VARIETIES OF PLANES ON INTERSECTIONS OF
THREE QUADRICS
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ABSTRACT. We study the geometry of spaces of planes on smooth
complete intersections of three quadrics, with a view toward ratio-
nality questions.

1. INTRODUCTION

This note studies the geometry of smooth complete intersections of
three quadrics X C P", with a view toward rationality questions over
nonclosed fields k. We review what is known over C:

e X is irrational for n < 6 [Bea77];

e X may be either rational or irrational for n = 7, and the rational
ones are dense in moduli [HPT18];

e X is always rational for n > 8 [Tju75, Cor. 5.1].

The analysis in higher dimensions relies on the geometry of planes in
X. Indeed, when X contains a plane P defined over k then projection
from P gives a birational map

wp: X ——» P73,

This leads us to study the variety of planes F»(X) C Gr(3,n+1). When
n > 12, the geometry of these varieties gives a quick and uniform proof
of rationality over finite fields and function fields of complex curves
(see Theorem 1).

We are therefore interested in the intermediate cases n = 8,9, 10, 11,
and especially in n = 8 and 9. For generic X C P8, the variety F5(X)
is finite of degree 1024 (see Proposition 5); we explore the geometry of
the associated configurations of planes in P®. We then focus most on
the case n = 9. Here the variety F»(X) is a threefold of general type
with complicated geometry — we analyze its numerical invariants.

Our original motivation was to understand certain singular complete
intersections of three quadrics in P? associated with universal torsors
over degree 4 del Pezzo surfaces fibered in conics over P! [CTS87].
Conjectures of Colliot-Thélene and Sansuc predict that such torsors
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are rational when they admit a point, over number fields. Rationality
of torsors has significant arithmetic applications, e.g., to proving the
uniqueness of the Brauer-Manin obstruction to the Hasse principle
and weak approximation. It has geometric consequences as well, e.g.,
the construction of new examples of nonrational but stably rational
threefolds over C. The geometry of smooth intersections, presented
here, turned out to be quite rich and interesting on its own.

Here is a road map of the paper: Section 2 presents uniform proofs
of rationality for high-dimensional cases. Section 3 is devoted to deter-
minantal presentations of plane curves arising as degeneracy loci of the
net of quadrics. In Sections 4 and 5, we turn to numerical invariants
of the variety of planes. Our main results concern the computation of
degrees and cohomology of F»(X), for X a smooth intersection of three
quadrics, in P® and P°.

Acknowledgments: The first author was partially supported by NSF
grants 1551514 and 1701659, and the Simons Foundation; the second
author was partially supported by NSF grant 1601912. We are grateful
to Nicolas Addington for suggestions on the Schubert calculus compu-
tations in Section 4 and to Borys Kadets for briefing us on his upcoming
work with Hashimoto [HK20].

2. UNIFORM RATIONALITY IN HIGH DIMENSIONS

Theorem 1. Let k be a finite field or the function field of a complex
curve. Suppose that X C P",n > 12, is a smooth complete intersection
of three quadrics. Then X is rational.

Proof. The results of [DM98] show that for X generic over k, the va-
riety F5(X) C Gr(3,n + 1) is smooth and connected of the expected
dimension 3n — 24. The adjunction formula implies that F5(X) has
canonical class

KFz(X) = (12 —n — 1)0’1;
here oy is the hyperplane class from the Pliicker embedding — see Sec-
tion 4 for details. In particular, F5(X) is Fano for n > 12.

Suppose k is a function field. When F5(X) is smooth of the expected
dimension, we have F»(X)(k) # 0, by the Graber-Harris-Starr theorem
[GHS03]. What if F5(X) is singular or fails to have the expected di-
mension? However, we still have rational points, by an argument of
Starr: Suppose that X, — B is a family of varieties over a complex
projective curve B corresponding to a morphism B — Hilb to the
appropriate Hilbert scheme. There exists a one-parameter family of
curves C;, meeting the locus over which Fj is smooth of the expected
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dimension, such that Cy contains B as an irreducible component. (Take
the C; to be complete intersection curves in Hilb.) For the induced fam-
ilies X, — C, the fibrations Fy(X;) — C; admit sections for most ¢. This
remains true as t — 0; restricting to B gives a section of Fy(X,) — B.

A similar argument holds over finite fields, using Esnault’s Theorem
[Esn03] and the specialization version due to Fakhruddin and Rajan
[FRO5. O

3. DETERMINANTAL REPRESENTATIONS

3.1. Recollection of invariants. We recall formulas that may be ob-
tained from Appendix I of Hirzebruch’s Topological Methods, specifi-
cally, [Hir66, Th. 22.1.1].

Proposition 2. Suppose that n = 2m. Then we have
X(X) = —4m(m —1)

and

hmfl,mf2(X) _ hme,mfl(X) — (2;”) — 1= 2777,2 —m — 1.

The other Hodge numbers of weight 2m — 3 vanish.
Proposition 3. Suppose that n = 2m — 1. Then we have
X(X) = 4m(m — 1)

and

-1
prbmE(X) = R H(X) = <m ) ),hm—lm*(x) = 3m*—3m+2.
The odd case follows from [O’G86] and [Las89]; the even case from
[Bea77]. For reference, we give a tabulation of nontrivial middle Hodge
numbers

n | Hodge numbers
4 5 5
5 1 20 1
6 14 14
7 3 38 3
8 271 27
9 6 62 6
10 44 44
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3.2. Interpretation of cohomology. Let X C P" be a smooth com-
plete intersection of three quadrics containing a plane P. It follows
that n > 7 and X is of special moduli when n = 7, as the expected
dimension of the Fano variety of planes is

expdim F5(X) =3(n —2) —3-6 = 3n — 24.
This case is studied in depth in [HPT18].

Projection from P induces a birational map X --» P*~3. The center
Y of the inverse has dimension n — 5 and admits a fibration in quadric
hypersurfaces of relative dimension n — 7 over P2, This is instrumental
in computing and interpreting the cohomology of X.

Suppose n is odd. Then Y is fibered in even-dimensional quadrics
and its cohomology is governed by the associated double cover

S — P?,

branched over the degeneracy locus D, and the associated Brauer class
n € Br(S5)[2], when n > 9. It is possible to interpret F»(X) via moduli
spaces of vector bundles over S [Bho86].

When n is even, Y is fibered in odd-dimensional quadrics, degenerate
over a plane curve D of degree n + 1. The cohomology is obtained via
a Prym construction arising from the associated double cover of D.

3.3. Equations of the center. Given a vector space or bundle V,
P(V') denotes the projective space of lines in V.
In general, write
E = Ogn73 D Opn—B(—l) — O]’g:_}3
so that P(§) = Blp(P") with bundle morphism @ : P(£) — P"3.
Quadrics containing P correspond to elements of
[(Ope)(1) ® @ Opns(1)) = T(£7(1)),

and complete intersections of three such forms correspond to linear
transformations

O]:fpn—zi — 8*(1) ~ O]PJ'!L73<].)3 @ Oﬂbnfii (2)

We are interested in their degeneracy loci, whose equations are given
by minors of

Ly Liy Lig
(1) L21 L22 L23
L31 L32 L33
Ql QQ Q3

where the L;; are linear and the (); are quadratic; maximal minors
yield one cubic equation and three quartic equations.
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Let Y C P"3 denote the subscheme given by the maximal minors,
which generically has codimension two. The (n + 1)-dimensional linear
series I'(Zy (4)) induces a birational map

P38 ——s X C P"
inverse to mp.
The determinantal equations (1) for Y yield a rational map
¢:Y --» P2,

assigning to each rank-two matrix its one-dimensional kernel. This fails
to be defined along the locus Z C Y where the matrix (1) has rank
one. See Section 3.5 for more information about its geometry.

We shall analyze the cohomology of X using the cohomology of nat-
ural resolutions of Y, expressed via ¢ as quadric bundles over P2,

3.4. Linear algebra. We start with some linear algebra on generic
m X 3 (m > 3) matrices L = (L;;). Consider the stratification by rank

Ry :=P" ' xP*>C Ry C PP
where dim(Ry) = 2m + 1. Over R;, we may write
Lij:uin7 izl,...,m,j:1,2,3.

We obtain two small resolutions of Ry by keeping track of just the
kernel or the image of L, respectively. For example, we may consider

Ry C Pyt x P2

given by the equations

T

L i) = 0.

T3
The exceptional locus EcC J/%\g is a P-bundle over R; — for each rank
one matrix we extract the one-dimensional subspaces of its kernel. It
has codimension m — 1 in f%\g

3.5. Generic behavior. Assume that n = 11 and the L;; are linearly
independent.

Consider the locus where the upper 3 x3 matrix has rank at most one;
here we may write L;; = u,v;,4,5 = 1,2,3. The remaining equations
involving the @); take the form

U1v2Q1 — urv1Q2 = UgVeQy — UV Qe = -+ = 0.

Writing ¢; = Q;(uqvy, . .., usvs) and dividing by the u;, we obtain

Va1 — V1Q2 = U3q1 — V1q3 = V2q3 — U3qz = 0.
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The indeterminacy locus for the kernel map ¢ is a surface Z C P? x P2

R Resolving the kernel map ¢ : Y --» P? yields a small resolution

Y — Y with center Z. Write the kernel of (1) as [z1, g, 3] so that
[L12Los — LigLos, —L11Los + LizLog, L1y Loy — LiaLoy| ~ |11, 79, 23]

etc. The rank two matrices with this kernel correspond to a codimension-
three linear subspace

Moy oo ag) =~ P° C P,
The 3 x 3 minors involving the @); are all proportional to

Q171 + Qa2 + Q373.
Hence R
6:Y — P?
is a quadric bundle of relative dimension four.

3.6. Degenerate cases in small dimension.
n = 5: Suppose we have a complete intersection of three quadrics in
P° containing a plane

X =Pugl.

Here 7p : U — P? is birational, realizing U = Bly (P?), where
(b:Y:{yla'-‘?yg}%IPQ

is a generic collection of nine points. The imbedding
U — P°

is via quartics vanishing at those nine points.

Write g for the hyperplane class on P? and its restriction to plane
curves. Note there is a canonical cubic curve W O Y where the deter-
minant of linear forms vanishes. For each divisor

there is a unique quartic form — modulo the defining equation of W —
cutting out Y U Y.

n = 6: Now consider a complete intersection of three quadrics in P°
containing a plane
PC X CPS

The threefold X is a nodal Fano threefold, with six singularities along
P. Note that X depends on 21 parameters, codimension six in the
parameter space of all complete intersections.
In this case, we have
Y CW CP,
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where W is a smooth cubic surface, Y is a smooth curve with
deg(Y) =9, genus(Y) =09,

residual to a twisted cubic ¥ C W in the complete intersection of W
and a quartic. Write

Pic(W) = (L, B\, s, B3, By, E5, Eg) , L = [X],

where the E; are pairwise disjoint (—1)-classes with L - E; = 0. Then
we have

Y] =11L —4F, — ... — 4F;
and the residual twisted cubic to X, with divisor class
5L —2F, —...—2Fg,

realizes Y is a septic plane curve with six nodes. The corresponding
linear series induces ¢ : Y — P2, N

The intermediate Jacobian of a minimal resolution X — X is iso-
morphic to the Jacobian of Y.

n = 7: The simplest smooth case, obtained by taking a codimension-
four linear section of the generic case. For generic choices of the linear
section, Z = () and ¢ : Y — P? is a double cover branched over a
special octic plane curve. Thus we have

YCW:= {det(Lw) = 0} C P4,

where W is a cubic threefold with six ordinary double points [HT'10].
The surface Y has Picard group

K h
K|2 7
h |7 9

where K is the canonical class — pulled back from P? — and h is asso-
ciated with the embedding

Y — W — P4

There is a second morphism Y — P? associated with the divisor 2h — K
because

(2h — K)? — (2h — K)K

2

36— 2842 — 14+ 2
= +2 Tliu=s

The residual intersection to Y in the complete intersection of W and
a quartic hypersurface is a cubic scroll ¥. By [HT10], Y admits two

X(2h — K) = +4
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families of such scrolls, each parametrized by P?. An adjunction com-
putation shows that

XNY =y 2h — K.

Remark 4. The lattice (K, h) has discriminant —31. Consider the
lattice

(¢°,P) c H'(X,Z)

under the intersection pairing, where ¢ is the hyperplane class. A
Chern-class computation gives P? = 4 whence

9> P
g8 1,
Pl1 4

which has discriminant 31. The birational parametrization of X in-
duces an isomorphism of Hodge structures

H2(Y,Z)(—1) D (K, h)*" ~ (¢*, P)" C H'(X,Z).

n = 8: Here the L;; are linear forms on P> so the determinant cubic is
singular along an elliptic normal curve. We again have Z = () and the
center Y C P° of the mapping to P® is a conic bundle over P2. The
equations of ¥ C P® x P2 may be written:

(2) Liixy + Ligxy + Lizxs = 0, Q121 + Qaxa + Qz23 = 0.
The linear forms induce

0— K — 0% — Op(1)% — 0
and the quadratic form induces a symmetric map

K — K*(1).

The degeneracy C' C P? has degree 9 since

c1(K*(1)) = ei(K) = 9e1(Opz(1)).

We count parameters using for equations of type (2):

e the linear terms depend on 45 parameters, the dimension of
Gr(3,I'(Opsyp2(1,1)));

e the quadratic term depends on 43 paramaters, the dimension
of the projectivization of

[(Opsyp2(2,1))/ ( linear terms) ;

e coordinate changes on P% x P? account for 43 parameters.
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Thus we are left with a total of 46 parameters — the number of moduli of
a plane curve of degree 9. We know that C' comes with a distinguished

double cover C' — C but even after fixing this we obtain a total of 1024
determinantal representations (see Proposition 5).

n = 9: Here the L;; are linear forms on PS. This allows us to use the
normal form

A Ay Az T

A5 Al A4 i) = 0.

A6 A7 A1 T3

The rank-one locus is a degree-six del Pezzo surface. The equations of
Y C P x P? may be written:

Ayzy + Agxg + Asxy = Asxy + Ao + Ay = Ay + Az + Ayzs =0
Q171 + Qax2 + Q33 =0.
The linear forms induce
0— K — OF — Op(1)% — 0
and the quadratic form induces a symmetric map
K — K*(1)
with degeneracy C' C P? of degree 10.

Fixing C' and the double cover C' — (', the various determinant

representations as above are parametrized by the planes in X, i.e., by
the threefold F5(X).

4. SCHUBERT CALCULUS OF THE VARIETY OF PLANES

Now assume that the variety of planes
Fy(X) c Gr(3,n+1)

is smooth of the expected dimension 3n — 24.
Consider the canonical exact sequence over Gr(3,n + 1)

0=->5—=-V0—->0Q—0.
The defining equations
X={F=F=FK=0}, F,KFecSym*(V),
induce sections f1, fa, f3 € Sym?(S*) so that
(X)) ={fi=fo=f;=0}.

We compute Chern classes. We use the notation of [GH94, pp. 197 ff.],
e.g., the Chern classes of S are the Schubert cycles

c(S)y=1—014+011—0111-
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Computing via the ‘SchurRings’ or ‘Schubert2’ packages of Macaulay?2
[GS], we obtain

[Fao(X)] = 512(09,6 34209 544208 7,3+608 6 4+408 5 5+407,7.4+807,6 51206 6.6 ) -

The paper [DMO98] explores these formulas more systematically; our
formula extends the tabulation on [DM98, p. 563]. See also [Jial2] for
more information on Noether-Lefschetz questions for Fano schemes.

Proposition 5. When n = 8 and X generic, the variety Fy(X) C
Gr1(3,9) has dimension zero and

[F>(X)] = 1024[point].

Question 6. Describe the Galois action arising in this case. To what
extent is it governed by the Galois representation on the intermediate
Jacobian?

Frank Sottile and his collaborators (see, e.g., [HRS18]) are develop-
ing computational approaches to Galois groups of enumerative ques-
tions. Computations with Taylor Brysiewicz indicate the group in this
case might be smaller than the symmetric group Gqgo4 but a full com-
putation appears difficult with existing techniques and computational
resources.

Recently, Hashimoto and Kadets [HK20] analyzed Galois groups of
zero-dimensional Fano varieties of linear subspaces in complete inter-
sections using the classification of multiply transitive groups. Except
for a few exceptional cases — like cubic surfaces and even-dimensional
complete intersections of two quadrics — the Galois group always con-
tains the alternating group. Thus in our situation the Galois group is
either the alternating group 2924 or Gigo4.

Remark 7. We propose to construct these examples synthetically: Fix
seven generic planes

P,...,P,CP®?
which depend up to projectivity on 18 -7 — 80 = 46 parameters. Write
n=~PU”PU---UP;
and note that
RO (Z1(2)) = h°(Ops(2)) — 7-6 = 3.

Thus there is a unique complete intersection of three quadrics X D II
which we expect is smooth. How do we construct the other 1017 planes
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We focus next on the case n = 9 where F5(X) C Gr(3,10) is a
threefold with class

[FQ(X)] = 512(407’774 + 8077675 + 206,6,6)

so we have
deg(F»(X)) = 11264 = 11 - 2'°,

Since Kp,(x) = 201 we have

K,

2

_ 13
x) = 1121,

Proposition 8. [DM98, Th. 3.4] When Fy(X) is smooth of the expected
dimension we have

RO (Fy (X)) = WO (Fy(X)) = 0.
Consider the rank 18 vector bundle
&= Sym2(5*)@3

so there exists a section s € I'(Gr(3,10),&) with F»(X) = {s = 0}.
The exact sequence

0 = Tryx) = Taez10) | F2(X) = Npy(x)/cr3,10) = 0

and the interpretation of the normal bundle as £|F,(X) allows us to
compute all the Chern classes of Tr,(x):

c1(Try(x)) = =201
CQ(TF2(X)) = 802 — 30’171
Cg(TFQ(X)) = —200'3 — 0'2,1 + 80171’1.

A computation with the ‘SchurRings’ or ‘Schubert2’ packages of
Macaulay?2 gives

X(OFQ(X)) = Cl(TFQ(X))C2(TF2(X))/24 = —2816 = —28 . ]_1
and
X(F2(X)) = c3(Tryx)) = —36,864 = —22 . 3.
The Hirzebruch-Riemann-Roch formula gives
X(OF2(X)(1>) - 07

which is to be expected, as Serre duality gives

W(Oryx)(1) = 7 (W) (—1)) = 7 (Opyx)(1))-
Similarly, we obtain x(Op,(x)(2)) = 2816. We also get

X(Or,x)(3)) = h(Opyx)(3)) = 16,896 = 27 - 3 - 11,
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where the first equality is Kodaira vanishing. Thus we have enough
data to extract the Hilbert polynomial of F(X)

271
-3
Hirzebruch-Riemann-Roch allows us to compute x (2, (x)) as well

X(Or,(x)(m)) (m —1)(5(m —1)* - 2).

X(Qpyx)) = 15,616 = 2° - 61.

5. KOSZUL COMPUTATIONS

5.1. General set-up. Let £ denote a vector bundle and s € I'(€) a
section such that the degeneracy locus Z = {s = 0} has codimension
equal to the rank R of £. Then we have a resolution

R R—1
O—>/\5*—> /\5*—>---—>5*—>O—>Oz—>0

and the Koszul complex

R R—-1
0> N\NE = NE = =E 500

The arrow

n n—1
i \NET= N\ E

is contraction by s. The hypercohomology spectral sequence gives

—-p
EYe = HY(\ £) = H"(0Oy),

where p = —R,...,0.

Following [Man91], we may use this to compute the cohomology
of degeneracy loci over Grassmannians G(n,d — 1) = Gr(n + 1,V).
Given a d-dimensional vector space V' and integers A = (Ay,..., )
with Ay > Xy > -+ > )\, and A\, = 0 for k > d, let [*V denote
the associated Schur functor. We observe the convention I'*V = 0 for
sequences of integers A failing the decreasing or vanishing conditions.

We keep track of the decompositions using the dictionary between
Schubert calculus and tensor products

VeIV => &IV,

where the multiplicies are defined by

_ v
O\O, = E CApuOv-
14
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5.2. Planes in intersections of three quadrics in P?. Consider the
bundle

5 — Sme(S*)GB?)

and s € T'(€) with F»(X) = {s = 0}. We have the associated Koszul
resolution

18 T
0—>/\S*—>---—>/\5*—>---—>£*—>O—>(9F2(X)—>O.

The terms of the Koszul complex decompose into direct sums of prod-
ucts

€1 €2 €3
/\ Sym?(S) ® /\ Sym?(S) ® /\ Sym?(S), e;+eg+ez=r.
The hypercohomology spectral sequence gives

—-Pp

E{)’q = Hq(/\g*) = Hp+q(OF2(X)),

where p = —18,...,0.
Recall the Weyl character formula for GL(V') representations:

N—A+j—i
j—i

dim (V) =[]

i<j
Assume S has rank three then
rank T'(@192:9) S — (g, — ay + 1)(ay — as + 2)(az — as + 1) /2.

We observe the dictionary

Sym?(S) ~ oy
/\zsymz(s) ~ 031
/\3Sym2(S) ~ 033+ 0411
A'Sym®*(S) ~ ousa
N’ Sym*(S) ~ o044z
A’ Sym*(S) ~ o444
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whence

Note also [Jial2, Cor. 1.3] that

H’(Gr(3,10),T*S) = 0

whenever 7 is not divisible by 7 and for all but one value of j.
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We tabulate the representations I'“S,a = (a1, as,a3) appearing in
each \" &*:

decomposition

10,0,0)

30

3r® 467G 4 3022)

T(6) + ]T(5:1) + 9T (4:2) + 1074:1,1) + 10T73:3) + ]T(3:2,1) + 17(22,2)
30D 4 9r(6:2) 4 157610 4 187G:3) 4 247(:21) 4 g (%4
4330431 4 gr(42.2) 4 150(3:3,2)

5| 3062 4 6L 4 or(T3) 4 241 (21) 4 18T(6:4) 4 547(6:3,1)
+21T(6:2:2) 4 6r(5:5) 4 48T (41 4 54T(5:32) 4 391 (44.2) 4 307(43:3)
6 | T093) + ]T(9:2,1) + ]T(8:4) + 27T(8:3,1) + 1917°(3:2,2) + 9T (7:5)

+640 (741 4 620(73:2) 4 107(6:6) 4 530651 1 117064.2) 4 561(6:3:3)
+460(3:5:2) 4 88 (5:4:3) 4 38 (4:4:4)

7 | 37(10,3,1) + 61°(10,2,2) + 37(9,5) + 241(9:4,1) + 277(9:3,2) + 6T(8:6)
442051 4931 :42) 4 3673:33) 4 30(T7) 1 487(76:1) 4 1320(7:5:2)
+1440(743) 4 661(6:62) 4 1387(6:5:3) 4 1147(6:44) 4 g (5:5:4)

8 | 37(11.3.2) 4 gp(10,5.1) 4 941 (104,2) 4 gr(10:3,3) 4 31(9,7) 4 94T (9.6,1)
+75F(9’5’2) + 7oT(9:4,3) + 2T (8,7,1) + 1021°(8:6,2) + 1681(8:5:3) + 9or(8:4,:4)
+690(772) 4 1680(7:6:3) 4 2131(7:54) 4 96 (6:6:4) 4 751(6:5:5)

9 F(12’3’3) + 91"\(11,5,2) + SP(11’4’3) + 9F(10’7’1) + 36F(10’6’2) + 63F(10’5’3)
+28F(10’4’4) + 79,9 + 8F(9’8’1) + 63F(9’7’2) + 1281‘\(9,6,3) + 14921°(9:5,4)
+281(8:82) 4 1491(8.7:3) 4 216T(8:64) 4 1461(8:55) 4 1461(7.74)
+1601(7:6:5) 4 201°(6.6,6)

=W N = O3

The terms in red contribute to the cohomology [Jial2, Th. 1.2]. The
representations for » > 9 may be read off via duality

r 18—r

/\g* _ det(g*) ® /\ g, 1“(111,(12,@3) % 1—\(12—(13,12—(12,12—@1) — 1—\(12712,12).
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decomposition

18
17
16
15
14
13

12

11

10

[(212,12)

3p(12,12,10)

30(12,12,8) 4 gP(12,11,9) | 31(12,10,10)

1(12,12,6) 4 gP(1211,7) 4 gp(12,108) | 1gp(L118) 4 107(12,9.9) 4 gP(11,10,9)
4 1(10,10,10)

3p(2.115) 4 gp(12,10,6) 4 {57(L116) | 1gP(12.9,7) 4 94 (11,10,7) 4 gp(128,8)
+330(11,9.8) 4 g1°(10,10,8) + 151°(10,9,9)

30(12,10,4) 4 gP(1L11,4) | gp(12,9.5) 4 94P(11,10,5) 1 {QP(12,8,6) 4 547(11,9,6)
1 917(10,10.6) 4 gP(2,77) 1 49D (L8.7) 1 547(10.9.7) 1 39r(10.88) 1 301(9:9:8)
F(12’9’3)+8F(11’10’3)+8F(12’8’4)+27F(11’9’4)+19F(10’10’4) +9F(12’7’5)
+64F(11’8’5) +62F(10’9’5) + 107°(12,6,6) +53F(11’7’6) + 1171(10,8,6)
+56T(996) 4 461 (10.77) 4 8T(O87) 4 38 (8:8,8)
30(119.2) | ¢T(10.10.2) 4 37(1273) 4 94T (1183) 4 971(109.3) | ¢T(1264)

L 49T(LTA) | 937(10.8.4) | 367(9.94) 4 37(1255) 4 487(11,655) 4 1397(10,7,5)
+1447085) 4 66T (10:6:6) 1 1381 (97:6) 4 1141(8:8:6) 1 6o (87.7)
3F<10’9’1)+9F(11’7’2)+24F(10’8’2) +9F(9’9’2)—|—3F(12’5’3) +24F(11,6,3)
+75010.7:3) 4 797(9:8:3) 4 947 (115:4) 4 1020 (10.6:4) 4 1681(9:7:4)
+99F(8’8’4) +69F(10’5’5) —|—168F(9’6’5)+213F(8’7’5)+96F(8’6’6) —|—75F(7’7’6)

And then we record those contributing cohomology in degree j, using
[Jial2, Th. 1.2]. Note that the sequence

(—1, —2, —3, —4, —5, —6, —7, a; — 8, ag — 9, as — 10)

must have no repeating integers as these yield ‘singular’ weights. Thus
we must have a; > 8; if a; = 8 then as; = 1,0, etc.

Ji ‘ weights a contributing
01(0,0,0)

7 | no contributions in A*E*
(8,1,1)

no contributions in A°&*
14 1(9,9,0)

(10,9,1), (9,9,2)
(10,10,2), (11,9,2)

no contributions in A" £*
21 (10, 10, 10)

(12, 10, 10)

(12,12, 10)

(12,12,12)
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The degree 7 cohomology contributes through

5
H7(/\ £) = H?((F(8,1,1)S)@6> ~ (F(l,l,l,l,l,l,l,l,l,l)v)@6 ~ (det(V))®6 ~ CE.
Here V' is the standard 10-dimensional representation.

Proposition 9. We have
H(Opyx)) =C,  H'(Opyx)) =0.
For higher degrees, we have
COn B —E = = EDT = H2<0F2(X))_
Consequently, we deduce that
h?(Opyx)) = 2816 + 146 — 0 = 2823.
Proof. The only term in degree zero is Eio,o) and there are no terms in

degree one, which gives the degree 0 and 1 cohomology; see also Prop. 8
and [DM98]. The spectral sequence is supported at the following values

of (p,q):
(0,0), (=5,7), (=9, 14),(—10, 14), (—11, 14),
(—15,21), (—16,21),(—17,21), (—18, 21).

All the values after (—5,7) have degree p+ ¢ > 3 and p < —5, thus do
not receive arrows from E.%7. And clearly there are no maps from the
degree (0,0) term, abutting to I'(Op,(x)). This yields the equalities
asserted above. U

The degree 14 cohomology contributes through

11
H14(/\ 5*) _ H14((F(10,10,2)S)®6) o (F(11,9,2)S)EB3))
(F(3’3’2’2’2’2’2’2’2’2)V)EBG o (F(4,2,2,2,2,2,2,2,2)V)@ZS
~ ((C45)6 D (C55)3 ~ C435

10
H14(/\ 5*) _ H14((F(9,9,2)S)€B9) ® (F(IO,Q,I)S)@3))
(F(2’2’2’2’2’2’2’2’2’2)V)®9 D (F(3’2’2’2’2’2’2’2’2’1)V)GBS
~ (C)Q D (C99)3 ~ (C306

H14(/\ 6*) _ H14(F(9’9)S>

— P2222222220) ~ 55
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The degree 21 cohomology contributes through:

18
H21 (/\ g*) — H21 (F12,12,125)

1-\(5,5,5,3,3,3,3,3,3,3)‘/ ~ C4950

17
H21(/\ g*) — H21(<1—\12,12,1OS)@3)

_ (5,5,3,3,3,3,3,3,3,3) 17\ B3 ~ ((825\3 ~ (2475
(T V)P = (C7) =~ C

16
H21(/\ S*) _ H21((F12,10,105)@3)
_ (F(5,3,3,3,3,3,3,3,3,3)V)@s ~ ((C55)3 ~ 165

15
H21(/\ g*) — H21(F10,10,IOS)
_ F(3’3’3’3’3’3’3’3’3)V ~C

Remark 10. Standard properties of spectral sequences imply

—p -p
—2816 = X(Opyx)) = > _(~1)PHHI(N\E) =D (~1)*PH™(\ €).
We compute

—2816 =1+ 6 + (—55+ 306 — 435) + (—4950 + 2475 — 165 + 1),
thus everything checks.

Question 11. The simplest structure on the spectral sequence would
be to have exactness in all degrees where there is no contribution to
cohomology, i.e., degeneration at Fy. Thus the only nonzero terms in
the second page would be

—18,21 - - —11,14 —
EQ 2l A C4950 24754+165—-1 _ (C2639 E2 1~ C435 306+55 _ 6184,

as well as

E,""~C% EYY~C.
Does this degeneration occur? It would imply a nontrivial filtration on
the holomorphic three-forms of Fy(X).

Proposition 12. The Hodge diamond of F5(X) is

1
0 0
6 62 6
2823 15684 15684 2823

Proof. We recall that



VARIETIES OF PLANES ON INTERSECTIONS OF THREE QUADRICS 19

e The Picard rank p(F»(X)) = 1 when X is very general [Jial2,
Th. 0.3].

e Let ¥ — P? denote the double cover branched along degeneracy
curve; there exists an isometry on primitive cohomology

H6<X7 Z)prim — H2<27 Z)(_2>prim7

realizing the former as an index-two sublattice of the latter
[O’GS86, Th. 0.1].

The latter observation gives the Hodge numbers of X displayed in
Section 3.1.
The incidence correspondence

induces Abel-Jacobi maps

oy g fF HY (X, Z) — H*(Fy(X),Z)(—2),

ay: fogt s HY(Fy(X),Z) — H(X,Z)(1).
Letting
L: H*(Fy(X),Z) — HYFy(X),Z)
denote intersection by the hyperplane class o1, the composition
asoLoa;: HY(X,Z) — H*(X,Z)

forces the cohomology of X and F5(X) to be tightly intertwined. Such
constructions are used to establish Grothendieck’s version of the Hodge
conjecture for varieties with sparse Hodge diamond; see for example
[Voil0)].

For our immediate purpose, we can apply the Main Theorem of

[Shi04] to conclude that the cylinder map «; injects the primitive co-
homology HY(X,Z)pim into H?(Fy(X),Z). Since we computed

RO (Fy(X)) = 6
in Proposition 9, we conclude that
H*(Fy(X), Q)primn = HO(X, Q)(2)prim & Q(—1)"

for some N. The last summand is of Hodge-Tate type. However, N = 0
by Jiang’s result on the Picard group. 0
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