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Kernel Methods for Bayesian Elliptic Inverse Problems on Manifolds\ast 

John Harlim\dagger , Daniel Sanz-Alonso\ddagger , and Ruiyi Yang\S 

Abstract. This paper investigates the formulation and implementation of Bayesian inverse problems to learn
input parameters of partial differential equations (PDEs) defined on manifolds. Specifically, we
study the inverse problem of determining the diffusion coefficient of a second-order elliptic PDE on a
closed manifold from noisy measurements of the solution. Inspired by manifold learning techniques,
we approximate the elliptic differential operator with a kernel-based integral operator that can be
discretized via Monte Carlo without reference to the Riemannian metric. The resulting computa-
tional method is mesh-free and easy to implement, and can be applied without full knowledge of
the underlying manifold, provided that a point cloud of manifold samples is available. We adopt a
Bayesian perspective to the inverse problem, and establish an upper bound on the total variation
distance between the true posterior and an approximate posterior defined with the kernel forward
map. Supporting numerical results show the effectiveness of the proposed methodology.
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1. Introduction. Partial differential equations (PDEs) on manifolds are used to model
a variety of physical and biological phenomena including pattern formation on biological
surfaces, phase separation in biomembranes, tumor growth, and surfactants on fluid interfaces
[26, 27, 15, 61]. In this paper we focus on the inversion of elliptic PDEs for two main reasons.
First, elliptic PDEs are ubiquitous in applications and they are used, for instance, as simplified
models for groundwater flow and oil reservoir simulation. The need to specify uncertain
input parameters of these models leads naturally to the inverse problem of determining the
permeability from the pressure under a Darcy model of flow in a porous medium [45, 43, 38,
48]. Second, elliptic models are widely used to test algorithms for forward propagation of
uncertainty [29, 16, 2] and Bayesian inversion [56, 21, 32]. Despite the applied importance
of elliptic inversion, the manifold setting that we consider is largely unexplored and may
allow for more realistic modeling in applications. For example, the variables of interest in
the groundwater flow problem may not be confined to a flat two-dimensional domain and
knowledge of the underlying flow surface may be limited to a point cloud of landmark locations.
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KERNEL METHODS FOR INVERSE PROBLEMS ON MANIFOLDS 1415

The aim of this paper is to study the formulation and implementation of Bayesian inverse
problems to learn input parameters of PDEs defined on manifolds. Specifically, we study
the inverse problem of recovering the diffusion coefficient of a second-order, divergence-form
elliptic equation, given noisy measurements of the solution. While our interest lies in solving
the inverse problem, most of our efforts are devoted to studying the approximation of the
forward map (the operator that takes the input parameter to the solution of the PDE). Several
techniques to approximate the forward map have been proposed in the extensive literature on
numerical methods for PDEs on manifolds. For example, finite element methods [25, 14, 11],
level-set methods [7, 46], closest point methods [50], or mesh-free radial basis function methods
[49]. The implementation detail of each of the existing methods is different, but a unifying
theme is the need to have a representation of the manifold in order to approximate the
differential operator. Unfortunately, these approaches are difficult to implement when one
only has access to an unstructured point cloud of manifold samples and meshing is challenging,
or when the dimension of the ambient space is large but the manifold dimension is moderate.

In this paper, we avoid the problems associated with the representation of the manifold
by directly approximating the differential operator in the forward map with an appropriate
kernel integral operator. With a consistent kernel approximation to the differential operator
on the manifold, the numerical implementation can be performed naturally by discretizing
the corresponding integral operator on a point cloud of manifold samples without further
knowledge of the underlying manifold or its Riemannian metric. Building on this construction,
we propose a fully discrete, mesh-free approach to the numerical solution of Bayesian inverse
problems on point clouds. The idea of facilitating the discretization of PDEs on manifolds
by an integral equation approximation can also be found in the recent papers [40, 41, 36], all
of which build on manifold learning techniques and analyses. Our perspective in this paper
and in [36, 6] is in contrast to the one taken in [3, 4, 18, 17, 5]. Rather than identifying
the limiting continuum operator of different normalizations of graph Laplacians, our interest
is to define a suitable kernel to approximate a given anisotropic diffusion operator on the
underlying manifold.

We adopt a Bayesian approach to the inverse problem [39, 13, 56, 52], where we set a
prior distribution on the unknown PDE input parameter, and condition on observed data to
find its posterior distribution. The Bayesian approach is largely motivated by the following
advantages. First, the posterior covariance and posterior confidence intervals may be used to
quantify the uncertainty in the parameter reconstruction. Second, the Bayesian formulation
leads to a well-posed inverse problem [44, 56, 52] by which a small perturbation on the data,
the prior distribution, or the forward map leads to a small perturbation in the posterior
solution. Our main theoretical result is an example of the well-posedness of the Bayesian
formulation: we deduce a total variation error bound between the true posterior distribution
and its kernel-based approximation from a new error bound between the forward map and its
kernel approximation. The new forward map error bound, with a dependence on the diffusion
coefficient, builds on existing results on the pointwise convergence kernel approximations to
elliptic operators [17, 5].

The advantages of the Bayesian approach outlined above come with a cost: the need to
specify a prior distribution on the unknown. The choice of prior is crucial as it determines
the support of the posterior but, unfortunately, this choice is often only guided by ad hocD
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1416 JOHN HARLIM, DANIEL SANZ-ALONSO, AND RUIYI YANG

and computational considerations. In this paper we consider a two-parameter family of log-
Gaussian field priors on manifolds, defining the covariance through the Laplace--Beltrami
operator on the manifold [42, 24]. The two prior parameters allow the specification of the
smoothness and length-scale of prior (and hence posterior) draws, and the length-scale may
be learned from data using a hierarchical approach as detailed in our numerical experiments.
In addition to their flexibility, a further advantage of our choice of priors is that they allow the
infusion of geometric information from the manifold on the reconstructed input by expressing
it as a random combination of the first eigenfunctions of the Laplacian. Moreover, in the
absence of a full representation of the manifold, these priors can be consistently discretized
using a graph Laplacian [59, 33]. We refer to [8, 30, 33, 31] for recent applications and
references on Gaussian processes on manifolds. From a computational viewpoint, the use of
log-Gaussian priors and the existence of a continuum limit facilitate the design of Markov
chain Monte Carlo (MCMC) algorithms that scale well with the size of the point cloud, as
shown in a linear inverse problem in [31]. In this regard, a simple but powerful idea is to use
a proposal kernel that satisfies detailed balance with respect to the prior [20].

Outline and main contributions. We close this introduction with an outline of the rest of
the paper, summarizing the main contributions of each section.

\bullet In section 2 we give a brief introduction to the Bayesian formulation of inverse prob-
lems, and formulate the problem on a manifold. The main novel contributions of this
section are (i) to introduce a kernel-based approximation to the forward map and an
associated approximation with the posterior in the continuum (subsection 2.2); and (ii)
to employ the kernel approximations to formulate a Bayesian solution to the inverse
problems on point clouds (subsection 2.3). These kernel and point cloud approxima-
tions are inspired by manifold learning and data analysis techniques.

\bullet Section 3 contains the main theoretical contributions of this paper. Theorem 3.1 gives
an error bound between the true and kernel-based forward maps, and Theorem 3.6
establishes a bound on the total variation distance between the posterior and its kernel-
based approximation. The main novelty of Theorem 3.1 is to generalize the analysis
in [17] to account for anisotropic diffusion and, more importantly, to explicitly track
the dependence of the diffusion coefficient in the error bounds. Understanding this de-
pendency is necessary in order to guarantee the closeness of the true and approximate
posterior distributions shown in Theorem 3.6.

\bullet In section 4 we discuss the practical implementation of the methods, provide guidelines
for the choice of tuning parameters and for the posterior sampling, and conduct three
numerical experiments of increasing difficulty to illustrate the applicability of our
approach. We also consider in subsection 4.5 a hierarchical formulation of the inverse
problem, where the prior length scale is learned from the data, when in the absence
of such knowledge.

\bullet We close in section 5 with conclusions and open directions for research that stem from
our work.

Notation and setting. Throughout this paper \scrM will denote an m-dimensional smooth
Riemannian manifold embedded in Rd. We will denote by \scrC k := \scrC k(\scrM ) the space of k-times
differentiable functions on \scrM and by \scrC k,\alpha := \scrC k,\alpha (\scrM ) the space of k-times differentiable
functions whose kth partial derivatives are H\"older continuous with exponent \alpha . We willD
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KERNEL METHODS FOR INVERSE PROBLEMS ON MANIFOLDS 1417

assume that the manifold \scrM is compact and has no boundary, thus avoiding the technicalities
necessary to deal with boundary conditions. The theoretical and computational investigation
of the point cloud approximation to PDEs supplemented with boundary conditions is a topic
of current research [40, 41, 36]. Due to the lack of boundary conditions, the elliptic problem
that we consider is unique up to a constant. We will enforce uniqueness by working on the
space L2

0 := L2
0(\scrM ) of mean-zero square integrable functions on \scrM .

2. Bayesian inverse problems on manifolds and point clouds. We start in subsection
2.1 by recalling the Bayesian formulation of elliptic inverse problems in a given manifold.
We then introduce in subsection 2.2 a kernel-based approximation to the forward map and
a corresponding approximation to the posterior, both of which will be analyzed in section
3. Finally in subsection 2.3 we introduce a point cloud approximation of the kernel forward
map leading to a formulation of the elliptic problem on point clouds without reference to the
underlying manifold. We will investigate numerically the implementation of elliptic Bayesian
inverse problems on point clouds in section 4.

2.1. Bayesian elliptic inverse problems on manifolds. We consider the elliptic equation

(2.1) \scrL \kappa u :=  - div(\kappa \nabla u) = f, x \in \scrM ,

where \kappa is a function on \scrM . Here and throughout, the differential operators are defined with
respect to the Riemannian metric inherited by \scrM from Rd. We are interested in the inverse
problem of determining the diffusion coefficient \kappa from noisy measurements of u of the form

(2.2) y = \scrD (u) + \eta ,

where the observation map \scrD : L2 \rightarrow RJ will be assumed to be known. Examples of ob-
servation maps will be discussed in subsection 2.1.2. We adopt a Bayesian perspective to
the inverse problem, described succinctly in what follows; we refer to [39, 56, 52] for a more
detailed account. In short, the Bayesian formulation of inverse problems involves specifying
a prior distribution \pi for the unknown PDE input \kappa and a distribution for the observation
noise \eta . Once these distributions have been specified, the solution to the inverse problem is
the posterior distribution of the variable \kappa conditioned on the observed data y. For simplicity
of exposition, we will assume throughout that the observation noise is centered and Gaussian,
\eta \sim \scrN (0,\Gamma ) for given positive definite \Gamma \in RJ\times J .

Writing \kappa = e\theta , we take a Gaussian prior for \theta supported on a Banach space \scrB . A
specific form of prior, widely used in applications, will be described in subsection 2.1.1. Our
assumptions on \kappa and f in section 3 will guarantee the existence of a unique solution to (2.1)
in the space L2

0 of mean-zero square intergrable functions on \scrM . This, in turn, allows us to
define a forward map \scrF : \theta \in \scrB \mapsto \rightarrow u \in L2

0. Provided that the map \scrG := \scrD \circ \scrF : \scrB \rightarrow RJ is
measurable and that the prior is supported on \scrB , the posterior \pi y can be written as a change
of measure with respect to the prior

d\pi y

d\pi 
(\theta ) \propto exp

\biggl( 
 - 1

2
| y  - \scrG (\theta )| 2\Gamma 

\biggr) 
,(2.3)

with | \cdot | 2\Gamma := \langle \cdot ,\Gamma  - 1\cdot \rangle . Equation (2.3) shows that the posterior distribution \pi y is defined
by reweighting the prior, favoring unknowns \theta that produce a good match with the dataD
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1418 JOHN HARLIM, DANIEL SANZ-ALONSO, AND RUIYI YANG

y through a likelihood function (the right-hand term), implied by (2.2) and the assumed
Gaussian distribution of the noise \eta .

For our theoretical results in section 3 we will take \scrB = \scrC 4 and assume that f \in \scrC 3,\alpha for
0 < \alpha < 1. These assumptions guarantee [37] that almost surely with respect to the prior,
the diffusion coefficient \kappa is uniformly elliptic, and the unique solution of (2.1) in L2

0 lies in
\scrC 5,\alpha , allowing us to establish a stability result for an approximation of the forward map. We
believe, however, that these strong regularity conditions can be relaxed.

2.1.1. Mat\'ern-type prior. Here we describe a choice of prior that is widely used in ap-
plications in the geophysical sciences and spatial statistics [55]; in subsection 2.3.1 we will
introduce a point cloud approximation to this prior used in our numerical experiments in
section 4. Since (2.3) implies that the support of the prior determines the support of the pos-
terior, it should both capture the geometry of the manifold \scrM and have enough expressivity
to include a wide class of functions. This motivates us to choose the prior from a flexible
two-parameter family of Gaussian measures on L2. Precisely, we will consider priors of the
form

\pi = \scrN (0, C\tau ,s), C\tau ,s = c(\tau )(\tau I +\Delta \scrM ) - s,(2.4)

where \Delta \scrM :=  - div(\nabla \cdot ) is the Laplace--Beltrami operator on \scrM , \tau > 0, s > m
2 are two

free parameters, whose intuitive interpretation will be given below, and c(\tau ) is a normalizing
constant. Let \{ (\lambda i, \varphi i)\} \infty i=1 be eigenvalue-eigenvector pairs for \Delta \scrM with \lambda i's increasing. Then
by the Karhunen--Lo\'eve expansion, random samples of \pi admit a series expansion

v = c(\tau )1/2
\infty \sum 
i=1

(\tau + \lambda i)
 - s/2\xi i\varphi i,(2.5)

where \xi i
\mathrm{i}.\mathrm{i}.\mathrm{d}.\sim \scrN (0, 1) (i.i.d. is independent and identically distributed). The eigenfunctions

of the Laplacian contain geometric information on the underlying manifold and, therefore,
constitute a natural basis for functions on the manifold. By Weyl's law, \lambda i \asymp i2/m and so the
requirement s > m

2 is to ensure that samples from \pi belong to L2 almost surely. Moreover,
the parameter s controls the rate of decay of the coefficients and hence characterizes the
regularity of the samples. The role of \tau is more delicate. If we write the coefficients as
vi := (\tau +\lambda i)

 - s/2 = \tau  - s/2(1+\lambda i
\tau )

 - s/2, then we can see that the vi's will be small for \lambda i's that are
much larger than \tau . In particular, the only significant vi's are those where the corresponding
\lambda i's are on the same order of \tau and hence \tau determines the significant basis functions in the
expansion (2.5). Since the eigenfunctions \{ \varphi i\} \infty i=1 represent increasing frequencies, \tau can be
interpreted as a length-scale parameter. It can be seen from (2.5) that \tau also affects the
amplitude of the samples and this motivates us to choose the normalizing constant so that v
has a fixed variance, which we set to be 1:

c(\tau ) =
1\sum \infty 

i=1(\tau + \lambda i) - s
.(2.6)

Such priors are widely used when \scrM is a domain in a Euclidean space and are related
to the Whittle--Mat\'ern distributions [24]. In [42] the authors also considered their extensionD
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KERNEL METHODS FOR INVERSE PROBLEMS ON MANIFOLDS 1419

to manifolds. It can be shown that for s large enough, samples from \pi belong to \scrC k almost
surely. And since the embedding of \scrC k into L2 is continuous, the restriction of \pi to \scrC k is again
a Gaussian measure [10]. Hence for our purpose, we choose s so that \pi is a Gaussian measure
on \scrC 4. In particular we will need later in section 3 the result from Fernique's theorem [28]
that there exists \alpha > 0 such that\int 

\scrB 
exp

\bigl( 
\alpha \| \theta \| 2\scrC 4

\bigr) 
d\pi (\theta ) < \infty .

Remark 2.1. Choosing a prior with parameter \tau that is far from the true length-scale of
the unknown parameter would lead to poor Bayesian inversion. This can be problematic if
such prior knowledge is not available, but may be at least partially alleviated by considering
a hierarchical formulation specifying a joint prior on both \tau and \theta , so that the length-scale is
learned from data simultaneously with the unknown \theta ; implementation details of the hierar-
chical formulation will be given in subsection 4.5.

2.1.2. Observation maps. Here we give two examples of observation maps that we shall
consider. For theoretical considerations, we assume that the observation map is of the form
\scrD (u) = (\ell 1(u), . . . , \ell J(u))

T , where each \ell j is a bounded linear functional on L2. A widely used
example is the smoothed observation at a point xj : \ell j(u) =

\int 
K(xj , x)u(x)dV (x), where K is

a kernel such as the Gaussian kernel [9]; this type of observations arise in practice when the
data are gathered from a collection of spatially distributed sensors located in the vicinity of
landmark points xj . Equally common is the pointwise evaluation [32, 23]: \ell j = u(xj). Notice
that pointwise evaluation is not a bounded linear functional on L2 but can be approximated
by smoothed observation arbitrarily well for continuous u's. We remark that the boundedness
assumption of \ell j is only a technical one and for the numerical experiments in section 4 we will
consider only pointwise evaluations.

2.2. Kernel approximation of the forward and inverse problem. In this subsection we
introduce a kernel approximation \scrL \kappa 

\varepsilon to the operator \scrL \kappa . Instead of directly discretizing the
differential operators on \scrM , the new kernel operator is defined by an integral that can be
discretized by Monte Carlo integration as described in the next subsection. Our kernel ap-
proximation is inspired by the following construction and result found in [17].

Let

G\varepsilon u(x) := \varepsilon  - 
m
2

\int 
\scrM 

h

\biggl( 
| x - \~x| 2

\varepsilon 

\biggr) 
u(\~x)dV (\~x), h(z) :=

1\surd 
4\pi 

e - 
z
4 ,

where dV denotes the volume form inherited by \scrM from the ambient space Rd. Then Lemma
8 in [17] shows that, for u sufficiently smooth,

G\varepsilon u(x) = u(x) + \varepsilon 
\bigl( 
\omega u(x) - \Delta \scrM u(x)

\bigr) 
+O(\varepsilon 2), x \in \scrM .(2.7)

Here, \Delta \scrM :=  - div(\nabla \cdot ), and \omega is a function that depends only on the embedding of \scrM . Now,
note that by direct calculation

\scrL \kappa u :=  - div(\kappa \nabla u) =
\surd 
\kappa 
\bigl[ 
\Delta \scrM (u

\surd 
\kappa ) - u\Delta \scrM 

\surd 
\kappa 
\bigr] 
,(2.8)D
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1420 JOHN HARLIM, DANIEL SANZ-ALONSO, AND RUIYI YANG

and that the expansion (2.7) for
\surd 
\kappa and u

\surd 
\kappa yields

uG\varepsilon 

\surd 
\kappa = u

\surd 
\kappa + \varepsilon 

\bigl( 
\omega u

\surd 
\kappa  - u\Delta \scrM 

\surd 
\kappa 
\bigr) 
+O(\varepsilon 2),

G\varepsilon (u
\surd 
\kappa ) = u

\surd 
\kappa + \varepsilon 

\bigl( 
\omega u

\surd 
\kappa  - \Delta \scrM (u

\surd 
\kappa )
\bigr) 
+O(\varepsilon 2).

Subtracting the second equation from the first equation above and using (2.8) gives that

uG\varepsilon 

\surd 
\kappa  - G\varepsilon (u

\surd 
\kappa ) = \varepsilon 

\bigl[ 
\Delta \scrM (u

\surd 
\kappa ) - u\Delta \scrM 

\surd 
\kappa 
\bigr] 
+O(\varepsilon 2) =

\varepsilon \surd 
\kappa 
\scrL \kappa u+O(\varepsilon 2).

This equation motivates the following definition of the integral operator \scrL \kappa 
\varepsilon :

\scrL \kappa 
\varepsilon u(x) :=

\sqrt{} 
\kappa (x)

\varepsilon 

\bigl[ 
u(x)G\varepsilon 

\surd 
\kappa (x) - G\varepsilon (u(x)

\surd 
\kappa (x))

\bigr] 
=

1\surd 
4\pi \varepsilon 

m
2
+1

\int 
\scrM 

exp

\biggl( 
 - | x - \~x| 2

4\varepsilon 

\biggr) \sqrt{} 
\kappa (x)\kappa (\~x)[u(x) - u(\~x)]dV (\~x),

which satisfies

\scrL \kappa 
\varepsilon u(x) = \scrL \kappa u(x) +\scrO (\varepsilon ), x \in \scrM .

We will make rigorous this formal derivation in section 3.
We next consider the following analogue to (2.1), defined by replacing the differential

operator \scrL \kappa with the kernel approximation \scrL \kappa 
\varepsilon :

\scrL \kappa 
\epsilon u\epsilon = f, x \in \scrM .(2.9)

Lemma 3.2 below guarantees the existence of a unique weak solution u\varepsilon \in L2
0 to (2.9) provided

that f \in L2 and that the original PDE is uniformly elliptic. In other words, the solution u\varepsilon 
satisfies \int 

\scrM 
\scrL \kappa 
\varepsilon u\varepsilon v =

\int 
\scrM 

fv \forall v \in L2
0.(2.10)

We define \scrF \epsilon as the map that associates \theta = log(\kappa ) with the solution u\varepsilon to (2.9). Denoting
\scrG \epsilon = \scrD \circ \scrF \epsilon , the approximate posterior \pi y

\epsilon has the following form:

d\pi y
\epsilon 

d\pi 
(\theta ) \propto exp

\biggl( 
 - 1

2
| y  - \scrG \epsilon (\theta )| 2\Gamma 

\biggr) 
.(2.11)

In section 3 we will establish a bound on the total variation distance between the posterior
distribution \pi y defined in (2.3) and its approximation \pi y

\varepsilon . We note, however, that the sample-
based discretization of the kernel operator \scrL \kappa 

\varepsilon ---that we will introduce in the next subsection---
will involve another layer of approximation not accounted for by the theory in section 3, but
necessary in practice.

Remark 2.2. As will be seen in section 3, a weak solution to (2.9) is sufficient for all the
results to hold. We remark that one can show, using a Fredholm alternative, the existence of
a unique mean-zero strong solution with the additional condition that f has mean zero.D
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2.3. Kernel-based elliptic inverse problem on a point cloud. In this subsection we as-
sume that we are given a point cloud X = \{ x1, . . . , xn\} , sampled independently according
to an unknown density q on \scrM , but that \scrM is otherwise unknown. In applications, xi may
represent landmarks on the underlying manifold, that may correspond to sensor locations.
We consider the inverse problem of determining the value of the unknown input parameter \kappa 
at the points xi \in \scrM given the observed data y. Again we will follow a Bayesian perspective,
defining a suitable prior \pi n over functions on the point cloud, as well as a sample-based ap-
proximation to the composition map \scrG \varepsilon = \scrD \circ \scrF \varepsilon . We discuss the priors in subsection 2.3.1
and the approximation to \scrG \varepsilon in subsection 2.3.2.

2.3.1. Prior on point cloud functions. We now present the choice of priors that we will
use for our numerical experiments in section 4. These will be defined in analogy to (2.4),
replacing \Delta \scrM by a graph Laplacian. More explicitly, given n points x1, . . . , xn, we set the
prior to be

\pi n = \scrN (0, Cn
\tau ,s), Cn

\tau ,s = cn(\tau )(\tau I +\Delta n)
 - s,(2.12)

where \Delta n \in Rn\times n is a graph Laplacian constructed with x1, . . . , xn and cn(\tau ) is a normalizing
constant. We refer to [59] for a detailed account of graph Laplacians and to [53] for extensive
theoretical and computational motivation for our choice of priors. Note that draws from \pi n are
functions defined intrinsically in the point cloud \scrM n rather than on the (unknown) manifold
\scrM . The two paremeters \tau and s play the same role as discussed above in (2.5). Again samples
from \pi n can be expressed by Karhunen--Lo\'eve expansion,

vn = cn(\tau )
1/2

n\sum 
i=1

(\tau + \lambda 
(n)
i ) - s\xi i\varphi 

(n)
i ,

where \{ (\lambda (n)
i , \varphi 

(n)
i )\} ni=1 are the eigenvalue-eigenvector pairs for \Delta n and \xi i

\mathrm{i}.\mathrm{i}.\mathrm{d}.\sim \scrN (0, 1). Simi-
larly as in (2.6), we normalize the draws so that the variance per node is 1:

cn(\tau ) =
n\sum n

i=1(\tau + \lambda 
(n)
i ) - s

.

For practical considerations, we advocate to set \Delta n as the self-tuning graph Laplacian
proposed in [62]. To illustrate the idea, let X = \{ x1, . . . , xn\} be the given point cloud. Then
the symmetric graph Laplacian is constructed as the matrix

\Delta n = I  - A - 1/2SA - 1/2,(2.13)

where S \in Rn\times n is a similarity matrix and A is a diagonal matrix with entries Aii =
\sum n

j=1 Sij .
We set the entries of the similarity matrix S to be

Sij = exp

\biggl( 
 - | xi  - xj | 2

2d(i)d(j)

\biggr) 
,

where d(i) is the distance from xi to its kth nearest neighbor, and k is a tunable parameter.
The idea is similar to the standard Gaussian similarities except that the local bandwidth
parameter is allowed to change adaptively based on the density of the points xi's. Moreover,
the bandwidth parameter is specified through k, a positive integer, which can be easily tuned
empirically.D
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1422 JOHN HARLIM, DANIEL SANZ-ALONSO, AND RUIYI YANG

2.3.2. Posterior on point cloud functions. In this subsection we discuss how to discretize
the posterior by constructing a point cloud approximation of \scrG \varepsilon . We first approximate \scrL \kappa 

\varepsilon by
discretizing the integral

\scrI u(x) :=
\int 
\scrM 

exp

\biggl( 
 - | x - \~x| 2

4\epsilon 

\biggr) \sqrt{} 
\kappa (\~x)u(\~x)dV (\~x)

by a Monte Carlo sum with a reweighting which employs a kernel density estimation. Precisely,
we have

\scrI u(xi) \approx 
1

n

n\sum 
j=1

exp

\biggl( 
 - | xi  - xj | 2

4\varepsilon 

\biggr) \sqrt{} 
\kappa (xj)u(xj)q\varepsilon (xj)

 - 1,(2.14)

where the approximate density, applying (2.7) that G\varepsilon q \approx q up to an error of order \varepsilon , is given
by

q\varepsilon (xj) =
1\surd 

4\pi n\varepsilon 
m
2

n\sum 
k=1

exp

\biggl( 
 - | xj  - xk| 2

4\epsilon 

\biggr) 
.

The approximation in (2.14) can be interpreted as combining a kernel density estimation [60]
with importance sampling [1, 51]. In section 4 we will use this observation, where the point
clouds come from uniform grids. Then \scrL \kappa 

\varepsilon u evaluated at the point cloud is approximated by

\scrL \kappa 
\varepsilon u(xi) \approx 

1\surd 
4\pi n\varepsilon 

m
2
+1

n\sum 
j=1

exp

\biggl( 
 - | xi  - xj | 2

4\epsilon 

\biggr) \sqrt{} 
\kappa (xi)\kappa (xj)q\varepsilon (xj)

 - 1[u(xi) - u(xj)] := L\kappa 
\varepsilon ,nu(xi).

(2.15)

More concisely, we can write L\kappa 
\varepsilon ,n in matrix form in a series of steps. Define P to be the kernel

matrix with entries Pij = exp
\bigl( 
 - | xi  - xj | 2/4\varepsilon 

\bigr) 
. Let Q be a vector with entries Qi =

\sum n
j=1 Pij

and define W to be the matrix with entries Wij = Pij

\sqrt{} 
\kappa (xi)\kappa (xj)Q

 - 1
j . Then we have

L\kappa 
\varepsilon ,n =

1

\varepsilon 
(D  - W ),(2.16)

where D is a diagonal matrix with entry Dii =
\sum n

j=1Wij . Notice that the above construction
resembles that of the unnormalized graph Laplacian. Indeed, if \kappa \equiv 1, then (2.16) is exactly
the unnormalized graph Laplacian up to a factor of the density [17].

Given the above discretization, we consider the following analogue to (2.9), by replacing
\scrL \kappa 
\varepsilon with L\kappa 

\varepsilon ,n and restricting f to the point cloud:

L\kappa 
\varepsilon ,nun = fn,(2.17)

where fn is the n-dimensional vector with entries f(xi), or an approximation thereof when
f is not smooth. One can see from (2.16) that L\kappa 

\varepsilon ,n is self-adjoint and positive semidefinite

under the weighted inner product \langle u, v\rangle q := 1
n

\sum n
j=1 u(xi)v(xi)q\varepsilon (xi)

 - 1. Hence L\kappa 
\varepsilon ,n admits aD
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nonnegative spectrum \{ \lambda i\} ni=1 with \lambda 1 = 0 and an orthonormal basis of eigenfunctions \{ vi\} ni=1

wih respect to \langle \cdot , \cdot \rangle q, with v1 \equiv 1. We then set the solution to be

un =
n\sum 

i=2

f i
n

\lambda i
vi,(2.18)

where the fn =
\sum n

i=1 f
i
nvi. Notice that the mean-zero condition of u translates into \langle u, 1\rangle q = 0,

taking into account the density. By the orthogonality of the vi's, we see that the solution un in
(2.18) satisfies \langle un, 1\rangle q = 0 and moreover, \{ v2, . . . , vn\} forms a basis for \ell 20 = \{ v : \langle v, 1\rangle q = 0\} ,
which is the discrete analogue of L2

0. One can also check that un satisifies \langle L\kappa 
\varepsilon ,nun, v\rangle q = \langle f, v\rangle q

for all v \in \ell 20, is consistent with (2.10). We remark that if in addition \langle f, 1\rangle q = 0, then un
given by (2.18) is a strong solution of (2.17), in analogy to Remark 2.2.

Hence we can now define the discrete forward map F\epsilon ,n : Rn \mapsto \rightarrow Rn as the map that
associates \theta n = log(\kappa n) :=

\bigl( 
log(\kappa (x1)), . . . , log(\kappa (xn))

\bigr) 
to the solution un. Approximating

the pointwise observation map is straightforward. We may also approximate the smoothed
observation map introduced in subsection 2.1.2 by Monte Carlo as follows:

\ell 
(n)
j (un) =

1

n

n\sum 
k=1

K(xj , xk)un(xk)q\varepsilon (xk)
 - 1.

In either case, denoting Dn(un) =
\bigl( 
\ell 
(n)
1 (un), . . . , \ell 

(n)
J (un)

\bigr) T
and G\varepsilon ,n = Dn \circ F\varepsilon ,n, the graph

posterior has the following form

d\pi y
\varepsilon ,n

d\pi n
(\theta n) \propto exp

\biggl( 
 - 1

2
| y  - G\varepsilon ,n(\theta n)| 2\Gamma 

\biggr) 
.(2.19)

A full analysis of the convergence of the sample-based posteriors \pi y
\varepsilon ,n to the ground-truth

posterior \pi y is beyond the scope of this paper. For a linear regression problem, the conver-
gence of such graph-based posteriors has been established in [31] and [33] using spectral graph
theory and variational techniques.

3. Analysis of kernel approximation to the forward and inverse problem. In this section
we study the error incurred by replacing the differential operator in the forward map by its
kernel approximation, and the effect of such an error in the posterior solution to the Bayesian
inverse problem. The approximation of the forward map is analyzed in subsection 3.1 and the
approximation of the posterior in subsection 3.2.

3.1. Forward map approximation. The main result of this subsection is the following
theorem which bounds the difference between the solution to the PDE (2.1) and the solution
to the kernel-based equation (2.9).

Theorem 3.1 (forward map approximation). Suppose that f \in \scrC 3,\alpha and \kappa \in \scrC 4, with \kappa 
bounded below by \kappa \mathrm{m}\mathrm{i}\mathrm{n} > 0. Let u solve \scrL \kappa u = f and u\varepsilon solve \scrL \kappa 

\varepsilon u\varepsilon = f weakly in L2
0. Then

for 1
4 < \beta < 1

2 and \varepsilon small enough depending on \beta ,

\| u - u\varepsilon \| L2 \leq CA(\kappa )\| f\| H3\varepsilon 4\beta  - 1,D
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1424 JOHN HARLIM, DANIEL SANZ-ALONSO, AND RUIYI YANG

where C is a constant depending only on \scrM and

A(\kappa ) =

\sqrt{} 
\kappa  - 5

\mathrm{m}\mathrm{i}\mathrm{n} + \kappa  - 6
\mathrm{m}\mathrm{i}\mathrm{n}

\bigl( 
\| \kappa \| 2\scrC 3 + \| \kappa \| \scrC 3

\bigr) 
+ \kappa  - 7

\mathrm{m}\mathrm{i}\mathrm{n}

\bigl( 
\| \kappa \| 2\scrC 3 + \| \kappa \| \scrC 3

\bigr) 2
+ \kappa  - 8

\mathrm{m}\mathrm{i}\mathrm{n}

\bigl( 
\| \kappa \| 2\scrC 3 + \| \kappa \| \scrC 3

\bigr) 3\| \surd \kappa \| 2\scrC 4 .

The novelty is to generalize previous analysis [17, 36] to the case of anisotropic diffusions
and, more importantly, to keep track of the dependence A(\kappa ) of the error bound on the
diffusion coefficient \kappa . As we will show in subsection 3.2, understanding this dependence is a
crucial ingredient in establishing an approximation result for the inverse problem.

The proof of Theorem 3.1 follows the classical numerical analysis argument of combining
stability and consistency, coupled with an H4 norm estimate for solutions to PDE (2.1).
Lemma 3.2 below establishes the stability of solutions to the kernel-based equation (2.9),
Lemma 3.3 shows consistency, and Lemma 3.5 shows an H4 norm bound on solutions to (2.1).
The proof of Theorem 3.1 will be given at the end of this subsection by combining these three
lemmas. To streamline the presentation we postpone the proofs of the lemmas to an appendix.

Lemma 3.2 (stability). The equation \scrL \kappa 
\varepsilon u\varepsilon = f with f \in L2 and \kappa \in L2 satisfying \kappa (x) \geq 

\kappa \mathrm{m}\mathrm{i}\mathrm{n} for a.e. x \in \scrM has a unique weak solution u\varepsilon \in L2
0. Moreover, there is C > 0 independent

of \varepsilon and \kappa such that

(3.1) \| u\varepsilon \| L2 \leq C\kappa  - 1
\mathrm{m}\mathrm{i}\mathrm{n}\| f\| L2 .

The next lemma makes rigorous the argument in subsection 2.2 and characterizes the error
between \scrL \kappa and \scrL \kappa 

\varepsilon by accounting for its dependence on \kappa .

Lemma 3.3 (consistency). Let u \in \scrC 4 and \kappa \in \scrC 4. Then, for 1
4 < \beta < 1

2 and \varepsilon sufficiently
small depending on \beta , we have

\| (\scrL \kappa 
\varepsilon  - \scrL \kappa )u\| L2 \leq C\| u\| H4\| 

\surd 
\kappa \| 2\scrC 4\varepsilon 

4\beta  - 1.

Remark 3.4. In the proof of Lemma 3.3, found in the appendix, we cannot set \beta = 1
2 .

However we can choose \beta arbitrarily close to 1
2 so that the rate is essentially O(\varepsilon ). We remark

that the proof of Lemma 3.3 suggests that the \scrC 3 assumption in [17] may not be sufficient.

The last lemma bounds the H4 norm of the solution to (2.1) in terms of the diffusion
coefficient \kappa .

Lemma 3.5 (H4 norm bound). Suppose that \kappa \in C4 and f \in C3,\alpha with 0 < \alpha < 1. Let
u \in \scrC 5 be the zero-mean solution to the equation \scrL \kappa u = f . Then

\| u\| 2H4 \leq C\| f\| 2H3

\Bigl[ 
\kappa  - 5

\mathrm{m}\mathrm{i}\mathrm{n} + \kappa  - 6
\mathrm{m}\mathrm{i}\mathrm{n}

\bigl( 
\| \kappa \| 2\scrC 3 + \| \kappa \| \scrC 3

\bigr) 
+ \kappa  - 7

\mathrm{m}\mathrm{i}\mathrm{n}

\bigl( 
\| \kappa \| 2\scrC 3 + \| \kappa \| \scrC 3

\bigr) 2
+ \kappa  - 8

\mathrm{m}\mathrm{i}\mathrm{n}

\bigl( 
\| \kappa \| 2\scrC 3 + \| \kappa \| \scrC 3

\bigr) 3\Bigr] 
,

where C is a constant that depends only on \scrM .

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Recall that we need to show that

\| u - u\varepsilon \| L2 \leq CA(\kappa )\| f\| H3\varepsilon 4\beta  - 1,D
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where u solves \scrL \kappa u = f and u\varepsilon solves \scrL \kappa u\varepsilon = f weakly, and A(\kappa ) is defined in the statement
of Theorem 3.1. Notice that in the weak sense

\scrL \kappa 
\varepsilon (u - u\varepsilon ) = \scrL \kappa 

\varepsilon u - f = \scrL \kappa 
\varepsilon u - \scrL \kappa u.

Hence using Lemma 3.2 for the first inequality, and Lemma 3.3 for the second one noting that
f \in \scrC 3,\alpha implies that u \in \scrC 5 [37], we have

\| u - u\varepsilon \| L2 \leq C\kappa  - 1
\mathrm{m}\mathrm{i}\mathrm{n}\| (\scrL \kappa 

\varepsilon  - \scrL \kappa )u\| L2 \leq C\kappa  - 1
\mathrm{m}\mathrm{i}\mathrm{n}\| u\| H4\| 

\surd 
\kappa \| 2\scrC 4\varepsilon 

4\beta  - 1.

The result follows by combining this inequality with the bound on \| u\| H4 derived in Lemma
3.5.

3.2. Posterior approximation. In this subsection we characterize the total variation dis-
tance between the two posteriors:

d\pi y

d\pi 
(\theta ) =

1

Z
exp

\biggl( 
 - 1

2
| y  - \scrG (\theta )| 2\Gamma 

\biggr) 
, Z :=

\int 
exp

\biggl( 
 - 1

2
| y  - \scrG (\theta )| 2\Gamma 

\biggr) 
d\pi (\theta ),

d\pi y
\varepsilon 

d\pi 
(\theta ) =

1

Z\varepsilon 
exp

\biggl( 
 - 1

2
| y  - \scrG \varepsilon (\theta )| 2\Gamma 

\biggr) 
, Z\varepsilon :=

\int 
exp

\biggl( 
 - 1

2
| y  - \scrG \varepsilon (\theta )| 2\Gamma 

\biggr) 
d\pi (\theta ),

where Z and Z\varepsilon are normalizing constants and recall that \scrG (\theta ) = (\ell 1(u), . . . , \ell J(u))
T and

\scrG \varepsilon (\theta ) = (\ell 1(u\varepsilon ), . . . , \ell J(u\varepsilon ))
T , where \ell j 's are bounded linear functionals on L2.

The main result is Theorem 3.6 below. Its proof relies on Theorem 3.1 and a standard
argument [56, 32, 52] for the analysis of approximations of Bayesian inverse problems. In
particular, the proof makes use of the integrability of the function A(\kappa ) defined in Theorem
3.1 with respect to the prior \pi , guaranteed by Fernique's theorem [28].

Theorem 3.6 (posterior approximation). Let \pi be a Gaussian measure on \scrC 4, and suppose
that f \in C3,\alpha for 0 < \alpha < 1. Then for any 1

4 < \beta < 1
2 and \varepsilon sufficiently small depending on

\beta ,

d\mathrm{T}\mathrm{V}(\pi 
y, \pi y

\varepsilon ) \leq C\varepsilon 4\beta  - 1,

where C is constant depending only on \scrM .

The proof of Theorem 3.6 relies on the following lemma, whose proof can be found in the
appendix by making use of the integrability of A(\kappa ) with respect to the prior.

Lemma 3.7. For 1
4 < \beta < 1

2 and \epsilon small enough depending on \beta , we have\int \bigm| \bigm| \bigm| \bigm| exp\biggl(  - 1

2
| y  - \scrG \varepsilon (\theta )| 2\Gamma 

\biggr) 
 - exp

\biggl( 
 - 1

2
| y  - \scrG (\theta )| 2\Gamma 

\biggr) \bigm| \bigm| \bigm| \bigm| d\pi (\theta ) \leq C\varepsilon 4\beta  - 1,

where C is independent of \varepsilon .D
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Proof of Theorem 3.6. We have

d\mathrm{T}\mathrm{V}(\pi 
y, \pi y

\varepsilon ) =

\int \bigm| \bigm| \bigm| \bigm| 1Z\varepsilon 
exp

\biggl( 
 - 1

2
| y  - \scrG \varepsilon (\theta )| 2\Gamma 

\biggr) 
 - 1

Z
exp

\biggl( 
 - 1

2
| y  - \scrG (\theta )| 2\Gamma 

\biggr) \bigm| \bigm| \bigm| \bigm| d\pi (\theta )
\leq 

\int \bigm| \bigm| \bigm| \bigm| 1Z\varepsilon 
 - 1

Z

\bigm| \bigm| \bigm| \bigm| exp\biggl(  - 1

2
| y  - \scrG \varepsilon (\theta )| 2\Gamma 

\biggr) 
d\pi (\theta )

+

\int 
1

Z

\bigm| \bigm| \bigm| \bigm| exp\biggl(  - 1

2
| y  - \scrG \varepsilon (\theta )| 2\Gamma 

\biggr) 
 - exp

\biggl( 
 - 1

2
| y  - \scrG (\theta )| 2\Gamma 

\biggr) \bigm| \bigm| \bigm| \bigm| d\pi (\theta )
=

| Z  - Z\varepsilon | 
Z

+

\int 
1

Z

\bigm| \bigm| \bigm| \bigm| exp\biggl(  - 1

2
| y  - \scrG \varepsilon (\theta )| 2\Gamma 

\biggr) 
 - exp

\biggl( 
 - 1

2
| y  - \scrG (\theta )| 2\Gamma 

\biggr) \bigm| \bigm| \bigm| \bigm| d\pi (\theta )
\leq 2

Z

\int \bigm| \bigm| \bigm| exp\biggl(  - 1

2
| y  - \scrG \varepsilon (\theta )| 2\Gamma 

\biggr) 
 - exp

\biggl( 
 - 1

2
| y  - \scrG (\theta )| 2\Gamma 

\biggr) \bigm| \bigm| \bigm| d\pi (\theta ).
Then using Lemma 3.7 it follows that

d\mathrm{T}\mathrm{V}(\pi 
y, \pi y

\varepsilon ) \leq C\varepsilon 4\beta  - 1,

where C is independent of \varepsilon .

Remark 3.8. Similarly as for Lemma 3.3 our proof fails when \beta = 1
2 . However one can

choose \beta arbitrarily close to 1
2 so that the rate in 3.6 is essentially O(\varepsilon ).

4. Numerical experiments. In this section we investigate numerically the point cloud
formulation of the inverse problem introduced in subsection 2.3. We start in subsection 4.1
by considering some aspects of the implementation. Then in subsections 4.2, 4.3, and 4.4 we
give three numerical examples, where the underlying manifold is chosen to be an ellipse, the
torus, and a cow-shaped manifold. In subsection 4.5, we study a hierarchical approach where
the prior length-scale parameter is learned from data.

4.1. Implementation. When it comes to practical applications, care must be taken when
one chooses the parameters. Central in our kernel method is the parameter \varepsilon . While Theorem
3.1 characterizes the error in approximating \scrL \kappa with \scrL \kappa 

\varepsilon and suggests the consistency of the
estimator as \varepsilon goes to 0, in practice one cannot take \epsilon too small as we explain now. One can
indeed establish the consistency of L\kappa 

\varepsilon ,n with \scrL \kappa 
\varepsilon , using the same discrete estimation technique

as in [5, 6, 36]. We should point out that while the resulting discrete error bound in [5, 6, 36]
does not show any dependence on \kappa , which is needed for proving the convergence of the discrete
posterior density estimate in (2.19) to (2.11), this result is sufficient for understanding the
consistency of L\kappa 

\varepsilon ,n with \scrL \kappa 
\varepsilon . Specifically, for a point cloud with distribution characterized

by density q(x), defined with respect to the volume form inherited by \scrM \subset Rd, the discrete
estimate for fixed-bandwidth Gaussian kernel (e.g., see Corollary 1 of [5] with \alpha = 1/2, \beta =
0 in their setup) states that the sampling error for obtaining an order-\epsilon 2 of the density q
with q\epsilon is of order \scrO (q(xi)

1/2n - 1/2\epsilon  - (2+m/4)) and the error between L\kappa 
\varepsilon ,n and \scrL \kappa 

\varepsilon is of order

n - 1/2\epsilon  - (1/2+m/4). The fact that \epsilon appears in the denominator of these estimates suggests
that one cannot take \epsilon too small in practice and it also implies that \epsilon should be adequately
scaled with the size of the data, n. Since a direct use of these estimates requires knowing theD
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constants that depend on the volume of \scrM that are difficult to estimate, we instead adopt an
automated empirical method for choosing \epsilon . Precisely, we follow [19] and plot

T (\varepsilon ) :=
\sum 
i,j

exp

\biggl( 
 - | xi  - xj | 2

4\varepsilon 

\biggr) 
as a function of \varepsilon and choose \varepsilon to be in the region where log

\bigl( 
T (\varepsilon )

\bigr) 
is approximately linear.

In the following three subsections we demonstrate the local kernel method for solving
inverse problems through three numerical examples. In the first two examples, the embeddings
are known and we set the model analytically, i.e., we first choose the ground truth \kappa \dagger and u\dagger ,
and then compute the corresponding f as

f = div(e\theta \nabla u) =
1\surd 
detg

\partial i

\Bigl( 
e\theta gij

\sqrt{} 
detg\partial ju

\Bigr) 
,(4.1)

where g is the Riemannian metric on \scrM . The third example will be an artificial surface where
the embedding is unknown. We will then generate the truth using our kernel method. We
will use the preconditioned Crank--Nicolson (pCN) algorithm to sample from the posterior
[21, 8, 31]. This is a Metropolis--Hastings algorithm with proposal mechanism to move from
un to u\ast n given by

(4.2) u \star n \sim 
\bigl( 
1 - c2

\bigr) 1/2
un + c\xi (n), \xi \sim \pi n = \scrN (0, Cn

\tau ,s),

where c \in (0, 1) is a tuning parameter. Note that if un \sim \pi n then u\ast n \sim \pi n showing that
the prior is invariant for this kernel. Moreover, it is not difficult to see that detailed balance
holds, and as a consequence the Metropolis-Hastings accept/reject mechanism involves only
evaluation of the likelihood function. The advantage of pCN in our setting over a standard
random-walk or Langevin algorithm is that the rate of convergence of pCN does not deteriorate
with n; this has been established rigorously for a linear inverse problem in [31].

Remark 4.1. At each iteration of the MCMC algorithm, the forward map involves an
eigenvalue decomposition of a different matrix for different \theta 's as shown in subsection 2.3.2.
Hence large n's are not favored for computational purposes and this can be an issue for high-
dimensional \scrM 's where the number of points grow as nm if one discretizes each dimension by
n.

4.2. One-dimensional elliptic problem on an unknown ellipse. In this subsection we
take \scrM to be an ellipse with semimajor and semiminor axis of length a = 3 and 1, embedded
through

\iota (\omega ) = (cos\omega , a sin\omega )T , \omega \in [0, 2\pi ],(4.3)

and the Riemannian metric is

g11(\omega ) = sin2 \omega + a2 cos2 \omega .

The truth is set to be

\kappa \dagger = 2 + cos\omega , u\dagger = cos\omega ,D
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1428 JOHN HARLIM, DANIEL SANZ-ALONSO, AND RUIYI YANG

and right-hand side f in (2.1) is defined through (4.1). One can check that both u\dagger and f have
mean zero, i.e.,

\int 2\pi 
0 u\dagger (\omega )

\sqrt{} 
g11(\omega )d\omega =

\int 2\pi 
0 f(\omega )

\sqrt{} 
g11(\omega )d\omega = 0. We generate the point cloud

\{ x1, . . . , xn\} according to (4.3) from a uniform grid of \omega of size n = 400. The observations
are given as noisy pointwise evaluations at subsets of the point cloud:

\ell j = u(xj) + \eta j , j = 1, . . . , J,

where \eta j \sim \scrN (0, \sigma 2) are assumed to be independent. We will take J = 100, 200, 400, re-
spectively with noise size varying as \sigma = 0.01, 005, 0.1. As discussed in subsection 2.3.1,
we construct the prior with a self-tuning graph Laplacian, using k = 2 neighbors. We em-
pirically discover that such a choice of k gives the best spectral approximation towards the
Laplace--Beltrami operator on the ellipse, which has spectrum \{ i2\} \infty i=0 with eigenfunctions
\{ sin(i\omega ), cos(i\omega )\} \infty i=0. We also tune empirically the parameters in (2.12) as \tau = 0.05 and
s = 4.

In Figure 1, we plot the posterior means as functions of \omega \in [0, 2\pi ] and the 95\% credible
intervals for different \sigma and J 's. While the point cloud Bayesian solution is only defined at
the discrete point cloud, to ease the visualization we represent the outcome as continuous
functions defined on \omega \in [0, 2\pi ]. We see that the truth is mostly captured in the Bayesian
confidence intervals. To quantify the error of reconstruction, we compute the relative \ell 2
distances between the posterior mean \=\kappa and the truth \kappa \dagger . Moreover, we compute the solution
\=u of (2.17) with \=\kappa and its relative \ell 2 distance to the true solution u\dagger . As shown in Table 1, the
reconstruction error for u\dagger is much smaller than the relative noise level defined as

\surd 
n\sigma /\| u\dagger \| 2.

Remark 4.2. Since our prior is on \theta = log(\kappa ), we are actually approximating log(2+cos\omega )
with trigonometric functions and hence the truth \kappa \dagger is not simply the combination of the first
two eigenfunctions in the prior. In other words, although the truth \kappa \dagger is in the support of the
prior, the fact that its coordinates in the eigenbasis do not decay like that in the expansion
(2.5) makes it difficult to reconstruct.

Regarding Remark 4.2, we consider another prior with self-tuning graph constructed with
k = 0.2n points. This new graph Laplacian gives a worse spectral approximation to the
Laplace--Beltrami operator in the underlying manifold, as its spectrum saturates instead of
growing at the appropriate rate. In other words, the basis functions associated with the
high frequencies will be given more weight in the expansion (2.5). This can be beneficial in
practical applications since it effectively enlarges the support of the prior. Below in Figure
2, we solve the inverse problem using this new prior in the case \sigma = 0.1. The parameters
are tuned empirically: \tau = 0.75, s = 8. It can be seen that although the reconstructions
are rougher than those in Figure 1, they capture better the shape of \kappa \dagger , with the help of
the higher frequencies. Essentially, larger \tau (corresponds to more nontrivial modes in the
representation in (2.5)) gives less bias but larger variance, which is consistent with the theory
of nonparameteric statistical estimation (e.g, section 1.7 of [58]).

Remark 4.3. We note that the inexact reconstruction is partially due to the ill-posedness
of the elliptic inverse problem [47]. As can be seen in Table 1, the reconstruction error for \=\kappa 
is much larger than that for \=u: a wide range of \kappa 's around \kappa \dagger give solutions u which are ``close
enough"" to u\dagger (within a range of order \sigma ) that the algorithm cannot distinguish. When \sigma isD
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\sigma = 0.01, J = 100. \sigma = 0.01, J = 200. \sigma = 0.01, J = 400.

\sigma = 0.05, J = 100. \sigma = 0.05, J = 200. \sigma = 0.05, J = 400.

\sigma = 0.1, J = 100. \sigma = 0.1, J = 200. \sigma = 0.1, J = 400.

Figure 1. Posterior means and 95\% credible intervals for different \sigma 's and J 's. Here \=\kappa , \kappa 0.025, and \kappa 0.975

represent the posterior mean, 2.5\%, and 97.5\% posterior quantiles, respectively.

Table 1
Relative error of \=\kappa and \=u for different noise levels, \sigma 's, and number of observations, J , where \=\kappa and \=u are

the posteriors means for \kappa and u, respectively. In the last row, the relative noise level for each \sigma is reported for
diagnostic purposes. Particularly, note that the reconstruction error for u\dagger is much smaller than the relative
noise level.

\sigma 0.01 0.05 0.1

J 100 200 400 100 200 400 100 200 400
\| \=\kappa  - \kappa \dagger \| 2
\| \kappa \dagger \| 2

0.60\% 0.80\% 0.62\% 2.85\% 1.96\% 2.18\% 5.46\% 3.90\% 3.45\%

\| \=u - u\dagger \| 2
\| u\dagger \| 2

0.26\% 0.23\% 0.23\% 1.08\% 0.83\% 0.90\% 1.70\% 1.37\% 1.70\%
\surd 
n\sigma 

\| u\dagger \| 2
1.41\% 7.07\% 14.14\%
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1430 JOHN HARLIM, DANIEL SANZ-ALONSO, AND RUIYI YANG

\sigma = 0.1, J = 100. \sigma = 0.1, J = 200. \sigma = 0.1, J = 400.

Figure 2. Posterior means and 95\% credible intervals for \sigma = 0.1 and different J 's. Here \kappa 0.025 and \kappa 0.975

represent the 2.5\% and 97.5\% posterior quantiles, respectively.

large, such a tolerance is larger and the inverse problem becomes more difficult. This issue,
together with Remark 4.2, explains why one cannot expect exact recovery of \kappa \dagger as seen in
Figure 1.

4.3. Two-dimensional elliptic problem on an unknown torus. In this subsection we take
\scrM to be T2 embedded in R3 through

\iota (\omega 1, \omega 2) =
\bigl( 
(2 + cos\omega 1) cos\omega 2, (2 + cos\omega 1) sin\omega 2, sin\omega 1

\bigr) T
, \omega 1, \omega 2 \in [0, 2\pi ],(4.4)

and the Riemannian metric is

g(\omega 1, \omega 2) =

\biggl[ 
1 0
0 (2 + cos\omega 1)

2

\biggr] 
.

The truth is set to be

\kappa \dagger (\omega 1, \omega 2) = 2 + sin\omega 1 sin\omega 2, u\dagger = sin\omega 1 sin\omega 2,

and f is again specified through (4.1). One can check that both u\dagger and f have mean zero,
i.e.,

\int 
u\dagger 
\surd 
detg =

\int 
f
\surd 
detg = 0. For computational reasons as in Remark 4.1, we generate

the point cloud according to (4.4) from a 20 \times 20 uniform grid on [0, 2\pi ] \times [0, 2\pi ] and the
observations are given as noisy pointwise evaluations at all points. The graph Laplacian for the
prior is constructed with k = 16 neighbors and again we empirically tune the parameters: \tau =
0.08 and s = 6. Unlike the ellipse case, we cannot get an almost exact spectral approximation
given that we are only discretizing each dimension by 20 points. The eigenfunctions of the
graph Laplacian are wiggly in this case, for which reason we need a large s to ensure sufficient
decay of the spectrum to obstain relatively smooth reconstructions. In Figure 3, we plot
the posterior means and the standard deviations as functions on [0, 2\pi ] \times [0, 2\pi ]; we note
that the uncertainty is large when the function sin \omega 1 sin\omega 2 crosses 0. Table 2 quantifies the
reconstruction error as usual and the reconstruction error for u\dagger is again much smaller than
the noise levels, which are 2\%, 10\%, and 20\%, respectively. However, the reconstruction error
for u\dagger decreases with decreasing \sigma while the error for \kappa \dagger does the opposite, a manifestation of
the ill-posedness.D
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\sigma = 0.01 (mean) \sigma = 0.05 (mean) \sigma = 0.1 (mean)

\sigma = 0.01 (std) \sigma = 0.05 (std) \sigma = 0.1 (std)

Figure 3. Posterior means (first row) and standard deviations (second row) of posteriors for different \sigma 's.
horizontally. We have extended by interpolation the point cloud solution in order to ease visualization.

Table 2
Relative error of \kappa \dagger and \=u for different noise level \sigma 's. In the last row, the relative noise level is reported

for diagnostic purpose. Particularly, note that the reconstruction error for u\dagger is much smaller than the relative
noise level.

\sigma 0.01 0.05 0.1
\| \=\kappa  - \kappa \dagger \| 2
\| \kappa \dagger \| 2

8.56\% 8.34\% 6.94\%

\| \=u - u\dagger \| 2
\| u\dagger \| 2

1.8\% 2.8\% 4.8\%
\surd 
n\sigma 

\| u\dagger \| 2
2\% 10\% 20\%

Remark 4.4. For this example we solved (2.17) by taking the pseudoinverse \^un = (L\kappa 
\varepsilon ,n)

\dagger fn
instead, as this is numerically more stable than taking the eigenvalue decomposition of the
asymmetric matrix L\kappa 

\varepsilon ,n. Moreover, \^un is consistent with u\dagger for this specific problem as
explained below. We have that \^un solves the following problem:

\^un = min
\bigl\{ 
\| u\| 2 : u \in argmin \| L\kappa 

\varepsilon ,nu - fn\| 2
\bigr\} 
.(4.5)

The fact that f has zero mean implies \langle fn, 1\rangle q = 0 in the large n limit. Then (2.17) has a
strong solution as mentioned in subsection 2.3.2 and so the characterization (4.5) implies that
\^un is also a strong solution, with

\sum n
i=1 \^u

i
n = 0. Notice that the truth u\dagger also satisfies

\int 
u\dagger = 0

and hence makes \^un consistent.

4.4. Two-dimensional elliptic problem on an unknown artificial surface. In this subsec-
tion we consider an artificial dataset from Keenan Crane's 3D repository [22]. The dataset isD
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1432 JOHN HARLIM, DANIEL SANZ-ALONSO, AND RUIYI YANG

made of 2930 points sampled from a cow-shaped surface homeomorphic to the two-dimensional
sphere. The purpose of this subsection is to demonstrate that our kernel method can be ap-
plied to more complicated manifolds. To avoid an inverse crime [39], we generate the truth
using all 2930 points but solve the inverse problem on a subset of size n = 1000.

To be more precise, we generate \kappa \dagger from the Gaussian measure \scrN (0, (\tau I + \Delta 2930))
 - s,

where \Delta 2930 is the self-tuning graph Laplacian constructed with k = 100 neighbors and
\tau = 0.7, s = 6. We then set u\dagger to be 10(\varphi 2  - c), where \varphi 2 is the second eigenvector of \Delta 2930

and c is a constant chosen below. The factor 10 in the definition of u is only to match the
order of magnitude with \kappa \dagger . We then set f = L\kappa \dagger 

\varepsilon ,2930u
\dagger . This would serve as our ground truth,

and now we solve the inverse problem on a random subset X of n = 1000 points.
On the point cloud X, the truth becomes \kappa \dagger | X and u\dagger | X . As mentioned above, the solution

u\dagger | X needs to have zero mean to be consistent with our theory. Since we do not have access
to the Riemannian metric as in the previous two examples, we instead require \langle u\dagger | X , 1\rangle q = 0,
which gives the choice of c above. Again we consider noisy pointwise observations at all 1000
points. The inputs of the problem are now f | X and noisy u\dagger | X . The noise level is 10\%, which
gives \sigma = 0.0186. The prior that we use has the same parameter \tau as used to obtain our
synthetic truth, but is defined using a graph Laplacian on X. Namely, we consider

\pi n = \scrN (0, (0.7I +\Delta 1000)
 - 6),

where \Delta 1000 is constructed with k = 80 neighbors. Figure 4 shows the plots of the poste-
rior mean, the truth, the error, and the standard deviation. The reconstruction errors are
\| \=\kappa  - \kappa \dagger | X\| 2/\| \kappa \dagger | X\| 2 = 9.73\% and \| \=u  - u\dagger | X\| 2/\| u\dagger | X\| 2 = 16.24\%. We remark that the
large relative error for u\dagger is partly due to the fact that the point cloud of size 1000 does not
approximate the original one well and in particular

L
\kappa \dagger | X
\varepsilon ,1000u

\dagger | X \not = f | X .(4.6)

When we solve for \^u in (4.6), i.e., solving

L
\kappa \dagger | X
\varepsilon ,1000\^u = f | X ,

we get \| \^u  - u\dagger | X\| 2/\| u\dagger | X\| 2 = 17.01\% and this is the best one can hope for in terms of
reconstructing u\dagger | X . Hence we see that the above relative error has already reached the limit
of the method.

4.5. Hierarchical Bayesian formulation. As mentioned in subsection 2.1.1, the choice of
\tau is crucial and would require some prior knowledge of the length-scale of the function to be
reconstructed. In this section, we demonstrate how one can learn the parameter \tau together
with \kappa through a hierarchical Bayesian approach proposed in [24]. We emphasize that the
hierarchical approach may not be able to find the precise length-scale of the parameter to be
reconstructed, and hence should only be applied when little prior knowledge on the length-
scale is available. We will only focus on the point cloud inverse problem as in subsection
2.3.

We remark that our choice of priors in (2.4) and (2.12) differs from the ones used in [24]
by the scaling constants. In the continuum space, the familiy of measures defined by (2.4) areD

ow
nl

oa
de

d 
12

/0
4/

20
 to

 1
28

.1
18

.1
90

.5
4.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

KERNEL METHODS FOR INVERSE PROBLEMS ON MANIFOLDS 1433

Posterior mean \=\kappa . Truth \kappa \dagger | X .

Error
\bigm| \bigm| \=\kappa  - \kappa \dagger | X

\bigm| \bigm| . Standard deviation.

Figure 4. Reconstruction for the cow-shaped manifold.

mutually singular, which leads to technical difficulties when designing hierarchical methods.
However, in the point cloud setting, the family of measures as in (2.12) are simply multivariate
normal and are equivalent. The formulation in [24] then carries over.

The idea is to consider a joint prior on (\theta n, \tau ) that takes the form

\Pi (\theta n, \tau ) = \pi 0(\tau )\pi (\theta n| \tau ) := \pi 0(\tau )\pi \tau (\theta n),

where \pi 0 is a distribution on R+ and the conditional distribution \pi \tau is taken as in (2.12).
Recall that \pi \tau has the form

\pi \tau = \scrN (0, Cn
\tau ,s), Cn

\tau ,s = cn(\tau )(\tau I +\Delta n)
 - s,

where cn(\tau ) normalizes the draws so that u \sim \pi n satisfies E| un| 2 = n. Now we can define the
forward map Fn : Rn \times R+ \rightarrow Rn that associates a pair (\theta n, \tau ) with the unique mean-zero
solution un of (2.17). We notice that Fn is essentially the same as before except the additional
\tau that does not play a role in the definition. Denoting Gn = Dn \circ Fn, the joint posterior \Pi y

can be written as a change of measure with respect to the prior,

d\Pi y

d\Pi 
(\theta n, \tau ) \propto exp

\biggl( 
 - 1

2
| y  - Gn(\theta n, \tau )| 2\Gamma 

\biggr) 
.(4.7)D
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1434 JOHN HARLIM, DANIEL SANZ-ALONSO, AND RUIYI YANG

4.5.1. Sampling. To sample from the joint posterior \theta n, \tau | y, we will use a Metropolis
within Gibbs sampling scheme by updating \theta n| \tau , y and \tau | \theta n, y alternately. Sampling of \theta n| \tau , y
reduces to the nonhierarchical setting, where we use the pCN algorithm. Sampling of \tau | \theta n, y
is more delicate since one first needs to make sense of this conditional distribution. Instead
of making the presentation too involved, we will only present the algorithm and refer to
[24] for more details. The idea is to use symmetric random-walk Metropolis--Hastings, with
acceptance probability to accept the proposal \tau , given the current chain value \gamma as

a(\tau , \gamma ) = exp

\biggl( 
 - 1

2
[H(\tau ) - H(\gamma )]

\biggr) 
\pi 0(\tau )

\pi 0(\gamma )
\wedge 1,(4.8)

where

H(\tau ) =
n\sum 

i=1

log \lambda i(\tau ) +
\langle \theta , \varphi i\rangle 2

\lambda i(\tau )
.

Here, \{ (\lambda i(\tau ), \varphi i)\} ni=1 are the eigenvalue-eigenfunction pairs of Cn
\tau ,s.

From (4.8), we see that the algorithm favors length-scale \tau 's that give small values of H(\tau ).
As \tau approaches 0, the first eigenvalue of (\tau I +\Delta n)

 - s goes to infinity and so the normalizing
constant cn(\tau ) approaches 0. However, the eigenvalues of (\tau I + \Delta n)

 - s, except the first one,
do not change much since \tau is now a much smaller quantity. Hence when multiplied by cn(\tau ),
they converge to 0. In other words \lambda i(\tau ) approaches 0 as \tau goes to 0 for i \geq 2, which then
implies that

\sum n
i=1 log \lambda i(\tau ) \rightarrow  - \infty . So the first term in H is minimized at \tau = 0, while the

second term \langle \theta , \varphi i\rangle 2/\lambda i(\tau ) favors large \tau by a similar argument as above. Then the minimum
of H is attained by balancing the two sums, using the coefficients \langle \theta , \varphi i\rangle . Hence the algorithm
will give a \tau that is consistent with these coefficients, reflecting the length-scale of \theta .

4.5.2. Numerical experiments. To demonstrate the hierarchical approach, we focus on
the ellipse case with three truths of different length-scales: \kappa \dagger = e\mathrm{c}\mathrm{o}\mathrm{s}(\omega ), e\mathrm{c}\mathrm{o}\mathrm{s}(5\omega ), e\mathrm{c}\mathrm{o}\mathrm{s}(8\omega ) with
a fixed f = 1

5 sin\omega . We fix f so that we are solving the same inverse problem with different
underlying truth \kappa \dagger 's. In this case we no longer have analytic solutions for u and we use the
MATLAB PDE toolbox. The point cloud is generated as in subsection 4.2 with n = 100,
with pointwise observations with noise level \sigma = 0.01 at all points. We take \pi 0 = \scrN (2, 1)
and s = 4. In the hierarchical setting, it takes longer for the chains to mix, where we run the
chain for 3\times 107 iterations and use the last 5 \times 106 samples for computations. We compare
the hierarchical approach with the nonhierarchical one, where we use a same \tau to reconstruct
the three \kappa \dagger 's. Figure 5 below shows the corresponding reconstructions.

The first row corresponds to the nonhierarchical approach where we fix \tau = 2, which is
finely tuned to match the length-scale of e\mathrm{c}\mathrm{o}\mathrm{s}(5\omega ), for all three problems. The reconstruction is
then acceptable for e\mathrm{c}\mathrm{o}\mathrm{s}(5\omega ) but is poorer for the other two. For e\mathrm{c}\mathrm{o}\mathrm{s}(\omega ), the reconstruction still
fits the shape of the truth, but since the prior now has a length-scale much larger than that
of e\mathrm{c}\mathrm{o}\mathrm{s}(\omega ), the reconstruction is oscillatory. On the other hand, the reconstruction of e\mathrm{c}\mathrm{o}\mathrm{s}(8\omega )

fails to capture the shape of the truth. This is because the prior now has a smaller length-
scale than that of e\mathrm{c}\mathrm{o}\mathrm{s}(8\omega ), so that frequencies as high as cos(8\omega ) barely belong to the prior.
The second and third rows correspond to the reconstructions of the hierarchical approach
and the corresponding sample paths for \tau . We see that the credible intervals capture mostD
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Figure 5. Posterior means and 95\% credible intervals for different truths. Figures are arranged so that the
first two rows correspond to nonhierarchical and hierarchical, respectively, and the third row shows the sample
paths for \tau . The three columns represent the truths e\mathrm{c}\mathrm{o}\mathrm{s}(\omega ), e\mathrm{c}\mathrm{o}\mathrm{s}(5\omega ), e\mathrm{c}\mathrm{o}\mathrm{s}(8\omega ), respectively.

of the truths and the reconstructions are much better for e\mathrm{c}\mathrm{o}\mathrm{s}(\omega ) and e\mathrm{c}\mathrm{o}\mathrm{s}(8\omega ) than with the
nonhierarchical approach. Table 3 quantifies the reconstruction error. We notice that the
hierarchical approach performs worse than the nonhierarchical one for e\mathrm{c}\mathrm{o}\mathrm{s}(5\theta ); this is because
the chosen \tau = 2 agrees with the length-scale of the true diffusion coefficient. This fact suggests
that the hierarchical approach only improves the performance when little prior knowledge of
the length-scale is known. From the sample paths for \tau 's, we see that the chains have large
variance and do not concentrate on a particular value. This is due to the ill-posedness of the
inverse problem where \kappa 's of different length-scales give equally good reconstructions of u and,
hence, the algorithm cannot distinguish between them. So in general the algorithm may not
give the precise length-scale but a possible range of it.

Remark 4.5. Notice that in the above the noise level has been set to be small. When the
noise level \sigma is large, the performance of the hierarchical approach may be worse, as shown
in Figure 6. The reason is that the algorithm sees only the noisy data, which is the truth u\dagger 

perturbed by noise. In other words, the length-scale of the data is corrupted by the noise,D
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Table 3
Relative error of \=\kappa and \=u for different truths. Here ``NH"" and ``H"" stand for nonhierarchical and hierar-

chical, respectively. In the last row, the relative noise level for each \sigma is reported for diagnostic purposes.

\kappa \dagger e\mathrm{c}\mathrm{o}\mathrm{s}(\omega ) e\mathrm{c}\mathrm{o}\mathrm{s}(5\omega ) e\mathrm{c}\mathrm{o}\mathrm{s}(8\omega )

Method NH H NH H NH H
\| \=\kappa  - \kappa \dagger \| 2
\| \kappa \dagger \| 2

9.07\% 3.69\% 11.17\% 17.41\% 39.38\% 28.82\%

\| \=u - u\dagger \| 2
\| u\dagger \| 2

0.84\% 0.72\% 0.73\% 0.69\% 0.87\% 0.83\%
\surd 
n\sigma 

\| u\dagger \| 2
1.87\% 1.26\% 1.27\%

Figure 6. Reconsturction of e\mathrm{c}\mathrm{o}\mathrm{s}(\omega ) and sample path for \tau when \sigma = 0.1.

which has length-scale converging to 0 (\tau \rightarrow \infty ) in the large n and J limit if the noise is
independent, i.e., \Gamma = I. As shown in Figure 6, the chain for \tau oscillates in a wide range of
values, suggesting that the data contain little information on this parameter.

5. Conclusions and future work.
\bullet This paper introduced kernel-based methods for the solution of inverse problems on
manifolds. We have shown through rigorous analysis that the forward map can be
replaced by a kernel approximation while keeping small the total variation distance to
the true posterior. Through numerical experiments we have shown that a point cloud
discretization to the kernel approximation may allow one to implement the inverse
problem on point clouds, without reference to the underlying manifold.

\bullet An important question of theoretical interest when solving the inverse problem on the
point cloud is how to choose optimally the kernel bandwith \varepsilon in terms of the number
n of manifold samples. We conjecture that the convergence of the graph posteriors to
the ground truth posterior, and guidelines on the choice of kernel bandwith, may be
established by generalizing the spectral graph theory results in [12, 34] to anisotropic
diffusions, and using the variational techniques introduced in [33, 31]. The analysis of
these questions will be the subject of future work.

\bullet We streamlined the presentation by working on a closed manifold with no boundary.
We expect that the numerical and theoretical results may be extended to Neumann,
Robin, and Dirichlet boundary conditions using the results and ideas in [36, 40, 54, 57].

\bullet The practical success of the Bayesian approach is heavily dependent on the choice of
prior. Here, we have used Mat\'ern-type priors that are flexible models widely used in
spatial statistics and the geophysical sciences [55]. While the hierarchical approach toD
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KERNEL METHODS FOR INVERSE PROBLEMS ON MANIFOLDS 1437

the inverse problem [24, 35] is effective for learning the prior length-scale from data in
certain regimes as we have numerically shown, a more robust algorithm is needed and
this merits an extensive further investigation.

\bullet A topic of further research will be the extension of the kernel-based approximation
to PDEs and inverse problems to other PDEs and ODEs beyond the elliptic model
considered here.

Appendix A. Proofs of lemmas.

Proof of Lemma 3.2. The proof proceeds by a standard Lax--Milgram argument. Through-
out, C > 0 denotes a constant independent of \varepsilon and \kappa that may change from line to line.
Consider the bilinear and linear functionals

B : L2
0 \times L2

0 \rightarrow R, F : L2
0 \rightarrow R,

(u, v) \mapsto \rightarrow \langle u,\scrL \kappa 
\varepsilon v\rangle , v \mapsto \rightarrow \langle v, f\rangle .

Clearly, B and F are bounded. To show that B is coercive, note that by [54, Theorem 7.2]
there exists C > 0 such that, for all \varepsilon > 0 v \in L2

0(\scrM ),

(A.1) \langle v,\scrL \varepsilon v\rangle \geq C\| v\| L2 ,

where

\scrL \varepsilon v :=
1\surd 

4\pi \varepsilon 
m
2
+1

\int 
exp

\biggl( 
 - | x - \~x| 2

4\varepsilon 

\biggr) 
[v(x) - v(\~x)]dV (\~x).

It follows that, for v \in L2
0,

\langle v,\scrL \kappa 
\varepsilon v\rangle =

1\surd 
4\pi \varepsilon 

m
2
+1

\int \int 
exp

\biggl( 
 - | x - \~x| 2

4\varepsilon 

\biggr) \sqrt{} 
\kappa (x)\kappa (\~x)v(x)[v(x) - v(\~x)]dV (\~x)dV (x)

=
1\surd 

4\pi \varepsilon 
m
2
+1

\int \int 
exp

\biggl( 
 - | x - \~x| 2

4\varepsilon 

\biggr) \sqrt{} 
\kappa (x)\kappa (\~x)v(\~x)[v(\~x) - v(x)]dV (\~x)dV (x)

=
1

2
\surd 
4\pi \varepsilon 

m
2
+1

\int \int 
exp

\biggl( 
 - | x - \~x| 2

4\varepsilon 

\biggr) \sqrt{} 
\kappa (x)\kappa (\~x)| v(x) - v(\~x)| 2dV (\~x)dV (x)

\geq \kappa \mathrm{m}\mathrm{i}\mathrm{n}

1

2
\surd 
4\pi \varepsilon 

m
2
+1

\int \int 
exp

\biggl( 
 - | x - \~x| 2

4\varepsilon 

\biggr) 
| v(x) - v(\~x)| 2dV (\~x)dV (x)

= \kappa \mathrm{m}\mathrm{i}\mathrm{n}\langle v,\scrL \varepsilon v\rangle \geq C\kappa \mathrm{m}\mathrm{i}\mathrm{n}\| v\| 2L2 ,

establishing the coercivity of B. The existence and uniqueness of a weak solution, as well as
the bound (3.1), follow from the Lax--Milgram theorem.

Proof of Lemma 3.3. Our proof follows the same argument as [17, Lemma 8] but keeps
track of the coefficients of the higher order terms. Let

G\varepsilon u(x) = \varepsilon  - 
m
2

\int 
h

\biggl( 
| x - \~x| 2

\varepsilon 

\biggr) 
u(\~x)dV (\~x), h(z) =

1\surd 
4\pi 

e - 
z
4 .
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Let 0 < \beta < 1
2 . We can localize the integration near x due to the exponential decay of e - x2

:\bigm| \bigm| \bigm| \bigm| \bigm| \varepsilon  - m
2

\int 
\~x\in \scrM :| \~x - x| >\varepsilon \beta 

exp

\biggl( 
 - | x - \~x| 2

4\varepsilon 

\biggr) 
u(\~x)dV (\~x)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq \varepsilon  - 

m
4 \| u\| L2

\sqrt{} 
\varepsilon  - 

m
2

\int 
\~x\in \scrM :| \~x - x| >\varepsilon \beta 

exp

\biggl( 
 - | x - \~x| 2

2\varepsilon 

\biggr) 
dV (\~x)

\leq \varepsilon  - 
m
4 \| u\| L2

\sqrt{} \int 
x+

\surd 
\varepsilon \~x\in \scrM :| \~x| >\varepsilon \beta  - 1/2

exp

\biggl( 
 - 1

2
| \~x| 2

\biggr) 
dV (\~x)

\leq C\varepsilon  - 
m
4 \| u\| L2

\sqrt{} 
P\{ \scrN (0, 1) > \varepsilon \beta  - 1/2\} 

\leq C\varepsilon  - 
m
4 \| u\| L2 exp

\Bigl( 
 - c\varepsilon 2\beta  - 1

\Bigr) 
\leq C\| u\| L2\varepsilon 2,

where in the last inequality since 2\beta < 1, exp( - c\varepsilon 2\beta  - 1) decays faster than any polynomial in
\varepsilon and in particular for \varepsilon small enough it decays faster than \varepsilon 2+

m
4 . Therefore,

G\varepsilon u(x) = \varepsilon  - 
m
2

\int 
\~x\in \scrM :| \~x - x| <\varepsilon \beta 

h

\biggl( 
| x - \~x| 2

\varepsilon 

\biggr) 
u(\~x)dV (\~x) +O(\| u\| L2\varepsilon 2).

Now we Taylor expand u near x. Let (s1, . . . , sm) be the geodesic coordinates at x and
u(\~x) = u(\~x(s1, . . . , sm)) = \~u(s1, . . . , sm) = \~u(s). Then

u(\~x) - u(x) = \~u(s) - \~u(0) =

m\sum 
i=1

si
\partial \~u

\partial si
(0) +

1

2

m\sum 
i=1

m\sum 
j=1

sisj
\partial 2\~u

\partial si\partial sj
(0)

+
1

6

m\sum 
i=1

m\sum 
j=1

m\sum 
k=1

sisjsk
\partial 3\~u

\partial si\partial sj\partial sk
(0) + \delta (s),

where

\delta (s) =
1

24

\int 1

0

\int 1

0

\int 1

0

\int 1

0

m\sum 
i=1

m\sum 
j=1

m\sum 
k=1

m\sum 
\ell =1

sisjsks\ell 
\partial 4\~u

\partial si\partial sj\partial sk\partial s\ell 
(t1t2t3t4s)dt1dt2dt3dt4.

Then expanding the fourth order term in G\varepsilon u, we have

| Tu(x)| :=

\bigm| \bigm| \bigm| \bigm| \bigm| \varepsilon  - m
2

\int 
| s| <\varepsilon \beta 

h

\biggl( 
| s| 2

\varepsilon 

\biggr) 
\delta (s)ds

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq m4\varepsilon 4\beta 

24

\int 1

0

\int 1

0

\int 1

0

\int 1

0

\int 
| s| <\varepsilon \beta 

\varepsilon  - 
m
2 h

\biggl( 
| s2| 
\varepsilon 

\biggr) 
\| \nabla 4\~u(t1t2t3t4s)\| dsdt1dt2dt3dt4

=
m4\varepsilon 4\beta 

24

\int 1

0

\int 1

0

\int 1

0

\int 1

0

\int 
| r| <t1t2t3\varepsilon \beta 

(t1t2t3t4)
 - d\varepsilon  - 

d
2h

\biggl( 
| r| 2

t21t
2
2t

2
3t

2
4\varepsilon 

\biggr) 
\| \nabla 4\~u(r)\| drdt1dt2dt3dt4

:=
m4\varepsilon 4\beta 

24

\int 1

0

\int 1

0

\int 1

0

\int 
0

\int 
| r| <t1t2t3t4\varepsilon \beta 

K(r, \tau )\| \nabla 4\~u(r)\| drd\tau ,
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where we have used the notation \tau := (t1, t2, t3, t4) and d\tau := dt1dt2dt3dt4. By interchanging
the order of integration and noticing that \nabla 4\~u(r) = \nabla 4u(x + \xi ), where \xi 's are directional
vectors that are independent of x, we have

\| Tu\| 2L2 \leq 
\biggl( 
m4\varepsilon 4\beta 

24

\biggr) 2 \int 
\scrM 

\int 1

0

\int 1

0

\int 1

0

\int 1

0

\Biggl[ \int 
| r| <t1t2t3t4\varepsilon \beta 

K(r, \tau )\| \nabla 4\~u(r)\| dr

\Biggr] 2

d\tau dV (x)

\leq 
\biggl( 
m4\varepsilon 4\beta 

24

\biggr) 2 \int 
\scrM 

\int 1

0

\int 1

0

\int 1

0

\int 1

0

\Biggl[ \int 
| r| <t1t2t3t4\varepsilon \beta 

K(r, \tau )dr

\Biggr] 

\times 

\Biggl[ \int 
| r| <t1t2t3t4\varepsilon \beta 

K(r, \tau )\| \nabla 4\~u(r)\| 2dr

\Biggr] 
d\tau dV (x)

=

\biggl( 
m4\varepsilon 4\beta 

24

\biggr) 2 \int 1

0

\int 1

0

\int 1

0

\int 1

0

\Biggl[ \int 
| r| <t1t2t3t4\varepsilon \beta 

K(r, \tau )dr

\Biggr] 

\times 

\Biggl[ \int 
| r| <t1t2t3t4\varepsilon \beta 

K(r, \tau )

\int 
\scrM 

\| \nabla 4u(x+ \xi )\| 2dV (x)dr

\Biggr] 
d\tau 

=

\biggl( 
m4\varepsilon 4\beta 

24

\biggr) 2

\| \nabla 4u\| 2L2

\int 1

0

\int 1

0

\int 1

0

\int 1

0

\Biggl[ \int 
| r| <t1t2t3t4\varepsilon \beta 

K(r, \tau )dr

\Biggr] 2

d\tau .

By a change of variable r = t1t2t3t4
\surd 
\varepsilon s, we notice that\int 

| r| <t1t2t3t4\varepsilon \beta 
K(r, \tau )dr =

\int 
| r| <t1t2t3t4\varepsilon \beta 

(t1t2t3t4)
 - d\varepsilon  - 

d
2h

\biggl( 
| r| 2

t21t
2
2t

2
3t

2
4\varepsilon 

\biggr) 
dr =

\int 
| z| <\varepsilon \beta  - 1/2

h(| z| 2),

which can be bounded by a constant independent of \varepsilon by the Gaussianity of h(| z| 2). Hence

\| Tu\| L2 \leq C\| \nabla 4u\| L2\varepsilon 4\beta ,(A.2)

where C is a constant that does not depend on u or \varepsilon . Now following the same argument as
in [17] and keeping track of the derivatives of u, we have

G\varepsilon u(x) = u(x) + \varepsilon [\omega (x)u(x) + \Delta u(x)] +Ru(x),

where

Ru(x) = Tu(x) +O
\Bigl( \Bigl[ 

\| u\| L2 + \| \nabla u(x)\| + \| \nabla 2u(x)\| + \| \nabla 3u(x)\| 
\Bigr] 
\varepsilon 2
\Bigr) 
.

Applying G\varepsilon to u
\surd 
\kappa , we have

G\varepsilon (u
\surd 
\kappa ) = u

\surd 
\kappa + \varepsilon 

\bigl[ 
\omega u

\surd 
\kappa +\Delta (u

\surd 
\kappa )
\bigr] 
+Ru

\surd 
\kappa .(A.3)

By expanding the derivatives of u
\surd 
\kappa and bounding them by the \infty -norms of \kappa and its deriv-

atives, we have

Ru
\surd 
\kappa (x) = Tu

\surd 
\kappa (x) +O

\Bigl( 
\| 
\surd 
\kappa \| \scrC 4

\Bigl[ 
\| u\| L2 + | u(x)| + \| \nabla u(x)\| + \| \nabla 2u(x)\| + \| \nabla 3u(x)\| 

\Bigr] 
\varepsilon 2
\Bigr) 
,D
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where

\| Tu
\surd 
\kappa \| L2 \leq C\| 

\surd 
\kappa \| \scrC 4\| \nabla 4u\| L2\varepsilon 4\beta .

By setting u = 1, we have

G\varepsilon 

\surd 
\kappa =

\surd 
\kappa + \varepsilon 

\bigl[ 
\omega 
\surd 
\kappa +\Delta 

\surd 
\kappa 
\bigr] 
+O

\bigl( 
\| 
\surd 
\kappa \| \scrC 4\varepsilon 2

\bigr) 
.(A.4)

By combining (A.3) and (A.4), we have

\scrL \kappa 
\varepsilon u =

\surd 
\kappa 

\varepsilon 

\bigl[ 
uG\varepsilon 

\surd 
\kappa  - G\varepsilon (u

\surd 
\kappa )
\bigr] 
= \scrL \kappa u+O

\bigl( \surd 
\kappa u\| 

\surd 
\kappa \| \scrC 4\varepsilon 

\bigr) 
+

\surd 
\kappa Ru

\surd 
\kappa 

\varepsilon 
.

Hence it follows that

\| (\scrL \kappa 
\varepsilon  - \scrL \kappa )u\| L2 \leq C\| u\| H4\| 

\surd 
\kappa \| 2\scrC 4\varepsilon 

4\beta  - 1.

Proof of Lemma 3.5. First we multiply the equation by u and integrate over \scrM . Inte-
grating by parts, we get\int 

fu =  - 
\int 

div(\kappa \nabla u)u =

\int 
\kappa | \nabla u| 2 \geq \kappa \mathrm{m}\mathrm{i}\mathrm{n}\| \nabla u\| 2L2 .

By H\"older and Poincar\'e inequalities, there is a constant C that depends only on \scrM so that

\| \nabla u\| L2 \leq C\kappa  - 1
\mathrm{m}\mathrm{i}\mathrm{n}\| f\| L2 \leq C\kappa  - 1

\mathrm{m}\mathrm{i}\mathrm{n}\| f\| H3 ,(A.5)

\| u\| L2 \leq C\kappa  - 1
\mathrm{m}\mathrm{i}\mathrm{n}\| f\| L2 \leq C\kappa  - 1

\mathrm{m}\mathrm{i}\mathrm{n}\| f\| H3 .(A.6)

Now differentiating the equation with respect to xk and testing against uxk
, we get\int 

fxk
uxk

=  - 
\int 

div

\biggl( 
\partial 

\partial xk
(\kappa \nabla u)

\biggr) 
uxk

=

\int 
\partial 

\partial xk
(\kappa \nabla u) \cdot \nabla uxk

=

\int 
\kappa xk

\nabla u \cdot \nabla uxk
+ \kappa \nabla uxk

\cdot \nabla uxk
.

Using Young's inequality that | ab| \leq \varepsilon a2 + 1
4\varepsilon b

2 we get\int 
fxk

uxk
\geq  - \| \kappa xk

\| \infty 
\biggl( 
\varepsilon \| \nabla uxk

\| 2L2 +
1

4\varepsilon 
\| \nabla u\| 2L2

\biggr) 
+ \kappa \mathrm{m}\mathrm{i}\mathrm{n}\| \nabla uxk

\| 2L2

= (\kappa \mathrm{m}\mathrm{i}\mathrm{n}  - \varepsilon \| \kappa xk
\| \infty ) \| \nabla uxk

\| 2L2  - 
\| \kappa xk

\| \infty 
4\varepsilon 

\| \nabla u\| 2L2 .

Choosing \varepsilon = \kappa \mathrm{m}\mathrm{i}\mathrm{n}
2(\| \kappa xk

\| \infty +1) and rearranging terms, we get

\| \nabla uxk
\| 2L2 \leq \kappa  - 2

\mathrm{m}\mathrm{i}\mathrm{n}\| \kappa xk
\| \infty 

\bigl( 
\| \kappa xk

\| \infty + 1
\bigr) 
\| \nabla u\| 2L2 + 2\kappa  - 1

\mathrm{m}\mathrm{i}\mathrm{n}

\int 
fxk

uxk

\leq \kappa  - 2
\mathrm{m}\mathrm{i}\mathrm{n}\| \kappa xk

\| \infty 
\bigl( 
\| \kappa xk

\| \infty + 1
\bigr) 
\| \nabla u\| 2L2 + \kappa  - 1

\mathrm{m}\mathrm{i}\mathrm{n}\| fxk
\| 2L2 + \kappa  - 1

\mathrm{m}\mathrm{i}\mathrm{n}\| uxk
\| 2L2 .D
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Then we have

\| \nabla 2u\| 2L2 =
m\sum 
k=1

\| \nabla uxk
\| 2L2 \leq m\kappa  - 2

\mathrm{m}\mathrm{i}\mathrm{n}

\bigl( 
\| \nabla \kappa \| 2\infty + \| \nabla \kappa \| \infty 

\bigr) 
\| \nabla u\| 2L2 + \kappa  - 1

\mathrm{m}\mathrm{i}\mathrm{n}\| \nabla f\| 2L2 + \kappa  - 1
\mathrm{m}\mathrm{i}\mathrm{n}\| \nabla u\| 2L2

\leq C\| f\| 2H3

\bigl[ 
\kappa  - 3

\mathrm{m}\mathrm{i}\mathrm{n} + \kappa  - 4
\mathrm{m}\mathrm{i}\mathrm{n}

\bigl( 
\| \kappa \| 2\scrC 3 + \| \kappa \| \scrC 3

\bigr) \bigr] 
,(A.7)

where we have used (A.5) and C only depends on \scrM . Moreover, we have used the fact that
\kappa \mathrm{m}\mathrm{i}\mathrm{n} \geq e - \| u\| \infty , which implies \kappa  - n1

\mathrm{m}\mathrm{i}\mathrm{n} \leq \kappa  - n2
\mathrm{m}\mathrm{i}\mathrm{n} if n1 \leq n2. Now we bound the norm of the third

derivatives by further differentiating the equation with respect to xj and integrating against
uxkxj . We have again by Cauchy's inequality\int 

fxkxjuxkxj = - 
\int 

div

\biggl( 
\partial 2

\partial xj\partial xk
(\kappa \nabla u)

\biggr) 
uxkxj

=

\int 
\partial 2

\partial xj\partial xk
(\kappa \nabla u) \cdot \nabla uxkxj

=

\int \bigl[ 
\kappa xkxj\nabla u+ \kappa xk

\nabla uxj + \kappa xj\nabla uxk
+ \kappa \nabla uxkxj

\bigr] 
\cdot \nabla uxkxj

\geq \kappa \mathrm{m}\mathrm{i}\mathrm{n}\| \nabla uxkxj\| 2L2  - \| \kappa xkxj\| \infty 
\biggl( 
\varepsilon 1\| \nabla uxkxj\| 2L2 +

1

4\varepsilon 1
\| \nabla u\| 2L2

\biggr) 
 - \| \kappa xk

\| \infty 
\biggl( 
\varepsilon 2\| \nabla uxkxj\| 2L2 +

1

4\varepsilon 2
\| \nabla uxj\| 2L2

\biggr) 
 - \| \kappa xj\| \infty 

\biggl( 
\varepsilon 3\| \nabla uxkxj\| 2L2 +

1

4\varepsilon 3
\| \nabla uxk

\| 2L2

\biggr) 
= \| \nabla uxkxj\| 2L2

\bigl( 
\kappa \mathrm{m}\mathrm{i}\mathrm{n}  - \varepsilon 1\| \kappa xkxj\| \infty  - \varepsilon 2\| \kappa xk

\| \infty  - \varepsilon 3\| \kappa xj\| \infty 
\bigr) 

 - 1

4\varepsilon 1
\| \kappa xkxj\| \infty \| \nabla u\| 2L2  - 

1

4\varepsilon 2
\| \kappa xk

\| \infty \| \nabla uxj\| 2L2  - 
1

4\varepsilon 3
\| \kappa xj\| \infty \| \nabla uxk

\| 2L2 .

Now choosing

\varepsilon 1 =
\kappa \mathrm{m}\mathrm{i}\mathrm{n}

4(\| \kappa xkxj\| \infty + 1)
, \varepsilon 2 =

\kappa \mathrm{m}\mathrm{i}\mathrm{n}

4(\| \kappa xk
\| \infty + 1)

, \varepsilon 3 =
\kappa \mathrm{m}\mathrm{i}\mathrm{n}

4(\| \kappa xj\| \infty + 1)

and rearranging terms, we get

\| \nabla uxkxj\| 2L2 \leq 2\kappa  - 1
\mathrm{m}\mathrm{i}\mathrm{n}

\bigl( 
\| fxkxj\| 2L2 + \| uxkxj\| 2L2

\bigr) 
+ 4\kappa  - 2

\mathrm{m}\mathrm{i}\mathrm{n}\| \kappa xkxj\| \infty 
\bigl( 
\| \kappa xkxj\| \infty + 1

\bigr) 
\| \nabla u\| 2L2

+ 4\kappa  - 2
\mathrm{m}\mathrm{i}\mathrm{n}\| \kappa xk

\| \infty 
\bigl( 
\| \kappa xk

\| \infty + 1
\bigr) 
\| \nabla uxj\| 2L2 + 4\kappa  - 2

\mathrm{m}\mathrm{i}\mathrm{n}\| \kappa xj\| \infty 
\bigl( 
\| \kappa xj\| \infty + 1

\bigr) 
\| \nabla uxk

\| 2L2 .

Then we have

\| \nabla 3u\| 2L2 =

m\sum 
j=1

m\sum 
k=1

\| \nabla uxkxj\| 2L2(A.8)

\leq 2\kappa  - 1
\mathrm{m}\mathrm{i}\mathrm{n}

\bigl( 
\| \nabla 2f\| 2L2 + \| \nabla 2u\| 2L2

\bigr) 
+ 4m2\kappa  - 2

\mathrm{m}\mathrm{i}\mathrm{n}

\bigl( 
\| \nabla 2\kappa \| 2\infty + \| \nabla 2\kappa \| \infty 

\bigr) 
\| \nabla u\| 2L2

+ 8m\kappa  - 2
\mathrm{m}\mathrm{i}\mathrm{n}

\bigl( 
\| \nabla \kappa \| 2\infty + \| \nabla \kappa \| \infty 

\bigr) 
\| \nabla 2u\| 2L2

\leq C\| f\| 2H3

\Bigl[ 
\kappa  - 4

\mathrm{m}\mathrm{i}\mathrm{n} + \kappa  - 5
\mathrm{m}\mathrm{i}\mathrm{n}

\bigl( 
\| \kappa \| 2\scrC 3 + \| \kappa \| \scrC 3

\bigr) 
+ \kappa  - 6

\mathrm{m}\mathrm{i}\mathrm{n}

\bigl( 
\| \kappa \| 2\scrC 3 + \| \kappa \| \scrC 3

\bigr) 2\Bigr] 
,(A.9)D
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where again we only keep the highest order in \kappa \mathrm{m}\mathrm{i}\mathrm{n}. Differentiating further and applying a
similar argument, gives that

\| \nabla 4u\| 2L2 \leq 4\kappa  - 1
\mathrm{m}\mathrm{i}\mathrm{n}

\bigl( 
\| \nabla 3f\| 2L2 + \| \nabla 3u\| 2L2

\bigr) 
+ 16m3\kappa  - 2

\mathrm{m}\mathrm{i}\mathrm{n}\| \nabla u\| 2L2

\bigl( 
\| \nabla 3\kappa \| 2\infty + \| \nabla 3\kappa \| \infty 

\bigr) 
+ 48m2\kappa  - 2

\mathrm{m}\mathrm{i}\mathrm{n}\| \nabla 2u\| 2L2

\bigl( 
\| \nabla 2\kappa \| 2\infty + \| \nabla 2\kappa \| \infty 

\bigr) 
+ 48m\kappa  - 2

\mathrm{m}\mathrm{i}\mathrm{n}\| \nabla 3u\| 2L2

\bigl( 
\| \nabla \kappa \| 2\infty + \| \nabla \kappa \| \infty 

\bigr) 
\leq C\| f\| 2H3

\Bigl[ 
\kappa  - 5

\mathrm{m}\mathrm{i}\mathrm{n} + \kappa  - 6
\mathrm{m}\mathrm{i}\mathrm{n}

\bigl( 
\| \kappa \| 2\scrC 3 + \| \kappa \| \scrC 3

\bigr) 
+ \kappa  - 7

\mathrm{m}\mathrm{i}\mathrm{n}

\bigl( 
\| \kappa \| 2\scrC 3 + \| \kappa \| \scrC 3

\bigr) 2
+ \kappa  - 8

\mathrm{m}\mathrm{i}\mathrm{n}

\bigl( 
\| \kappa \| 2\scrC 3 + \| \kappa \| \scrC 3

\bigr) 3\Bigr] 
.

(A.10)

The desired result follows by combining equations (A.6), (A.5), (A.7), (A.9), and (A.10).

Proof of Lemma 3.7. By Lipschitz continuity of e - x when x > 0, we have\bigm| \bigm| \bigm| \bigm| exp\biggl(  - 1

2
| y  - \scrG \varepsilon (\theta )| 2\Gamma 

\biggr) 
 - exp

\biggl( 
 - 1

2
| y  - \scrG (\theta )| 2\Gamma 

\biggr) \bigm| \bigm| \bigm| \bigm| 
\leq 

\bigm| \bigm| \bigm| \bigm| 12 | y  - \scrG \varepsilon (\theta )| 2\Gamma  - 1

2
| y  - \scrG (\theta )| 2\Gamma 

\bigm| \bigm| \bigm| \bigm| 
=

1

2

\bigm| \bigm| (\scrG (\theta )T + \scrG \varepsilon (\theta )
T )\Gamma  - 1(\scrG (\theta ) - \scrG \varepsilon (\theta )) + 2yT\Gamma  - 1(\scrG (\theta ) - \scrG \varepsilon (\theta ))

\bigm| \bigm| 
\leq 1

2
\| \Gamma  - 1\| 2

\Bigl( 
| \scrG (\theta )| + | \scrG \varepsilon (\theta )| 

\Bigr) 
| \scrG (\theta ) - \scrG \varepsilon (\theta )| + \| \Gamma  - 1\| 2| y| | \scrG (\theta ) - \scrG \varepsilon (\theta )| ,

where \| \Gamma  - 1\| 2 is the operator 2-norm of \Gamma  - 1. By Theorem 3.1, Lemma 3.2, and (A.6),

| \scrG (\theta ) - \scrG \varepsilon (\theta )| \leq 
\sqrt{} \sum 

\| \ell j\| 2\| u - u\varepsilon \| L2 \leq C
\sqrt{} \sum 

\| \ell j\| 2A(\theta )\| f\| H3\varepsilon 4\beta  - 1,

| \scrG (\theta )| + | \scrG \varepsilon (\theta )| \leq 
\sqrt{} \sum 

\| \ell j\| 2
\bigl( 
\| u\| L2 + \| u\varepsilon \| L2

\bigr) 
\leq C

\sqrt{} \sum 
\| \ell j\| 2e\| \theta \| \infty \| f\| L2 ,

where u and u\varepsilon are the zero-mean solutions associated with \theta , and \| \ell j\| is the operator norm
of \ell j . Here we have written A as a function of \theta and use the fact that \kappa \mathrm{m}\mathrm{i}\mathrm{n} \geq e - \| \theta \| \infty . So\int \bigm| \bigm| \bigm| \bigm| exp\biggl(  - 1

2
| y  - \scrG \varepsilon (\theta )| 2\Gamma 

\biggr) 
 - exp

\biggl( 
 - 1

2
| y  - \scrG (\theta )| 2\Gamma 

\biggr) \bigm| \bigm| \bigm| \bigm| d\pi (\theta )
\leq C\| \Gamma  - 1\| 2\varepsilon 4\beta  - 1

\biggl[ \sum 
\| \ell j\| 2\| f\| 2H3

\int 
e\| \theta \| \infty A(\theta )d\pi (\theta ) +

\sqrt{} \sum 
\| \ell j\| 2\| y\| \| f\| H3

\int 
A(\theta )d\pi (\theta )

\biggr] 
.

It now suffices to show
\int \bigl( 

e\| \theta \| \infty \vee 1
\bigr) 
A(\theta )d\pi (\theta ) < \infty . Since \kappa = e\theta , we have

\| \kappa \| C4 \leq Ce\| \theta \| \infty 
\bigl( 
\| \theta \| \scrC 4 + \| \theta \| 2\scrC 4 + \| \theta \| 3\scrC 4 + \| \theta \| 4\scrC 4

\bigr) 
,

where C is a constant depending on the dimension m and a similar relation is true for \| 
\surd 
\kappa \| \scrC 4 .

Keeping only the highest order term in e\| \theta \| \infty , we have

A(\theta ) \leq C
\sqrt{} 

P1(\| \theta \| \scrC 4)e14\| \theta \| \infty P2(\| \theta \| \scrC 4)e\| \theta \| \infty 

\leq C

\sqrt{} 
P1(\| \theta \| \scrC 4)e14\| \theta \| \scrC 4P2(\| \theta \| \scrC 4)e\| \theta \| \scrC 4 ,D
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where P1 and P2 are polynomials. Since \pi is a Gaussian measure on \scrC 4, by Fernique's theorem
[28], \int \Bigl( 

e\| \theta \| \infty \vee 1
\Bigr) 
A(\theta )d\pi (\theta ) < \infty .

It follows that\int \bigm| \bigm| \bigm| \bigm| exp\biggl(  - 1

2
| y  - \scrG \varepsilon (\theta )| 2\Gamma 

\biggr) 
 - exp

\biggl( 
 - 1

2
| y  - \scrG (\theta )| 2\Gamma 

\biggr) \bigm| \bigm| \bigm| \bigm| d\pi (\theta ) \leq C\varepsilon 4\beta  - 1,

where C depends on \Gamma , y, f , and the \ell j 's, but is independent of \varepsilon .
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