,,; = 1000 out-of-sample initial conditions, also

= . (20)
dwi-1)
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Fig. 1. Hamiltonian Example: (a) Comparison of the kernel smoothing estimate (Smoothing), the Nystrom method estimate, and the MC empirical estimate (which
is considered as the truth) of the conditional expectation of the first component of a particular out-of-sample trajectory, trained using N = 20,000 samples. (b) The
RMSEs (based on N,,; = 1000 samples) of both estimators as functions of lead time forecast, constructed using N = 10,000 and N = 20,000 data points.

sampled from v. To verify the performance of the two estimators,
we compare them to the empirical conditional expectation ob-
tained from a Monte-Carlo simulation. This calculation requires
samples of the conditional distribution of (w3y(0), ..., w6)(0))
given each out-of-sample initial condition, (w1)(0), w(2)(0)) = Xo j,
where j = 1,..., Noy. Numerlcally, we obtain these samples,
denoted by (w, ';% ( ), . ’1‘6)1( )), using the Hamiltonian Monte
Carlo method 14 3] on the reduced Hamiltonian in (19) with fixed
(w1)(0), w(2)(0)) = .. Concatenating these samples and the
fixed xoj, we define a)]( ) = (%0, a)Eg (0), ...,wE’l‘)S)J(O)), forj =
1,...,Nout, k = 1,..., Nyc. In the numerlcal result below, we
use Nyc = 20,000 samples for each initial condition xg . Given
these samples, the Monte-Carlo approximation of E[X; | -] is
given by

Numc NMC

1
BIX: | Xoj] ~ 1 — Y Ut ox(w) = Zx (), (21
MC

where each realization ®‘(w ")) is the solution of the full dy-

namics with solution map denoted by &. Note that the solution
map of (19) is the result of a temporal discretization of the
Hamiltonian dynamics in (20); in our numerics, we use the
Runge-Kutta-4 (RK4) method.

In Fig. 1, we show a comparison of the Nystrém method and
the kernel smoothing estimate of the conditional expectation,
constructed using N = 20,000 training samples and the empir-
ical Monte-Carlo estimate in (21) for a particular out-of-sample
data (which is considered as the truth). Notice that the Nystrom
method is significantly more accurate than the kernel smooth-
ing estimate. In Fig. 1(b), we also show the Root-Mean-Square-
Errors (RMSEs) between the two estimators and the empirical
Monte-Carlo estimate of the conditional expectation, averaged
over N, = 1000 out-of-sample initial conditions for training
data sizes, N = 10,000 and 20,000. Besides the clear advantage
of the Nystrom method over kernel smoothing, notice that both
estimators are improved as the size of training data, N, increases.

Although the Nystrém method performs better than the ker-
nel smoothing estimate, the former is computationally more
expensive. For both methods we construct Gy . using the steps
n (11). To alleviate memory and computation costs associated
with full N x N kernel matrices for N > 1, in practice a
k-nearest neighbor algorithm is employed so the resulting ma-
trix Gy is sparse with approximately k nonzero entries on
each row. To predict on a new data point using the kernel

smoothing method, one only needs to extend Gy . to the new
point and multiply the extended row vector by the column of the
response training data. On the other hand, the Nystrém method
requires the eigenvectors of the matrix Gy  and then employs the
Nystrom extension method to approximate the eigenfunctions
evaluated on the new out of sample data points. Thus, after
constructing Gy ., the computational cost of the kernel smoothing
method is O(k) where k is the number of nearest neighbors em-
ployed, while the cost for the Nystrom method is O(kL)+ O(E.D.),
where L is the number of eigenfunctions used and O(E.D.) is the
cost of acquiring the L eigenvectors.

The Lorenz-96 model: Next, we consider the Lorenz-96 model
[44] given by

dw;
dt(l) = (@(i+1) — @i-2))w(i-1) — wi) + F (22)
fori = 1,...,5, forcing parameter F = 8 and, with periodic

boundary condition, w(—1) = W), W) = O35), and wE) = W1)-
In this regime, the dynamics is chaotic with attractor dimension
2.9 and two positive Lyapunov exponents as reported in [45].
We estimate the conditional expectation E[X; | Xp], where the
covariate function is X(w) = w(1y(0), the response function is
Xe(lw) = X(@'(w)) = wq)(t), and the initial conditions are
drawn from the standard Gaussian distribution. Note that this
distribution is not invariant under the dynamics of the system.
Here @ is given by the RK4 discretization of (22) with time step
1/64.

Numerically, we generate N = 20,000 and N,,; = 1000 initial
conditions for training and verification, respectively, from the
standard five-dimensional multivariate Gaussian and integrate
the training data forward 2.5 time units to generate training time
series observations. Subsequently, we used only the first compo-
nent, aq), of the initial conditions and the training time series
to construct, both, the Nystrom and kernel smoothing estimates
of the conditional expectation. For the Nystrom method, we use
L = 300 eigenfunctions. Both estimators are compared to an em-
pirical estimator which is obtained by averaging (21) over w;") =
(X0, @) (0), . ... g (0)). forj=1,.... Noue, k=1, ... Nyc =
20,000 samples of initial conditions. Here, the first component of
each initial condition, xp; = X(a);k)), is one of the Ny, = 1000
verification samples and the other components are drawn from
the four-dimensional standard Gaussian. In Fig. 2(a), we show
the evolution of one of the 1000 verification samples. Comparing
the three estimates, notice the closer agreement between the
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Fig. 2. The Lorenz-96 example: (a) Comparison of the kernel smoothing estimate (Smoothing) and the Nystrém method of the conditional expectation of the first
component of a particular out-of-sample trajectory, trained using N = 20,000 training data. (b) The RMSEs (based on N,, = 2000) of both estimators as functions

of lead time forecast, constructed using N = 20,000 data points.

Nystrom and the empirical estimates. In Fig. 2(b) one can see
that the RMSE (based on averaging over N,,; = 1000 out-of-
sample points) of the Nystrom-based estimate is more accurate
than the kernel smoothing estimate. This result is consistent with
the previous example.

Next, we will show that the full MZ equation (16) can be
constructed by an optimal least squares estimator of a regression
framework with appropriate choice of covariate space.

3.3. Mori-Zwanzig projection and delay-coordinate maps

In the preceding subsection, we considered estimating the
conditional expectation E[X; | Xy] and showed that it can be
numerically approximated using the time series data. In this
subsection, we are interested in predicting the realization of x;
n (17). While the MZ representation suggests that the solution
depends on the entire historical data, for practical computa-
tion, finite-memory models to collectively represent these terms
as a finitely supported function is desirable. Since the memory
terms depend on the orthogonal dynamics (see Eq. (16)), such
an approximation can be achieved, e.g., by delta function ap-
proximation [15], Krylov subspace approximation [16], rational
approximation [19], or a series representation of the orthogonal
dynamics [17,18]. Note that while a finite-dimensional (matrix)
representation is the computational object of interest, a series
representation may not converge since it involves expansion of
semigroups generated by unbounded operators.

On the other hand, we should point out that depending on the
choice of the projection operator P, the explicit representation of
the terms in the MZ equation, (Mj);;g as well as the orthogonal
dynamics =, may or may not be easily translated into an efficient
algorithm that yields a consistent approximation. As we showed
in the preceding subsection, choosing P = E[-|X] as an estimator
will not yield an accurate approximation to x; since this estimator
truncates the orthogonal dynamics. Other common choice of pro-
jection operators can be found in [7,39]. For example, while the
popular Mori projection, defined as P = (X,X),;](~,X)HX, yields
a linear model for (I\/Ij);;g, the representation of the orthogonal
dynamics in such a basis expansion may not be computationally
tractable [10].

Recently, it was shown in [42] that by choosing P to be the
Wiener projection, one can simplify the MZ equation so that
only the Markovian term M, and orthogonal terms &; remain,
where My is now a function that takes a delay coordinate of the
observable. Building on this result, our intuition is to construct a
non-decreasing sequence of projection operators {P,, : m € N}
which allows one to access the entire function space H with a

finite m and a simple representation of the MZ equation. In what
follows, we argue that delay-embedding theorem [6] provides a
natural candidate for achieving this goal.

To that end, we define the delay coordinate map X, : 2 —
X™ by Xp(w) = X_ma1(w), .. ., X_q1(w), Xo(w)), X; = U'oX, which
we will consider as the covariate function. Simultaneously, we
consider the response function X; : £ — X, where X is the
response space as in the preceding sections. Note that the optimal
estimator for the map X,, — X; is given by the conditional
expectation PpX; = E[X; | X;]. Under mild assumptions on
the covariate X, the dynamical flow &, and the sampling interval
At, the theory of delay-coordinate maps [6,40] states that X,
is a homeomorphism between the support, M, of the invariant
measure and X™ for sufficiently large m. Consequently, the Borel
sigma algebra on M is identical to the sigma algebra generated
by Xm, 0(Xn). Thus, X; is measurable with respect to the sigma
algebra generated by X,,,, which means that P,,X; := E[X; | X;,] =
X; is the identity map for sufficiently large m.

Let m be such that the embedding result stated above holds.
Then, letting P = P, in (16), the memory and the orthogonal
terms vanish since they involve Q,,UX = (I—P,;,)UX = 0. While Py,
is an identity operator, the MZ equation reduces to a contribution
of a Markovian term,

Xit1 = (PnUX 0 @')wo) = E[UX|Xm(@i)] = Mo(Xi—m, - - - » Xi),

for some Mg € Vy, == {f : &™ — X : f o X, € H}. If we define
the flow map T on &A™ induced by @ as T o Xp,(w;) := X 0 D (wy;),
then M, is the mth component of the flow map T, which is also
the regression function of the supervised learning task X, — X;.

In light of this connection, we will employ the nonparametric
estimators discussed in Section 2 to approximate the regres-
sion function My and numerically show that true trajectory of
the observables can be recovered with adequate accuracy for
sufficiently large m.

Hamiltonian system: As an example, consider again the
Hamiltonian system in (19)-(20). Here, we are interested in
approximating E[w(1)(t) | oqy(—m+ 1), ..., o)(—1), @1y(0)] for
t € Z,. Letting the response function be X () = w()(t) = x;
and the covariate function be X;; := (X_py1,X_1,Xo), we can
rewrite the conditional expectation of interest as, E[X;|Xp(w)].
As before, we approximate this conditional expectation using
the Nystrém method with L = 300 eigenfunctions and the
kernel smoothing estimator. The training data was generated by
evolving N = 20,000 initial conditions {a)g‘)}k:l _____ N, drawn from
the invariant measure w, for m units in time, using RK4 with the
same specification as in the previous example. Fig. 3(a) shows a
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Fig. 3. Hamiltonian Example: (a) The trajectory of the first component, w)(t) for a particular out-of-sample initial condition along with the kernel smoothing
estimates using m = 4, 12, and 48 past observations. (b) The RMSE between the true trajectory and the kernel smoothing estimates of the conditional expectation,
calculated over 10,000 out-of-sample points. (c) A comparison of the kernel smoothing estimate and the Nystrom estimate of the trajectory using m = 48 past data
points. (d) The RMSEs of the Nystrom and the kernel smoothing estimates of the trajectory for m = 4, 12, 32, and 48. Note that the RMSE plots show the RMSE for

the lead time and omits the respective training windows for each m.

particular out-of-sample trajectory along with the kernel smooth-
ing estimates of the trajectory for various choices of m. Notice
that as m increases, the kernel smoothing estimator E[X;|Xp,]
approaches the true trajectory. In Fig. 3(b), we show the RMSE,
averaged over N,y = 10000 out-of-sample verification points.
Notice that the RMSEs are smaller as m increases except at
initial time. The worse performance at initial time is not so
surprising since the kernel smoothing is not an interpolation
method, and thus will not be consistent with the given initial
conditions. In panel (c), we show the quality of the prediction
for m = 48 for a particular trajectory. Notice that while the
trajectory is well estimated by both methods up to about 6 time
units, the kernel smoothing method is more accurate compared
to the Nystrom method. The improved prediction of the kernel
smoothing method compared to the Nystrém method at longer
times is consistent for different length of memory, m, as shown
by the RMSE metric in panel (d), computed over Ny, = 10,000
out-of-sample verification points.

The Lorenz-96 model: In this example, we consider predicting
the first component w(y)(t) of the five-dimensional Lorenz-96
model given by (22), again with F 8. As in the previous
example, we will compare the Nystrom method with L = 300
eigenfunctions and the kernel smoothing method in approximat-
ing E[X;|Xn(w)], where Xi(w) = o(y(t). In this example, the
delay-embedded data, X;,(w), are sampled from the invariant dis-
tribution of the system by running initial conditions sufficiently
forward in time. In particular, we take N = 20,000 samples
from the invariant distribution and construct the conditional
expectation using observations of the first component of the
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samples. Here, the time series U oX(w1) used for constructing the
estimator were observed at time steps of At = 1/64. In Fig. 4(a),
we show a prediction of a particular out-of-sample realization of
w(1)(t). Notice, as with the previous example, that the quality of
the kernel smoothing estimator increases with m, except at the
initial time as seen in Fig. 4(b). The RMSE in 4(b) was calculated
over Ny, = 10,000 out-of-sample initial conditions, also sampled
from the invariant measure. As one can see, the kernel smoothing
estimator is consistently more accurate than the Nystrém method
for similar m.

In principle, we should point out that the Nystrom method can
be improved with a larger number of eigenfunctions L. However,
there is a practical issue in realizing improved accuracies. In our
numerical tests, we do not find any meaningful improvement
using any larger L compared to the present results with L = 300.
We suspect that as the covariate space dimension increases (here,
controlled by the number of delays m), the Nystrom method
requires an increasingly higher number of eigenfunctions L to
reconstruct the response at a given level of accuracy, and for
the available number of training samples N, these eigenfunctions
cannot be accurately estimated. Thus, unless a mechanism is in
place to ensure that the response is well approximated by the
leading kernel eigenfunctions, or the eigenfunctions correspond-
ing to large L can be robustly estimated with modest amounts
of data (both of which are highly nontrivial problems), there
may be practical limitations to improving the performance of
the Nystrém method simply by increasing the number of eigen-
functions employed. From these numerical results, we conclude
that the kernel smoothing method (which requires much less
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computational effort) is an effective alternative when an accurate
estimation of the eigenfunctions is not available.

4. Smoothing and predicting with noisy data

To apply the prediction framework discussed in preceding
section to real applications, one has to take into account that the
available data set is most likely corrupted by noise. To overcome
this issue, we design a nonparametric state estimation method,
which we will call a smoother, to denoise the data. We should
point out that we adopted the terminology smoother since the
object of interest is the conditional expectation of the classical
Bayesian smoothing problem [46], which is different than the
kernel smoothing method described in Section 2. In Section 4.1,
we describe a nonparametric smoother, formulated using the
nonparametric regression framework discussed in Section 2. Sub-
sequently, in Section 4.2, we numerically verify the prediction
skill of the framework in Section 2 where the estimator is trained
using the smoothed data obtained from the method in Section 4.1.

4.1. A nonparametric smoother

We consider smoothing noisy time series observations of the
form

Zt=xt+9t, t=],...,N,

where 6, := ©,(«) are realizations of a centered random variable
®; : A — X that is independent of x;. As in Section 3, x; = X;(w)
where X; : 2 - X, 2 C R", ¥ = RP and p < n. The goal here is
to construct the smoother E[X; | z1, ..., 2y,], where 0 <k <m—
1, and use it as an estimator for x;. In this application, we assume
that the full vector wy of initial conditions is drawn from an in-
variant density. To pose this smoothing problem in the regression
framework presented in Section 2, we take the covariate space
Zn = (RP)™ to be the range of the covariate mapping Z,, : A x
2 — Zpy given by Zp(a, w) = {Z1(a, w), Zo(a, w), ..., Zn(a, w)},
where Zy(«, ) = Xy(w) + Or(a). We also let the response space
X to be the range of X; = RP. Then the least squares estimator is
given by E[X, | Zy,]. If the distribution of x, is invariant, then the
covariate space Z,, and the response space X} do not depend on
time so the optimal estimator can be trained once using training
data drawn from the invariant density.

In general, the noise-free time series x; is not available for
training. Given this constraint, we consider estimating E[Z; | Zp,]
instead. Denote the available noisy data by Z=1{z,...,zy} and
let X = {X1,...,xy},and & = {64, ..., 06y} be the uncorrupted
data, and the noise, respectively. We employ the VBDM algorithm
to obtain the basis functions i N(zit1, . - - , Zitm) = ¢jn(0, ;), for
i=1,...,N and then represent E[Z | Z,] as a superposition of
these basis functions. We motivate the construction of this con-
ditional expectation by noting that the diffusion maps algorithm
is robust to low noise perturbations (see Criterion 5 of [31]);
more specifically, the error in the spectrum of the graph Laplacian
can be controlled as long as the size of perturbation |6;| < /€.
Assuming that this argument holds for the estimation of the
gigenvectors, we can reasonably expect that @l N(zit1, - . . , Ziym) =
oin(ai, i) ~ ¢jn(wi) = Ujn(Xit1, - - ., Xitm) When the noise size
is smaller than ./e.

For a particular class of dynamical systems, the noise ro-
bustness of the graph-theoretic techniques can be considerably
strengthened by performing delays. In [47], it was shown that
if the Koopman operator of the dynamical system on £ has
a pure point spectrum, and the noise is i.i.d. with finite first
four moments, the pointwise estimator for the graph Laplacian
determined from the noisy data can be made to agree with the
noise-free estimator at any desired tolerance by increasing the
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embedding window length m. Here, we do not assume that the
dynamics has pure point spectrum, so the estimates in [47] do
not necessarily apply, but we can heuristically deduce that,

N
A 1 o
Z, diNdizgy) = N Zziuj,N(zi+l»-~-in+m)
i=1
N
1
~ N ZZiuLN(XH], ey X,‘+m)
i=1
N
1
= N ;X,'UJ,N(XH], ey X;+m)

N
1
+N E] Ol N(Xi1s - -+ Xigm)
i=

= (52’ ¢j,N)L2(MN),

due to the fact that 6; is independent of x;. Here, f[iy
ZL 8u;,0;/N is the discrete sampling measure on noisy data,
whereas wy is the discrete sampling measure on uncorrupted
data. This suggests that we can approximate the smoother E y
[Xk | Zm] as,

L L
E N [Xk | Zm] = Z(yh BiN) 2PN = Z(z, <2>j,N>L2(,zN)¢j,N
=0 =0
= Ern[Zk | Zm]-

Here, the approximation is due to the fact that the construction
of the estimator is based solely on the noisy data. A more detailed
error analysis is an open problem that is beyond the scope of
this paper. Note that the kernel smoothing estimator discussed
in Section 2.2 does not possess the robustness-to-noise property
that the VBDM basis does and furthermore the kernel smoothing
estimate of z; is not an approximation of the kernel smoothing
estimate trained using x,. Thus, an application of the kernel
smoothing estimator discussed in Section 2.2 trained solely on
noisy data would not yield a good approximation to the desired
smoother, E[Xy | Zm].

In the remainder of this subsection, we will demonstrate the
effectiveness of this smoother in recovering x, from an out-
of-sample sequence (zy, ..., zy) of noisy observations. We will
show numerically that choosing m > 1 reduces the RMSE when
estimating x,. We will also demonstrate the sensitivity of the
RMSE as the parameter k is varied. To verify the accuracy of the
proposed smoother, we compare the RMSE of this method to the
RMSEs of the Ensemble Kalman Filter [29] and 4D-Var [30], both
of which are very popular data assimilation methods that are
operationally used in weather forecasting.

Smoothing noisy observations of the Lorenz-63 system: Con-
sider the Lorenz-63 system given by

dw
d;]) = o(wp) — o)
da)z
d; ) = omy(p — wa)) — o) (23)
dw(g)
= W(1\W, — Dw,
it 1we) — Bws)

with the standard parameters o 10,p = 28 and 8 = 8/3
that give rise to the famous “butterfly”-like attractor [48]. In this
example, we are interested in estimating wyy), from observations
of the form Z;(w(0)) = w1)(t)+6;, and we will use the VBDM algo-
rithm to construct the smoother E; y[Z; | Zy]. Practically, given
an out-of-sample sequence z{'y, = (z},...,z%}",) of consecu-
tive noisy observations, we use the Nystrom method to evaluate
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Fig. 4. 5D Lorenz-96 example: (a) Predicting a particular out-of-sample trajectory of the 5-d Lorenz-96 system with F = 8 via the kernel smoothing estimate of the
conditional expectation using m = 4, 12, and 48 past observations. The training and testing data were both drawn from the invariant distribution. (b) The empirical
RMSE of the kernel smoothing estimates with m past observations, calculated over 10,000 out-of-sample points. (c) The Empirical RMSE of both the Nystrém and

the kernel smoothing estimate for m = 4, 12, 32 and 48.

Ep N [Xe1k|z0U ], where k = 1,..., m and use this as an estimator
for .. To smooth a long sequence of noisy observations, we

independently apply the constructed conditional expectation on
each t and the corresponding z2% sequence of the trajectory. In
all of the following numerical experiments, the training data Z,
is constructed by taking sequential m observations of w(y(t) and
adding 6; to each of these elements.

In the first experiment, we use N = 12,000 observations of
z with 6; ~ N0, 4) and construct the conditional expectation
estimators, E; y[Zx|Zn], with m = 5 and k = 1,...,5 using
L = 120 eigenfunctions. The observation time step for z; is At =
0.1. We evaluate this smoothing operator on an out-of-sample
trajectory of length Ny, = 10,000, corrupted by four noise types
with variance approximately 4 : (1) Gaussian noises N/(0, 4),
(2) Student’s-t noises with 8/3 degrees of freedom, (3) Uniformly
distributed noises over (—+/48/2, +/48/2), and (4) Time varying
noises of the type 2 sin(tU), where U is uniformly distributed over
[—1/2,1/2]. In each of the following experiments, the basis is
constructed using data corrupted by N(0, 4) noise. This choice of
standard deviation, 2, is roughly 25% of the climatological stan-
dard deviation, 7.9246. Table 1 shows the RMSEs of the smoothers
E[Zk|Zs] when the observed component is corrupted byn(0, 4)
noise for 1 < k < 5. From Table 1, one can see that the smallest
error is obtained for k = 2. Table 2 shows the RMSEs of the
smoother E[Z; | Zs] in the cases when the observed component
is corrupted by the four noise types mentioned previously. In
Fig. 5, we show the smoothed trajectories compared to the truth
and noisy observations. We should point out that the k = 2
smoother forces us to discard the first and the last Ny, —(m — 2)
observations in the trajectory. Note that the RMSEs shown in each
of these tables are the errors in recovering w(), computed by
averaging the errors of time indices k to Ny, — (m — k).

As seen in Table 2, the smoother, E; y[Z>|Z5] performs bet-
ter than an ensemble Kalman filter with 64 ensemble mem-
bers constrained to observing the same one-dimensional noisy
component w(jy used for training the smoother (denoted by
1 observation in the table). We also found that the proposed
smoother is more accurate than 4D-Var constrained to using
only one observation (w(1) only) or two observations (both w(1)(t)
and w(y)(t)). In this table, for diagnostic purpose, we also report
the RMSEs of EnKF and 4D-Var when noisy observations of all
three components are available. One can see that, in this case,
4D-Var is superior; however, when only one component is ob-
served, the proposed smoother (which requires no knowledge of
the dynamics) is more accurate than both EnKF and 4D-Var. We
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Table 1

RMSEs of the smoother for the w(;) component of the Lorenz-63 subjected to
i.i.d A(0, 4) noise. The smoother E; y[Z;|Z] was constructed using N = 12,000
training data points, consisting of m = 5 sequential observations and L = 120
eigenfunctions. Each RMSE is averaged over out-of-sample data points with
indices k to Noy—(n—k), Where Ny, = 10,000 data points.

k 1 2 3 4 5
RMSE 1.3591 1.0663 1.1243 1.2394 1.4928
Table 2

RMSEs of the smoother for the @) component of the Lorenz-63 model subjected
to: (1) Gaussian noises A(0,4), (2) Student’s-t noises with 8/3 degrees of
freedom, (3) Uniformly distributed noises over (7\/zﬁ/2’ m/z), and (4) Time
varying noise of the type 2sin(tU), where U is uniformly distributed over
[—1/2, 1/2]. The smoothing operator was constructed, as in Table 1, by using
N = 12,000 training data points consisting of m = 5 sequential observations,
corrupted by Gaussian noise and L = 120 eigenfunctions. The RMSEs were also
calculated the same way as in Table 1. The same underlying trajectory was used
for all of the RMSE calculations. The last six rows report benchmark results
of applying the EnKF with 64 ensemble members and 4D-Var with m = 5,
observing one to three noisy components, respectively.

Gaussian  Student’s-t  Uniform Time varying
Smoother m = 5, k =2 1.0663 1.1339 1.1406 1.1455
EnKF (1 obs) 1.3439 1.6589 1.4055 1.3704
EnKF(2 obs) 7435 0.7871 7282 7538
EnKF(3 obs) .6343 .7806 .6242 6674
4D-VAR (1 obs) 2.0935 2.2131 2.3187 2.3145
4D-VAR (2 obs) 1.4971 1.4099 1.6088 1.7032
4D-VAR (3 obs) 5436 .6437 5198 7785

should point out that in these numerical experiments the 4D-Var
is implemented with m = 5 so that the configuration is similar
to that of the non-parametric smoother.

Finally, we note here that if we instead use the kernel smooth-
ing estimator described in Section 2.2 to approximate the
smoother E[Z; | Z;], we find that the RMSE of smoothing the
same observations with Gaussian noise (as in Table 2) is 1.5605.
Therefore, while the smoothed time series are less noisy than the
observed data, the kernel smoothing based smoother performs
worse than the EnKF with only 1 observation.

Smoothing noisy observations of the Lorenz-96 system: We
consider the proposed smoother for k = 2 to estimate the first
component w(y)(t) of the 40-dimensional Lorenz-96 system (22)
with F 8. In this numerical experiment, the training data
consist of observations of w(y)(t) perturbed by Gaussian noise,
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same smoother, constructed using data corrupted by Gaussian noise

N(0, 4), was used to recover out-of-sample data corrupted by: (a) Gaussian noises A(0, 4); (b) Student’s-t noises with 8/3 degrees of freedom; (c) Uniformly
distributed noises over (—+/48/2, +/48/2); and (d) Time varying noises of the type 2 sin(tU), where U is uniformly distributed over [—1/2, 1/2]. See Tables 1 and 2

for the RMSEs.

N(0, 1) but, as in Lorenz-63 example, we apply the filter to out-
of-sample trajectories with various noise types with variance
close to 1. This choice of noise standard deviation, 1, is roughly
25% of the climatological standard deviation, 3.5868.

For brevity, we only report the results form =6, k = 3, L =
200, and N = 12,000 training data, which we verified on three
out-of-sample trajectories, each of length N,,; = 10,000 sequen-
tial observations. These three trajectories were respectively gen-
erated by perturbing a single out-of-sample trajectory of length
Noye with A0, 1) noise, Student’s-t noise with 10 degrees of
freedom, and noise drawn uniformly from [—1.8, 1.8]. The train-
ing and testing time series were generated using RK4 with an
observation time step of 0.05. See Table 3 for the RMSEs as well
as benchmark results of applying EnKF and 4D-VAR in the same
noise regimes. Note that the proposed smoother, E; y[Z3 | Zs],
performs better than both EnKF and 4D-Var even when the these
two schemes were allowed to observe 30 noisy components.

Finally, we consider a more chaotic regime with F = 16. We
construct an estimator to smooth observations of w1(t) corrupted
with Gaussian noise, N(0, 1). The smoother is trained with pa-
rameters L = 300, N = 20,000 and m = 6 using a set of training
data corrupted by Gaussian noise, (0, 1). The RMSE is computed
over N,y = 10,000 verification data which was generated by
perturbing the true w1y component of a trajectory by Gaussian
noise, (0, 1).

In Table 4, we report the RMSEs of the smoothing estimates
using various choices of 1 < k < 6. Fig. 6 shows the results of
the smoother with k = 3. As a benchmark, we report the results
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Table 3

RMSEs of the smoother for the ;) component of the Lorenz-96, with F = 8,
subjected to: (1) Gaussian noise A7(0, 1); (2) Student’s-t noise with 10 degrees
of freedom; (3) uniform noise drawn from [—1.8, 1.8]. The smoothing operator
for k = 3 was constructed using N = 12,000 training data points consisting
of m = 6 sequential observations constructed by Gaussian noise and L = 200
eigenfunctions. The RMSEs are calculated using the same underlying trajectory
of length Ny, = 10,000. The last six rows report benchmark results of applying
the EnKF with 64 ensemble members and 4D-Var with m = 6, observing 10—40
noisy components, respectively.

Gaussian Student’s-t Uniform
Smoother m=6,k=3 .5958 .6100 .5968
EnKF (10 obs) 7234 0.7387 7151
EnKF (30 obs) .6229 .6785 .6416
EnKF (40 obs) .2492 .2428 2211
4D-VAR (10 obs) 2.4722 2.5051 2.4691
4D-VAR (30 obs) 2.0373 2.0764 2.0141
4D-VAR (40 obs) .2933 .2983 .2822

of applying EnKF with 64 ensemble members and 4D-Var with
m = 6, observing 10, 30 and 40 components of the system in
Table 5. Note that the estimator, which is solely constructed using
noisy data wy), with k = 3 performs better than both the EnKF
and 4D-Var estimates observing 30 noisy components.

4.2. Prediction with smoothed training data

In the preceding subsection, we introduced a smoother for
denoising an out-of-sample sequence of noisy observations. In
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Table 4

RMSEs for smoothing the w(;) component of Lorenz-96 with F = 16 subject to
i.i.d N(0, 1) noise. The smoother is constructed using L = 300 eigenfunctions,
estimated from N = 20,000 training data points consisting of m = 6 sequential
observations. The RMSEs are calculated over a noisy trajectory consisting of
10,000 data points. The same out-of-sample trajectory was used for each of
the RMSE calculations.

k 1 2 3 4 5 6
RMSE .8768 .6688 .6543 7321 7946 .8935
Table 5

RMSEs for smoothing w1y component of Lorenz-96 with F = 16 subject to i.i.d
N(0, 1) noise. The configuration here is similar to that in Table 4.

No. Observation 10 30 40
EnKF 90558 .8802 .35061
4D-Var m=6 4,1632 4.052 36414

this subsection, we first denoise the noisy time series data using
the smoother and then use the smoothed data as a surrogate
for the true data to construct a kernel smoothing estimator as
discussed in Section 2.2. In the following numerical result, we
verify the prediction skill of employing these two steps given
noisy time series observations of the five-dimensional Lorenz-96
example from Section 3.3 and compare it with the true prediction
model.

The training data consists of N 20,000 sequences, each
consisting of sequential observations of the w(;) component of the
5D Lorenz-96 model observed at time steps of At = 1/64. How-
ever, unlike the example in Section 3.3, these observations are
generated by perturbing the true w(;)(t) component by N(0, 1)
noise. We also generate an additional N,,; = 10,000 sequences
as above for verification. We denoise both the noisy training and
verification data using the smoother E; y[Zk|Zm,] with k = 3,
mg = 6 and L 120. Here, we defined m; in place of m to
avoid the conflict of notation in the later discussion which refers
to m as the memory length in the kernel smoothing estimates.
The smoothed training data is then used to construct the kernel
smoothing estimator described in Section 2.2. Subsequently, the
kernel smoothing estimator is evaluated at each of the smoothed
verification data. We should point out that while each smoothed
verification data point required my; — k = 3 future observations,
the numerical experiments below, which evaluate the prediction
skill beyond 3At = 3/64 time units, are still valid prediction
tests.

In Fig. 7(a), we show the kernel smoothing estimates for dif-
ferent memory length, m, and the true trajectory, all starting from
a particular out-of-sample initial condition. While the prediction
is less accurate than the one obtained from the kernel smoothing
estimator constructed using noise-free data (see panel (c) form =
48), one can still see that the prediction is somewhat improved
as the memory length m is increased. This is also confirmed by
the RMSEs plot in panel (b). In panel (d), we overlay the RMSEs
in panel (b) with those corresponding to the prediction model
constructed from the noise-free data (as in Fig. 4). While the
model constructed from the noise-free data is more accurate, the
discrepancy between the noise-free model and the noisy model
decreases as m increases.

5. Summary

In this paper, we have studied aspects of forecasting and de-
noising of non-Markovian time series generated by partially ob-
served dynamical systems. Within the context of kernel methods,
where there is a mature theory on the consistency of empirical
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Fig. 6. Smoothed trajectories of w1y compared to the truth and noisy observa-
tions. The smoother is constructed as described in Table 4 for m = 6,k = 3.
The RMSE is .6543.

estimators, we have explored two distinct approaches, namely
projection-based methods using the Nystrom out-of-sample ex-
tension approach and smoothing methods using Markov integral
operators. We refer collectively to these approaches as kernel
analog forecasting (KAF) [21], since in many ways they can be
viewed as kernel-based generalizations of the classical analog
forecasting approach proposed by Lorenz in 1969 [25].

Previously, the consistency of KAF in the large-data limit
was studied from the perspective of the Nystrém approach [27],
where it was shown that, under suitable ergodicity assumptions,
the KAF estimator approximates the conditional expectation of
observables of partially observed systems acted upon by the
Koopman operator, thus yielding statistically optimal forecasts
in the L? (root mean square error) sense. Here, we have shown
that an analogous consistency property also holds if KAF is im-
plemented using a one-parameter family of Markovian kernels
in a limit of vanishing kernel bandwidth. The advantages of this
smoothing approach over the Nystrom estimator are that it is
positivity-preserving, and avoids the need for a kernel eigen-
decomposition. The latter carries the risk that the number of
eigenfunctions needed to approximate the conditional expecta-
tion is larger than what can be feasibly computed, both in terms
of computational cost and statistical robustness. This practical
limitation of the Nystrém method is particularly prone to oc-
cur when the covariate space is high-dimensional, as we have
demonstrated with numerical experiments involving a Hamilto-
nian system and the L96 system. In problems were the regression
function for the response (predictand) projects well onto the
leading kernel eigenfunctions, the Nystrom method is still the
method of choice, however.

Next, we studied the connection between KAF and the Mori-
Zwanzig (MZ) framework for reduced dynamical modeling with
memory. In particular, a major challenge in MZ approaches is
to construct appropriate projection operators onto the covari-
ate space (resolved dynamics), simplifying the structure of the
memory kernel and rendering it amenable to approximation. We
have argued that kernel methods provide a natural way of con-
structing improved projections by embedding the covariate data
into a higher-dimensional space using delay-coordinate maps.
This leads to a family of projections whose ranges are nested
subspaces of the L% space associated with the invariant measure,
increasing with the number of delays, and recovering the whole
of I? using finitely-many delays. Correspondingly, the MZ equa-
tion in this limit involves only a Markovian term, which was
estimated here nonparametrically.
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Fig. 7. Result of applying the kernel smoothing estimate on noisy observations of the first component of the 5D Lorenz-96 model with F = 8. The observations
were first denoised using the nonparametric smoother and subsequently used for training the kernel smoothing estimator discussed in Section 2.2. (a) Trajectory
of a particular out-of-sample prediction using the smoothed data for various memory lengths; (b) The corresponding RMSEs as functions of lead time for the
kernel smoothing estimator constructed using smoothed observations; (c) A comparison of the predicted trajectory against that constructed from the corresponding
noise-free data set for m = 48; (d) The RMSEs in panel (b) overlaid with the corresponding RMSEs obtained from noise-free data experiment (exactly the RMSEs in

Fig. 4(b)).

Our third topic of study was smoothing and predicting with
noisy data. We proposed a scheme whereby delay-coordinate
maps are used to obtain high-quality kernel eigenfunctions from
noisy data, which are then used for denoising via subspace pro-
jection. Using again the L96 model as a testbed, we demonstrated
that this nonparametric denoising scheme oftentimes outper-
forms classical state-estimation methods such as the ensemble
Kalman filter and the 4D-VAR approach. Once denoised, the data
can be used to train skillful forecast models via the Nystrém or
smoothing formulations of KAF.

Possible directions for future research include data-informed
methods for kernel design that bias the leading eigenspaces of
the corresponding integral operators such that they capture the
response variable with minimal loss, thus improving the perfor-
mance of Nystrom-based forecasting in high-dimensional covari-
ate spaces. In addition, the efficacy of delay-coordinate maps in
improving prediction skill of non-Markovian time series moti-
vates the development of non-parametric kernel-based method-
ologies to estimate individual terms in the MZ equation.
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