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ABSTRACT: The development of nanoporous single-layer
graphene membranes for gas separation has prompted
increasing theoretical investigations of gas transport through
graphene nanopores. However, computer simulations and
theories that predict gas permeances through individual
graphene nanopores are not suitable to describe experimental
results, because a realistic graphene membrane contains a large
number of nanopores of diverse sizes and shapes. With this
need in mind, here, we generate nanopore ensembles in silico by
etching carbon atoms away from pristine graphene with
different etching times, using a kinetic Monte Carlo algorithm
developed by our group for the isomer cataloging problem of
graphene nanopores. The permeances of H2, CO2, and CH4
through each nanopore in the ensembles are predicted using transition state theory based on classical all-atomistic force fields.
Our findings show that the total gas permeance through a nanopore ensemble is dominated by a small fraction of large
nanopores with low energy barriers of pore crossing. We also quantitatively predict the increase of the gas permeances and the
decrease of the selectivities between the gases as functions of the etching time of graphene. Furthermore, by fitting the
theoretically predicted selectivities to the experimental ones reported in the literature, we show that nanopores in graphene
effectively expand as the temperature of permeation measurement increases. We propose that this nanopore “expansion” is
due to the desorption of contaminants that partially clog the graphene nanopores. In general, our study highlights the effects
of the pore size and shape distributions of a graphene nanopore ensemble on its gas separation properties and calls into
attention the potential effect of pore-clogging contamination in experiments.
KEYWORDS: graphene nanopore, nanopore isomers, nanopore ensembles, gas separation, pore size distribution,
kinetic Monte Carlo simulation

Nanoporous single-layer graphene shows high promise
as a next-generation gas separation membrane,
primarily due to its atomic thickness.1−3 Compared

to the pore matrices inside conventional polymer membranes,
nanopores in single-layer graphene have negligible pore
lengths. As a result, gas transport through graphene nanopores
experiences minimal internal resistance and is instead
dominated by the transport resistances at the pore entrance
and the pore exit.4 The minimal internal transport resistance
across the pore makes nanoporous single-layer graphene
potentially highly permeable to gases.5 With an appropriate
pore size distribution and a high areal pore density, a
nanoporous single-layer graphene membrane can surpass the
permeance−selectivity Robeson upper bound6 for conven-

tional polymer membranes,7 thereby highlighting its potential
for gas separation applications.8,9

The dominance of the entrance/exit transport resistances
leads to a fundamentally different theoretical description of gas
permeation through a graphene nanopore compared to that
through a thick polymer membrane. The solution-diffusion
model describes the permeation of gas molecules through
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polymer membranes, where the interior diffusive resistance is
dominant.10 In contrast, for graphene nanopores, our group
showed that the total gas transport resistance can be
decomposed into three components: the translocation
resistance related to the cross-pore energy barrier, the direct
impingement resistance, and the surface diffusion resist-
ance.4,11 Specifically, we demonstrated that the diameter of a
graphene nanopore needs to be lower than 0.6 nm in order to
achieve a moderate CO2/CH4 selectivity greater than 5.4

Below this diameter threshold, gas permeation through
graphene nanopores is governed by the translocation energy
barrier, which can be predicted by the transition state theory,
given an all-atom force field.11 Using this theoretical
framework, we showed that the gas separation performances
of two individual graphene nanopores fabricated by Koenig et
al.12 are close to, albeit lower than, the permeance−selectivity
upper bound that we predicted for graphene nanopores.11

Interestingly, as the relevant data sets transition from
investigating individual nanopores to investigating a large
number of nanopores in a membrane, and from measurements
at room temperature to measurements at a series of
temperatures, our theoretical predictions face challenges in
matching every experimental observation. The first challenge is
that there is not always a representative nanopore structure
that yields a selectivity of a gas pair similar to that observed
experimentally. For example, Huang et al. and Zhao et al.
measured H2/CH4 selectivities ranging from 5 to 25 using
single-layer graphene membranes containing millions to
billions of nanopores.7,13 However, our theory cannot assign
every selectivity value to an individual nanopore structure,
because nanopores are formed in specific shapes and sizes and
their selectivities vary discretely, rather than in a continuous
manner.14 Another challenge is that our theory cannot
reproduce the apparent energy barriers that are directly
derived by fitting experimentally measured gas permeances at
different temperatures to the Arrhenius equation. To be more
precise, multiple studies conducted by our group15 and
others7,13 have shown that almost all the experimental gas
permeances increase as a function of temperature, which is
indicative of positive apparent energy barriers based on the
Arrhenius equation. Specifically, apparent energy barriers
between 10 and 30 kJ mol−1 have been measured for He,
H2, CO2, and CH4, respectively, and their values appear
invariant regardless of how the nanopores were created.7,13,16

Unfortunately, our previous theoretical calculation results11

cannot identify a nanopore that matches all the apparent
energy barriers simultaneously, assuming that the nanopore
structure does not change as a function of temperature.
The two challenges discussed above clearly indicate that it is

not sufficient to approximate a large pore ensemble as a single
pore. When created randomly in a graphene lattice by an
etching method (the most common scalable way to create
nanopores), the nanopores are distributed in terms of their
sizes and shapes, instead of being identical.14,17−19 Here, the
nanopore size refers to the number of carbon atoms removed
from the pristine graphene lattice. Due to the randomness of
the etching events, when the pore diameter is within 1 nm, the
pore size distribution is usually positively skewed (i.e., the right
tail is longer) and is typically fitted to a log-normal or Poisson
distribution.20,21 In addition, our group has previously shown
that multiple nanopore isomers with different pore shapes may
exist for the same pore size and that their relative populations
can be predicted by a kinetic Monte Carlo (KMC)

algorithm.14 The predicted most-probable isomers match
transmission electron microscopy (TEM) images of graphene
nanopores with high consistency for each pore size,
demonstrating the ability of the KMC algorithm to model
the real pore etching kinetics encountered in the experi-
ments.14

The pore size and pore shape distributions result in
variations in the gas permeance through the nanopores in a
nanopore ensemble. Accordingly, in this work, in order to
predict the overall gas permeance through a nanopore
ensemble, we propose to (i) simulate the pore size and
shape distributions of nanopores generated by graphene
etching, (ii) predict the gas permeance through each nanopore,
(iii) add up the permeances, and (iv) compare the predicted
total gas permeances and selectivities to those measured
experimentally. In more detail, we generate a large number of
graphene nanopore structures in silico using the KMC etching
algorithm developed recently by our group.14 The principal
knob that is varied during nanopore generation in the
simulations is the etching time t. The generated nanopores
are then checked for uniqueness using a previously developed
cataloging algorithm based on chemical graph theory.14

Subsequently, the permeances of H2, CO2, and CH4 through
each unique nanopore at temperatures ranging from 30 to 150
°C are calculated according to the transition state theory.11 We
chose these three gases because their separations are crucial in
commodity-scale chemical processes, such as synthetic gas and
natural gas processing.22,23 We then evaluated the effect of the
etching time t and the temperature on the gas permeances and
the selectivities of the generated nanopore ensembles. Finally,
we attempted to fit the theoretical predictions to available
experimental data sets and proposed that the graphene
nanopores should be allowed to effectively expand at a higher
temperature in order to better fit the experimental data. We
also proposed a possible mechanism to explain the expansion
of the nanopores with temperature.

RESULTS AND DISCUSSION
Theoretical Predictions. Consider a nanopore ensemble

consisting of N nanopores (i = 1, 2, ..., N), with their respective
gas permeances per pore Ki (i.e., the pressure-normalized gas
flow rate, unit: mol s−1 Pa−1). The total gas permeance
K Ki

N
i1= ∑ = . Using the following set of equations (eqs 1−4)

developed by our group,4,11 we can predict the gas permeance
per pore Ki through each nanopore i:
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Equation 1 predicts the gas transport rate Ktrans,i (normalized
by the pressure difference) of translocation from the pore
mouth on one side to that on the other side.11 In eq 1, the
energy barrier ΔEi

⧧ and the entropy barrier −ΔSi⧧ through
nanopore i are calculated by fitting the Helmholtz free energy
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barriers ΔAi
⧧ = ΔEi

⧧ − TΔSi⧧ to temperature T and then
finding the intercepts and the slopes, respectively. The
graphene−gas interactions are modeled at an all-atomistic
level using Lennard-Jones potentials. For simplicity, in the
calculations, the nanopores are assumed to be nonterminated.
Additional details about the calculation of the Helmholtz free
energy profile are provided in the Methods section.
Furthermore, in eq 1, Hpore represents the average number of
gas molecules adsorbed to the pore mouth per unit bulk
pressure under adsorption equilibrium, and Li is the full width
at half-maximum of the partition function of the gas−pore
system, Qi(z), as a function of the gas molecule’s vertical
distance to the graphene basal plane, z. Note that Qi(z) =
exp[−Ai(z)/kBT], where Ai(z) is the Helmholtz free energy
profile associated with pore crossing for nanopore i (see
Methods for additional details). Other parameters in eq 1
include kB, the Boltzmann constant, and m, the molecular
weight of the gas molecule. It is worth noting that the entropy
barrier −ΔSi⧧ is, in fact, a key contributor to the gas separation
and should not be ignored (see Supporting Information (SI)
Section S1 for more details).
Equation 2 predicts the direct impingement rate of gas

molecules approaching the nanopore from the bulk, where Dp,i
is the equivalent pore diameter and δi is a correction factor
accounting for the success rate of the direct impingement
attempts (see Methods for additional details about Dp,i and
δi).

4 Equation 3 predicts the surface diffusion rate of gas
molecules approaching the nanopore along the graphene
surface, where Hsurf is the areal density of gas molecules
adsorbed on the “bulk” graphene surface (far away from the
nanopore) per unit bulk pressure, and γi is a correction factor
accounting for the success rate of the surface diffusion pathway
(see Methods for additional details about γi).

4 The values of
Hpore and Hsurf can be calculated based on the Helmholtz free
energy profile of gas molecules (see Methods). The gas

permeance per pore Ki is then derived according to eq 4. In
this work, Ktrans,i is typically much smaller than Kdirect,i +
Ksurface,i, because the nanopores are sufficiently small and the
energy and entropy barriers make the translocation step rate-
determining (Ki ≈ Ktrans,i). Utilizing eqs 1−4, we predict the
permeance per pore Ki through each nanopore in an ensemble
for H2, CO2, and CH4.
One important metric to characterize the temperature

dependence of the total permeance of a nanopore ensemble

K is the average energy barrier EΔ ⧧. Note that EΔ ⧧ is equal to
the average of the energy barriers of all the nanopores weighted
by their respective gas permeances (see SI Section S2 for the
derivation); that is,

E T
K T E

K T
( )

( )

( )
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N

i i

i
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1

Δ =
∑ Δ

∑
⧧ =

⧧
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Note that because the gas permeance through an individual
nanopore Ki is temperature dependent, the average energy

barrier EΔ ⧧ is strictly temperature dependent as well.
However, when the pore sizes have a realistic distribution,

EΔ ⧧ is dominated by low-energy-barrier nanopores because
they weight significantly more in the sums in eq 5.
The formalism above for predicting the gas permeance

applies for any pore size distributions. Next, we will discuss
how a realistic nanopore ensemble is generated. Pore etching
simulations in silico were carried out using a KMC algorithm
(Figure 1(a); additional details are provided in the Methods
section). Starting from a single point defect in pristine
graphene, carbon atoms were removed sequentially, at rates
that were estimated according to the energy barriers provided
in ref 14. In this manner, graphene nanopore structures that
match well with TEM images are generated.14 Typically,
because there are multiple choices regarding which carbon

Figure 1. (a) Flowchart of the kinetic Monte Carlo algorithm used to generate graphene nanopore structures with a predefined etching time.
(b) Simulated size distributions of nanopores generated at various etching times. Some confidence intervals extend to negative values and
are not fully shown on the log-y axis. (c) Scatter plot of theoretically predicted energy barrier values of H2, CO2, and CH4 as a function of
pore size. Each pore size corresponds to multiple isomers and, hence, to multiple possible energy barriers. Scatter points are slightly shifted
horizontally to prevent overlap. The horizontal black dashed line corresponds to a zero energy barrier.
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atom to etch away at each step, we utilized the Gillespie
algorithm to randomly select one of them.24 Each possible
carbon etching event j has a rate rj, and the probability that
event j is chosen is rj/rtot, where rtot is the sum of all the rj
values. The expected value of the time interval E(Δt) of this
etching step is 1/rtot, and the time interval Δt is randomly
sampled from an exponential distribution with a probability
density function given by

P t r( ) e r t
tot

totΔ = − Δ
(6)

As shown in Figure 1(a), the current (c) time tc was updated
after each etching event (tc → tc + Δt). The iteration
terminated when the current time tc exceeded the predeter-
mined etching time t. For each etching time t, the KMC
algorithm was run repeatedly to generate 500 000 nanopores
separated in 50 batches of size N = 10 000 each.
Figure 1(b) shows the simulated pore size distributions for

etching times ranging from 20 to 60, with a batch size of
10 000. The error range represents the estimated standard
deviation of the probabilities from the 50 batches. As the
etching time increases, the pore size distribution shifts to the
right, indicating an increase in the average pore size. Note that
the etching time used here is dimensionless, because the
etching rate rj is nondimensionalized by the typical atomic
vibrational frequency of 1013 Hz. In other words, when the
prefactor of the carbon etching reaction is 1013 s−1, the etching
time t has a unit of second (see Methods). In order to achieve
a considerable selectivity, the etching time cannot be too high.
Otherwise, the largest nonselective nanopore will dominate the
overall gas flux and make the entire nanopore ensemble
nonselective. As a reference, pore size = 30 corresponds to a
pore diameter of ∼1 nm for a circular nanopore. This criterion
restricts relevant etching times to be below ∼100. In this
etching time range, the probability distribution decays
exponentially as the pore size increases (Figure 1(b)), and
the majority of the nanopores are smaller than size 5. Further,

the probability of generating larger nanopores is prone to high
uncertainty, where the error range increases significantly as the
pore size increases.
Although the larger nanopores are a minor species in the

nanopore ensemble, they do not necessarily contribute a
minority of the total gas permeance, because they present low
energy barriers for gas permeation. Figure 1(c) shows that the
simulated energy barriers of gases crossing the nanopores,
ΔE⧧, decay rapidly by orders of magnitude as the pore size
increases. Each pore size corresponds to multiple energy
barrier values because of the existence of nanopore isomers
(same size but different shapes). Some isomers with very high
energy barriers have elongated shapes and are rarely generated
in our KMC algorithm. Note that on the y axis of Figure 1(c)
we added 1 to the energy barrier values (in kJ mol−1) in order
to prevent zero-energy-barrier nanopores from disappearing on
the log scale used. Those zero-energy-barrier nanopores
emerge as the pore size reaches ∼10, corresponding to a
pore diameter of ∼0.6 nm if the pore is approximately circular.
The low fraction of large nanopores in a nanopore ensemble

results in a low fraction of low-energy-barrier nanopores.
Figure 2(a) plots the histograms of the theoretically predicted
energy barriers of H2, CO2, and CH4 crossing 10 000
nanopores generated by an etching time of 30. The fractions
of nanopores with relatively low energy barriers, e.g., ΔE⧧ < 10
kJ mol−1 (∼4kBT at room temperature) are 1.2%, 0.6%, and
0.015% for H2, CO2, and CH4, respectively (Figure 2(a)).
Modest change to this threshold does not affect the validity of
our following findings. This ordering is consistent with the
ranking of their kinetic diameters (H2: 0.29 nm, CO2: 0.33 nm,
CH4: 0.38 nm), because a smaller gas molecule is less impeded
from crossing the nanopores. Due to the stochasticity during
nanopore generation, the fraction of the low-energy-barrier
nanopores has a high relative error, especially when the etching
time is short (Figure 2(b)−(d)). Figure 2(b)−(d) also show
that the fraction of low-energy-barrier nanopores generally

Figure 2. (a) Distribution of theoretically predicted energy barriers of pore crossing for H2, CO2, and CH4 with etching time = 30.
Distribution of energy barriers of pore crossing for (b) H2, (c) CO2, and (d) CH4 with etching time from 20 to 60. Energy barriers greater
than 103 kJ mol−1 are treated as 103 kJ mol−1. Missing data points indicate zero nanopores in the corresponding bins.
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increases as the etching time increases, in accordance with the
pore size distribution shown in Figure 1(b).
For each nanopore ensemble generated with each etching

time t, we predict the individual gas permeances Ki through
every nanopore and the total permeance K using eqs 1−4. In
order to evaluate the unevenness of the gas permeance
distribution in a nanopore ensemble, we plot the Lorenz curves
of the permeance distributions of H2, CO2, and CH4 through
different nanopore ensembles at two temperatures, 30 and 150
°C (Figure 3). The Lorenz curve was developed by Max O.
Lorenz to represent income inequality.25 It plots the

percentiles of population on the x axis according to income,
and the cumulative income on the y axis. Here, we borrow this
concept and plot the percentiles of nanopores ordered from
low to high gas permeance on the x axis and the proportion of
their cumulative gas permeance on the y axis. Figure 3(a)
shows the Lorenz curves of the theoretically predicted H2,
CO2, and CH4 permeance distributions through the nanopore
ensemble generated with etching time t = 20 at 30 and 150 °C.
As indicated by the light blue (30 °C) and dark blue (150 °C)
curves in Figure 3(a), 0.3% of the nanopores contribute almost
100% of the total H2 permeance. This percentage of permeable

Figure 3. Lorenz curves of theoretically predicted H2, CO2, and CH4 permeance distributions at 30 and 150 °C for nanopore ensembles
generated with etching times of (a) 20, (b) 50, and (c) 80, respectively. Lorenz curves of theoretically predicted (d) H2, (e) CO2, and (f)
CH4 permeance distributions at 30 °C for nanopore ensembles generated with various etching times from 20 to 60.

Figure 4. Theoretically predicted permeances per pore of H2, CO2, and CH4 as functions of the etching time at (a) 30 °C and (b) 150 °C.
Theoretically predicted selectivities of CO2/CH4, H2/CO2, and H2/CH4 as functions of the etching time at (c) 30 °C and (d) 150 °C. In (c)
and (d), some data points are horizontally shifted to avoid overlap of their error bars. The normalized standard deviations (relative errors)
of (e) the permeance per pore and (f) the selectivity both decrease as the batch size N increases.

ACS Nano www.acsnano.org Article

https://dx.doi.org/10.1021/acsnano.0c09420
ACS Nano 2021, 15, 1727−1740

1731

https://pubs.acs.org/doi/10.1021/acsnano.0c09420?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c09420?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c09420?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c09420?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c09420?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c09420?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c09420?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c09420?fig=fig4&ref=pdf
www.acsnano.org?ref=pdf
https://dx.doi.org/10.1021/acsnano.0c09420?ref=pdf


nanopores is 0.2% for CO2 (orange and red curves) and is
0.01% for CH4 (green and dark green curves) when the
etching time is 20 (Figure 3(a)). As the etching time increases,
the fraction of permeable nanopores increases, but remains
lower than 15% even for an etching time of 80 (Figure 3(b),
(c)). This trend is also illustrated in Figure 3(d)−(f), where
the Lorenz curves shift to the upper left as the etching time
increases. Generally, the permeance distribution of H2 is the
most even among those of the three gases considered due to its
smallest kinetic diameter, while that of CH4 is the most uneven
due to its largest kinetic diameter.
As demonstrated in Figure 1(b) and Figure 2, a longer

etching time t leads to a higher fraction of large and low-
energy-barrier nanopores. Therefore, the theoretically pre-
dicted gas permeance of a nanopore ensemble is positively
correlated with the etching time (Figure 4(a),(b)). At both 30
and 150 °C, H2 exhibits the highest permeance per pore
(averaged over the entire ensemble) for 20 < t < 80, while the
permeances per pore of CO2 and CH4 rank intermediate and
lowest, respectively. The gas permeance exhibits much greater
variance for a short etching time t, for which the probability of
generating low-energy-barrier nanopores is low and has a large
variance. On the other hand, as shown in Figure 4(c),(d), the
theoretically predicted selectivities of the three gas separation
pairs (CO2/CH4, H2/CO2, and H2/CH4) decrease as the
etching time t increases. The selectivity decrease for 20 < t <
30 is significant, decreasing from 103 to ∼10. Subsequently, the
selectivity gradually decays to 1 as t increases further. Similar to
the gas permeance, the selectivity also exhibits a high relative
error for short etching times, partially reducing the precision of
our estimation.
The high errors observed in the gas permeance and

selectivity bring into question the reproducibility of the results,
obtained both theoretically and experimentally. Fortunately,
according to the central limit theorem, the standard deviation
of the sample average of N independent and identically
distributed random variables should scale as N−1/2. This −1/2
scaling is confirmed in Figure 4(e) and (f), for the gas
permeance per pore and for the selectivity, respectively. When
the batch size N is as small as 100, the standard deviation of
the sample average can be 10 times greater than the sample
average (normalized standard deviation >10). Because both
gas permeances and selectivities are non-negative quantities,
the normal distribution does not seem to be the optimal choice
for representing the uncertainty. However, according to the
central limit theorem, as N increases, the sample average will
approach a normal distribution. Therefore, we choose the
normal distribution for consistency. If the N−1/2 decay of the
standard deviation persists as N increases further, we anticipate
that the normalized standard deviation (or the relative error)
should decrease to 5% when N reaches ∼4 million. Generating
millions of nanopores in silico requires long real-world time for
calculations, and N = 10 000 is nearly the largest batch size that
we can consider computationally. However, experimentally, if
the graphene etching method is macroscopically scalable (e.g.,
oxygen plasma), then, generating millions of nanopores in one
graphene membrane is indeed possible. For example, Zhao et
al. exposed graphene to oxygen plasma to increase the areal
nanopore density to 5.7 × 1011 cm−2.7 At this areal density, 4
million nanopores require a membrane area of ∼700 μm2,
which has already been realized by reinforcing graphene with a
highly porous supporting film.13 Nevertheless, the inherent
stochasticity associated with the pore size and shape

distributions does exist and can partially account for the high
variance of the experimentally measured gas permeances and
selectivities carried out so far.7,13

Compared to the etching time, the effect of temperature on
gas permeances and selectivities is more complex. Assuming
that the translocation step is rate-determining (K ≈ Ktrans, for
small nanopores), according to eq 1, the gas permeance is
affected by temperature due to three terms: the adsorption
term Hpore(T), the Arrhenius term exp(−ΔE⧧/kBT), and the
kinetic term of k T m/2B π . Hpore(T) is negatively correlated
with temperature because it involves the heat of gas adsorption
onto the graphene nanopore ΔEads < 0 based on the expression
Hpore(T) = Apore exp(−ΔEads/kBT), where Apore is the prefactor.
If we neglect the kinetic term because its T1/2 dependence is
weaker than the exponential dependence in the other two
terms, we find that the gas permeance is positively correlated
with temperature if ΔE⧧ > −ΔEads and is negatively correlated
with temperature if ΔE⧧ < −ΔEds. On one hand, the heat of
adsorption ΔEads is estimated to be −3.4, −11.1, and −8.0 kJ
mol−1 for H2, CO2, and CH4, respectively, based on our
calculations using all-atomistic force fields (see Methods). On
the other hand, when the etching time t = 30, the average

energy barriers EΔ ⧧ for H2, CO2, and CH4 are 2.8, 0.4, and 0.3
kJ mol−1 at 30 °C, respectively. This set of data is
counterintuitive, because H2 exhibits the highest average
energy barrier although it is the smallest of the three gases
considered. This is because the CO2 and CH4 permeances are
dominated by nanopores with energy barriers close to zero,
and all the other nanopores do not contribute to the sum in eq
5 because their energy barriers are too high.
The analysis above helps us interpret Figure 5, where we

present the correlation of the gas permeances and the
selectivities with temperature. For CO2 and CH4, ΔE⧧ ≈ 0 <
−ΔEads, and their permeances decrease as the temperature
increases (Figure 5(a)). Because CO2 is more adsorptive than
CH4, the permeance decrease of CO2 is greater in magnitude.
For H2, ΔE⧧ ≈ −ΔEads, and its permeance only slightly
increases as a function of temperature (recall the T1/2 term in
eq 1). Consequently, the H2/CO2 and H2/CH4 selectivities
increase as the temperature increases while the CO2/CH4
selectivity decreases (Figure 5(b)).
Next, we combine the data reported in Figure 4(a)−(d) to

predict the permeance−selectivity Robeson plot in Figure 6. In
the Robeson plot, the selectivity of gas A vs gas B is plotted on
the y axis (assuming that gas A is more permeable), and the
permeance per pore of gas A through a single nanopore or a
nanopore ensemble is plotted on the x axis. The orange and
red curves in Figure 6(a) represent the permeance−selectivity
trade-off for H2/CH4 separation at 30 and 150 °C, respectively,
where each data point corresponds to a nanopore ensemble
generated with an etching time ranging from 20 to 80, in the
direction from left to right on the x axis. Therefore, a short
etching time corresponds to small pore sizes, a low gas
permeance, and a high selectivity (top-left data points), while a
long etching time corresponds to the opposite (bottom-right
data points).
In order to evaluate the importance of considering the pore

size and shape distributions, we also plotted the gas separation
performances of the individual nanopores in the ensembles on
the same Robeson plot (blue and green markers in Figure 6(a)
for 30 and 150 °C, respectively). Note that all the data points
of the individual nanopores lie above the ensemble-averaged

ACS Nano www.acsnano.org Article

https://dx.doi.org/10.1021/acsnano.0c09420
ACS Nano 2021, 15, 1727−1740

1732

www.acsnano.org?ref=pdf
https://dx.doi.org/10.1021/acsnano.0c09420?ref=pdf


curves (orange and red curves in Figure 6(a)). This gap
between the individual nanopores and the nanopore ensembles
highlights the need of taking the pore size and shape
distributions into account. Most nanopores in an ensemble
are basically not permeable (Figure 3), which reduces the
average gas permeance. In Figure 6(a), a nanopore ensemble
that yields a H2/CH4 selectivity of 10

3 permits a H2 permeance
per pore of only 10−1 molecule s−1 Pa−1, which is four orders of
magnitude lower compared to that of individual nanopores
yielding the same selectivity. This gap in permeance shrinks as
the selectivity target decreases, because the permeance
distribution in a nanopore ensemble becomes more even as
the etching time increases (Figure 3). The gap diminishes as
the selectivity target approaches 1, when all the nanopores in
an ensemble are too large to provide any selectivity. Features
similar to those observed in Figure 6(a) are also observed in
Figure 6(b), where the CO2/CH4 separation is evaluated. In
spite of being similar in terms of the gap between the nanopore
ensembles and the individual nanopores, the CO2/CH4 and
H2/CH4 separations are different in terms of their temperature
dependence. Increasing temperature shifts the H2/CH4
selectivity−permeance curve upward (orange to red, Figure
6(a)), but shifts the CO2/CH4 selectivity−permeance curve
downward (orange to red, Figure 6(b)). This is a manifestation
of the different temperature dependences of the permeances of
the three gases, as reported in Figure 5(a).
It is important to note that our simulation results on the

temperature dependence discussed above are based on the

assumption that the nanopore structure remains unchanged as
the temperature changes. However, temperature influences
almost every aspect of an experimental measurement, and the
actual experimental conditions may be more complex than
those considered above by our theory. As shown in Figure
5(a), the permeances of CO2 and CH4 are predicted to
decrease as the temperature increases, which contradicts the
experimental findings.7,13,16 To correct our theory in order to
match the experimental findings, below, we propose a strategy.

Matching Theory with Experiments. In this section, we
will compare our theoretically predicted gas permeances
through nanoporous graphene membranes to experimentally
measured ones.7,26 For convenience, the 95% confidence
interval of the theoretically predicted H2, CO2, and CH4
permeances per pore and selectivities between the gases are
reported in Table 1 (30 °C), Table 2 (100 °C), and Table 3
(150 °C) as functions of the etching time. The experimental
data set used in this study was obtained by He et al.26 and is
reported in Table 4. Note that this data set was chosen because
it has relatively low error and high reproducibility. The data set
considered includes three types of nanoporous graphene
samples, NG-1s, NG-2s, and NG-3s, fabricated by exposing
pristine graphene grown by chemical vapor deposition (CVD)
to 1, 2, and 3 s of oxygen plasma, respectively. Each membrane
was tested to measure its H2, CO2, and CH4 permeances at 30,
100, and 150 °C. Note that the nanopore edges are expected to
be terminated by oxygen atoms or hydroxyl groups after
oxygen plasma etching. However, the density and the positions

Figure 5. (a) Theoretically predicted temperature dependence of
H2, CO2, and CH4 permeances per pore. (b) Theoretically
predicted temperature dependence of CO2/CH4, H2/CO2, and
H2/CH4 selectivities. The etching time is 30 and the batch number
is 10 000. The nanopore structures are assumed to be invariant as
the temperature changes.

Figure 6. Theoretically predicted permeance−selectivity Robeson
plot of (a) H2/CH4 separation and (b) CO2/CH4 separation at 30
and 150 °C. The orange and red curves represent the performance
of nanopore ensembles, and the blue and green dots represent the
performance of the individual nanopores.
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of the oxygen-containing termination groups cannot be easily
predicted or modeled. Moreover, the additional rotational
degrees of freedom contributed by the termination groups
could significantly expand the phase space of nanopore−gas
interactions, boosting the computational cost. In fact, if the
nanopore−gas interactions remain mainly dispersive and not
electrostatic, i.e., if we assume that the oxygen-containing
termination groups are sparse, which results in weak gas−
nanopore electrostatic interactions, our calculations without
edge termination can still effectively accommodate for the edge
termination groups by considering them as part of the
graphene lattice. This is likely the case for oxygen plasma-
etched nanopores.26 Therefore, for simplicity and efficiency,
we assume that the nanopores are not terminated.

As shown in Table 4, for each membrane considered, the
experimentally measured H2/CO2 selectivity increases as the
temperature increases, while the CO2/CH4 selectivity shows
the opposite trend. These trends are correctly predicted by our
theory (Figure 5(b)). However, our theoretical prediction in
Figure 5(b) fails to match the experimentally observed
decrease in the H2/CH4 selectivity with increasing temperature
(Table 4). As indicated earlier, Figure 5 was derived based on
the assumption that the nanopore size remains unchanged as
the temperature increases, an assumption that could be relaxed
in order to reproduce realistic experimental conditions.
Specifically, by relaxing this assumption, we could assign
different etching times to the same graphene membrane at
different temperatures. For example, as listed in the first entry
in Table 4, the H2/CH4, CO2/CH4, and H2/CO2 selectivities

Table 1. Predictions of Selectivities (S) and Permeances per Pore (K) of H2, CO2, and CH4 at 30 °C through Graphene
Nanopore Ensembles Generated Using Different Etching Times

predicted selectivity predicted permeance per pore (molecule s−1 Pa−1)

etching time S(H2/CH4) S(CO2/CH4) S(H2/CO2) K(H2) K(CO2) K(CH4)

20 1479.0 ± 1067.5 865.4 ± 642.2 1.7 ± 0.6 0.09 ± 0.02 0.05 ± 0.01 (6.0 ± 4.1) × 10−5

21 132.8 ± 212.1 85.4 ± 137.1 1.6 ± 0.5 0.12 ± 0.03 0.07 ± 0.02 0.0009 ± 0.0014
22 25.5 ± 49.0 14.3 ± 27.6 1.8 ± 0.6 0.15 ± 0.03 0.09 ± 0.02 0.0060 ± 0.0114
26 22.3 ± 24.6 14.2 ± 15.7 1.6 ± 0.3 0.33 ± 0.05 0.21 ± 0.03 0.015 ± 0.016
27 16.3 ± 15.2 11.1 ± 10.4 1.5 ± 0.3 0.46 ± 0.06 0.31 ± 0.05 0.028 ± 0.026
28 14.9 ± 11.0 10.1 ± 7.5 1.5 ± 0.3 0.56 ± 0.06 0.38 ± 0.05 0.037 ± 0.027
30 13.0 ± 8.1 8.6 ± 5.4 1.5 ± 0.2 0.82 ± 0.08 0.54 ± 0.07 0.063 ± 0.039
31 11.8 ± 7.1 8.5 ± 5.1 1.4 ± 0.2 0.97 ± 0.09 0.70 ± 0.08 0.082 ± 0.048
32 10.0 ± 13.6 7.3 ± 10.0 1.4 ± 0.5 0.98 ± 0.20 0.71 ± 0.20 0.098 ± 0.132
35 8.3 ± 5.9 6.6 ± 4.7 1.3 ± 0.3 2.12 ± 0.32 1.69 ± 0.29 0.256 ± 0.178
40 6.3 ± 3.1 4.8 ± 2.4 1.3 ± 0.2 4.49 ± 0.50 3.41 ± 0.48 0.708 ± 0.334
45 5.6 ± 0.8 4.4 ± 0.6 1.3 ± 0.1 8.00 ± 0.31 6.22 ± 0.29 1.42 ± 0.19
50 4.6 ± 1.1 3.8 ± 0.9 1.2 ± 0.1 14.20 ± 0.98 11.66 ± 0.97 3.06 ± 0.71
52 4.1 ± 0.4 3.3 ± 0.3 1.2 ± 0.1 17.59 ± 0.50 14.31 ± 0.51 4.29 ± 0.37
55 3.7 ± 0.3 3.0 ± 0.2 1.2 ± 0.1 24.07 ± 0.61 19.57 ± 0.63 6.46 ± 0.48
60 3.4 ± 0.5 3.0 ± 0.4 1.2 ± 0.1 35.53 ± 1.69 30.88 ± 1.81 10.46 ± 1.39
70 2.5 ± 0.1 2.3 ± 0.1 1.1 ± 0.0 84.84 ± 1.29 79.03 ± 1.46 34.23 ± 1.17
80 2.0 ± 0.1 1.9 ± 0.1 1.0 ± 0.0 165.19 ± 4.32 160.98 ± 5.08 83.01 ± 4.25

Table 2. Predictions of Selectivities (S) and Permeances per Pore (K) of H2, CO2, and CH4 at 100 °C through Graphene
Nanopore Ensembles Generated Using Different Etching Times

predicted selectivity predicted permeance per pore (molecule s−1 Pa−1)

etching time S(H2/CH4) S(CO2/CH4) S(H2/CO2) K(H2) K(CO2) K(CH4)

20 1127.5 ± 787.4 291.9 ± 211.6 3.9 ± 1.3 0.10 ± 0.02 0.03 ± 0.01 (9,2 ± 6.2) × 10−5

21 178.1 ± 243.1 51.4 ± 70.8 3.5 ± 1.1 0.13 ± 0.02 0.04 ± 0.01 0.0008 ± 0.0010
22 46.0 ± 85.8 11.8 ± 22.1 3.9 ± 1.1 0.18 ± 0.03 0.05 ± 0.01 0.0038 ± 0.0071
26 38.2 ± 39.9 11.0 ± 11.6 3.5 ± 0.7 0.37 ± 0.04 0.11 ± 0.02 0.0098 ± 0.0102
27 27.9 ± 25.2 9.0 ± 8.2 3.1 ± 0.6 0.51 ± 0.05 0.16 ± 0.02 0.018 ± 0.016
28 25.2 ± 17.9 8.0 ± 5.8 3.1 ± 0.5 0.61 ± 0.06 0.19 ± 0.03 0.024 ± 0.017
30 21.9 ± 13.3 6.9 ± 4.2 3.2 ± 0.5 0.89 ± 0.07 0.28 ± 0.03 0.041 ± 0.025
31 19.6 ± 11.3 6.8 ± 4.0 2.9 ± 0.4 1.04 ± 0.08 0.36 ± 0.04 0.053 ± 0.030
32 16.9 ± 22.4 5.8 ± 7.9 2.9 ± 0.9 1.06 ± 0.19 0.37 ± 0.10 0.063 ± 0.083
35 13.5 ± 9.4 5.2 ± 3.7 2.6 ± 0.6 2.21 ± 0.30 0.86 ± 0.15 0.164 ± 0.111
40 10.1 ± 4.8 3.8 ± 1.9 2.6 ± 0.5 4.57 ± 0.46 1.74 ± 0.25 0.453 ± 0.210
45 8.8 ± 1.2 3.5 ± 0.5 2.6 ± 0.2 8.01 ± 0.28 3.14 ± 0.15 0.909 ± 0.120
50 7.2 ± 1.7 3.0 ± 0.7 2.4 ± 0.2 14.03 ± 0.90 5.96 ± 0.50 1.96 ± 0.45
52 6.3 ± 0.6 2.7 ± 0.2 2.4 ± 0.1 17.30 ± 0.46 7.30 ± 0.26 2.74 ± 0.24
55 5.7 ± 0.4 2.4 ± 0.2 2.3 ± 0.1 23.48 ± 0.55 9.99 ± 0.33 4.13 ± 0.30
60 5.2 ± 0.7 2.4 ± 0.3 2.2 ± 0.2 34.44 ± 1.54 15.79 ± 0.95 6.67 ± 0.88
70 3.7 ± 0.1 1.9 ± 0.1 2.0 ± 0.0 80.34 ± 1.16 40.58 ± 0.77 21.77 ± 0.74
80 2.9 ± 0.2 1.6 ± 0.1 1.8 ± 0.1 154.19 ± 3.86 83.38 ± 2.70 52.74 ± 2.69
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are 15.9 ± 3.8, 8.7 ± 0.7, and 1.8 ± 0.3, respectively, for
membrane NG-1s at 30 °C. As shown in Table 1, we predict
that an etching time of 28 corresponds to selectivities of 14.9 ±
11.0, 10.1 ± 7.5, and 1.5 ± 0.3, which yields the closest match
to the experimentally measured values (equal weights are
assigned to the three selectivities). Similarly, we can find the
etching times that best match the experimentally measured
selectivities for each membrane at each temperature (rows 2−9
in Table 4). The uncertainty of the theoretically predicted H2/
CH4 and CO2/CH4 selectivities for short etching times (t <
40) makes the fitting more challenging. However, Table 1,
Table 2, and Table 3 show that the selectivity decrease as a
function of temperature is smooth, thereby corroborating the
reliability of our theoretical predictions. The fit does a
reasonably good job in matching the experimental selectivities
(Table 4). In addition, the fit successfully confirms the intuitive
fact that, at the same temperature, a nanoporous graphene
membrane exposed to a longer duration of oxygen plasma is
always matched to a longer etching time t (e.g., 50 > 35 > 28
for NG-3s, NG-2s, and NG-1s at 30 °C).
This fit leads to the following important finding: for the

same graphene membrane, the fitted etching time t is longer at
a higher temperature of permeation measurement (not the
temperature of graphene etching) than that at a lower

temperature. Note that the fitted etching time is only a one-
degree-of-freedom representation of the underlying pore size
distribution, and therefore, the nanopores are effectively larger
at a higher temperature of permeation measurement. This
effective pore size expansion is also observed in other
experimental data sets reported in ref 7, ref 16, and ref 27
(see SI Section S3 for more details, where the effect of ozone
treatment is also investigated). This phenomenon is incon-
sistent with our previous assumption in Figure 5 and Figure 6
that the nanopore structure does not depend on temperature.
One could explain this phenomenon by arguing that the
graphene nanopores expand due to the contraction of the
graphene lattice. However, the thermal expansion coefficient of
graphene at room temperature is only −7 × 10−6 K−1,28

suggesting that the thermally induced expansion of a graphene
nanopore is minimal.
In order to resolve this apparent contradiction, we

hypothesize that under the experimental conditions used, the
graphene nanopores are partially clogged, likely by some
airborne hydrocarbon contaminants. It is known that the
adsorption of airborne hydrocarbons on graphitic surfaces
renders them more hydrophobic.29,30 Heat treatment at 150
°C has been confirmed to be effective in alleviating the
clogging,7 but is not able to fully remove the contaminants,

Table 3. Predictions of Selectivities (S) and Permeances per Pore (K) of H2, CO2, and CH4 at 150 °C through Graphene
Nanopore Ensembles Generated Using Different Etching Times

predicted selectivity predicted permeance per pore (molecule s−1 Pa−1)

etching time S(H2/CH4) S(CO2/CH4) S(H2/CO2) K(H2) K(CO2) K(CH4)

20 1007.0 ± 688.9 168.5 ± 120.1 6.0 ± 1.9 0.12 ± 0.02 0.02 ± 0.01 (1.1 ± 0.8) × 10−4

21 205.6 ± 251.4 38.6 ± 47.7 5.3 ± 1.6 0.15 ± 0.02 0.03 ± 0.01 (7.3 ± 8.8)E-4
22 63.3 ± 114.8 10.7 ± 19.5 5.9 ± 1.6 0.20 ± 0.03 0.03 ± 0.01 0.003 ± 0.006
26 51.0 ± 51.4 9.6 ± 9.8 5.3 ± 1.0 0.41 ± 0.04 0.08 ± 0.01 0.008 ± 0.008
27 37.3 ± 32.8 8.1 ± 7.1 4.6 ± 0.8 0.55 ± 0.05 0.12 ± 0.02 0.015 ± 0.013
28 33.4 ± 23.1 7.1 ± 5.0 4.7 ± 0.8 0.66 ± 0.06 0.14 ± 0.02 0.020 ± 0.014
30 28.9 ± 17.2 6.1 ± 3.7 4.8 ± 0.7 0.96 ± 0.07 0.20 ± 0.02 0.033 ± 0.020
31 25.8 ± 14.5 6.1 ± 3.5 4.2 ± 0.6 1.11 ± 0.08 0.26 ± 0.03 0.043 ± 0.024
32 22.5 ± 29.3 5.2 ± 6.9 4.3 ± 1.4 1.15 ± 0.19 0.27 ± 0.07 0.051 ± 0.066
35 17.5 ± 11.9 4.6 ± 3.2 3.8 ± 0.8 2.32 ± 0.29 0.61 ± 0.11 0.13 ± 0.09
40 12.9 ± 6.0 3.4 ± 1.6 3.8 ± 0.6 4.72 ± 0.45 1.25 ± 0.18 0.36 ± 0.17
45 11.2 ± 1.5 3.0 ± 0.4 3.7 ± 0.2 8.19 ± 0.28 2.23 ± 0.10 0.73 ± 0.10
50 9.0 ± 2.1 2.7 ± 0.7 3.3 ± 0.3 14.21 ± 0.87 4.26 ± 0.36 1.58 ± 0.36
52 7.9 ± 0.7 2.4 ± 0.2 3.3 ± 0.1 17.47 ± 0.44 5.22 ± 0.19 2.20 ± 0.19
55 7.1 ± 0.5 2.2 ± 0.2 3.3 ± 0.1 23.59 ± 0.53 7.14 ± 0.24 3.32 ± 0.24
60 6.4 ± 0.9 2.1 ± 0.3 3.1 ± 0.2 34.47 ± 1.48 11.28 ± 0.68 5.36 ± 0.70
70 4.5 ± 0.2 1.7 ± 0.1 2.7 ± 0.1 79.27 ± 1.11 29.03 ± 0.56 17.45 ± 0.59
80 3.6 ± 0.2 1.4 ± 0.1 2.5 ± 0.1 150.80 ± 3.68 59.85 ± 1.95 42.24 ± 2.15

Table 4. Experimentally Measured H2/CH4, CO2/CH4, and H2/CO2 Selectivities (S) in Ref 26a

condition measured selectivity fitted selectivity

membrane temperature (°C) S(H2/CH4) S(CO2/CH4) S(H2/CO2) best fit of etching time S(H2/CH4) S(CO2/CH4) S(H2/CO2)

NG-1s 30 15.9 ± 3.8 8.7 ± 0.7 1.8 ± 0.3 28 14.9 ± 11.0 10.1 ± 7.5 1.5 ± 0.3
NG-1s 100 14.1 ± 7.3 5.9 ± 2.3 2.3 ± 0.3 35 13.5 ± 9.4 5.2 ± 3.7 2.6 ± 0.6
NG-1s 150 10.1 ± 3.0 3.7 ± 0.7 2.7 ± 0.3 45 11.2 ± 1.5 3.0 ± 0.4 3.7 ± 0.2
NG-2s 30 9.2 ± 1.9 6.7 ± 2.9 1.5 ± 0.4 35 8.3 ± 5.9 6.6 ± 4.7 1.3 ± 0.3
NG-2s 100 8.2 ± 1.6 3.5 ± 1.1 2.4 ± 0.3 45 8.8 ± 1.2 3.5 ± 0.5 2.6 ± 0.2
NG-2s 150 7.6 ± 1.7 2.6 ± 0.6 3.0 ± 0.1 52 7.9 ± 0.7 2.4 ± 0.2 3.3 ± 0.1
NG-3s 30 5.0 ± 1.1 3.1 ± 0.8 1.6 ± 0.3 50 4.6 ± 1.1 3.8 ± 0.9 1.2 ± 0.1
NG-3s 100 5.6 ± 1.9 2.2 ± 0.5 2.5 ± 0.3 60 5.2 ± 0.7 2.4 ± 0.3 2.2 ± 0.2
NG-3s 150 4.9 ± 0.9 1.7 ± 0.1 2.8 ± 0.3 70 4.5 ± 0.2 1.7 ± 0.1 2.7 ± 0.1

aEach membrane−temperature combination was matched to an etching time that best reproduces the experimental selectivities.
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because a single to few layers of the contaminant molecules are
sufficient to clog the nanopores. Our partial clogging
hypothesis can also help rationalize the following three
discrepancies between theory and experiment.
First, the effective thermal expansion of nanopores can be

interpreted as a result of the partial desorption of the
contaminants from the nanopore. In other words, the clogging
of the nanopores is alleviated at a higher temperature. A
prerequisite for this explanation is that the original, unclogged
graphene nanopores should be larger than those fitted by our
theoretical prediction. Reference 26 presents the pore diameter
distributions of graphene membranes NG-1s and NG-3s
obtained by high-resolution transmission electron microscopy
(HR-TEM). Membrane NG-1s contains a long tail of
nanopores with diameters over 2 nm, and the tail of the
pore diameter distribution of membrane NG-3s extends to
over 3 nm. In contrast, the predicted pore diameter
distribution does not extend over 1 nm, even for the longest
etching time investigated, t = 80 (SI Section S4). If the large
nanopores generated in the experiments are completely free
from clogging, they would exhibit a total CO2 permeance 6600
times higher than that measured.26 The long pore size tail
observed in ref 26 could also be partially attributed to
nanopore merging during HR-TEM imaging, but our state-
ment remains valid because the average pore diameter
observed by HR-TEM is greater than our theoretically fitted
value.
Second, the effective thermal expansion of the nanopores

explains why the experimentally measured gas permeances
almost always increase as the temperature increases. At a
higher temperature, CO2 and CH4 adsorb less, reducing their
gas permeances (Figure 5(a)). However, the permeance
increase due to the effective thermal expansion of the
nanopores via the desorption of contaminants is much more
significant. In this case, we need to carefully revisit the
definition of the energy barrier (or the activation energy)
derived from the experimental data. If the effective pore size
changes at different temperatures, it follows that the apparent
“energy barrier” derived by fitting the Arrhenius equation to
the gas permeance as a function of temperature actually
contains contributions from both the intrinsic energy barrier

for a given pore size ΔE⧧ and the desorption of the
contaminants. In fact, the latter is likely to be dominant
because the average energy barrier of a temperature-invariant
nanopore ensemble is close to zero, much lower than 10 to 30
kJ mol−1 measured in the experimental studies.7,13,16 Without
the nanopore clogging by the contaminants, He et al. predict
that 99.9% of the CO2 permeance through NG-1s in ref 26 was
contributed by nanopores larger than 5.8 Å in diameter, whose
activation energies for CO2 are close to 0, directly contra-
dicting the experimentally measured CO2 apparent energy
barrier of 13.8 kJ mol−1. This hypothesis also explains why in
those studies the apparent “energy barriers” are very similar
across various nanoporous graphene membranes fabricated by
different methods, because they are strongly affected by the
universal thermal behavior of the contaminants.
Finally, the partial clogging hypothesis helps explain why our

theory underpredicts the gas permeances compared to the
experimental measurements reported in ref 26. As shown in
Table 4, we attempt to find the etching time t that best
matches the selectivities between theory and experiment,
instead of the gas permeances. In fact, the selectivities and the
gas permeances cannot be matched simultaneously. As shown
in Table 5, when the etching time t is fitted to match the
selectivity data, our theory underpredicts the gas permeances
by 15−202 times. The predicted permeance (in gas
permeation units, i.e., GPU) equals the predicted permeance
per pore (in molecule s−1 Pa−1) times the experimentally
measured areal defect density in the graphene membranes
using Raman spectroscopy, with an appropriate unit
conversion. This significant underprediction cannot be easily
explained without the partial clogging hypothesis. Note that
the clogging was not considered in our original theoretical
model. When clogging is accounted for and reduces the open
nanopore area, in order to maintain the same selectivity
through the nanopore ensemble, we need to increase the
etching time t to compensate for the area loss. As shown in
Figure 1(b), the tail in the pore size distribution elongates as t
increases. As a result, taking pore clogging into consideration
leads to an increase in the fraction of low-energy-barrier
nanopores in the nanopore ensemble. In other words, we
underestimate the etching time t by fitting our model to the

Table 5. Experimentally Measured H2, CO2, and CH4 Permeances Reported in Ref 26 and Theoretical Predictions of the Gas
Permeances Using the Best Fit of Etching Time in Table 4

condition measured permeance (GPU) predicted permeance (GPU)

membrane
temperature

(°C) H2 CO2 CH4

best fit of
etching time H2 CO2 CH4

average factor of permeance
under-estimation

NG-1s 30 3130 1765 205 28 18.0 ± 1.9 12.2 ± 1.6 1.2 ± 0.8 163
NG-1s 100 1.32 ×

104
5782 1112 35 71.2 ± 9.7 27.7 ± 4.8 5.3 ± 3.6 202

NG-1s 150 2.17 ×
104

7931 2222 45 263.8 ± 9.0 71.8 ± 3.2 23.5 ± 3.2 96

NG-2s 30 1.73 ×
104

1.20 ×
104

1963 35 189.1 ± 28.5 150.8 ± 25.9 22.8 ± 15.9 86

NG-2s 100 4.47 ×
104

1.91 ×
104

5522 45 714.6 ± 25.0 280.1 ± 13.4 81.1 ± 10.7 66

NG-2s 150 6.69 ×
104

2.25 ×
104

8928 52 1559 ± 39 476.7 ± 16.9 196.3 ± 16.9 46

NG-3s 30 3.23 ×
104

2.00 ×
104

6830 50 1548 ± 107 1271 ± 106 333.6 ± 77.4 19

NG-3s 100 8.06 ×
104

3.40 ×
104

1.59 ×
104

60 3755 ± 168 1722 ± 104 727.3 ± 96.0 21

NG-3s 150 1.29 ×
105

4.73 ×
104

2.76 ×
104

70 8643 ± 121 3165 ± 61 1903 ± 64 15
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selectivity data because of clogging, which leads to an
underestimation of the number of permeable nanopores and
an underestimation of the gas permeances. As reported in the
last column in Table 5, the magnitude of our underestimation
decreases as the nanopore size increases. This makes intuitive
sense because larger nanopores are less affected by
contaminants, which likely clog the nanopores from the
nanopore edges.
Other hypotheses that can explain the effective pore size

expansion include (1) the pore size distributions generated by
our KMC algorithm do not match experimental ones and (2)
the effective pore size expansion is induced by the more mobile
termination groups (e.g., carbonyl groups) at a higher
temperature. Regarding (1), the pore size distribution
generated by our KMC algorithm can reproduce the apparent
energy barriers observed experimentally (SI Table S7),
suggesting that the difference between the experimental and
theoretically derived pore size distributions is minor. Regarding
(2), the graphene nanopores in ref 16 and ref 27 were formed
during CVD in a reductive atmosphere and, therefore, were
not likely terminated by large, oxygen-containing groups.
Nevertheless, these nanopores still exhibit the effective pore
size expansion as the temperature increases (SI Tables S5 and
S6), indicating that the termination groups alone cannot
account for the effective pore size expansion.

CONCLUSIONS
This paper formulated a theoretical framework that predicts
the pore size and shape distributions of nanopore ensembles
generated by etching, as well as the gas permeances of H2,
CO2, and CH4 through these nanopore ensembles. We showed
that a small fraction of low-energy-barrier nanopores
contribute the majority of the total gas permeances through
a nanopore ensemble that sieves gases. We quantitatively
predict the increase of the gas permeances and the decrease of
the gas selectivities as the etching time of graphene increases.
Assuming that the nanopore structure is independent of
temperature given the small thermal expansion coefficient of
graphene, our theory predicts that the CO2 and CH4
permeances decrease and the H2 permeance increases as the
temperature increases. The CO2 and CH4 permeance
predictions contradict the experimental results, where all the
experimental gas permeances are increasing functions of
temperature. In order to explain this contradiction, we fitted
our theoretical model to match the experimentally measured
H2/CH4, CO2/CH4, and H2/CO2 selectivities and find that
the nanopores effectively expand at a higher temperature. We
hypothesized that under typical experimental conditions the
graphene nanopores are partially clogged by hydrocarbon
contaminants and that the contaminants desorb as the
temperature increases. An important implication of this
hypothesis is that the apparent “energy barriers” directly
derived from the experimentally measured gas permeances can
be significantly affected by the thermal behavior of the
contaminants. Therefore, a high apparent “energy barrier” does
not necessarily prove the existence of angstrom-scale graphene
nanopores. On the bright side, another implication of our
hypothesis is that it may not be necessary to reduce the
graphene nanopore size to the angstrom scale in order to attain
a high selectivity, because clogging by contaminants effectively
reduces the pore size. In the future, experimental research can
be conducted to verify the effect of hydrocarbon contaminants
on gas permeances by, for example, deliberately decorating

graphene membranes using strongly adsorptive hydrocarbons.
In addition, the effect of edge termination in graphene
nanopores can be evaluated to better model the typical oxygen
plasma etching method.
We believe that our article provides an important theoretical

benchmark for future experimental gas permeation measure-
ments through graphene membranes. The experimentally
measured selectivities can be compared with Tables 1−3 to
find the best-fitted etching time, and the pore size distribution
can be inferred from the etching time according to Figure 1(b).

METHODS
Kinetic Monte Carlo Nanopore Generation. The major steps

involved in the KMC simulation are presented in Figure 1(a). Starting
from a point defect in a pristine graphene lattice containing 12 × 12
unit cells, carbon atoms were etched away sequentially. The 12 × 12
graphene lattice is large enough to contain the nanopores considered
in this work. The rate of a carbon atom being removed is related to its
nearby edge configuration. The energy barrier Ea for removing a single
carbon atom is 2.30 eV at a zigzag edge, 2.28 eV at an armchair edge,
and 1.03 eV for a singly bonded atom.14 The corresponding etching
rate r is computed using an Arrhenius-type equation: r = ν exp(−Ea/
kBT), where ν is a prefactor related to the etchant concentration. In
this work, ν is chosen to be 1013 s−1. The value of ν is arbitrary,
because it does not affect the pore size and shape distributions
generated using the KMC algorithm. In fact, the etching time t can be
rescaled if ν is assumed to be different. The temperature was assumed
to be 500 °C to match the experimental graphene etching condition
in ref 31. The nanopore ensembles predicted using the KMC
algorithm are insensitive to temperature.14 This is likely because the
energy barriers for removing a carbon atom at a zigzag edge or at an
armchair edge are similar, making the effect of temperature less
important. When multiple choices exist about which carbon atom to
etch, we implemented the Gillespie algorithm to randomly select one
of them. The probability of a carbon atom being etched is
proportional to its respective etching rate r.

Among the 500 000 nanopores generated using the KMC
algorithm, many of them are identical to one another. Two nanopores
are considered to be the same if the adjacency matrices of their
respective antimolecules, augmented to include bond orientations, are
isomorphic.14 The antimolecule of a nanopore is the collection of the
carbon atoms removed during etching. For additional details and for
the KMC simulation and nanopore counting code, interested readers
are referred to ref 14. One nanopore isomer was evaluated only once
to calculate its permeance to avoid calculational redundancy. As the
pore size increases, the number of isomers significantly increases,
leading to a long calculation time. To make the calculation more
tractable, the number of nanopores generated was reduced to 100 000
for etching time t ≥ 60.

Permeance Prediction. The gas permeance per pore K through a
nanopore was calculated using eqs 1−4. In eq 1, Hpore (average
number of gas molecules adsorbed to the pore mouth per unit bulk
pressure), L (the characteristic length of the adsorbed state at the
pore mouth), −ΔS⧧ (the entropy barrier), and ΔE⧧ (the energy
barrier) all depend on the force fields used to simulate graphene and
the three gases considered (H2, CO2, CH4). In our simulations, all-
atom force fields were used to describe the atomic interactions, where
all the molecules were assumed to be rigid in order to reduce
computational cost. As shown in our previous study,11 enforcing
rigidity on all the molecules leads to a slight underprediction of the
gas permeance. Specifically, we overpredict the entropy barrier −ΔS⧧
because the vibrational degrees of freedom are frozen, reducing the
number of microstates at the transition state. Recall that nonbonded
interactions include Lennard-Jones potentials and point-charge-based
electrostatic potentials. We adopted the three-site model for H2,

32 the
transferable potential for phase equilibria (TraPPE) force field for
CO2,

33 and the all-atom-optimized potentials for liquid simulations
(OPLS-AA model) for CH4.

34 The carbon atoms in the graphene

ACS Nano www.acsnano.org Article

https://dx.doi.org/10.1021/acsnano.0c09420
ACS Nano 2021, 15, 1727−1740

1737

http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c09420/suppl_file/nn0c09420_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c09420/suppl_file/nn0c09420_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c09420/suppl_file/nn0c09420_si_001.pdf
www.acsnano.org?ref=pdf
https://dx.doi.org/10.1021/acsnano.0c09420?ref=pdf


lattice were modeled as uncharged atoms using the Lennard-Jones
parameters reported by Cheng and Steele.35 The edge carbon atoms
were not terminated by any functional groups. In reality, the edge
termination depends on the etching method, and the nanopore could
be terminated by hydrogen, oxygen, or hydroxyl groups or left
unterminated. If the nanopore edge is highly polarized (e.g., a large
number of oxygen heteroatoms), our theory tends to underpredict the
permeances of gases with a dipole moment (e.g., H2O) or a
quadrupole moment (CO2), which is the case for ozone-treated
nanopores.7 This underprediction is discussed in SI Section S3. The
cutoff distance for the Lennard-Jones interactions was chosen to be
1.2 nm. Geometric-mean combining rules were implemented to
describe the nonbonded interactions between different atoms.
The selected all-atom force fields allowed us to calculate the

interaction energy E(r,ϕ,z,θ⃗) between the gas molecule and the single-
layer graphene sheet with one nanopore generated by the KMC
algorithm, where (r,ϕ,z) and θ⃗ are the position (cylindrical
coordinate) and the orientation of the gas molecule relative to the
graphene surface, respectively. In this work, we define the normal
direction to the graphene basal plane as the z direction. In order to
calculate the Helmholtz free energy profile of pore crossing A(z), we
first calculated the canonical partition function profile Q(z) as
follows:11
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where Ω is the nanopore area around the nanopore center with a
radius of 0.4 nm. This nanopore area is sufficiently large to include
relevant nanopore−gas interactions because the diameters of the
nanopores considered here rarely exceed 0.8 nm. We then calculated
the Helmholtz free energy profile using the well-known statistical
mechanical relation A(z) = −kBT lnQ(z).36 The Helmholtz free
energy barrier is then calculated as ΔA⧧ = max(A(z)) − min(A(z)).
The entropy barrier (−ΔS⧧) and the energy barrier (ΔE⧧) are then
calculated by linearly fitting ΔA⧧(T) = ΔE⧧ − TΔS⧧ to the
temperature T.
The full width at half-maximum L of the canonical partition

function of the gas−pore system Q(z) is derived as follows:11
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where zmax is the thickness of the adsorption layer. Note that we chose
zmax = 0.5 nm, where the density of the gas molecules approaches the
bulk value. The average number of gas molecules adsorbed at the pore
mouth per unit bulk pressure Hpore was calculated as follows:
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Note that in the last equation, we calculated the number of gas
molecules near the nanopore (the numerator) relative to the bulk gas
density (the denominator). The heat of adsorption ΔEads was derived
by fitting Hpore(T) = Apore exp(−ΔEads/kBT) to the temperature.
In practice, we need to discretize the phase space (r,ϕ,z,θ⃗) to

approximate the integrals by sums. Specifically, the r space was
divided into grids of 0.013 nm, the ϕ space was divided into grids of
18°, the z space was divided into grids of 0.033 nm, and the θ⃗ space
was discretized by randomly sampling 10 three-dimensional directions
per position (r,ϕ,z). The grid sizes in the r, ϕ, and z directions and
the number of randomly sampled directions in θ⃗ were selected to
ensure convergence of the Helmholtz free energy barrier ΔA⧧.
Additional details about the convergence are provided in SI Section
S6.
Equations 2 and 3 involve additional parameters, including the two

correction factors δ and γ, the areal density of gas molecules adsorbed
on the graphene surface per unit bulk pressure Hsurf, and the
equivalent pore diameter Dp. According to our previous study,4
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D
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p

i
k
jjj

y
{
zzzδ = −

α
, where Dm is the kinetic diameter of the gas and α is a

gas-dependent exponent (4.6 for H2 and CO2 and 3.7 for CH4).
Because the graphene nanopores are not perfectly circular, we

approximated the equivalent pore diameter D n
p

4=
πρ
, where n is the

pore size (number of removed carbon atoms) and ρ is the areal
density of the carbon atoms in graphene, 3.82 × 1019 m−2. The surface
adsorption term Hsurf can be derived in a similar way as Hpore, except
that the graphene sheet has no nanopore. Note that the correction
factor γ = γ(T, Dp) in eq 3 does not yet have an analytical expression
due to the complex gas−gas collisions and gas−pore interactions.
Empirically, we interpolated the γ values based on our previous study
in ref 4. Typically, γ is on the order of 0.05−0.10 regardless of gas
type or temperature. Fortunately, Ktrans (calculated using eq 1) is
typically much lower than Kdirect + Ksurface (calculated using eqs 2 and
3), and therefore, K ≈ Ktrans (eq 4). Consequently, our final prediction
of the gas permeance is quite insensitive to the parameters in eqs 2
and 3.
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