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Figure 1: EMU allows volumetric muscle driven skeletal motion for efficient quasi-static simulation. EMU simulates volumetric muscu-
loskeletal systems (left), complete with embedded, anisotropic fiber fields (middle), and correctly handles joints, stiff tendons, and bones to
provide a holistic approach to musculoskeletal animation (right). EMU is asymptotically much faster than FEM—10x faster on a mesh size
similar to the one above. (Video: 0m54s)

Abstract
EMU is an efficient and scalable model to simulate bulk musculoskeletal motion with heterogenous materials. First, EMU
requires no model reductions, or geometric coarsening, thereby producing results visually accurate when compared to an FEM
simulation. Second, EMU is efficient and scales much better than state-of-the-art FEM with the number of elements in the mesh,
and is more easily parallelizable. Third, EMU can handle heterogeneously stiff meshes with an arbitrary constitutive model,
thus allowing it to simulate soft muscles, stiff tendons and even stiffer bones all within one unified system. These three key
characteristics of EMU enable us to efficiently orchestrate muscle activated skeletal movements. We demonstrate the efficacy of
our approach via a number of examples with tendons, muscles, bones and joints.

CCS Concepts
• Computing Methodologies → Applied computing;

1. Introduction

An accurate portrayal of character motions in animation requires
biologically representative musculoskeletal simulations. Computer
graphics has a long and successful history of developing efficient
simulations of elastica [TPBF87]. However typical approaches suf-
fer from both modeling and performance issues when applied to

musculoskeletal applications. For instance, methods that rely on
using a coarse simulation mesh also coarsen the muscle fiber field
leading to difficulties generating realistic deformations, limitations
in the ability to resolve small anatomical features such as ten-
dons and numerical stiffening. Relying on fast, projective dynam-
ics methods limits the types of material models that can be ap-
plied, which can lead to simulated behavior that is both visually
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off-putting and unstable. Finally, subspace methods coupled with
optimized cubature can significantly alter the effect of material pa-
rameters making assets difficult to create as textbook material pa-
rameters cannot be used directly. In contrast, we provide an algo-
rithm that can produces visually indistinguishable, unreduced re-
sults that still scale well with the number of elements.

In this work we focus on quasi-static simulation of large-scale
muscle activated motion. Quasi-static simulations, in which the
inertial effects of the musculoskeletal system are ignored, are of-
ten used to animate movements. A well known example is Weta’s
Tissue solver which animates a large musculoskeletal motion as
a series of small quasi-static steps. Quasi-statics is ideal to an-
imate movements with slow-to-medium acceleration where sec-
ondary dynamics effects such as elastic wave propogation are vi-
sually unimportant. Time steps are essentially infinite, which leads
to a variety of special problems such as tunneling effects during
collision resolution.

Towards this goal, we propose an efficient finite element scheme
which allows for the unified simulation of muscles, tendons, bones
and joints, at high-resolution for both bone- and muscle-first appli-
cations. We combine our simulator with a manual authoring sys-
tem that allows a user to setup joints, build muscle fiber fields and
identify tendon regions, given input surface geometry of a muscu-
loskeletal system. Finally, we demonstrate the efficacy of our ap-
proach on a number of examples of musculoskeletal simulation.

To summarize, our method, EMU, offers the following three de-
sirable attributes:

• Visually accurate: EMU produces results visually comparable to
unreduced FEM.

• Efficient: EMU scales and parallelizes well.
• Heterogeneous: EMU simultaneously handles muscles, tendons,

bones and joints in a unified fashion.

2. Related Works

A classical approach for bulk musculoskeletal (many muscles and
bones together) simulation is to rely on standard finite element
methods (FEM) applied to high resolution meshes in order to cap-
ture the required musculoskeletal detail as implemented in Weta’s
Tissue software. However, such an approach is computationally in-
tensive, suffers from numerical stiffening on heteregenous mate-
rial, and is difficult to parallelize. Much of the subsequent research
has focused on accelerating this procedure. Most approaches are
stymied by three complicating factors:

1. The muscle constitutive model is complex, and so simple alter-
natives do not always provide robust, visually compelling re-
sults [SGK18].

2. The motion of a muscle is heavily influenced by the embedded
muscle fiber field. Using coarse meshes often leads to coarsen-
ing the fiber field as well, and this can therefore limit the space
of actuated poses the muscle can reach [IKKP17].

3. The musculoskeletal system is heterogenous and composed of
materials which exhibit wildly varying mechanical properties
(tendon is 1000× stiffer than muscle). These high stiffness ra-
tios can cause numerical stiffening which can “lock” the system
catastrophically [CLMK17].

Below, we review previous attempts at tackling the important, but
difficult problem of bulk musculoskeletal simulation.

One approach is to represent the musculoskeletal system using
line-of-force models. Here each muscle is represented not as a vol-
ume, but as a line (3D curve, potentially with wrapping surfaces or
via points) along which a contractile force can act, and the skeletal
system is represented as a system of articulated rigid bodies [LT06,
DAA∗07,SKP08,WHDK12,GvdPvdS13,LPKL14]. Lines of force
do not produce volumetric deformations or capture the richness of
muscle fiber configurations and require coupling with rigid skele-
tons [SSB∗15, TBHF03, TSB∗05, TSIF05, LST09, SLST14].

Coarsening the simulation mesh can also yield speed-ups but at
the cost of accurate deformations, as noted in Phace [IKKP17].
However muscle fiber fields must be ignored, or reformed via
experimentation [LGMP11]. Recently, fast projective approaches
have been applied to muscle simulation [LYP∗18]. These ap-
proaches necessitate coarsening the simulation mesh and also re-
strict the class of constitutive models that can be applied. This can
result in very stiff animations with artifacts [SGK18].

Eulerian methods have been used for musculoskeletal simula-
tion [FLP14] but these also eschew fiber field modeling and rely on
kinematic coupling to rigidly simulated bones. Finally, data-driven
approaches have also become popular [PMRMB15,KPMP∗17], but
these methods are designed for modeling the body as a whole and
do not model muscles.

Reduction approaches such as substructuring and pose space
methods are difficult to apply to bulk musculoskeletal simulation
due to various locking problems that result from complex biome-
chanical setups [BZ11,XB16]. Furthermore, reduction based meth-
ods limit material model choise and can significantly alter the be-
havior of nonlinear simulations [BEH18,AKJ08,FMD∗19]. Sparse
meshless methods [FGBP11] use frames and material-aware inter-
polation functions to significantly reduce the number of degrees-
of-freedom in the numerical system. However, these methods have
yet to demonstrate efficacy for large-scale, muscle-first simulation
and often require approximating force evaluation to achieve good
performance [GBFP11].

Multigrid methods promise exact solutions with linear scaling
[Bra77], and have been applied to a number of computer graphics
problems [ZSTB10, TJM15]. However, heterogeneous nonlinear
material, complex geometry, and time-varying activation present
the worst-case scenario for constructing effective multigrid hierar-
chies. We avoid this and operate on a single volumetric mesh di-
rectly.

In this paper we focus on developing an unreduced and effi-
cient algorithm for muscle-first simulation of musculoskeletal sys-
tems. The key to EMU’s success is its use of deformation gradients,
rather than nodal positions as the degrees-of-freedom of the simula-
tion. This bares a resemblance to discontinuous methods for shape
modeling [BPGK06, KMBG08]. However, stiching the continuous
mesh back together from discontinuous elements is still an open
problem. An alternative discontinuous approach is rotation-strain
coordinates which can unfortunately cause results to significantly
differ from the gold-standard finite element approach [PBH15].

EMU differs from previous discontinuous approaches by mea-
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suring discontinuity using the explicit minimizer of a coupling en-
ergy, rather than minimizing the coupling energy and physics en-
ergy of the system simultaneously. In this way, it has something
in common with projective dynamics [BML∗14, IKKP17] or Fast
Automatic Skinning Transforms [JBK∗12]. However details mat-
ter, and there are key differences between EMU and projective
dynamics as highlighted in Table 1. Although one component of
our energy term resembles the term in Projective Dynamics, rather
than minimize this energy using alternating projections or a variant
of the alternating direction method of multipliers [NOB16], we
leverage the algebraic properties of this energy to construct an effi-
cient quasi-newton algorithm [WN99] with capabilities beyond the
quasi-newton algorithms proposed in [LBK17, ZBK18, LGL∗19].

Figure 2: (Left) A simple, geometric hinge joint fixed at the top,
under gravity. (Middle) With our framework, the hinge operates as
expected. (Right) With BCQN the hingle locks.

Readers should note that even though we describe EMU as
a "quasi-newton method", we approximate our Hessian differ-
ently than other quasi-newton methods as described by 3.2.1. Un-
like EMU which uses an approximate Hessian to propagate sec-
ond order information across joints, recent quasi-newton methods
such as [ZBK18] and [LBK17] use a BFGS like approach with a
pre-conditioned Hessian which results in locking on the simplest
meshes as shown in Figure 3 and Figure 2. Our comparison in
Figure 2 shows the superiority of EMU for jointed systems. Other
quasi-newton methods are applicable solely to homogenous, elas-
tic, jello-like objects. Unlike EMU, they do not inherently support
heterogenous materials and joints. Thus for Figure 2, the hinge joint
is modeled geometrically as a shared edge between the two bone
regions.

Table 1 summarizes the advantages of EMU over recent projec-
tion based methods. Of these methods, [ARM∗19] and [LYP∗18]
are the two most recent ones focused on musculoskeletal deforma-
tion. EMU’s mesh density and muscle fiber density is much higher
with noticeably better volume preservation. EMU handles tendons,
which are three orders of magnitude stiffer than muscles. We han-
dle joints and bones without any coupling terms. And we allow ar-
bitrary constitutive models. EMU is a high performance algorithm
with capabilities beyond those demonstrated by previous works.

3. Method

We model the bulk motion of a musculoskeletal system as a qua-
sistatic elasticity simulation driven by varying activation of mus-
cle groups. In this paper, we do not consider dynamics-dominated

motions (e.g., leaping, running, punching); instead we ignore in-
ertial effects and focus on the muscle-driven deformation of the
musculoskeletal system by assuming slowly accelerating (but non-
trivial) activations. In the language of continuum mechanics, this
quasistatic deformation at some time t can be written as the solu-
tion to a scalar energy minimization problem

argmin
q

∫
Ω

Ψiso(F(q))+Ψfiber(F(q),u,a(t))−W (q) dQ,

subject to pin and joint constraints
(1)

over the domain ω , where F : ω→R3x3 is the deformation gradient,
q : ω → R3 is deformed positions of corresponding rest positions
Q : Ω→ R3 over the domain Ω. The internal potentials Ψiso and
Ψfiber are in general spatially varying, parameterized by materials,
and defined as functions of the deformation gradient F which is
based on q.

In particular, Ψiso is a Neo-Hookean isotropic elastic potential
constructed to be significantly stiffer in bone and tendon regions
of the domain than in the muscles. Meanwhile, Ψfiber represents
the active fiber-reinforcement parameterized by the muscle fiber
direction u : Ω→ S2 and time-varying activation function a(t) : Ω×
R≥0 → R. Work induced by external loads is captured by W , and
we consider constraints to the system such as pinning points, fixing
regions (e.g., entire bones) or constraining neighboring bones to
rotate according to a specified joint (see subsection 3.3). Without
loss of generality, we omit W for the next section of this discussion
and reintroduce it later on.

While we use stable Neo-Hookean materials [SGK18] and a
standard model of muscle behavior as a fiber reinforced compos-
ite [TBHF03], the discretization and numerical methods to follow
accept any valid potential energy for Ψiso and Ψfiber.

Discretizing and optimizing the problem in Eq. 1 is numerically
daunting due to fiber anisotropy and the large disparity in ma-
terial stiffness (bones, tendons, and muscles have Young’s mod-
uli of ∼1010 Pa, ∼108 to ∼109 Pa and ∼105 Pa respectively as
noted in [MP99,RKSZ98]). Discretizing bones and muscles differ-
ently requires awkward coupling constraints [SSF08] (e.g., treating
bones as perfectly rigid objects and muscles as soft bodies). Even
state-of-the-art coupling algorithms [WWB∗19] require chain-rule-
like computations to implement linearly-implicit time integration,
which is significantly more complex than the non-linear statics
solve that EMU performs. Meanwhile, direct simulation with the
finite-element method suffers from numerical instability and poor
convergence due to the high condition number of the resulting sys-
tem. EMU’s framework preserves the near perfect rigidity of real
bones, stiffness of tendons and the compliance of soft muscles,
without the overhead of any coupling constraints.

3.1. Discretization

We propose discretizing the problem in Eq. 1 using a variable sep-
aration approach. Let n and m be the the number of vertices and
tetrahedra, respectively. We use vertex positions q ∈ R3n to track
the volumetric deformation and introduce independent variables
representing the deformation gradient Fi ∈ R3×3 for each tetrahe-
dron, i ∈ {1, . . . ,m}.
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Muscle Driven
Motion

Handles
Joints

Anisotropic
Fibers

Nonlinear
Stiffness

Handles
Tendons

No Coupling
Terms

EMU Y Y Y Y Y Y
[ZBK18] BCQN N N N Y N N
[LGL∗19] DOT N N N Y N N
[LBK17] Liu et al. N N N Y N N
[KDGI19] Kim et al. N N Y Y N N
[ARM∗19] VIPER N Y Y N N N
[LYP∗18] Lee et al. Y N Y N N N

Table 1: Comparing the capabilities of EMU against some of its contemporaries. ’Y’ indicates the capability is supported. ’N’ indicates it
is either not supported or not demonstrated in the paper. EMU alone supports all the features highlighted above. The column "No Coupling
Terms" refers to the necessity of having extra coupling terms for rigid bones and soft muscles in other methods. EMU is the only method that
handles muscles and bones in one unified framework.

For piecewise-linear finite-elements, the deformation gradient of
a tetrahedron is linearly dependent on the deformed vertex posi-
tions: qi1−qi4

qi2−qi4
qi3−qi4

> = Fi

Qi1−Qi4
Qi2−Qi4
Qi3−Qi4

> . (2)

where qi j and Qi j are the deformed and rest vertex positions of the
jth corner of the ith tetrahedron, respectively.

However, we do not require strict satisfaction of this equation.
Instead each independent deformation gradient Fi is free to repre-
sent deformations of a much wider class of meshes than the con-
tinuous tetrahedral mesh parametrized by vertex positions q. How-
ever, since we are ultimately interested in visualizing the contin-
uous deformations, we find the nearest continuous mesh, q∗, by
satisfying Eq. 2 in a least-squares sense:

EC(q,F) =
1
2

m

∑
i=1

∥∥∥∥∥∥∥
qi1−qi4
qi2−qi4
qi3−qi4

>Qi1−Qi4
Qi2−Qi4
Qi3−Qi4

−>−Fi

∥∥∥∥∥∥∥
2

=
1
2
q>G>Gq−q>G>F+

1
2
F>F

(3)

where F ∈ R9m is a single vector stacking coefficients of all m per-
tet deformation gradient variables and G ∈ R9m×3n is the sparse
matrix that computes the actual deformation gradients from the
mesh deformed according to q.

This energy is zero when the deformed mesh implied by F is
continuous. In other words, this energy describes the distance be-
tween our independent DOFs F and some continuous mesh repre-
sented by vertices q. This amounts to a poisson-like solve with a
constant Laplacian similar to [YZX∗04] where the poisson equa-
tion is viewed as an alternate to least-squares minimization. In
our least-squares reconstruction of the nearest continuous mesh,
the nullspace corresponding to rigid transformations is removed
by fixing vertices in at least one bone. We refer to EC as the as-
continuous-as-possible (ACAP) energy.

Given a particular set of deformation gradients F, the optimal

deformed vertex positions (or nearest continuous mesh) q∗ that
minimize EC are the solution to a sparse linear system:

q∗ = argmin
q

EC(q,F) =
(
G>G

)−1
G>F. (4)

Out of all other continuous mesh representations q, continuous
mesh represented by q∗ most closely resembles our deformation
gradients F. Any change in F would require us to re-solve the equa-
tion above for a new q∗, thus making q∗ a function of F.

Since, q is now a function of F, we can discretize the energy
minimization Eq. 1 as a minimization over only F:

min
F

Ψiso(F)+Ψfiber(F,u,a(t))+αEC(q(F),F))−W (q(F))︸ ︷︷ ︸
E(F)

(5)

where α ≥ 0 is a scalar parameter controlling the continuity implied
by F. Intuitively, we have replaced the hard constraint on continuity
implied by standard finite element approaches, with a soft penalty
approach, which will yield dividends later on. For all finite choices
of α , the deformation gradient variables can break continuity to
provide a type of compliance in the system, which aids optimiza-
tion. A higher α generally means a higher level of continuity. As
with all penalty methods, α can be chosen by the user to achieve
a desired effect; however, in section 3.7 we will detail an effec-
tive heuristic for choosing an α that provides both good simulation
performance and visual accuracy.

With this variable separation we can see that the internal poten-
tial terms Ψiso and Ψfiber in Eq. 5 no longer depend on the de-
formed vertex positions q. Furthermore, if these are discretized us-
ing the standard piecewise-constant strain assumption, these terms
become easily parallelizable summations over the tetrahedra. The
computation at each tetrahedron only depends on data associated
with exactly that tetrahedron (even the EC term is easily paralleliz-
able as matrix-vector multiplications):

Ψiso(F) =
m

∑
i=1

Ψiso(Fi), (6)

Ψfiber(F,u,a(t)) =
m

∑
i=1

Ψfiber(Fi,ui,ai(t)). (7)
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In our examples, we use the (non-linear) inversion safe Stable
Neo-Hookean energy [SGK18] for Ψiso. Since biomechanical sim-
ulations do not require extreme elemental deformations, a non
inversion-safe energy would work just as well as Stable Neo-
Hookean as long as inversions are penalized by assigning a large
(1e40) energy value to inverted elements. For Ψfiber, we use linear
activation [TBHF03] along a piecewise-constant direction field:

Ψfiber(Fi,ui,ai(t)) = ai(t)u>i F
>
i Fiui, (8)

where ai(t)≥ 0 is the non-negative activation at the ith tetrahedron
at time t, and ui ∈ S2 is the unit-length fiber direction vector at the
ith tetrahedron.

3.2. Descent-direction solver choice

Next we turn to the question of how to best minimize Eq. 5.
One option is BFGS. BFGS [WN99] or its limited-memory vari-
ant (LBFGS) are quasi-newton methods that are both popular and
effective for physics simulation [BC80]. These approaches have
the benefit of only requiring the gradient of the objective function,
avoiding expensive Hessian computations. The gradient of Eq. 5
can be computed as:

dE
dF

=
∂Ψiso

∂F
+

∂Ψfiber

∂F
+α

dEC

dF

=
∂Ψiso

∂F
+

∂Ψfiber

∂F
+α

∂EC

∂F
+α

�
�
�7

0
∂EC

∂q

∂q

∂F
,

(9)

where

∂EC

∂F
= Gq(F)+F=−G

(
G>G

)−1
G>F+F. (10)

Here we utilize the optimality of q(F) to eliminate the term de-
pending on ∂EC/∂q. This dE/dF can be computed efficiently by
precomputing a sparse factorization of the constant sparse symmet-
ric matrix G>G ∈ R3n×3n.

Figure 3: BFGS approximates the Hessian using only gradient in-
formation. This leads to catastrophic locking at joints. Our method
works as expected.

Unfortunately, our experiments showed that the BFGS method
can get immediately stuck in a locked configuration. This is espe-
cially likely once we later introduce joint constraints. Because the
physics energies are completely decoupled (Ψiso and Ψfiber depend

only on Fi of each tetrahedron), it becomes the job of EC to dis-
tribute motion throughout the system. At the initial position, both
EC and ∂EC/∂F are 0. Upon activation of a muscle, the individual
muscle tetrahedra contract, but there is no movement induced in the
bones. Because bones and tendons are very stiff relative to the mus-
cles, the system will remain in place, unable to transfer the force
created by muscle contraction across the joints (Figure 3). Essen-
tially, this force transfer is a second-order effect and is not captured
by the gradient, which only provides information about each tetra-
hedron in isolation. Previous work shows BFGS is not well suited
for this type of application [ZBK18]. Even pre-conditioning the
LBFGS search direction does not sufficiently capture the second-
order effects needed for joint motion.

To incorporate these second-order effects, the natural solution
would be to simply use newton’s method. However standard new-
ton’s method requires the computation of the Hessian matrix:

d2E
dF2 =

∂ 2Ψiso

∂F2 +
∂ 2Ψfiber

∂F2 +α
∂ 2EC

∂F2 , (11)

where

∂ 2EC

∂F2 =−G
(
G>G

)−1
G>+ I. (12)

Terms ∂ 2Ψiso
∂F2 and ∂ 2Ψfiber

∂F2 are sparse, block diagonal and simple to

compute. However, the last term ( ∂ 2EC
∂F2 ) requires taking the inverse

of a sparse matrix (which is dense), making a direct computation
of the Hessian intractable for all the but smallest of examples. For
example, on a mesh with 50k tets, the dense inverse would be 1GB
large. Many of our examples are similar in size or larger. Thus, even
construction of this dense Hessian is prohibitory, let alone compu-
tation with it. Therefore, standard newton’s method is not viable for
EMU.

Figure 4: Eigenvalue spectrum of G>G for all the examples. Re-
gardless of the example mesh, the first 48 eigen-modes capture most
of the variance in G>G. Thefore we choose a number of eigen vec-
tors that encompasses 90 percent of the spectrum.

3.2.1. Alternative Quasi-Newton Method

Instead we derive a new quasi-newton approach, similar in asymp-
totic performance to the standard BFGS update. A quasi-newton
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method is one which doesn’t use the exact Hessian [WN99]. Mo-
tivated by this we derive a fast new way to evaluate approximate
Hessian which uses the exact Hessian for the first two sparse, block-
diagonal terms (∂ 2Ψiso/∂F2 and ∂ 2Ψiso/∂F2) but approximates
the last, dense term ∂ 2EC/∂F2 using a low-rank approximation.

The dominant step in Eq. 11 is the inversion of the large matrix
G>G. Therefore, we take the eigen decomposition:(

G>G
)−1
≈ D = Φ

>
Λ
−1

Φ, (13)

where Φ ∈ Rk×3n collects the eigen vectors corresponding to the
lowest k eigen values, which are placed along the diagonal of
Λ ∈ Rk×k. Observing the eigenvalue spectrum of G>G (Figure 4),
we justify a reduction via the first k << m eigen-modes. In this
case, we notice that k = 48 sufficiently describes over 90% of the
variance in G>G for all our examples.

Substituting Eq. 13 in Eq. 11 results in an expression that still
does not yet admit efficient solving with the Hessian, which is now:

d2E
dF2 ≈ H−αB>Λ

−1B, (14)

where

H=
∂ 2Ψiso

∂F2 +
∂ 2Ψfiber

∂F2 +αI and B= ΦG>. (15)

The matrix H ∈ R9m×9m is composed of 9× 9 blocks along the
diagonal. A key insight now becomes apparent. We can make use of
the Woodbury matrix identity (see, e.g., [JP99]) which holds that:

(A+UCV )−1 = A−1−A−1U
(

C−1 +VA−1U
)−1

VA−1, (16)

for correctly sized matrices A,U,C,V (and A,C invertible).

Applying the Woodbury matrix identity to the inverse of the Hes-
sian expression in Eq. 14 produces:

(
d2E
dF2 )

−1 ≈ H−1 +αH−1B>
(

Λ−αBH−1B>
)−1

BH−1. (17)

Each iteration of our quasi-newton solver will need to multiply this
expression on the right with the gradient dE/dF from Eq. 9 to de-
termine the step direction. We can compute this action very effi-
ciently: to solve against H we precompute a 9×9 dense factoriza-
tion corresponding to each tetrahedron and conduct back substitu-
tions in parallel. We also use this action to compute the dense k×k
matrix Λ+αBH−1B> in Eq. 17 and then solve against it (e.g., us-
ing a factorization method at run-time). Multiplications against the
precomputed k×9m dense rectangular matrices B are conducted in
parallel using Eigen [GJ∗19].

Our Hessian approximation is guaranteed to be symmetric-
positive-definite (SPD) since each term is SPD (we use the standard
definiteness fix for the elastic energy). Therefore, our quasi-newton
search direction (derived via a low rank approximation of only the
dense term) is guaranteed to be a descent direction.

Once the step direction is computed, we use a back-tracking line
search, satisfying the Armijo condition, to ensure sufficient de-
crease in the objective so our method converges to a local mini-
mum. Unlike modal reduction methods (e.g., [XB16]) which per-

manently alter the solution space, we only use the eigendecompo-
sition to build an approximate Hessian and retain the exact gradi-
ent. Importantly, our quasi-newton optimization approximates the
search direction, but solves the full-space problem in Eq. 5.

hinge jointball joint

Ti Ti

Tj Tj

pij

pij

qij

Figure 5: Joints are implemented as algebraic constraints on the
vertices of corresponding bones. We employ two types of joints.
Ball joints (left) and hinge joints (right).

3.3. Affine Bones

Armed with an efficient solver for muscles, we turn our attention
to adding bones to the system. Remarkably, our method allows us
to model bones, muscles and tendons in one system without any
coupling terms. Due to their stiffness, bones deform negligibly and
so, we chose to represent all the Fi for a bone mesh by a single
deformation gradient. We model bone rigidity by applying a very
high young’s modulus to the bone elements and ensure the rigidity
of the deformation gradient translates to rigid motion of the bone
vertices through a constraint as shown in Eq. 20 by the constraint
Bqq = BF F . In this equation B f F are the deformation gradients of
the bones elements and Bqq represents the deformation gradients
of the bones on the continuous mesh.

q∗ = argmin
q

EC(q,F) =
(
G>G

)−1
G>F, (18)

s.t. Bqq = BF F (19)

Jq = 0 (20)

In Eq. 4, rather than represent the position of bones using their
vertex positions, we instead use a single affine transform for each
bone. Joint constraints can then be represented as affine constraints
Jq = 0 added to Eq. 20 and shown geometrically in Figure 5. The
joint constraint expresses that for each joint connecting two bones,
the deformation of bone one and bone two, as applied to the points
of the joint, are the same, thus Jq = 0. This yields a KKT system,
shown in Eq. 21, where the left-hand-side is a constant. Though,
theoretically, ε1 = ε2 = 0, in practice however, both the joint con-
straint and bone constraints apply to the same DOFs. Therefore, we
introduce a little slack into one of them. By setting ε1 = −1e− 4
we prevent numerical problems while ensuring the deformation re-
mains virtually unaffected.GTG JT BT

J ε1 0
B 0 ε2

 q
λ1
λ2

=

GT F
0

BF F

 (21)

For best performance we use the parallelizable Pardiso solver.
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Iterative methods are not competetive since the left-hand-side can
be pre-factored (we tested Conjugate Gradients and found it to
be slower). Thus EMU is able to handle muscle, tendons, bones
and joints all within one contiguous system without the need for
coupling terms. In practice we find that it is useful to incorporate
weights proportional to material stiffness into Eq. 4 for muscles and
tendons, but not for bones. For bones, this is akin to adding a very
stiff spring to the physical system which can lead to locking.

ALGORITHM 1: Our contact-aware iterative newton solver.
Data: F- Initial guess for deformation gradients
Result: F- Updated deformation gradients

1 //Line search step size
2 σ ← 10
3 //Line search f tolerance
4 c← 10−4

5 //Line search decrement
6 ρ ← 0.5
7 do
8 //Calculate initial energy
9 ei = Ψ(F)

10 //Calculate the gradients

11 g← dΨ(F)
dF

12 //Woodbury method to find the search direction
13 d←H(F)−1g
14 //Backtracking line search to find step size
15 do
16 //Update temp F with descent direction
17 Ftemp = F+σd
18 //ACAP solve from Eq. 20
19 q= argminq Ec(q,Ftemp)
20 σ ← ρ ·σ
21 while (Ψ(Ftemp)< ei +σcg>d);
22 //Update F with new descent direction
23 F← F+σ ∗d
24 //Vertex-wise gravity force on the continuous vertices. Mg is

the full mass matrix times the per-vertex gravity accelerations.
25 v←Mg
26 //At first set external work gradient (negative external force) to

gravity by Eq. 22
27 gext = ExternalForces(v)
28 //Compute contact forces that counteract mesh overlap.
29 do
30 //Run [HTK∗04] on the continuous vertices
31 fc = CollisionForces(q)
32 //Update external work gradient
33 gext← gext− fc
34 //Woodbury method to update the search direction with

contact forces
35 dcontact←H(F)−1gext
36 //Update temp F with descent direction
37 Ftemp = F+dcontact
38 //ACAP solve from Eq. 20
39 q= argmin Ec(q,Ftemp)

40 while (‖δ fc‖< εcontact );
41 //Update F with descent direction accounting for external force
42 F← F+dcontact

43 while (‖g‖< ε1 or (Ψ(F)− ei)< ε2);

Additionally, we find that in order to prevent locking while in-
creasing the quality of the deformation, certain liberties must be

taken with joint and bone deformation constraints in Eq. 20. Bones
on the continuous mesh must be allowed to slightly deviate from the
discontinuous elements during newton’s method in order for the al-
gorithm to find a good search direction as shown in Figure 6. This
requires a loosening of the bone deformation constraint in Eq. 21
during newton’s method by setting ε2 = −1e− 3 while tightening
the joint constraint by setting ε1 = 0. After the method has con-
verged, the constraint can simply be updated ε2 = 0 to ensure strict
adherence of the bone vertices to the bone’s deformation gradient
and introducing a negligible slack on the joint as ε1 =−1e−4.

Figure 6: During newton’s method, we update the constraints on
Eq. 4 in order to introduce compliance between the bone F and the
bone’s vertices. Notice the length of the bone temporarily changes
within the quasi-newton method allowing the muscle elements to
attain a plausible deformation without locking the system. After
convergence, Eq. 4 is run once more with updated constraints that
ensure the bone F exactly match the continuous mesh, thus verify-
ing that the bone does not deform.

3.4. External Forces

External forces such as gravity can be applied to our system using
the standard Jacobian transpose method for converting per-vertex
forces acting on the continuous tetrahedral mesh to generalized
forces acting on the per-tetrahedron deformation gradients. The rate
of work done by an external force is given by

q̇T fff ext = Ḟ
>
((

G>G
)−1

G>
)>

fff ext︸ ︷︷ ︸
Generalized Force: ν

. (22)

For constant forces, such as gravity, the work in Equation 1 be-
comes F>ν where ν can be efficiently computed at startup using
the prefactored G>G. During the optimization, fext is added as a
constant external force.

3.5. Collision Resolution

Although not the focus of this work, the advantage of using a quasi-
newton search strategy for optimization is that we can easily incor-
porate standard collision resolution into the algorithm — all that is
required is a method of: (1) detecting collisions in between muscles
and bones and (2) computing forces that will resolve these colli-
sions. For (1) and (2) we rely on [HTK∗04]. We run collision res-
olution after the line search in our quasi-newton method to ensure
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that our meshes are collision free at the end of each newton iter-
ation, similar to other projection based algorithms for contact and
constraint handling. In line 43, we show the details of our particu-
lar implementation. We exploit the efficiency of inverting the EMU
Hessian and our prefactored ACAP Hessian to propagate per-vertex
contact forces through the mesh efficiently. These two properties
can be exploited in other contact-aware gradient based algorithms
as well. We typically allow a small amount of overlap in our simu-
lations as it helps to reach converged solutions in cases with many
closely conforming muscles. In general contact handling in such
scenarios remains an open problem in graphics that we leave for
future explorations.

It should be noted that although we show, for the benefit of
the reader, that standard collision resolution methods work within
EMU, this interpenetration is biologically infeasible. Muscle and
bones are surrounded by sheaths of connective tissue called fascia,
which limit deformation and limit contact. The simplest and most
biologically accurate solution for interpenetrating muscles would
be to fuse the muscle meshes together and activate each section
separately.

3.6. Modeling

Our musculoskeletal models start life as separate triangle meshes
for each bone and muscle. In all our examples, we must manu-
ally set joint locations for each socket and hinge joint. Next, we
fuse muscle and bone meshes by manually overlapping them and
then tetrahedralizing using TetWild [HZG∗18,SCM∗18]. After this
stage, each tetrahedron is labelled as either muscle or bone. We
manually select muscle tetrahedra near the origin and insertion of
each muscle to serve as tendons. Finally we assign material proper-
ties to our tetrahedral mesh. For muscles we use Young’s Modulus
of 6e6 Pa, bones 1e10 Pa and tendons 4.5e8 Pa to 1.2e9 Pa derived
from biological measurements. We use a Poisson’s ratio of 0.49 for
all materials.

heat solution fiber direction

f

f = 1

f =  1
u =

f

f

Figure 7: The muscle fiber directions u are computed as the gradi-
ent direction of a solution to the heat equation ∆ f = 0 with sources
and sinks at opposite attachment points.

For each muscle, we automatically compute a fiber direction u
using the heat equation. We set Dirichilet boundary conditions of
1 and −1 at insertion and origin points of the muscle and compute
the equilibrium heat distribution. We take the normalized gradient
of this field to be the fiber direction shown in Figure 7.

3.7. The Weighting Paramter

With all the pieces of EMU in place, we can now detail how we
choose the ACAP energy weighting term, α . On homogeneously
stiff muscle meshes, higher α values produce deformations closer
to FEM (Figure 8). However, since higher α increases the stiffness
of the system, it non-linearly increases the number of newton iter-
ations to convergence. For example, the 22k homogenous muscle
mesh at α = 1 requires 21 newton iterations to converge while at
α = 1e8 it requires 42,151 iterations. On the other hand, an exceed-
ingly small α will allow the continuous mesh to drift away from the
deformation gradients.

Figure 8: Measures the Hausdorff distance divided by the rest
length of the mesh between EMU results varying α values and the
FEM result on a 2k tet muscle and 22k tet muscle with homogenous
stiffness. As α increases the distance goes to 0.

With the addition of stiff tendons and bones into the system, the
relationship between α and distance from FEM deformations is not
as clear, as shown in Table 2. Under an exceedingly high α the stiff
region’s continuous mesh will not be allowed to deviate from the
deformation gradient. As explained in subsection 3.3 and shown in
Figure 6 this will lock the deformation since the bone vertices will
not be allowed to deviate from the bone F during the optimization.
However, experiments show that there exists a value of α which
results in deformations that resemble FEM even more closely than
ADMM. Therefore, we provide a heuristic below to find a good α .

To find a good α we linearly search over the 1D space of weight-
ing parameters (starting with α = 1) and tally the number of newton
iterations taken by EMU for some fixed muscle activation. We in-
crease α until we observe a sharp increase in the number of New-
ton terations per step. We take the alpha immediately before this
increase motivated by notion that penalty term optimizations ad-
mit an optimal alpha that exhibits fast convergene to the local opti-
mum [WN99]. We have found this heuristic generates good visual
agreement with finite element results and also optimizes for speed
as shown in Figure 9. Let us note that our experiments illustrate
that EMU produces visually pleasing results (though with differing
deformations) for all values of α . Ultimately, animation involves
a fair bit of artwork, and visual appeal is subjective. Alpha can
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Tets 12,184 51,271
Error Error

FEM 0.000 0.000
ADMM 7.048 7.381
EMU α = 1e0 12.095 11.119
EMU α = 1e1 8.214 6.428
EMU α = 1e2 2.143 1.500
EMU α = 1e3 2.381 3.214
EMU α = 1e4 1.667 3.119
EMU α = 1e5 8.095 5.786

Table 2: Accuracy comparisons between ADMM, EMU and FEM
with muscle activation under gravity. The error measured here is
the Haussdorf distance from FEM for each result, divided by the
rest-state length of the mesh.

be used to tailor the visual output of the EMU simulation in more
artistic applications.

Figure 9: Comparison of ADMM, FEM and EMU on fusiform
muscles hanging under gravity. EMU results vary with the chosen
alpha parameter but the optimal alpha chosen using our heuristic
produces excellent agreement with the FEM solution and is more
accurate than ADMM.

4. Results and Discussion

We simulate a variety of musculoskeletal geometries using EMU.
The tetrahedral count of our models range from a small 3k tetra-
hedron soft robot to a large 600k tetrahedron muscle as shown in
Table 3. Not included in the table below were the various sized
simple fusiform meshes generated for the performance and scal-
ability tests. For each mesh, the initial step involved finding the
first k modes of the Hessian (Eq. 17) once, upfront. The runtime
of this pre-processing step differs significantly based on the mesh
connectivity and number of bones in the mesh, but ranges from sev-
eral seconds to several minutes for our larger examples. The second
pre-processing step involves choosing an α . This involves, at most,
10 Newton solves on the mesh. However, since these are one time
operations, we exclude them from our performance numbers.

Model Num Tets Bones Muscles
simple fusiform muscle 600k 2 1
simple bipennate muscle 12k 2 1
simple contacting muscles 20k 2 2
curved contacting muscle 11k 2 1
elephant head 29k 2 2
bicep 33k 3 1
leg 43k 4 5
upper arm 33k 4 6
soft robot wheel 3k 2 2
soft robot hand 18k 7 9
cartoon skull 48k 2 4
chest-arm-back 47k 5 11
Fruit picker 289k 6 6
Quadropus 220k 5 8

Table 3: Musculoskeletal models simulated with EMU.

EMU exhibits excellent performance when compared to the
state-of-the-art open source FEM solver [Lev19]. Our FEM al-
gorithm uses Stable Neo-Hookean elasticity from [SGK18] solved
using the open source Pardiso solver, [DCDBK∗16, VCKS17,
KFS18]. We compare the performance of both algorithms in terms
of scaling with respect to mesh size and scaling with respect to
number of available CPU cores. For testing we measured conver-
gence of both methods by checking if the change in energy of an
iteration was < 1e− 2. We found this sufficient to produce results
with excellent visual fidelity. Single-core scaling tests were per-
formed on Intel Core i7-6700HQ CPU (2.60GHz). Multi-core tests
were performed on a Dual Intel Xeon Gold 5120 (2.20GHz). Scal-
ing tests were done on our simple fusiform muscle (Figure 20). Ev-
ery mesh, including the 600k tetrahedral mesh ran without memory
issues on a 16GB RAM laptop. Since we only use fixed size dense
matrices, memory usage is not a problem in our simulations.

On a single core machine, EMU scales better than state-of-the-
art FEM, as a function of number of mesh tetrahedra (Figure 20).
Our most intensive operations are a sparse back substitution re-
quired to solve Eq. 4 and a dense matrix inversion required to com-
pute the Woodbury identity. For a given example, increasing mesh
resolution does not have a large effect on the spectral characteris-
tics of the Hessian in Eq. 4. Thus k (Eq. 17) typically stays con-
stant so the cost of the required dense solve remains fixed. The
effect of this is that EMU is faster than FEM for all but the small-
est examples and, for medium to large meshes, impressively so –
exhibiting speedups of over 20×. This is particularly impressive
when one considers that EMU is not reducing the solution space in
any way; it is solving the same problem as the FEM discretization.
Even though not specifically designed for simulating isotropic, ho-
mogenous materials, EMU retains its performance advantage over
FEM. We tested the performance on the Stanford Bunny mesh, up
to 40k tetrahedra and observed a 5-6x speed-up over state-of-the-art
FEM solver.

EMU also parallelizes well. We observe a further 3x performance
improvement by running EMU on a 12 core machine (hyperthread-
ing disabled). As discussed, the EMU Hessian update is extremely
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parallizable. The bottleneck in our implementation comes from the
limited ability of the linear solver (Pardiso) to efficiently parallelize
the backsolves needed to minimize the ACAP energy. Exploiting
other solvers with better parallel scaling would improve EMU per-
formance even further.

Our contact-aware solver is able to simulate muscles in close
contact and allows EMU to exert force along relatively complex
muscle paths. The top row of Figure 10 shows two fusiform mus-
cles in a side-by-side configuration. The muscles are isometrically
contracted (the bottom bone is fixed) and then the bone is released
allowing the muscles to fully contract. Our contact solver prevents
interpenetrations in both cases. The bottom row of Figure 10 shows
a muscle with a sharp bend. Contracting the fibers in this muscle al-
lows it to exert force around a corner and apply a vertical force to
the square bone at its end-point. Again, the EMU contact solver
prevents the muscle from contracting into the underlying bones.

Figure 10: Examples of muscles in contact, simulated using EMU.
Top: EMU prevents side-by-side muscles from interpenetrating un-
der both isometric, and full motion contraction. Bottom: A muscle
with a sharp bend pulls a square bone around a corner. (Video:
1m05s, 1m50s)

Next we show that EMU can generate realistic large scale

Figure 11: A simulated elephant trunk. EMU can efficiently gen-
erate realistic, large deformation motions of this elephant trunk by
contracting the appropriate muscles. Bottom: Muscle arrangement
of the trunk. Muscle fibers run along the trunks length. (Video:
2m05s)

Figure 12: Simulating the motion of the humerus, radius and ulna
induced by contracting the bicep. The bicep is a biarticular muscle
which connects the shoulder directly to the forearm, skipping the
humerus entirely. EMU can handle such complicated muscles

muscle-first motions by simulating an elephant trunk (Figure 11).
The cross-section of the trunk is divided into quarters with each
quarter being an independent muscle. Fibers run along the length
of the trunk and contracting various muscles causes the trunk to
bend. We simulate the canonical elephant feeding motion – the ele-
phant reaches up to grab food, then bends the trunk in the opposite
direction to bring the food to its mouth.

One of the advantages of the EMU deformation gradient formal-
ism is the ease with which joints can be incorporated. Figure 12
shows how the contraction of the bicep drives the motion of the
humerus, radius and ulna. This is because the bicep is biarticu-
lar – it connects the shoulder directly to the forearm. Motion of
the humerus results from the forearm being driven by the muscle.
EMU effortlessly handles complicated muscles such as this and is
able to properly transmit forces from the contracting muscle and
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Figure 13: Simulating the motion of a leg, induced by contracting
the hamstring. (Video: 0m41s)

through both the elbow (modelled as a hinge joint) and the shoul-
der (modelled as a spherical joint). Figure 13 shows a simulation
of a contracted hamstring which drives the large scale motion of a
multi-muscle leg. This shows the ability of EMU to generate re-
alsitic, muscle-first motion in the presence of multiple muscles,
joints, tendons and bones.

EMU has uses beyond biomenchanical simulation. In Figure 14
(Top) we simulate a pneumatically actuated mechanism. This
mechanism can rotate its outer ring when its pneumatic actuators
are activated. EMU’s ability to handle deformable and rigid bodies,
connected with joints, is perfect for such applications. Figure 14
(Bottom) shows the simulation of a soft robotic gripper which
reaches down and grasps a ball. Next, we present two more ex-
amples. In Figure 15, a robot which can pick ripe fruits for juicing
simulated by 289k tets at 13.3 seconds per frame. And in Figure 16
we present a squid-like creature discretized by 200k tets simulated
at 127.9 seconds per frame.

Finally we turn our attention to more complex biomechanical
models. Figure 18 demonstrates EMU’s ability to generate simu-
lations using realisitc biomechanical activation sequences. In this
figure we simulate a bicep contraction, followed by a tricep con-
traction. This first flexes the elbow and then hyperextends. This
example shows off all of EMUs features, its efficiency, and its abil-
ity to seamlessly animate bones, tendons and muscles to generate
muscle-first bulk musculoskeletal motion. Figure 19 illustrates the
use of EMU to generate muscle-first head motion. This cartoon
head roll is completely driven by muscle actuations of the four neck
muscles. EMU allows us to flex the muscles of this complex upper
body model (Figure 1) to get a biomechanically feasible pump. Fi-
nally we can also use EMU to add muscle motion on top of scripted

Figure 14: EMU can also be used to simulate pneumatically ac-
tuated mechanical systems. Here we use EMU’s ability to simulate
deformable objects, joints and rigid bodies, to simulate (Top) this
soft mechanism that can rotate its outer ring when its actuators are
contracted and (Bottom) a soft robotic grasper. (Video: 2m25s)

Figure 15: A 289k tetrahedron fruit picking robot which rolls
back and forth along the rails, grabs fruits and drops them.(Video:
2m19s)

bones, like this arm mesh (Figure 17) which is animated to rotate
through a large motion, and creates natural looking complimentry
muscle motion.

5. Conclusion and Future Work

We have presented a new, efficient algorithm for bulk muscu-
loskeletal simulation. Our algorithm is a multi-objective, discon-
tinuous iterative approach to finite element simulation which uses
a novel, minimal energy penalty to enforce continuity. We demon-
strate how this approach leads to the construction of an efficient al-
gorithm for musculoskeletal simulation which at run time requires

submitted to COMPUTER GRAPHICS Forum (11/2020).



12 V. Modi & L. Fulton & A. Jacobson & S. Sueda & D.I.W. Levin / EMU: Efficient Muscle Simulation in Deformation Space

Figure 16: EMU used to simulate the motion of a squid-like animal
with 220k tetrahedrons. (Video: 0m0s)

Figure 17: The skeletal motion of this arm is scripted by an artist
and we use EMU to add compelling muscle deformations. (Video:
2m12s)

only the inversion of a small dense matrix, sparse back substitution
and the factorization of a block diagonal matrix (all extremely fast
operations).

Furthermore we show how to incorporate both bones and simple
tendons into the method without needing to resort to specialized
approaches such as coupled rigid body simulations or line-of-force
methods. To our knowledge, we are the first to demonstrate such a
holistic approach to bulk musculoskeletal simulation (as all previ-
ous approaches avoid tendonous attachment points as in Figure 12
and Figure 13).

Although EMU has performance benefits over FEM and our re-
sults show visually appealing deformations, for simulations where
accuracy is essential, EMU falls short of FEM due to the inexact-
ness introduced by the α parameter. However, we show that by
using our heuristic to find an optimal α , we can better approximate
the deformations produced by FEM than other contemporary meth-
ods such as ADMM. Additionally, unlike ADMM and other projec-
tion based methods, EMU allows the use of any material model and
muscle activation model.

We believe our method will have immediate application for char-
acter animations and control, but we are most excited about the
areas of future work EMU opens up, both on the numerical op-
timization front and in biomechanical simulations. Incorporating
more complicated tendon routing and sliding is a crucial area of
future work. Previous approaches for efficient sliding work on

Figure 18: A simulation using a full musculoskeletal model of a
human arm. We use EMU to simulate a bicep contraction, followed
by a tricep contraction to hyper-extend the elbow. (Video: 1m56s)

1D [SJLP11] and 2D [WPLS18] geometries, but volumetric ten-
don sliding is unaddressed. Co-dimensional simulation could also
be explored, allowing the coupling of 1D, 2D and 3D elements in-
side of our framework. Since we only need to represent the defor-
mation of such elements our method should be well suited to this.
We could also improve the performance of EMU by exploring the
use of fast solvers in our continuity energy (akin to using special-
ized solvers in the pressure projection step of a fluid simulation).

Modeling is a crucial area of future work that would benefit
from the availability of an algorithm like EMU. Idealized joint
constraints restrict the motions that can be achieved by any sim-
ulator, no matter how fast or how robust. Using high-performance
simulators like EMU will enable us to model connections between
bones using ligaments and other soft tissue structures, thus captur-
ing more natural motions. Building tools that can produce these
detailed volumetric representations of the human body will be in-
creasingly important moving forward.
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Figure 19: This cartoon head roll is completely driven by actuating the four neck muscles of this model. The neck joint is hollistically
simulated using EMU. (Video: 0m08s)
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of cores. When using 12 cores the bottleneck in the code is the sparse back solve required for ACAP energy calculation which could be
optimized further using more efficient solvers.
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