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ABSTRACT: The nucleation of protein aggregates and their
growth are important in determining the structure of the cell’s
membraneless organelles as well as the pathogenesis of many
diseases. The large number of molecular types of such aggregates
along with the intrinsically stochastic nature of aggregation
challenges our theoretical and computational abilities. Kinetic
Monte Carlo simulation using the Gillespie algorithm is a powerful
tool for modeling stochastic kinetics, but it is computationally
demanding when a large number of diverse species is involved. To
explore the mechanisms and statistics of aggregation more
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efficiently, we introduce a new approach to model stochastic aggregation kinetics which introduces noise into already statistically
averaged equations obtained using mathematical moment closure schemes. Stochastic moment equations summarize succinctly the
dynamics of the large diversity of species with different molecularity involved in aggregation but still take into account the stochastic
fluctuations that accompany not only primary and secondary nucleation but also aggregate elongation, dissociation, and
fragmentation. This method of “second stochasticization” works well where the fluctuations are modest in magnitude as is often
encountered in vivo where the number of protein copies in some computations can be in the hundreds to thousands. Simulations
using second stochasticization reveal a scaling law that correlates the size of the fluctuations in aggregate size and number with the
total number of monomers. This scaling law is confirmed using experimental data. We believe second stochasticization schemes will
prove valuable for bridging the gap between in vivo cell biology and detailed modeling. (The code is released on https://github.com/

MYTLab/sto ch—agg.)

I. INTRODUCTION

The aggregation of proteins into large molecular assemblies is
crucial for cell biology: some large aggregates are necessary for
proper function, while others cause disease. For example,
aggregates of G-actin filaments are a major component of the
dynamic cytoskeleton of cells, while amyloid-$ (Af) and -
protein aggregates are associated with Alzheimer’s disease.”” In
the past few decades, considerable theoretical effort has been
devoted to the physical chemistry of protein aggregation. A
major difficulty in understanding aggregation is that a wide
range of species is involved, all having different numbers of
component particles as well as myriad possible shapes. In 1962,
Oosawa and his co-workers proposed a simple model to
investigate the kinetics of the growth of linear and helical
aggregates of proteins.” They employed the principal moment
method to characterize the distribution of species in order to
derive a closed-form solution of the deterministic rate
equations. The results of their analysis agreed well with
experiment. Later, they modified their model by adding the
process of primary nucleation, where monomers must form
nuclei before polymerization can occur.’ In 1985, the
importance of a secondary nucleation channel was realized
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by Eaton and co-workers and was used to describe the lag time
observed in the polymerization of sickle hemoglobin® using a
perturbation method. More recently, Knowles et al. have
proposed holistic mechanistic models that include other
secondary processes, such as filament breakage,” which can
promote secondary nucleation. All of these kinetic rate models,
being deterministic descriptions of average behavior, work
quite well for macroscopic experiments in vitro and provide
useful insights into aggregation mechanisms.*’

We must acknowledge however that cells and their
compartments are microscopic so stochastic effects are
prominent. Stochastic models of aggregation in cells must be
able to deal with the same large variety of processes found in
vitro: primary/secondary nucleation, elongation, and dissocia-
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tion, as well as secondary processes, such as fragmentation.'’
These processes can be described through a set of equations
for all the species involved.” It is best to compare the solutions
of these equations with experimental kinetics by monitoring
suitable averages over the size distributions. These averages
connect to the relevant experimental probes. Key averages
include the total number of monomers found in aggregates
which is proportional to the total mass in aggregates, as well as
the second principal moment of the distribution of species
sizes. Both of these quantities are commonly used to monitor
the progress of aggregation. Note that the second principal
moment of the distributions refers to the total mass in

aggregates (M(t) = Z;x;n if(t, j), where f(t, j) is the number

of length-j aggregates). By globally fitting M(t) to the
experimental data in vitro, one can obtain fitted values for
the kinetic parameters (e.g, critical nucleus size, nucleation/
elongation rate constant) and thus gain mechanistic insight
into the relative importance of the different microscopic
processes.'

Single cell experiments performed in vivo or microfluidics
experiments using small volumes hi§hlight the inherent
variability of the aggregation process.'” In these situations,
the time course of aggregation displays significant random
fluctuation due to the small number of protein molecules that
can aggregate. These number fluctuations are quite important
in the cell. The deterministic moment closures, however, do
not account for such fluctuations. In a single cell, the number
of monomers is sufficiently small such that the intrinsic
fluctuations become physiologically significant. Ferrone et al.
were the first to discuss the stochastic fluctuations of the lag
time for aggregation in small volumes.” Since then, many
studies on the fluctuations of the kinetics of ag%regation have
appeared.'”'” A dominant theoretical approach'” for modeling
follows the full probability distribution for each species over
time. By solving the master equation for the probability
distribution of aggregates, one obtains the early time
distribution of the fibril mass and can also calculate the
fluctuations of the lag time. Knowles et al.'* used a different
scheme to model the stochasticity of the early phases of the
kinetics. Their approach effectively employed a stochastic
differential equation (SDE) with jump noise to quantify the
discrete changes in the fibril mass. They assumed a constant
monomer concentration in order to obtain the closed form
early time solution. Fluctuations, however, also play an
important role in the later stages of aggregation once
monomers have been depleted. In this work, we develop a
stochastic approach that allows the efficient calculation of the
statistics of the kinetic profile for all times. This approach
resembles the chemical Langevin equation approach.”™"
These equations are nonlinear because they employ a
derivative matching moment closure technique'® to numeri-
cally calculate the moments of the polymeric species
distributions for all times. By introducing Gaussian white
noises associated with the relevant underlying elementary
chemical reaction events into the rate equations for the
concentrations of the individual filament sizes f(t, j), the
number of length-j aggregates, we are able to derive an
equation for the fluctuations of the principal moments of the
filament size distribution. This procedure leads to a
manageable problem that can now be described using only
two coupled stochastic differential equations. We describe this
strategy as “second stochasticization” in analogy to “second
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quantization” in quantum field theory, where we quantize again
a set of (supposedly already averaged) wave fields. One of the
nonlinear stochastic equations describes the time course of the
first principal moment, which is the total number of aggregates

P(t) =Z;.x;n£f(t, j). The other equation describes the

dynamics of the second principal moment of the distribution,
which measures the total number of monomers found in the

aggregate form M(t) = Zjo:,, if(t, j) (or the fibril mass). In

the model, a total of five mutually statistically independent
Gaussian white noises need to be introduced. These noise
terms reflect the stoichiometries of the various nucleation and
growth processes. We will focus on the case where the typical
size of the fibrils that are formed is much larger than the size of
the critical nucleus, reflecting the inclusion of both primary and
secondary nucleation. The stochastic differential equations that
result from this procedure are nonlinear, and thus the
mathematical expressions for the lowest population moments
are not fully closed, ie., the mean and variance of P(t) and
M(t) couple to still higher moments of the size distributions.
The derivative matching moment closure technique offers an
organized but approximate way to close the moment hierarchy.
There are also other ways to approximate the statistics of these
nonlinear systems of stochastic differential equations, such as
first passage methods,” perturbation methods, or numerical
sampling. These other approaches are not our current focus.

The advantage of the second stochasticization strategy is
that it provides a much more efficient route to getting the full-
time stochastic kinetics in comparison with kinetic Monte
Carlo (kMC) simulation of all the species that are involved,
especially when the total number of monomers is very large.
The computational complexity for running conventional kMC
simulations scales at least linearly with the system’s complex-
ity (~O(N) with N indicating the number of reaction
channels). In this paper, we do however benchmark the
approximated solutions with the results obtained from the
kMC simulations. Second stochasticization results agree quite
well with the kMC simulations in the moderate fluctuation
regime.

The rest of the paper is organized as follows. In section II,
we briefly review the most common deterministic aggregation
model and the corresponding principal moment-based
mathematical expressions. In section III, we describe the
concentration fluctuations by stochastic differential equations
(SDEs); i.e., we derive the chemical Langevin method. This
then leads to a set of coupled ordinary differential equations
(ODEs) for the principal moments of the size distribution
using Ito calculus. Owing to the nonlinear nature of nucleation
processes and fragmentation, the resulting moment equations
are not closed. We therefore use a moment closure technique
to derive a final set of second stochasticized equations for the
dynamics. In section IV, we compare the resulting stochastic
model with the results from the kMC simulations. This
comparison yields a scaling law that correlates the total
number of monomers m, with the strength of the stochastic
fluctuations. This scaling relation is then confirmed using
experimental data. Second stochasticization provides an
efficient and accurate description of the aggregation kinetic
profile and its fluctuations in time.

Il. DETERMINISTIC AGGREGATION KINETICS

In this section, we review the simplest kinetic model of
aggregation. The model is essentially a coarse-grained model of

https://dx.doi.org/10.1021/acs.jpcb.0c10331
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Figure 1. Kinetic profiles of P(t) and M(t) obtained from both the kinetic Monte Carlo (kMC) simulations and from the deterministic model. The
upper panels (a, b) compare the deterministic model with the kMC simulations. (a) P(t). (b) M(t). The dashed black lines represent the results
from the deterministic model. For kMC simulation, the mean and the standard deviation (SD) of all of the samples are shown using the red solid
lines and pink shadows, respectively. Lower panels (c, d) display the corresponding kinetic MC realizations of parts a and b, respectively. Each gray
line represents individual kinetic trajectory from independent simulations. For 500 kinetic MC samples, the kinetic parameters used are k, = 107*
s™' and k, = 1 s7'; Other parameters include m, = 500, P(0) = 0, n, = 2, k_ = 10™¢ 57", ky = 1078 57, and k, = 0.

a well-mixed system that shows the full-time evolution of the
number of aggregates of all sizes. The time course of
aggregation depends on a competition between many distinct
molecular processes. To aggregate, free monomers must form
an unstable nucleus through a primary nucleation reaction
before any further reactions can take place. Elongation
reactions add monomers onto an existing nucleus or shorter
aggregate, while dissociation reactions release monomers from
an aggregate into the solution environment. Fragmentation
and secondary nucleation also generate more nuclei and thus
accelerate aggregation. Fragmentation does this by breaking an
aggregate into two separate pieces, thereby increasing the
number of aggregates with open ends at which further
monomers can bind. If, however, the fragment that breaks
off is smaller than the nucleus size, it melts away, so in that
case fragmentation does not necessarily produce more
aggregated species. Secondary nucleation describes a catalyzed
heterogeneous nucleation process, where the surface of existing
long aggregates catalyzes additional nucleation events. Note
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that in the classical deterministic model, while all these
reactions occur at random, they are averaged over in the
kinetic equations so that stochasticity is not explicitly

8
accounted for.

IlLA. Dynamics of the Species Distribution. The average
aggregation kinetics can be described through a set of rate
equations for the number of different species, each made up of
a different number of monomeric units. The quantity f(t, j)
denotes the number of aggregates made up j units that are
found at time t. When all the processes are included, the time
course of f(t, j) can be written as follows® (please note that j >
n.):

https://dx.doi.org/10.1021/acs.jpcb.0c10331
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= 2m(kf(j — 1) = 2m(Dkf(j)
+ 2k f(j + 1) — 2k_f(j)

+2k ) fG) = k(G = DfG)

i=j+1

of(t, j)
ot

+ kn(t)*5,,, + kyn()™ Y if (t, )5,

()
In this equation, m(t) is the number of free monomers, [k, k,,
k_, ks k,] are rate coefficients for primary nucleation,
elongation, dissociation, fragmentation, and secondary nucle-
ation, respectively, and n,_ is the parameter that describes the
apparent size of the critical nucleus needed for primary
nucleation. The two terms in the first line describe the
elongation process. The first term reflects the fact that when a
monomer is added onto a length-(j — 1) aggregate (A]-_l + A,
- Aj), one forms a new length-j aggregate, while the second
term refers to the addition of a monomer onto an existing
length-j aggregate (A; + A; — Aj,;), which thus leads to a
decrease in the number of length-j aggregates. In the present
paper, we do not distinguish growth at either end so the factor
of 2 arises because each aggregate has two ends available for
elongation or dissociation into monomers. The second line
accounts for dissociation reactions, through which an aggregate
loses a monomer. Fragmentation is described by the third line:
the first term corresponds with the increase of the number of
length-j aggregates due to the breakage of a long length-i (i > j)
aggregate into a length-j aggregate (A; — A; + A,_;), while the
second term represents the fragmentation of a length-j
aggregate into a length-k aggregate (j > k) (A; = A, + Ay),
which can occur at j — 1 possible sites. Primary nucleation is
encoded in the fourth line (n,A; —A, ), which shows up when j

= n, an equivalent of the Kronecker delta (8, ). In this work,

we will assume that aggregates with a length of 1 < j < n, are
unstable so that they either move on to aggregate or break into
monomers rapidly. In other words, we assume there is no
appreciable concentration of intermediates with size less than
f.

II.B. Moment Equations. Several approximation schemes
have been proposed to solve the deterministic eq 1 analytically,
and among these methods, the method of principal moments is
the most commonly used. The zeroth principal moment,

P(t) = z;’i" f(t, j), is the total number of aggregates in the
system, and the first principal moment, M(t) = Z;x;n if(t, i),

counts the total number of monomers that have aggregated or
the total mass of aggregates (the fibril mass). These two
principal moments of f(t, j) are closely related to the
observables that can be measured in bulk experiments. The
moment equations are

PO _ (o) - @n, ~ DPO] + k(o)
dt
+ kym(t)"M(t)
dM
dt(t) = 2m(t)kP(t) — 2k_P(t) — kyn(n, — 1)P(t)

+ nkm(t)™ + nyk,m(t)M(t).
(2)
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The first equation dP/dt describes the time evolution of the
total number of aggregates, while the second equation
describes the time evolution of the total mass of aggregates.
Higher principal moments of f(t, j) have also been investigated
in the literature,” but the first two moments, P(t) and M(t), are
generally considered to be the most important quantities
because of their direct connection to experimental observables.
Analytical solutions of eq 1 and 2 have been discussed.”'~**
These solutions have been successfully used to characterize
several bulk experimental results”**> and have provided
mechanistic insights for several different aggregation scenarios,
for example, an extended model for the size-dependent
aggregation and fragmentation rates.”®

Parts a and b of Figure 1 display the kinetic profiles of P(t)
and M(t), respectively; we compare the results obtained from
both the deterministic moment equations and from kinetic
Monte Carlo (kMC) simulations. The deterministic model
shows a single kinetic curve that should be compared to the
statistical mean value of P(t). Although this kinetic curve
agrees well with the mean value obtained from the kMC
simulations, it gives us no idea concerning the size of the
stochastic fluctuation effects. The kMC realizations of P(t) and
M(t) make clear the stochastic nature of the aggregation
trajectories for finite size samples. These traces are shown in
parts ¢ and d of Figure 1, respectively. The fluctuations are not
significant when the number of initial monomers m;, is large,
but they become non-negligible when m, is small. The case
where the system has initially only a small number of free-to-
nucleate monomers (e.g, m, = 10°—~10*) is of particular
interest because this size range represents a typical number of
copies of proteins that would be found in vivo in a human cell
or compartment (= 500 fL).'> These numbers were estimated
by directly scaling the known protein concentrations (~1—10?
nM) to such a compartment. For cells, then, stochastic
fluctuations are not negligible. Fluctuations also affect the true
averaged kinetic curves significantly. The calculations shown
do not use the “constant monomer assumption”, which is
generally not valid for cells. To understand the dynamics of
cells, stochasticity must explicitly be incorporated into the
model. We do this using the Langevin description of the
underlying kinetic laws with fluctuations.

lll. STOCHASTICITY IN THE KINETICS OF THE
AGGREGATION MODEL

The chemical Langevin equation approach'*'**’ can be used
to describe the intrinsic fluctuations of aggregation processes.
The chemical Langevin equation describes the fluctuations of
the number of each species, X, by adding noise terms into the
ordinary deterministic rate equations, thus forming a stochastic
differential equation (SDE). The general form of the chemical
Langevin equation is

dxi(t)

M

3 ua(X(1) + Y va X))
j=1 j=1

The index j runs over all chemical reactions in which the
species X; participates. The change in the number of i particles
X, due to the jth reaction is represented by the stoichiometry
factor v;. ai(X(t)) is the propensity function for the jth
reaction. The first term in eq 3 is the usual deterministic rate
equation for X;. The last term represents the noise that must be
added to those rate equations in order to reflect the
individuality of reaction events. I')(t) is a set of statistically

https://dx.doi.org/10.1021/acs.jpcb.0c10331
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independent Gaussian white noises. Owing to the assumed
instantaneous nature of the reactions, the noise terms have no
correlation in time, (I;()[;(t')) = §;6(t — t').

lllLA. The Stochastic Rate Equations for Aggregation.
To illustrate the scheme, here, we write out explicitly eq 3 for
the example of a specific elongation reaction step, Az + A} —
Ajg. If we want to write down the rate equation for the number
of length-19 aggregates, df(t, 19)/dt, we need to know the
stoichiometry factors and propensities first. In a single
molecular elongation step, the population of A}y changes by
+1, thus the stoichiometry factor is 1. As for the propensity, we
can write down the rate 2k,m(t)f(t, 18), where the factor “2”
arises because there are two sites available for elongation to
take place. The noise term that is associated with the

ot )
ot

elongation reaction, A;3 + A; = A, in the equation df(t,
19)/dt is therefore

+1 X 2k+m(t)f(t; 18) §(A18 + A - A19)

. To avoid confusion, we will label the noise terms & with their
corresponding associated reaction.

We can now proceed to derive the stochastic rate equation
for the full aggregation system by adding corresponding noise
terms to each of the rate equations for the aggregation
reactions. Again, the noises are labeled by the type of the
reaction, with A; representing a length-j aggregate. The
complete set of stochastic rate equations for f(, j) therefore
reads

= 2m(Okf( — 1) + 2m(Okf( — DEA_, + A — A) = 2m(D)kf () — 2m(OKSG) EA, + A, — A,,)

+ 2k f(j + 1) + 2k f( + 1) &AL, — A+ A) = 2k f() + 2k f() E(A; > A, + A;_) + km(2)*5,,

[s9)

+ Jem(t)* 5, E(na, — A,) + kym(t)™ Y if(t, )3, +

i=n,

\/kzm(t)”z Z if (t, 1) 5, E(nA — A, ) + 2k, Z ()

i=n, i=j+1

+ Y RDEA > A+ A + 2 Jkf(2)) EA, - 24) — (- DEF()

i=j+1,i#2j
(-=1)/2

_\/Zkff(]') 2 f(A,' - Aj—i + Ai)

(i=2)/2

+

—J2k/() Z EA; = A+ A) — Jkf()E(A; — 24,,) jeven

For simplicity, we do not write down the time dependences of
£(j) and & explicitly. One can verify stoichiometric conservation
is preserved in eq 4 by comparing, for instance, the terms in
the rate equations 0f(2j)/0t and 9f(j)/0t that are associated
with the A,; — 24; fragmentation reaction,

of(t, 2j) = —k_f(2j) — Jk_f(2)) Z_f(Azj - 2Aj)

at AZ/—>2.A].
of(t, j) . :
LED| <2y + 2 FTB) Ay — 24)
t AZ]'_)ZA;'
(%)
So it is clear that we get
H6)| _19)
ot Ay—24; 2 o Ay—24; (6)

Equation 6 shows that the total number of monomers is
conserved and that the change in the number of each species
agrees with the stoichiometry of all reactions in which they
participate. Notice that in the above equation, the noises that
are introduced on both sides of the equations are identical and
therefore are highly correlated with each other, since they refer
to the same Gaussian noise.

l1.B. The Stochastic Moment Equations. Following the
same procedure as was used for the deterministic kinetic
equations, we now derive the stochastic moment equations for
averages over the number distributions. This procedure yields
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j odd

(4)

two coupled now stochastic differential equations, one for P(t)
and the other for M(t) (see Appendix). The equations are

B ey + (O &, + kam(62M ()
+ kym(t)M(t) &,
+ kM) — (21, = DP(1)]
+ JkAM(t) = (2n. — DP(D)1&p
dM(t)

= nk,m(t)" + nJkm(t)* &, + nyk,m(t)>M(t)
+ nyJkym(t)M(t) &, + 2[m(t)k, — k_1P(t)

+ \2[m(t)k, + k_IP(t) &, — kmn.(n. — 1P(t)
- \/kfénc(nc — 1)@m= DP(E) &y

(7)
with the general noise term obeying (£ &n) = Oy for M, N
€{n, ny, £, fP, fM}. For example, &, refers to the sum of the
noise in the elongation process, £,, and the noise in the
dissociation process, {_. We can combine these two noise
terms in the M(t) equation into a single compound noise term
because they do not appear in the P(t) equation, and therefore
this procedure leads to no complicated correlations between
the noises for P(t) and M(t) (see the Appendix). The
fragmentation noises shown in the two moment equations are
labeled differently. As discussed in the Appendix, there is
almost no correlation between the two types of fragmentation

https://dx.doi.org/10.1021/acs.jpcb.0c10331
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noises, &, and &y, assuming that 7, is small compared to the
average size of the aggregates, which is a condition that is
almost always satisfied in protein aggregation systems. Typical
fragmentation reactions change either the total number of
aggregates when the reaction occurs in the middle region of an
aggregate, or else change the fibril mass primarily (when the
reaction takes place near the end of an aggregate), which
results in releasing n < n, monomers back into the solution.
Only when a fragmentation reaction changes both P(t) and
M(t) will there be a correlation between ip and &y In fact,
this kind of fragmentation can only occur when a length I
aggregate breaks, where n, < | < 2, resulting in losing one
from P(t) and losing  from M(t). Note that this independence
of the noises would be exact for the case of n, = 2.

In this report, we will focus only on finding the mean and
standard deviations (SD) of P(t) and M(t), and we will use
these quantities to measure the stochastic fluctuations of the
kinetic profiles observed in the kMC simulations as shown in
Figure lc,d. A key point, however, is that due to the
nonlinearity of the stochastic moment equations, the moment
equations do not strictly close. That is, the exact equations for
a specific order of moment, (X(t)"), also involve higher
moments, such as (X(t)""'), and this kind of higher-moment-
dependence continues to arbitrary order. To resolve this
problem, one approach would be to generate samples from the
equation, and then obtain the observables from the samples.
Another approach is to truncate the higher-moment-depend-
ence, stopping at a certain order say ¢, and express all the
higher moments (those higher than ¢) in terms of the lower
moments (Sc). In the next section, we use such a moment
closure method to obtain the approximated mean and the
standard deviations of P(t) and M(t).

lll.C. Moment Closure Method. The idea of the moment
closure method is to express the higher moments in terms of
products of powers of some lower moments. To investigate the
time evolution of the mean and standard deviations of P(¢) and
M(t), or equivalently, m(t) [m(t) + M(t) = m,], we apply the
moment closure method to the stochastic moment equation,
eq 7, up to the second order (up to (P(t)*m(t)”), where a + f8
= 2). We then exploit the derivative matching moment closure
technique'® to obtain a set of ordinary differential equations
(ODEs) for the retained moments, which can then be solved
numerically. Here we show explicitly the set of ODEs that
come from applying the moment closure method,

SPO) = k(0" + Kyom, = m(t) = (2n, = DP())
+ k(e (m, = (1))

S(©)) = =n m() = 2k m(OP()) + 24 (P(1)
+ km(n, — 1)(P(t)) — nyky(m(t)"™(m, — m(t)))
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P = 6 POm(") + K (m(e)")
+ 2k (P(t)m(t) — (2n, — 1)P(t)*)
+ ke(m, — m(t) — (2n, — 1)P(t))
+ 2k, (P(t)m(t)"™ (m, — m(t)))
+ ky(m(t)(m, — m(t)))

Sn(R) = =2k m() 1) + ne (")

— 4k (P()m(t)’) + 2k, (P(t)m(t)) + 4k_(P(t)m(t))
+ 2k_(P(t)) + Zkfnc(nc — 1){P(t)m(t))

+ kfénc(nc — D)(2n, = 1(P(D))

— 2n2k2<m(t)"2+l(m, — m(t)))
+ nzzkz(mnz(mt — m(t)))

SP(m(D) = k(1)) = nk PO
= nk (m(t)") = 2k (P(t) m(1)) + 2k_(P(t)")
+ k(m(t)(m, — m(t)) — (2n, — 1)P(t)m(t))
+ kgn(n. = DP(£)*) + kylm(6)"* ™" (m, = m(t)))
— mky(P(t)m(2)"™ (m, — m(t)))
— moky(m()"™ (m, — m(t))).
(8)
For n, = 2, there will be higher moments in eq 8, such as (P(t)
m(t)*). The moment closure technique then approximates

those higher moments by using combinations of their lower
moments,

(P()m(t) ) (m()*)
(P(t))(m(t))*
(P()*)(P(t)m(t))*
(P(1)Y(m(t))
(m(®?)"
(m(t))’

(P(O)m(1)") =

(P(t)*m(t)) =~

(m(t)’) ~
©)

Using the moment closure approximations shown in eq 9, the
equations become a set of deterministic ordinary differential
equations (ODEs), which can then be numerically solved to
obtain both the mean and the variance of the fluctuations of
the aggregation kinetics. The moment closure method makes
solving eq 7 mathematically feasible. There is, however, a
technical difficulty when resorting to numerical solutions on a
computer. Since the approximation of the higher moments in
terms of lower moments involves a large power of lower
moments, the numerical solution of the equations can be prone
to instability. There are two sources of “high power” terms:
Hierarchy truncation effects and the intrinsically nonlinear
terms that come from the nucleation parameters n, and n,. We
of course need at least to calculate the variance of P(t) and m,
ie, the second moments. Truncating the system at higher
order results, however, results in a large value for the power of
the moment that is used in approximations. This makes finding
a stable numerical procedure challenging. We have found that
using the truncation order set at two provides a high quality
approximation and also that the solutions are stable.

https://dx.doi.org/10.1021/acs.jpcb.0c10331
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Figure 2. Deviations of (M) arising from the two approximations from the kMC results are plotted as a function of time (in a rescaled unit).

Different colors represent the degree of deviation, with red and blue
kinetic profiles are illustrated in part b. (a) Stochastic model with close

indicating positive and negative deviation, respectively. The corresponding
order set at 2. (c) Deterministic model. The deviations for different ratios of

k,/k, are represented by different colors and are plotted against a rescaled time axis, where the value of 1 on the time axis corresponds to the time
when (M) reaches over 90% of the given number of monomers. The deviation is defined as Dev[{M)] = ({M)nodet = {MDime)/{M)imc- We held the
elongation rate fixed at k, = 1 s™' and varied k,. The following parameters are used: P(0) = 0, n, = 2, k_ = 107® s/, ky = 1078 571, and k, = 0.

The nucleation parameters n_ and n, determine the power of
m that is found in the moment closures in eq 9. The resulting
moment closure equations can become intractable if the value
of n, is large. We have however tested the solution numerically
with n, up to 4 and have found that, in any case, the
approximation works reasonably well. We have found in
contrast that the current moment closure approximation does
not work well when n, is large, and that the numerical
solutions then are not stable. To describe such a case will
require alternative more appropriate approximations to handle
the stochastic moment equations, shown in eq 7. We will leave
this task for future work.

IV. RESULTS AND DISCUSSION
IV.A. The Averaged Fibril Mass (M). Before discussing

fluctuations, we shall first calculate the average fibril mass,
(M(t)), using both the deterministic equation and their
stochastic form and compare results with the average fibril
mass found in the benchmark kMC simulations. We vary the
ratio of k, to k, and carry out the analysis for systems with
different total numbers of monomers. We have learned from
the analysis that the ratio of k, to k, (k, is held fixed at 1 s7")
controls the kinetic profile of the aggregation process, while the
total number of monomers plays the dominant role in
determining the extent of the fluctuations. The magnitude of

1124 https://dx.doi.org/10.1021/acs.jpcb.0c10331
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Figure 3. Kinetic profiles of P(t) and M(t) from the stochastic moment closure and from kinetic Monte Carlo simulations are shown and
compared. (a) P(t). (b) M(t). The kinetic curve (mean and standard deviation) given by our stochastic model are represented by green solid lines
and green shadows, respectively. The results from the kinetic MC (mean and standard deviation) are denoted by red solid lines and red shadows,
respectively. The dashed black lines represent the results from the deterministic model. The parameter set of parts a and b that is used is identical

with that of Figure 1.
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Figure 4. Quantitative analysis of the stochastic fluctuations of the mass concentration as a function of the kinetic ratio k,/k, is compared for
systems with different number of monomers. (a) n, = 2. (b) n, = 3. Each line represents the result from our stochastic model with a specified initial
number of monomers, color-coded (blue, 100; orange, 500; green, 1000; red, S000); the markers are the corresponding kMC simulation results. To
distinguish the deviations of the model from the kMC results, a clear boundary (in red) is drawn at fluctuation = 0.3. Good agreement between the
model and the kMC can be observed when the fluctuation is less than 0.3 (a red arrow pointing downward). Large deviation, however, can be seen
when the fluctuation is larger than 0.3 (shaded in gray along with a gray arrow pointing upward). Note that the black arrow pointing to the data
point shown in part a indicates the kinetic parameter set (m, = S00) used in Figure 3.

the deviations of the (M(t)) obtained by second stochasticiza-
tion from the profile found with kMC as a function of time (in
reduced unit) is shown in Figure 2. The deviation is defined as
Dev[{M)] = ((M)modet — (M)imc)/{M)imc Each curve
corresponds to a specific value of the ratio k,/k,, with red
and blue indicating small and large value of k, (it ranges from

1125

107 to 10°), respectively. Several features emerge in the
analysis that are worth mentioning. First of all, the deviations
are the largest for both models when k, is extremely small
(<107°) compared to k, (red in the color bar). As k, increases,
the deviations from the kMC simulation gradually decrease.
Second, we observe that, for both models, the total number of

https://dx.doi.org/10.1021/acs.jpcb.0c10331
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Figure $. Fluctuation, Max(SD[M])/m,, as a function of pairwise kinetic parameters (k,, k,, k_, k) in log scale are shown. Only pairs with specific
features are shown. (a) k, vs k, (b) k, vs k_(c) k, vs k; (d) k, vs k. The lines represent the value of the fluctuation, with red indicating 0.3. Note
that for (a)(b)(c)(d) m, = 500, P(0) = 0, n, = 2, k, = n, = 0, system closed at the second order. Rate constants are shown in s™".

monomers inversely correlates with the size of the deviations.
As the total number of monomers increases from 100 to 5000,
for example, the deviation decreases significantly. In general,
the stochastic model based on the moment closure works well
when k, > 107 while the deterministic approximation fails in
this regime. The actual kinetic profiles for (M(t)) can be found
in the Supporting Information.

IV.B. Kinetic Profiles, P(t) and M(t), for Stochastic
Aggregation. The time evolution of the mean and the
standard deviations of P(t) and M(t) are easily obtained using
second stochasticization. We compare the kinetic profiles of
our stochastic model with those from the kMC simulations.
The results of the two approaches are in good agreement with
each other, as shown in Figure 3. To compare the stochastic
fluctuations calculated from the fluctuating moment equations
with those obtained from the kMC simulation, we use the
maximum of the standard deviation of M(t) throughout the
time divided by the total initial number of monomers, yielding
Max(SD[M])/m,. We then carried out a parameter scan over
k, and m, while keeping k, constant. The results are shown in
Figure 4. Figure 4a shows the stochastic fluctuation as a
function of the kinetic ratio k,/k, for systems (n, = 2) with
different total numbers of monomers (m, = 100, 500, 1000,
5000). Overall, the fluctuations increase as k, decreases (or
equivalently k, increases). At the same time, however, there is
a greater discrepancy between the stochastic model and the
kMC results as k, decreases. In the small fluctuation region
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(fluctuation <0.3), the stochastic moment model in general
agrees with the kMC results for the number of total monomers
in the range of 100—5000. This result indicates there is a clear
threshold for the fluctuation level where the deviations of the
stochastic moment equation from the kMC simulation nearly
can be considered negligible. When the fluctuations are large
(2 0.3), however, the deviations between the two approaches
become increasingly significant. The size of the fluctuations
seems to show a linear dependence on k,/k, when the ratio
decreases, as does that from the kMC simulation. As k,/k,
continues to decrease, the size of the fluctuations finally
saturates at a value (reaching a maximum of ~0.5) due to the
broad distribution of resulting lag times. This saturation
phenomenon arises for an extreme situation where the mean
value of P(t) becomes very small (P(t) < 1), which leads to a
failure of the fluctuation analysis based on the total mass of
aggregates. In this case, one can consider a different measure of
stochasticity instead, for example, the lag time. Figure 4b
presents another similar fluctuation view graph but now with n,
= 3.

IV.C. Parameter Space Scanning: How Variations of
Different Rate Constants Affect the Fluctuation. In the
previous section, we have shown that the model provides a
good approximation for the kinetic profile when the
fluctuations are well below a threshold value (Max(SD[M])/
m; < 0.3). Next, we shall investigate the effect of changing
kinetic parameters on the stochasticity. This parameter

https://dx.doi.org/10.1021/acs.jpcb.0c10331
J. Phys. Chem. B 2021, 125, 1118-1133
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Figure 6. The log—log plots of the fluctuation versus initial number of monomers m,. (a) n, = 2 (b) n, = 3. The solid lines are the numerical
solutions from our stochastic model, and the dots are the results from the kMC simulations. Different lines represent different k, values, color-
coded. In the case of part a (n, = 2), the lines seem to share a common slope down the linear regime. In the case of part b (n, = 3), despite some
deviations found in low monomers regime, similar linear behavior can be identified. (c) The dashed line is used to approximate the linear
relationship found in part a. The slope of the line is —0.5, which indeed corresponds to n, = 2 according to eq 10. Note that k, = 1 s, k_ = 107

s, and ke = 1078 5™ are used for both part a and part b.

scanning survey provides a map of the size of stochastic
fluctuations in relation to variations in the values of kinetic
parameters. Figure 5 shows the maps of the size of the
fluctuations. Different pairs of kinetic parameters are used: (k,,
k), (k_, k), (ks k,), and (ks k,). These plots provide a visual
guidance for the range of the parameter values involved. For
example, the map of k, against k, shown in Figure Sa shows
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that the model works well in the bottom right of the area
defined by the red line (Max(SD[M])/m, = 0.3). Other maps
(Figure Sb and Sc) showing (k_, k,) and (kf, k,) pairs
demonstrate that the model works well on the left and right-
hand sides of the red line, respectively.

IV.D. A Scaling Relation. Fluctuations are influenced by
the ratio of the kinetic parameters, k,/k,, suggesting there is a

https://dx.doi.org/10.1021/acs.jpcb.0c10331
J. Phys. Chem. B 2021, 125, 1118-1133



The Journal of Physical Chemistry B pubs.acs.org/JPCB

Normalized M(t)

0 100 200 300 400 500 600 700 800

Time [hr]

(a) Kinetic traces for a range of concentrations

243.5[uM] 142.1[uM]
] Fitt ling Law
10 025 ed Scaling La
=) 0.87f=0.27
=
Q061 —0.30
N
S o021 -0.351 fitted line slope
— =-0.31
0.0 S '
: S
0 50 100 150 200 0 50 100 150 200 & —0.401
Time [hr] Time [hr] é
122.75[uM] 84.1[uM] g
< —0.451
>
=) T 0gf=0.39 S fitted line slope
= —0.501 = —-0.15
©
()
N .
© N
£ ~0.551 N
S ®
| | | ‘ ‘ | -0.60 1— : : : : : :
0 50 100 150 200 0 50 100 150 200 1.2 1.4 1.6 1.8 ; 2.0 2.2 2.4
Time [hr] Time [hr] logio(concentration[uM])
(b) Selected concentrations (c) Scaling behavior

Figure 7. A verification of the scaling law found in the numerical simulations using experimental data is shown. (a) Time evolution of normalized
M from experiments of different concentrations, ranging from 8.4 to 243.5 uM. (b) Selected kinetic traces for the medium-to-high concentration
regime. Note that the number in the red text indicates the size of fluctuations. See Supporting Information for the kinetic traces for the full
concentration regime. (c) Fitted scaling behavior of the fluctuations over the experimental concentrations (in log ,, scale). The fitted slope for 8
data points (>16.85 uM) with a wide range of fluctuations (0.27 < f < 0.45) is —0.15 (blue solid line); whereas for large concentrations (>84.1
uM; 4 independent kinetic traces shown in part b) with a smaller upper bound of fluctuations (0.27 < f < 0.40), the slope is —0.31 (blue dashed
line). Using the scaling law we show in the previous section, the observed slope gives n,, which is 0.15 X 4 = 0.6 and 0.31 X 4 = 1.24, respectively,
for both cases. Data and figure reproduced with permission from ref 28. Copyright 2008 National Academy of Science.

generic scaling behavior that correlates with the system size. fluctuations as a function of total number of monomers m,,
Apparently, there is a scaling relation between the fluctuations both in log scale, is shown in Figure 6. The scaling law
of M(t) with the total number of monomers m, which therefore reads
correlates with the critical nucleus size, at least up to n, = 4. —n/4
Fluctuation := Max(SD[M(¢t)]) ~ m, ™

Similar to the analysis described above, we quantify the (SDIM(6)1) t (10)
fluctuations using the maximum of standard deviation of M(t) From the log—log plot of the fluctuations versus the total
throughout the time, Max(SD[M(#)]). The magnitude of the number of monomers m;, we can see how the scaling law

1128 https://dx.doi.org/10.1021/acs.jpcb.0c10331
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changes with k,. For different values of k, we see that the lines
share a common slope, and the slope is indeed determined by
n. (slope = —n./4). The results for n, = 2 and n, = 3 are shown
in parts a and b of Figure 6, respectively. In the case n, = 2, for
example, the slope is —0.5, which indeed yields n, = 2. This
result supports the validity of the scaling relation. Interestingly,
we observed a mild deviation from the linearity when m;, is
small (~10?). This “bending” phenomenon is notable for n, =
3, in particular when primary nucleation becomes slow (k, <
107°).

IV.E. Scaling in Experiments. The experiments of Xue et
al. provide a set of data that record the time evolution of the
mass of aggregates (or the fibril mass) starting from different
initial protein concentrations that range from few yM to about
240 uM.”® The data show a variation of the fibril mass against
protein concentration. The exact mathematical relationship is
expected to follow the scaling law shown in eq 10. To facilitate
the analysis, we manually divided the data into several groups
each with a sufficient number of samples; these groups were
then labeled with approximated centered concentrations from
which the standard deviations can be calculated.

Figure 7 shows that the experimental data do confirm the
scaling law. From the data, we have extracted the mean values
of the protein concentrations and the corresponding deviations
from the mean. We then looked at how the size of the
fluctuations varies with concentration. Figure 7a shows
multiple kinetic traces of f, microglobulin aggregation at
different protein concentrations (8.4—243.5 uM). Indeed, as
the concentration decreases, the kinetic traces become more
dispersed (shown using curves in different color scales). In the
fitting procedure, the data in low concentration regime (<16
UM, in grayscale colors) were not used due to their extremely
large fluctuation. The data used therefore can be divided into
two data sets according to concentration range: Set I, 16 uM <
data < 243 uM (8 kinetic traces); Set II, 80 uM < data < 243
UM (4 kinetic traces out of Set I, that is Set II C Set I). For
each of the concentrations, the size of fluctuations is
calculated; the value ranges from 0.27 (highest concentration)
to 0.45 (lowest concentration). The overall fluctuation—
concentration relation follows the trend: the more concen-
trated the protein is in solution, the smaller is the size of
fluctuations. Figure 7b shows the kinetic traces at four specific
concentrations of Set II (84.1, 122.75, 142.1, and 243.5 uM) as
examples. The size of fluctuations of individual kinetic traces in
Set I are shown against their concentration, presented in Figure
7¢. The size of the fluctuations follows the linear relationship,
complying with the scaling law. From the linear fit for Set I, the
slope is —0.15 (solid blue line), which yields the value of n, =
0.6 whereas the slope for Set II is —0.31 (dashed blue line)
with n, = 1.24. The latter prediction provides a somewhat
steeper slope in high concentration regime (84 to 243 uM).
This result suggests that the effective critical nucleus size in
this regime is somewhere between 1 (monomeric nucleus) and
2 (dimeric nucleus), consistent with the existing interpreta-
tions for the growth nucleus size.” We notice, however, that the
definition we have used for the size of the nuclei is somewhat
different from that used in the experimental paper.”® Xue et al.
also discussed a generalized mechanistic model for fibril
assembly process. Here, we do not employ the same definitions
used by Xue et al.
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V. CONCLUSIONS

In this work, we have developed a new approach to study the
stochastic aspects of protein aggregation in living cells, where
the number of protein copies is usually low as compared to
experiments used in in vitro studies. Using the chemical
Langevin approach, we have developed a mathematical
moment closure technique that arrives at a set of stochastic
differential equations with very fewer variables than in standard
Monte Carlo models. The resulting stochastic moment
equations take into account nevertheless the stochastic noise
based on the kinetic propensities (i.e., rate constants) of
individual chemical reactions. The approach allows efficient
stochastic analysis as well as accurate predictions for averaged
kinetic profiles when the fluctuations are not too large. We
have compared this “second stochasticized” model with the
deterministic one. The stochastic model performs better than
the deterministic model in the description of fibril mass
concentration (M(t)), particularly in the fast nucleation regime
(k,/k, > 107%). In addition, quantitative analysis of the
stochastic fluctuations of the fibril mass concentration shows
that the model successfully describes stochastic fluctuation of
M(t) even at quite low protein copy number (m, can be as
small as 10?) when k,/k, > 107>, which suggests the second
stochasticization approach can be usefully applied in the cell,
where usually only a small number of protein copies are
available (m, ~ 10%). We also have found a physical scaling law
that correlates the total number of protein copies with the
magnitude of the stochastic fluctuations. We have verified the
scaling relation using experimental data in the medium-to-high
concentration regime (>16 uM). The result agrees with the
inferred critical nucleus size, suggesting that the proposed
model, along with its universality and the derived scaling law,
will be generally useful for studying the stochasticity of protein
aggregation. Conceptually similar to the scaling relation, a
somewhat different but interesting relation that correlates the
rates of nucleation via stochasticity was noted some decades
ago. Eaton and Hofrichter found that when secondary
nucleation is present, the rate of primary nucleation can be
obtained from the distribution of the lag time.”” Their result
clearly pointed out the role of stochasticity in inferring
mechanistic details, i.e., nucleation processes.

Although we have seen that second stochasticization allows a
quantitative description of stochasticity of protein aggregation
in well mixed systems, we would like to point out a conceptual
limitation of the present calculations. The “lag time” is a
characteristic time scale of aggregation. The localized character
of nucleation implies that spatial variations of the specific
concentrations and thus their moments are nearly certain to be
important in real cells. We note however that the second
stochasticization approximation can be extended to deal with
spatial variations using stochastic partial differential equations.
We leave that extension to future work.

B APPENDIX: CALCULATION OF THE NOISE TERMS
IN THE STOCHASTIC MOMENT EQUATIONS

In this section, we show how to obtain the stochastic moment
equations, eq 7, by summing over the noises in the stochastic
rate equation, eq 4. The calculation of the deterministic part in
eq 7 from eq 4 can be found in literature.” We will focus on the
summation over the noises here.

In the stochastic rate equation, we have labeled the noises
with the associated chemical reactions. The noises are

https://dx.doi.org/10.1021/acs.jpcb.0c10331
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independent when they arise from different chemical reactions, number of monomers. We will deal with the noises in
while the noises of the same type of chemical events are elongation first, and then the noises in fragmentation.
identical and thus they can cancel out each other. It is Calculations for the other terms follow the same construction.
important to remember the case that the differences between We first calculate the noises of elongation in the P(t)
two independent noises are generally nonzero. This correlation moment equation. Summing over j on the P(f) moment
is thus a constraint needed to obey the conservation of the equation, we have

2 k(O 1FG = D@y, + 4, = 4) = [ EQA; + 4 — 4,,)]

=\/zk+m<t> Y G- JE(A + A > A) — ZJfT.f(A +A = AL

; n+1

= [2km(t Z VD EQ + A~ A - X JF(EQ +4 - A,)| =0,
j=n, j=n,

~—
—

(11)
where we have used the fact that f(j < n.) = 0, and we relabeled treated as independent noises and the difference between them
the dummy index j in the third line. The noises in the first and is zero.
second term are identical since they originate from the same The noises of elongation in the M(t) moment equation are
chemical reaction, A; + A; — A,,;. Thus, they could not be (ignoring the common factor /2k,m(t))

Z ][\/f(] - 1)§(A;—1 + A - Aj) - \/f(]) f(A,' + 4~ Aj+1)] = Z ]\/f(] - 1)§(A;—1 + A~ A,')
j=n. j=n+1
- Zj\/f(j)f(Aj + 4, - Aj+1) = Z V() f(Aj + 4 - Aj+1) = Zf(]) X &= P(t)¢,
j=n, j=n, j=n (12)
where & ~ N(0, 1). In eq 12, we have used two properties of
Gaussian random variables. First, if £ ~ N(0, 1) then because there are many channels to get or to dissolve a
& ~ N(0, ¢*). Second, if £ and & are independent random certain length of aggregate through the fragmentation reaction.
variables and & ~ N/(0, 6‘52)’ & ~ N, 65,2) then (£ + &) ~ To calculate the moment' off(t', j), we have to sum over allj >
5 5 n,, and so we have terms involving double summations. We can
N(0, o + 0y ). exchange the order of the summation and relabel the dummy
The noises for the fragmentation reaction in eq 4 are index i and j (we will use &£[a, b, c] to represent £(A, > A, +
summations over several different fragmentation noises, A)),
sz/f( &y j,i—jl = sz/f(flbl—]]—zx/f(l Zébt]—l
j=n. i=j+1 i=n+1 j=n, j=n+1 (13)
Now, this expression above can be combined with the other summation over j from n, + 1 to the infinity in front of
fragmentation noises in eq 4, since they both have a them, and we get
dP(t) ‘ S <
Z Z RSO el j, i = 1+ 2 = V2) X Jef2) L), ), ]
j=n i=j+1 j=n.
(—-1)/2
- 2 2k fG) Z &G, j— i, il j odd
j=n+1
+
(ji-2)/2
- Z [2kf () Z &G, j—i,i] — z [kef () 5[ —] j even
j=n+1 j=n+1
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=(V2 = 1) ), 2kf(2) €2, j, j]
j=n
(G—-1)/2
N - - ) -l jodd
i=1
+ 2k i =i+
2 O\ ZD =, oy
‘ ” - ; &y j — i) i]—fé{j, > 5] j even
(-1)/2
o j—n - Z &l j =i, il j odd
] i=1
= Z \/Zkff(j) Z Sl j— i il + S
j=n+1 i=1 —OZ 5[ _ 1’] + ﬂ_ 1 5[ i i] i even
=~ 1] ) > ih 2r 5 ]

J=n

Z é[]r irj - i]

i=(j+1)/2

I
g
E‘
<

j=n+1 I
i=j/2
j=he
Z 5[]; irj - i]
it i=(j+1)/2
= > J2kg()
e Z &l iy j — il
i=j/2+1

So far, we have not used the properties of the Gaussian white
noise. The sum of Gaussian white noises in the odd j case is a
new Gaussian white noise with a variance (j — n,) — (j + 1)/2
+1=(j+ 1 — 2n.)/2, whereas in the even j case, it is (j — n,)
—(i/2+1)+1+(1/2) = (j + 1 — 2n.)/2. The variances for
both cases are the same, so we can use a single expression,

(2

j odd

. Z &Gy iy j— il + (% - 1]5[;’, %, é] j even

j odd

(14)

where we have used the fact that all the & are mutually
independent, since they are from different fragmentation
channels, and this allows us to write a new Gaussian white

noise &p.

To calculate the fragmentation noise in the M(t) equation,

dp(t i+ 1 —2n

( ) Z /Zkff(] 5}] é]_ ~ /\/(0, %]

j=n+1
we first rearrange the double sum in the first fragmentation line
= Z G+ 1= 2)f() & Ep~ N, 1)
j=n+1
= \/kf[M - (Zrlc — 1)P(1)] éfp’ (15) in eq 4,
z \/ (i)g[i;j; i _]] = Z Z ]\/f( f[lr]r i _] Z Z}\/f( 5[1 jri _]]
j=n. j=n, i=j i=n+1 j=n

o j—1
Z Wziﬂ]} i,j— il

(16)

Then, we have
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dM(t
() Z Z 2k () €L, 1;1—1]+(2—«/—)21,/kff(21 ) E12j, ji j
=n_ i=j+1
(—1/2
- Z jyJ2kef () Z Sliyj—1i il j odd
j=n+1
" (i=2)/2 .
_ z ]/Zkff(] Z &l j— i, il = ],/kﬁf(} 5[ = 5] j even
j=n+1 j=n41
j—1
=2 -1 ZJ\/Z’C,J(ZJ &l2j, j, j1 + Z 2k () )| D iel, iy j — il
j=n+1 i=n,
(i=1)/2
- Y i — il j odd
i=1
(i-2)/2 : .
el o B P
- il j—i, il — —= [], =, —] j even
pur NG ) )
By inspection, we find that the above equation, for both cases,
can be written
dm(t
MO __ S 50 2 Clii-il=— Y (0 z G G~ NOP)
j=n+1 j=n+1
5 - 1)(2n 1
-3 e r:,-~~[o, Ziz]:A{o, i i( 2 >]
j=n+1 i=1

[~

Y kG

\/j=nc+1

_ \/kfnc(nc - 1)3(ch - 1)P ©) e

(nc - 1)(2116 -1)
3 é:fM;

Combining the results from above, we obtain the stochastic
moment equation in eq 7.

We have also used Mathematica’s symbolic calculation to
verify the above results, by explicitly listing all the resulting
noise terms after the addition or the subtraction. We use
different labels for the fragmentation noises in thed P(t)/dt
and dM(t)/dt equations. In fact, a careful comparison between
&p and &y shows that, interestingly, they are almost
independent. The summed over fragmentation channels in
the two cases have only tiny intersection, resulting from the
cases when fragmentation reactions change both the number of
aggregates and the total mass in aggregates. These are rare
events, since this kind of fragmentation can only occur when
an aggregate with length n, < I < 2n, breaks, resulting in less
one in P(t) and less ! in M(t) (the shorter than n, aggregate is
assumed to dissolve into monomers immediately after being
produced). Note that this independence is exact when n, = 2.
Usually, in a protein aggregation system, the averaged size of
aggregates is much larger than n, for the typical cases with n,

1132

éfM ~ N(O) 1)

(18)

being small; therefore, the assumption that the two noises &;p
and &gy are independent is justified. When calculating the
population moment (P*M”), we will set (&) = 0.
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