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Abstract

Understanding how animals navigate complex environments is a fundamental challenge
in biology and a source of inspiration for the design of autonomous systems in
engineering. Animal orientation and navigation is a complex process that integrates
multiple senses, whose function and contribution are yet to be fully clarified. Here, we
propose a data-driven mathematical model of adult zebrafish engaging in counter-flow
swimming, an innate behavior known as rheotaxis. Zebrafish locomotion in a
two-dimensional fluid flow is described within the finite-dipole model, which consists of
a pair of vortices separated by a constant distance. The strength of these vortices is
adjusted in real time by the fish to afford orientation and navigation control, as a
function of the multi-sensory input from vision, lateral line, and touch. Model
parameters for the resulting stochastic differential equations are calibrated through a
series of experiments, in which zebrafish swam in a water channel under different
illumination conditions. The accuracy of the model is validated through the study of a
series of measures of rheotactic behavior, contrasting results of real and in-silico
experiments. Our results point at a critical role of hydromechanical feedback during
rheotaxis, in the form of a gradient following strategy.

Author summary

The astounding feats of animal orientation and navigation have fascinated scientists and
engineers for decades. The refined and elegant processes of orientation and navigation
are generally thought to be the outcome of a complex feedback process, which involves
the integration of multiple cues gathered from the surroundings. Fish rheotaxis is an
innate behavior through which an animal is able to orient itself and swim against a flow
current, even in the absence of visual cues. To date, little is known about the
information pathways that underlay this behavior and how they are integrated. To help
address this challenge, we propose a data-driven mathematical model of rheotaxis in
zebrafish— an emerging species of choice in biomedical research. Our model explains
how zebrafish make use of visual, hydrodynamic, and tactile cues in a feedback loop to
adjust their heading and speed during swimming. We validate the accuracy of our model
by comparing real and synthetic data across two experimental conditions, in which we
vary the illumination of a water channel. Our results demonstrate how a simple, yet
effective, feedback control mechanism can explain a complex process such as rheotaxis.
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Introduction 1

The ability of animals to orient themselves and navigate in complex environments has 2

fascinated scientists and engineers for decades [1–3]. Understanding the mechanism 3

underlying this behavior is of paramount importance in behavioral ecology for 4

elucidating complex processes such as foraging [4], mating [5], and survival [6]. Animal 5

orientation and navigation has also inspired technological solutions ranging from 6

sensors [7] to computer algorithms for coordinating teams of construction robots [8]. 7

Animal orientation and navigation typically involves the integration of different 8

sensory systems such as vision, olfaction, and touch. These systems are used to gather 9

information from the surrounding environment, which are, in turn, used to “close the 10

loop” by the animal. Using this information, the animal can adjust its position and 11

orientation. Remarkable examples include homing in salmon, which use a combination 12

of geomagnetic and olfactory cues to swim back to their natural streams to spawn, after 13

spending several years in the open ocean [9, 10]. Moths, on the other hand, are able to 14

use intermittent olfactory cues in odour plumes to control their maneuvers to reach 15

their mating partner [11]. Interestingly, navigation and orientation can be very complex 16

even for insects, which are far in the evolutionary tree from vertebrates [12]. 17

In some cases, animals display a specific orientation of locomotory behavior (taxis), 18

elicited by environmental stimuli like gravity (geotaxis) [13], light (phototaxis) [14], or 19

fluid flow (rheotaxis). For instance, fish rheotaxis is an innate behavior from early 20

stages of life [15] that is essential for survival [16–18]. This behavior can be performed 21

even in the absence of visual cues [19], whereby fish can use their lateral line to aid their 22

navigation in the dark [17,20]. The lateral line consists of a collection of neuromasts 23

(clusters of sensory cells), sensitive to changes of water pressure, that enable a fish to 24

create a hydrodynamic image of the surroundings [21–23]. Empirical evidence suggests 25

that the lateral line plays a key role in the animals’ orientation process [15,20,24]. For 26

example, it has been recently shown that larval zebrafish use the lateral line to estimate 27

the local vorticity of the surrounding fluid flow, which aids their orientation process [25]. 28

In general, rheotaxis is regarded as a multi-sensory feedback process that integrates 29

visual, hydromechanical, olfactory, and even tactile cues [26,27]. A full understanding of 30

how all the sensory information is processed by rheotacting fish is yet to be established. 31

Here, we seek to contribute insight into the mechanisms underlying rheotaxis through 32

the development of a data-driven mathematical model of adult zebrafish locomotion in a 33

fluid flow. 34

Zebrafish is a freshwater species widely used as a model organism for its several 35

advantages, ranging from its fully sequenced genome to physiological and neurological 36

homologies with humans [28,29]. Zebrafish has been used in a wide array of preclinical 37

efforts, from drug discovery [30] to the study of complex brain disorders such as 38

depression, autism, and psychoses [31]. The possibility of investigating the neural and 39

genetic basis of behavior through zebrafish [32] offers compelling motivation for the 40

study of their rheotactic response. 41

Mathematical models of zebrafish locomotion have been shown to be a powerful tool 42

to complement and inform experimental research. For instance, in [33], a simple 43

mathematical model of the burst-and-coast swimming style of zebrafish, revealed that 44

adult fish have longer coasting due to their larger body mass and higher speed at the 45

beginning of a burst. Data-driven models of fish locomotion typically describe the time 46

evolution of the heading and the linear speed of fish using stochastic differential 47

equations (SDEs) [34–38]. For instance, a pair of coupled Ornstein-Uhlenbeck processes 48

were proposed in [36] to model the coupled evolution of the turn rate and speed of adult 49

zebrafish. Similarly, the jump persistent turning walker was introduced to faithfully 50

capture the burst-and-coast swimming of zebrafish in two [37] and three dimensions [39]. 51

Building on these efforts, mathematical models have addressed the role of spatial 52
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constraints on zebrafish range of vision [40], as well as pharmacological 53

manipulations [41,42]. 54

Common to this entire body of literature on mathematical modeling of zebrafish 55

locomotion is the premise of a quiescent fluid environment. In its natural habitat, 56

however, zebrafish can experience different flow speeds between 3.5 to 13.9 cm/s [43]. 57

Existing mathematical models exclude the effects of a fluid flow, thereby challenging the 58

study of rheotaxis. To the best of our knowledge, the only mathematical model of fish 59

rheotaxis in the literature is the phenomenological model proposed in [44]. Therein, the 60

authors established a simple model of rheotaxis based on a Kuramoto-like oscillator, 61

which describes fish heading through a bias towards the flow source. Despite its 62

promise, the model does not consider the flow physics nor the multi-sensory feedback 63

that fish should employ to orient and swim in the flow. 64

A potential line of approach to develop a data-driven model of zebrafish rheotaxis is 65

to leverage recent theoretical results on finite-dipole models of animal swimming [45,46]. 66

Within the finite-dipole model, a fish is assimilated to a pair of point vortices separated 67

by a finite distance [45], whose strengths can adapt according to behavioral rules [46]. 68

Based on this modeling paradigm, we explore a multi-sensory feedback control system, 69

which allows the animal to adjust its orientation as a function of visual, 70

hydromechanical, and tactile cues. 71

More specifically, we expand on the finite-dipole paradigm to encompass a 72

data-driven model that allows the fish to adjust the vortex strengths as a function of 73

multi-sensory input from the surroundings. Sensory input from the lateral line, is used 74

to estimate the local circulation of the fluid flow, and visual and tactile cues inform the 75

interaction with the walls. The model is calibrated using a data set consisting of 76

overhead recordings of adult zebrafish swimming in a water channel in standard 77

illumination conditions or in the dark. We demonstrate the effectiveness of our 78

approach by comparing the scoring of behavioral metrics on real and synthetic data 79

from in-silico experiments. 80

Results 81

Zebrafish swimming as a finite-dipole 82

We treat a zebrafish as a self-propelled body swimming in two dimensions within a 83

uniaxial inviscid flow, as shown in Figure 1. Here, (x(t), y(t)) is the coordinate of the 84

fish centroid in the global reference frame (X ,Y), where t is the time variable. The 85

angle θ(t) ∈ [−π, π) represents the fish heading. For θ = −π the fish is heading 86

upstream, while for θ = 0 it is heading downstream. Following [45,46], we assimilate the 87

fish to a finite-dipole, consisting of a pair of point vortices separated by a distance l, 88

corresponding to the fish thickness. These two point vortices of circulation strengths 89

Γl(t) and Γr(t) describe the fish self-induced propulsion. The fish thickness is about 90

5 mm for adult zebrafish, which is much smaller than either dimensions of the water 91

channel, 2xmax and 2ymax. 92

Hence, the time evolution of the fish position and heading angle can be described by
the following set of ODEs:

dx(t)

dt
=

Γl(t) + Γr(t)

4πl
cos(θ(t)) + U(y(t)), (1a)

dy(t)

dt
=

Γl(t) + Γr(t)

4πl
sin(θ(t)), (1b)

dθ(t)

dt
= −U ′(y(t)) cos2(θ(t)) +

Γl(t)− Γr(t)

2πl2
, (1c)
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(a)

Fig 1. Modeling zebrafish swimming in a flow as a finite-dipole. U(Y) is the profile of
the uniaxial background flow. The black dot and arrow denote the fish centroid position
(x(t), y(t)) and heading angle θ(t), with respect to the global reference frame (X ,Y).
The green and red dots represent the left and right location of the vortices of circulation
strengths Γl(t) and Γr(t), respectively.

where U(Y) and U ′(Y) are the axial flow velocity and its gradient along the width of 93

the channel, respectively; see Materials and methods for details on the derivation. These 94

scalar spatial fields entirely capture the effect of the background flow on the fish motion. 95

The vortex strengths encapsulate the self-propelling mechanism along with the 96

feedback contributions for controlling both heading and speed. In particular, 97

Γl(t) > Γr(t) indicates that the fish performs a counterclockwise turn, while the 98

opposite, Γr(t) > Γl(t), refers to clockwise turns. For Γl(t) = Γr(t), the fish swims 99

straight. The fish relative speed with respect to the background flow is 100

(Γl(t) + Γr(t))/(4πl). 101

Vortex strengths from experimental data 102

We conducted an experiment using 24 adult zebrafish swimming in the flow. In order to 103

understand the role of vision on the fish swimming mechanism, we considered two 104

experimental conditions on groups of 12 individuals: Bright and Dark. In Bright, fish 105

swam with standard illumination (250 lx), and in Dark they swam in the darkness. 106

Using an automatic tracking software, we obtained time series for the position of the 107

centroid and the heading angle. These time series were used in equations (1a) and (1b) 108

to estimate the vortex strengths Γr and Γl for all trials, as described in Materials and 109

methods. 110

Figures 2(a) and 2(b) exemplify two typical distributions for the vortex strengths of 111

adult zebrafish swimming in a flow for Bright and Dark, respectively. In both cases, the 112

distributions of Γl and Γr are highly correlated with R2 values of 0.879 and 0.880, for 113

Bright and Dark, respectively. This suggests that these processes are not independent. 114

In particular, the phase plots in Figures 2(c) and 2(d) indicate that both processes 115

unfold around the line Γl = Γr (red dashed-line in Figures 2(c) and 2(d)) with random 116

fluctuations corresponding to turning maneuvers. 117

The phase plots for the vortex strengths share similarities with phase plots of 118

diffusively coupled dynamical systems, often studied in the context of 119

synchronization [47–49]. Just like oscillators tend to synchronize their phase against 120

noise [50], the two vortices seek to match their circulation strengths against random 121
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Fig 2. Estimated vortex strengths Γl and Γr from real data. (a,b) Histograms and
(c,d) phase plots of vortex strengths for conditions (a,c) Bright and (b,d) Dark.

fluctuations. Based on this analogy, we hypothesize that the coupling between the 122

processes associated with the circulation strengths is diffusive. 123

Modeling the time evolution of the vortex strengths 124

From Figures 2(a) and 2(b), we note that the vortex strengths Γl(t) and Γr(t) can be
approximated by a Gamma distribution [51]. Based on the analogy with diffusively
coupled systems, we propose the following pair of coupled Cox–Ingersoll–Ross
processes [52] to model the time evolution of the vortex strengths:

dΓl(t) = (α(β − Γl(t)) + u(t)) dt+ σ
√

Γl(t)dWl(t), (2a)

dΓr(t) = (α(β − Γr(t))− u(t)) dt+ σ
√

Γr(t)dWr(t), (2b)

where α [1/s] and β [cm2/s] are positive parameters representing the linear rate of
decay and a baseline value of the vortex strengths, respectively. The parameter β is
associated with the speed of the fish relative to the background flow, whereby β/(2πl)
would be the relative speed of the finite-dipole during straight swimming, without the
effect of noise. The positive parameter σ [cm/s] measures the strength of both added
noises Wl(t) and Wr(t), which are assumed to be independent Wiener processes [s1/2].
u(t) is a feedback term [cm2/s2] modeling the coupling between the circulation
strengths, the hydromechanical orientation mechanism, and the visual interaction of the
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fish with the walls, such that

u(t) = κ(Γr(t)− Γl(t)) + uh(t) + uw(t), (3)

The feedback term u(t) acts differentially on Γl(t) and Γr(t), that is, it takes 125

opposite signs in equations (2a) and (2b) to produce adequate turning maneuvers. For 126

instance, when the fish performs clockwise turns, the vortex strengths should satisfy 127

Γl > Γr. Then, the feedback would tend to increase Γl and decrease Γr. The first term 128

on the right hand side of equation (3) corresponds to a classic bidirectional diffusive 129

coupling, with κ [1/s] being the coupling strength [49,50]. This positive parameter is 130

associated with the ability of a fish to resume straight swimming after a maneuver. The 131

diffusive coupling forces both processes to evolve along the synchronization manifold 132

Γl = Γr, similar to the experiments (Figures 2(c) and 2(d)). The terms uh(t) and uw(t) 133

capture the hydromechanical orientation mechanism and wall interactions through 134

visual cues, respectively. Tactile interactions with the walls are separately addressed by 135

modifying equations (2a) and (2b) to account for collisions. 136

Hydromechanical feedback mechanism 137

Here, we model the feedback process allowing zebrafish to gather information from
hydrodynamic cues and use them to orient in the flow, that is, modulating the vortex
strengths through the term uh(t) in equation (3). Similar to zebrafish larvae [25], we
propose that adult zebrafish perform rheotaxis on the basis of an estimate of the local
vorticity field. We compute the circulation of the background flow around a circle C
with radius r centered at (x(t), y(t)), which approximates the fish perimeter (see Figure
3(a)),

Lc(t) =

‰
C

U(s) ds = −πr2U ′(y(t)). (4)

Here, U(s) = [U(sy), 0] is the vector-field of the uni-axial background flow and the last 138

equality is true up to the order O(r4); see Materials and methods for details on the 139

derivation. We set r = 1/2 BL, with BL = 3.6 cm being the average fish body length. 140

Positive values of Lc(t) indicate that the background flow induces counterclockwise 141

rotations, while negative values refer to induced clockwise rotations. The value of the 142

local circulation Lc(t) depends on the fish position in the swimming channel, as 143

sketched in Figure 3(a). To illustrate how a zebrafish use this information to adjust its 144

heading angle towards the flow, we extracted sixty seconds from the time series of a 145

subject in Bright. In Figure 3(b), we plot the turn rate ω(t) = dθ(t)/dt and the 146

circulation Lc(t), each normalized between −1 and 1. We further computed the phases 147

of both signals, namely, ψω(t) and ψLc(t) using a Hilbert transform in Matlab (R2019b). 148

We note that zebrafish tend to track (or follow) the rotation induced by the flow (see 149

supplementary video S1 Video). For completeness, in Figure 3(c), we plot Lc(t) against 150

the turn rate ω(t), which suggests a linear correlation between the variables, such that 151

the fish tendency to turn clockwise or counterclockwise depends on the local circulation 152

of the background flow. 153

We propose that a fish linearly adjusts its heading on the basis of the local 154

circulation of the flow. First, we verified the tendency of a fish to follow the rotation 155

induced by the background flow. We focused on instances when fish were sufficiently far 156

from the wall such that they could not touch it (1BL away form the walls). We 157

computed the quantity Fc as the percent of the experimental time in which fish turn 158

according to the rotation induced by the background flow. With reference to Figure 159

3(c), we scored the fraction of points in the first and third quadrants out of the total 160

number of points. We further scored Fc by smoothing the turn rate via a robust 161
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Fig 3. Ability of zebrafish to track the local circulation of the fluid flow. (a) Example of rotation induced by a parabolic
flow; the red circle of radius r is the approximation used for the fish perimeter in the computation of the local circulation of
the background flow. (b) Time series of the normalized turn rate and normalized local circulation (top panel) and their
respective phases (bottom panel), normalized between −1 and 1. (c) Relationship between the rotation induced by the flow
(circulation Lc(t)) and the turn rate (ω(t) = dθ(t)/dt). The red dashed-line is a linear least-squares fit, on the initial 60 s of
the time series, with a slope of 0.163 and R2 = 0.151. Quantification of the ability of a fish to follow local rotations induced
by the background flow with and without visual cues using the (d) original or (e) smoothed turn rate. The blue dashed-line
represents the random chance level of 50%. Each box reports median, first and third quartiles, and minimum and maximum.
Symbol ∗ indicates a significant difference from chance with p < 0.050. (f) Synchronization index between the phases of the
normalized turn rate and local circulation.

weighted linear least squares in Matlab 2019, to account for oscillations that rapidly 162

change the sign of turns. Finally, we quantified the ability of a zebrafish to track (or 163

follow) the local circulation by scoring the synchronization index [53] 164

ρ = (1/2)(eiψω + eiψLc ) with i =
√
−1, between the phase of the turn rate ψω(t) and 165

the phase of the circulation ψLc(t). A value of ρ = 0 indicates the absence of 166

synchronization, while ρ = 1 identifies perfect synchronization. 167

Results of this analysis are shown in Figures 3(d), 3(e), and 3(f). We report a 168

significant difference between chance and the tendency of the fish to follow the rotation 169

June 3, 2021 7/26



−4 −2 0 2 4
−10

−5

0

5

10

Lc [cm2/s]

Γ
l
−

Γ
r

[c
m

2
/
s]

(a)

Bright Dark

0

0.1

0.2

0.3

0.4

R
2

(b)

Bright Dark
0

0.2

0.4

0.6

n.s.

K
R

[1
/s

]

(c)

Bright Dark

−0.5

−0.25

0

0.25

0.5 n.s.

B
[c

m
2
/s

]

(d)

Orientation
KR

Position and heading
(x(t), y(t)), θ(t)

Flow U(Y)

Γr(t)

Γl(t)

Sensing the environment
Lc(t) =

¸
CU(s) ds

Lc(t)

(e)

Fig 4. Hydromechanical feedback mechanism in adult zebrafish. (a) Relationship between the local circulation Lc and the
difference of vortex strengths (Γl − Γr) for instances when the turn rate and local circulation have the same signs, based on
the same time series considered in Figure 3(c). The red dashed-line is a linear least-squares fit with slope KR = 0.248 and
R2 = 0.191. (b) Goodness-of-fit of the linear relationship between Lc and Γl − Γr. (c) Analysis of the estimated slope for
conditions Bright and Dark. (d) Intercept of the linear regression. Each box reports median, first and third quartiles, and
minimum and maximum. (e) Block diagram describing the feedback mechanism to orient in the flow and perform rheotaxis.

of the local curl for condition Bright (V = 67; p < 0.050), while for condition Dark we 170

failed to detect a significant difference (V = 62; p = 0.077). Using the smoothed turn 171

rate we register a significant difference for both condition Bright (V = 70; p < 0.050) 172

and Dark (V = 65; p < 0.050). Finally, we did not register a significant difference 173

between condition Bright and Dark (W = 106; p = 0.053) with respect to the 174

synchronization index ρ. 175

Next, we focus on the instances when the turn rate and the circulation match their 176

signs. We investigate the response of the difference of vortex strengths Γl(t)− Γr(t) as a 177

function of the circulation Lc(t) as illustrated in Figure 4(a). We fitted a linear model 178

Γl − Γr ∼ Lc to calculate the goodness-of-fit measure R2, slope KR [1/s], and intercept 179

B [cm2/s] for all trials in both conditions, Bright and Dark. The results are shown in 180

Figures 4(b), 4(c), and 4(d). The regression analysis indicates that a linear model could 181

be used as a first approximation to capture the dependence between the difference in 182

the vortex strengths and the circulation of the background flow. Pairwise comparison 183

between conditions Bright and Dark on the slope KR and the intercept B did not reveal 184

significant differences (KR: W = 59; p = 0.477 and B: W = 53; p = 0.291). 185

Based on this empirical evidence, we propose that the hydromechanical feedback uh
in equation (3) should be a linear function of the local circulation of the background
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flow,

uh(t) = KRLc(t), (5)

where KR [1/s] is a positive parameter weighting the hydrodynamic information, as 186

illustrated in Figure 4(e). For positive Lc, the fish feedback control mechanism would 187

induce counterclockwise turns as the circulations would satisfy Γl > Γr, while for 188

negative values of Lc the turns would be clockwise and the vortex strengths satisfy 189

Γr > Γl. 190

Wall interaction: visual and tactile feedback 191
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Fig 5. Analysis of the wall interaction. (a) Illustration of the process to compute the projected distance and angle to
collision. (b)-(c) Two-dimensional projection of the circulation error as a function of the projected distance, d, and angle to
collision, φ, for conditions Bright and Dark, respectively. The blue and red color scales denote positive or negative turn rate
ω, corresponding to counterclockwise and clockwise turns, respectively. (d) Quantification of the fish ability to turn away
from a wall using information about the angle to collision. The blue dashed-line represents the random chance level of 50%.
(e) Quantification of fish ability to turn away from a wall for distances to collision less than 1 BL. Each box reports median,
first and third quartiles, and minimum and maximum. Symbols ∗ and ∗ ∗ ∗ indicate a significant difference from chance with
p < 0.050 and p < 0.001, respectively.

Here, we study the interaction of the fish with the walls, which comprises two 192

different feedback mechanisms using vision and touch. Visual feedback is captured 193

through uw in equation (3). Tactile feedback instead is modelled as a collision that 194

modifies the evolution of the vortex strengths with respect to equations (2a) and (2b), 195

as the fish collides with the walls. 196
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Following [34,36], we quantified the wall effect by measuring the projected distance 197

d and angle of collision φ, as illustrated in Figure 5(a). We only considered those 198

instances when the centroid was within 1 BL range from the wall. The angle φ is 199

measured from the wall axis to the projected heading vector, as indicated by the blue 200

arrows in Figure 5(a). Specifically, φ = π/2 if the fish is heading straight to the wall, 201

and φ = 0 if it is perfectly aligned to the wall axis. In addition, φ > 0 (clockwise) and 202

φ < 0 (counterclockwise) indicate instances when a fish approaches the wall with its 203

right or left side, respectively. 204

To understand how a fish turns in the vicinity of a wall, we focused on one 205

individual from Bright and one individual from Dark. We plotted the difference in the 206

turn rate ω(t) as a function of the distance and of the angle to collision, as shown in 207

Figures 5(b) and 5(c). Predictably, the animal swimming in normal lighting conditions 208

tends to turn according to the sign of the angle to collision φ. More specifically, the fish 209

preferred to turn clockwise as it approached the wall from its left side, while it tended 210

to rotate counterclockwise if it approached the wall from its right side. The subject 211

swimming in the dark did not exhibit this response, since visual cues were not available 212

for correcting its heading as it swam towards the wall. 213

From these two representative subjects, we moved forward to the systematic 214

quantification of zebrafish tendency to make turns based on the angle φ. Toward this 215

aim, we scored Fφ as the percent of instances when the sign of turn rate ω(t) was the 216

opposite of the sign of φ, irrespective of the distance from it. Results are shown in 217

Figure 5(d), where we compared the value of Fφ for conditions Bright and Dark with 218

chance. We registered a significant difference for both conditions Bright 219

(V = 78; p < 0.001) and Dark (V = 60; p < 0.050). 220

To further delve into how fish interacts with the wall, we examined only instances 221

when they were in close proximity or in direct contact to a wall. In these instances, the 222

animal could exploit other sensing mechanisms beyond vision to avoid the wall. We 223

scored Fφ by only considering those instances when the distance to collision d was less 224

than 1 BL. Results are shown in Figure 5(e), where we document a significant difference 225

for condition Bright (V = 75; p < 0.001). Although we failed to register a significant 226

difference for Dark (V = 64; p = 0.052), this observation offers partial support in favor 227

of the presence of other mechanisms to detect walls when swimming in close proximity. 228

Following [35], we model the visual feedback as a function of the projected distance
and angle of collision which is given by

uw(t) =
KW

Cd(t) + 1
sign(φ(t)), (6)

where KW [cm2/s2] and C [1/cm] are positive constant parameters capturing the 229

maximum intensity of turns and the decay of the wall effect as a function of the 230

distance d [cm]. In the dark, we assume that animals do not have visual cues and this 231

term is not present in the model, that is, KW = 0. 232

Next, we model the tactile component of turning in the vicinity of a wall, which is
crucial for describing the wall interaction of the fish in the dark. In the vicinity of a
wall, turns are captured through

dΓl(t)

dt
= η sign(φ−(t)), for all |x(t)| > xmax − ε, |y(t)| > ymax − ε, (7a)

dΓr(t)

dt
= −η sign(φ−(t)), for all |x(t)| > xmax − ε, |y(t)| > ymax − ε, (7b)

where φ−(t) denotes the angle of collision previous to the impact, η [cm2/s2] is the rate 233

of turning once a collision occurs, and ε [cm] is an arbitrary small constant representing 234
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Fig 6. Comparison between calibrated model parameters for conditions Bright and Dark. (a) Linear rate of decay of the
vortex strengths. (b) Baseline value of the vortex strengths. (c) Intensity of the noise added to the time-evolution of vortex
strengths. (d) Coupling gain between vortex strengths associated with the ability of a fish to resume straight swimming after
a maneuver. Each box reports median, first and third quartiles, and minimum and maximum. Symbols $ and $$ indicate
significant differences between conditions with p < 0.050 and p < 0.010, respectively.

wall touching. We heuristically found that setting η = 10 cm2/s2 and ε = 0.001 cm 235

reproduces realistic turns, as observed in real experiments. 236

There is an additional consideration to make for the right wall which corresponds to
the test section outlet, shown in Figure 1. In this case, the fish experiences suction forces
and could hit the wall while heading in a direction opposite to it, thereby preventing the
use of equations (7a) and (7b) for capturing the impact. To account for this case and
counter-balance the suction force, we should modify equations (7a) and (7b) as follows:

dΓl(t)

dt
= η, for all x(t) > xmax − ε, |θ(t)| > π

2
, (8a)

dΓr(t)

dt
= η, for all x(t) > xmax − ε, |θ(t)| > π

2
. (8b)

Here, the constraint on the heading angle guarantees that the animal is heading in the 237

opposite direction to the right wall. Also, the signs in equations (8a) and (8b) are both 238

positive, indicating that the interaction with this particular wall is repulsive to counter 239

the suction force. 240

Model validation: comparison between real and in-silico experiments 241

We calibrated our model using experimental data, as detailed in Material and methods; 242

the resulting parameter values are shown in Figure 6 for both conditions Bright and 243

Dark. We found that the condition significantly influenced the baseline value of the 244

circulation strengths β (W = 17; p < 0.010), and the intensity of added noise 245

σ (W = 37; p < 0.050). We did not register a significant difference on the linear rate of 246

decay of the vortex strengths α (W = 64; p = 0.670) and the coupling strength 247

κ (W = 37; p = 0.079). Supplementary videos S2 Video and S3 Video show exemplary 248

instances of rheoactic behavior predicted by the mathematical model in conditions 249

Bright and Dark, respectively. 250

In order to validate the predictive power of our model, we compared the scoring of 251

two different metrics used to quantify rheotaxis, the mean of (negative) cosine of the 252

heading and the mean rheotaxis index (RI); see Materials and methods for a 253

mathematical definition. Both metrics take values between −1 and 1 corresponding to 254

biased headings towards downstream and upstream, respectively. A zero value 255

represents the case in which a fish does not have a preference to swim either upstream 256

or downstream. 257
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From the results in Figure 7, in the real experiments, we determined that the cosine 258

of the heading was different from chance in both Bright (V = 78; p < 0.001) and Dark 259

(V = 71; p < 0.010). Likewise, for the RI we registered significant differences from 260

chance in both Bright (V = 78; p < 0.001) and Dark (V = 68; p = 0.021). In pairwise 261

comparisons between Bright and Dark, we identified a superior rheotactic response for 262

animals swimming in standard illumination conditions, with respect to the cosine of the 263

heading (W = 134; p < 0.001) and RI (W = 134; p < 0.001). Finally, to measure 264

locomotory activity of the animal in the form of exploration of the entire test section, 265

we calculated the spatial entropy; see Materials and methods for a mathematical 266

definition. The comparison between the two conditions suggest the presence of a trend, 267

with fish swimming in the dark displaying a higher locomotory activity than subjects 268

swimming in standard illumination conditions (W = 40; p = 0.068). This trend was 269

accompanied by a significant difference of the variance of the spatial entropy between 270

conditions, (F = 12.053; p < 0.010), with animals swimming in the dark displaying a 271

lower variability. 272

Equivalent relationships were predicted by in-silico experiments. In these 273

experiments, we used a five times larger sample size to improve statistical power. Two 274

outliers were detected using the iterquantile range rule [54] on the spatial entropy 275

variable and thus neglected from the analysis. The cosine of the heading differed from 276

chance in both Bright (V = 1711; p < 0.001) and Dark (V = 1711; p < 0.001). Similarly, 277

RI registered significant differences in both Bright (V = 1711; p < 0.001) and Dark 278

(V = 1711; p < 0.001). Pairwise comparisons between Bright and Dark indicated 279

significant differences for the cosine of the heading (W = 2944; p < 0.001), RI 280

(W = 2947; p < 0.001), spatial entropy (W = 854; p < 0.001), and variance of spatial 281

entropy (F = 4.279; p < 0.050). 282

Discussion 283

Rheotaxis is a complex multi-sensory process that involves the integration of different 284

cues to orient in a flow and engage in counter-flow swimming. Toward a better 285

understanding of how fish interacts with their surroundings and integrate different 286

sensory cues during rheotaxis, we developed a data-driven mathematical model of 287

zebrafish swimming in a flow. With respect to the state of knowledge on data-driven 288

modeling of zebrafish locomotion, this study contributes the first mathematical model of 289

swimming in a fluid flow. To generalize existing data-driven models that were 290

intentionally developed for studying swimming in quiescient fluids [34–38], we tap into 291

recent advancements in hydrodynamic modeling of fish swimming based on the 292

finite-dipole paradigm [45,46]. 293

The proposed modeling framework is articulated in three main steps: (i) 294

multi-sensing, through which the fish appraises its surroundings from visual, 295

hydrodynamic, and tactile cues; (ii) orientation and navigation control, which uses the 296

multi-sensory input to modulate the vortex strengths that are associated with 297

self-propulsion; and (iii) motion in the flow based on the finite-dipole model, as a 298

function of the background flow and the circulation strengths of the vortex pair. 299

Our results indicate that hydromechanical cues play a key role on the orientation 300

and navigation whereby the fish tends to make turns by following the rotation induced 301

by the flow, regardless of the availability of visual cues. This suggests that information 302

about the environment provided by the lateral line alone is sufficient to perform 303

rheotaxis. This is also evident in our calibrated model parameters, where the feedback 304

gain that is associated with hydromechanical sensory information did not vary with the 305

illumination conditions. Our findings are in line with previous results in the literature, 306

where it has been shown that the lateral line organ is fundamental to aid the orientation 307
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Fig 7. Scoring of three behavioral metrics for real and in-silico experiments.
Rheotactic metrics taking values between −1 and 1 corresponding to biased headings
towards downstream and upstream, respectively, for real (a,b) and synthetic (d,e) data.
Spatial entropy for real (c) and synthetic (f) data. Each box reports median, first and
third quartiles, and minimum and maximum. Symbols ∗, ∗∗ and ∗ ∗ ∗ indicate
significant differences from zero with p < 0.050, p < 0.010, and p < 0.001, respectively.
Symbol $$$ indicates significant difference between conditions with p < 0.001.

process of fish [20,24]. 308

In a uniaxial flow, the feedback mechanism used by zebrafish reduces to tracking the 309

gradient of the background flow. Specifically, the difference in the vortex strengths of 310

the finite-dipole model is linearly controlled by the variation of the axial flow with 311

respect to the width of the test section. Orientation strategies based on gradients have 312

also been observed in other biological domains such as light gradient sensing in fish [55] 313

where animals are able to track variations of light intensity and adjust their 314

maneuvers [56]. Another example is chemical gradient sensing in cells [57, 58], where 315

chemoattractant fields are sensed by proteins whose information is then used to 316

modulate the orientation of the cell. 317

We observed that the scoring of behavioral metrics in real experiments was 318

successfully paralleled by simulations. In particular, fish swimming in the dark 319

displayed a higher locomotory activity in the test section, when compared to subjects in 320

standard illumination conditions. Increased activity is likely related to an 321

anxiety-related response, which is triggered by the presence of a dark, threatening 322

environment, as widely documented in zebrafish literature on scototaxis [59]. In-silico 323

experiments are also successful in predicting a significantly lower rheotactic performance 324

for animals swimming in the dark. While sensing local circulation through the lateral 325

line is not affected by the presence of visual cues, animal locomotion varies with the 326

illumination conditions. Specifically, the mathematical model identifies that animals 327

swimming in the dark have a higher relative speed with respect to the background flow 328
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than subjects in standard illumination conditions. This increased speed challenges the 329

ability of zebrafish to adjust their orientation in response to the gradient of the 330

background flow during rheotaxis. 331

Our approach has limitations that call for future research. First and foremost, the 332

data-driven mathematical model focuses on two-dimensional swimming, thereby 333

preventing the possibility of studying diving maneuvers along the height of the test 334

section. Several studies [60–62] have pointed out the critical role of diving maneuvers on 335

the response of this freshwater species, thereby suggesting the use of a three-dimensional 336

ethogram for scoring zebrafish behavior. Three-dimensional effects are also likely to play 337

a role on the difference between the rheotaxis metrics of real and in-silico experiments, 338

whereby live animals have access to a richer flow physics than the two-dimensional 339

background flow used in the simulations. Extending the proposed approach to three 340

dimensions poses a number of methodological challenges, which requires a more complex 341

representation than a vortex pair to encapsulate zebrafish swimming. Second, we 342

cannot exclude that zebrafish might exploit other systems for performing rheotaxis, 343

such as the vestibular system [26,27]. Disentangling the contribution of the vestibular 344

system would require further experimental conditions, potentially involving the selective 345

impairment of the potentially contributing sensory systems. 346

In summary, we proposed a simple, yet effective, multi-sensory feedback control 347

process for describing rheotaxis of an adult zebrafish. In particular, we incorporated 348

three types of sensory feedback mechanism relying on visual, hydromechanical, and 349

tactile cues. Interestingly, our model suggests that the gradient of the flow profile is the 350

key information that drives rheotactic behavior. Similar to zebrafish larvae [25], our 351

model indicate that rheotacting adults tend to follow the negative direction of the 352

velocity gradient to adjust their orientation and swim upstream. 353

Materials and methods 354

Ethics statement 355

Experiments were performed in accordance with the guidelines and regulations 356

approved by the University Animal Welfare Commitee (UAWC) of New York University 357

under protocol number 13-1424. 358

Animal care and maintenance 359

A total of 24 wild-type adult zebrafish (Danio rerio), 12 male and 12 female, were used 360

in this study. The fish were purchased from Carolina Biological Supply Co. (Burlington, 361

NC, USA), and housed in a 615 L vivarium tank divided into two compartments to 362

mantain sexes separated. Fish were kept under a 12 h light/12 h dark photo-period and 363

fed with commercial flake food once a day, approximately at 7 PM. Water parameters of 364

the holding tanks were regularly checked, and temperature and pH were maintained at 365

26◦C and 7.2, respectively. Prior to the beginning of the experiments, fish were 366

acclimatized in the holding facility for one month. 367

Experimental apparatus 368

The experimental set-up (Figure 8(a)) consisted of a 151 L Blazka-type water channel 369

(Engineering Laboratory Design Inc., Lake City, MI, USA), a video camera (Logitech 370

C910 HD Pro Webcam without infrared filter, Logitech, Switzerland) located at the 371

bottom of the channel, an array of lights, and black curtains to minimize outside visual 372

stimuli. We used two different lighting systems for the Bright and Dark conditions. In 373
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Fig 8. Experimental set-up. (a) Overview of the experimental apparatus. (b,c) U
shape-like honeycomb grids for straightening the flow in the water channel. (d)
Measurements of the flow velocity profile and parabolic fit at the mid-span.

particular, for the Bright condition, we used a pair of fluorescent lamps (Aqueon Full 374

Spectrum Daylight T8, Aqueon, USA) located at the top of the channel along with a 375

white plexiglass sheet to dim the light intensity and provide a homogeneous light 376

background of 250 lx. For recording fish swimming in the dark, we used infrared lights 377

(Iluminar IRC99 Series, Iluminar, Irvine, CA) with wavelength 940 nm, which is greater 378

than the adult zebrafish threshold of spectral sensitivity [63]. Two pairs of infrared 379

lights were located at the bottom and top of the water channel to provide a clear 380

background for recording videos in the dark. 381

A test section of 30 cm × 13 cm (2xmax × 2ymax) at a water height of 10 cm was 382

arranged within the channel using flow straighteners, as shown in Figure 8(a). The flow 383

profile was created using an array of U-shaped flow straighteners with different opening 384

sizes to manipulate the flow speed (Figures 8(b) and 8(c)). The flow velocity was 385

measured at the mid-span of the test section using a Laser Doppler Velocimeter (BSA 386

F50, Dantec, Denmark). We obtained five velocity measurements for nine different 387

points across the test section (Y-coordinate). The flow velocity measurements along 388

with the fitted parabolic flow profile is shown in Figure 8(d). The maximum speed was 389

5.3 cm/s, which was on the order of 1 BL/s. The fitting was performed using standard 390

least squares in Matlab (R2019b) yielding U(Y) = −0.084Y2 + 3.720, with the velocity 391

measured in cm/s and position in cm. 392
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Experimental procedure 393

Two different illumination conditions were tested, namely Bright and Dark. Each trial 394

consisted of three main phases. The first two phases were introduced for habituation to 395

the new environment and the flow, while the third phase was the actual testing. Only 396

the last phase was recorded. At the beginning of the trial, the animal was transferred 397

from the vivarium to the water tunnel (using a hand net) and kept there for five minutes 398

of habituation with the water velocity set to zero. Then, the water flow was turn on for 399

two minutes of further habituation and five minutes of testing. A total of 24 näıve adult 400

fish were tested, 12 (6 male and 6 female) for each condition (Bright and Dark). 401

Tracking 402

A total of 300 s were recorded for each trial at 30 frames per second. All videos were 403

post-processed using a foreground detection algorithm in Matlab (R2019b) for 404

highlighting the animal shape on the image and improve the tracking process [64]. The 405

resulting images were input to a slightly modified version of the multi-target tracking 406

algorithm Peregrine [65], accounting for manual repairs in body shape tracking mode. 407

The software fitted a parabola on the fish blob and returned: the fish centroid position 408

(x(t), y(t)) with their respective velocities, shape parameters (coefficients of the 409

parabola), and heading vector h = [cos(θ(t)), sin(θ(t))], from which the heading angle 410

and turn rate were calculated. 411

Statistical analyses and behavioral scoring 412

All statistical analyses were performed with the statistics software R (version 3.6.1). We 413

used the Wilcoxon signed-rank test and the Mann-Whitney U test (Wilcoxon rank sum), 414

with a significance level of 0.050, for comparing one-sample and two-sample data, 415

respectively [66]. For testing the equality of two-sample data variances we use the 416

Levene’s test [67] with a significance level of 0.050. 417

To study rheotaxis, we averaged the time series of − cos(θ(t)) in each trial, and we 418

scored RI, defined as the difference between the cumulative distribution functions of 419

the absolute value of the heading and a uniform random variable [27]. More specifically, 420

RI = 1− (2/π)
´ π
0

Λ(|θ|) dθ, with Λ(·) being the empirical cumulative distribution 421

function. Here, π/2 represents the area under the curve of an empirical cumulative 422

distribution function of a uniform random variable over the interval [0, π]. 423

We further quantified the fish exploratory behavior in the test section through spatial 424

entropy. This quantity was measured by first dividing the test section in 10× 4 squares 425

of approximately 3 cm× 3.25 cm each, corresponding to a grid of 1 BL in size. Then, 426

using the centroid trajectory (x(t), y(t)), we estimated the probability of occupying each 427

boxes in the grid, pi. The spatial entropy is then given by −∑40
i=1 pi log2(pi). 428

In-silico experiments 429

We replicated the real experiment by considering 24 trials, 12 for Bright and 12 for 430

Dark. We numerically integrated equations (1), (2), (3), (5), and (6) using the 431

Euler-Maruyama scheme with a time step of 1/30 s, matching the sampling rate of the 432

tracked data). To ensure convergence to a steady state probability distribution, we 433

chose a simulation time of six times the experimental time (6× 300 s), and we only 434

considered the last 300 s. The parameter values α, κ, and KR were taken from 435

Gaussian distributions corresponding to the data across all 24 trials (Bright and Dark). 436

Because the parameters β and σ were significantly different between Bright and Dark, 437

their values were drawn from two different Gaussian distributions for each parameter, 438
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corresponding to the data shown in Figure 6(b) and Figure 6(c), respectively. Given 439

that the test section is rectangular, unrealistic turns or oscillations might arise on the 440

corners due to their discontinuous nature [36]. To avoid this problem, we kept the angle 441

to collision constant when the fish was inside a square region of 1 cm2 on the corners. 442

Derivation of the governing equations of the finite-dipole model 443

The zebrafish dipole representation is depicted in Figure 1. By adapting the equation
set (2) from [46], the centroid position and heading angle can be obtained by integrating
the following set of ODEs:

dx(t)

dt
=

Γl(t) + Γr(t)

4πl
cos(θ(t)) +

U(yr(t)) + U(yl(t))

2
, (9a)

dy(t)

dt
=

Γl(t) + Γr(t)

4πl
sin(θ(t)), (9b)

dθ(t)

dt
=
U(yr(t))− U(yl(t))

l
cos(θ(t)) +

Γl(t)− Γr(t)

2πl2
, (9c)

where

yl(t) = y(t) +
l

2
cos(θ(t)), yr(t) = y(t)− l

2
cos(θ(t)). (10)

Considering that the animal thickness, l ∼ 5 mm, is small with respect to the
dimensions of the water channel, we expand the velocity field at the location of the two
vortices, U(yr(t)) and U(yl(t)), around the centroid coordinate y(t) using a Taylor
series, yielding

U(yl(t)) = U(y(t)) + U ′(y(t))
l

2
cos(θ(t)) +

U ′′(y(t))

2

(
l

2
cos(θ(t))

)2

+
U ′′′(y(t))

6

(
l

2
cos(θ(t))

)3

+O(l4), (11a)

U(yr(t)) = U(y(t))− U ′(y(t))
l

2
cos(θ(t)) +

U ′′(y(t))

2

(
l

2
cos(θ(t))

)2

− U ′′′(y(t))

6

(
l

2
cos(θ(t))

)3

+O(l4), (11b)

where O(·) is Landau’s symbol. By considering a first order approximation in equations
(11a) and (11b), we determine

U(yr(t)) + U(yl(t))

2
' U(y(t)), (12a)

U(yr(t))− U(yl(t))

l
' −U ′(y(t)) cos(θ(t)). (12b)

Finally, replacing equations (12a) and (12b) in equations (9a)-(9c) yields equations 444

(1a)-(1c). 445

Estimation of the circulation strengths from experimental time 446

series 447

To estimate the circulation strengths we used experimental data of the fish centroid
position (x(t), y(t)), heading angle θ(t), and turn rate ω(t). Using a first order
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approximation, equations (9a)-(9c) can be written as

x̃(kT ) =
T

4πl
(Γl(kT ) + Γr(kT )) cos(θ(kT )), (13a)

ỹ(kT ) =
T

4πl
(Γl(kT ) + Γr(kT )) sin(θ(kT )), (13b)

ω̃(kT ) =
1

2πl2
(Γl(kT )− Γr(kT )). (13c)

Here, k = 1, 2, ..., N − 1 is the time step, T = 1/30 s is the video-camera sampling
period, N = 9000 is the total number of samples, and

x̃(kT ) = x((k + 1)T )− x(kT )− (U(yr(kT )) + U(yl(kT )))T

2
, (14a)

ỹ(kT ) = y((k + 1)T )− y(kT ), (14b)

ω̃(kT ) = ω(kT )− U(yr(kT ))− U(yl(kT ))

l
cos(θ(kT )), (14c)

with U(yr(kT )) and U(yl(kT )) being the flow velocities in correspondence of the right 448

yr(kT ) = y(kT )− (l/2) cos(θ(kT )) and left yl(kT ) = y(kT ) + (l/2) cos(θ(kT )) vortices, 449

respectively. 450

By squaring both sides of equations (13a) and (13b), we determine that√
x̃2(kT ) + ỹ2(kT ) =

T

4πl
(Γl(kT ) + Γr(kT )), (15)

Finally, from equations (13c) and (15) we obtain the sought expression of the
circulations strengths as function of fish motion

Γl(kT ) = πl

(
2

T

√
x̃2(kT ) + ỹ2(kT ) + lω̃(kT )

)
, (16a)

Γr(kT ) = πl

(
2

T

√
x̃2(kT ) + ỹ2(kT )− lω̃(kT )

)
. (16b)

Expansion of the line integral for the local circulation 451

The fish perimeter is approximated by a circle C around the fish centroid (x(t), y(t)) 452

defined by 453

sx = x(t) + r cos(ϕ), sy = y(t) + r sin(ϕ), for all ϕ ∈ [0, 2π]. (17)

The line integral in equation (4) is thus given by

‰
C

U(s) ds = −r
ˆ 2π

0

U(y(t) + r sin(ϕ)) sin(ϕ) dϕ. (18)

By a using a Taylor expansion of the velocity around y(t), we establish

‰
C

U(s) ds = −r
ˆ 2π

0

U(y(t)) sin(ϕ) dϕ− r2
ˆ 2π

0

U ′(y(t)) sin2(ϕ) dϕ

− r3

2

ˆ 2π

0

U ′′(y(t)) sin3(ϕ) dϕ+O(r4). (19)

Finally, from the fact that
´ 2π
0

sin(ϕ) dϕ = 0,
´ 2π
0

sin2(ϕ) dϕ = π, and 454´ 2π
0

sin3(ϕ) dϕ = 0 we derive equation (4). 455
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Model calibration 456

We began by approximating the solutions of the stochastic differential equations in
equation (2a) and (2b) away from the wall (neglecting uh and uw) and with no uh,
using the Euler-Maruyama method, thereby yielding the following Markov chain:

Γl((k + 1)T ) = Γl(kT ) + [α(β − Γl(kT )) + κ(Γr(kT )− Γl(kT ))]T

+ σ
√

Γl(kT )Tξl(kT ), (20a)

Γr((k + 1)T ) = Γr(kT ) + [α(β − Γr(kT )) + κ(Γl(kT )− Γr(kT ))]T

+ σ
√

Γr(kT )Tξr(kT ), (20b)

where ξl and ξr are two independent standard Gaussian random variables, with zero
mean and unit variance. After some algebraic manipulations, equations (20a) and (20b)
can be rewritten as

Zl(kT ) := f(Γl(kT ),Γl((k + 1)T ),Γr(kT ), α, β, σ, κ) =

√(
σ

K0

)2

Tξl(kT ), (21)

Zr(kT ) := f(Γr(kT ),Γr((k + 1)T ),Γl(kT ), α, β, σ, κ) =

√(
σ

K0

)2

Tξr(kT ), (22)

where the scalar function f(X,Y, Z, α, β, σ, κ) is given by

f(X,Y, Z, α, β, σ, κ) =
Y +X(αT + κT − 1)− αβT − κTZ

K0

√
X

, (23)

with K0 being an arbitrary positive constant, introduced to avoid numerical issues when
the circulations strengths are close to zero. To calibrate the model we estimated the
parameters Θ = [α, β, σ/K0, κ] using the maximum likelihood estimation method [68]
by solving the following constrained optimization problem:

Θ̂ = arg min
Θ

[
−

N∗∑
k=1

log g(Θ, Zl(kT )) + log g(Θ, Zr(kT ))

]
(24a)

such that σ2 < 2αβ, (24b)

where N∗ < N is the total number of samples where the fish was swimming away from
the wall. The function g(Θ, Z) is the Gaussian distribution with zero mean and
variance (σ/K0)2T , given by

g(Θ, Z) =
1√

2πT
(
σ
K0

)2 e
− Z2

2T( σ
K0

)
2

. (25)

The estimated parameters are shown in Table 1 for the 24 experimental trials. 457

Moreover, for calibrating the wall parameters in equation (6), we implemented the 458

following steps: 459

(i) We first extracted instances when the fish turns according to the opposite sign of 460

the angle to collision φ, that is, blue points (Γl − Γr > 0) for φ < 0 and red points 461

(Γl − Γr < 0) for φ > 0 as shown in Figure 9(a). To undertake this step, we 462

utilized a cutoff function, which was informed by the following rationale. As the 463

angle φ approaches ±π/2 or the distance to collision d increases, fish turns 464

becomes less predictable. Hence, we retained pairs (φ, d) such that |g(φ)− d| < δ 465
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Fig 9. Illustration of the wall calibration process. (a) Two-dimensional projection of
the difference of vortex strengths Γl − Γr, as a function of the projected distance, d, and
angle to collision, φ, for one trial from Bright. The black curve is a normal function
utilized to select relevant values of (φ, d) associated with those instances when the fish
turns according to the angle to collision φ. (b) Example of calibration of the wall
function. Black dots correspond to Gφ and green dots correspond to the filtered output
of |Gφ|. The red line is the fitted wall function.

Table 1. Calibrated model parameters for the 24 experimental trials.

Bright Dark
Parameters

Trial α[1/s] β[cm2/s] σ[cm/s] κ [1/s] KR [1/s] α[1/s] β[cm2/s] σ[cm/s] κ [1/s] KR [1/s]
1 0.030 10.602 0.808 3.536 0.173 0.082 21.870 1.282 4.740 0.241
2 0.306 10.223 1.185 3.655 0.248 0.024 - 1.328 4.066 0.358
3 1.020 18.348 3.078 - 0.490 0.750 11.944 0.898 6.452 0.056
4 0.059 6.6422 0.889 5.411 0.190 0.246 16.410 1.653 3.919 0.316
5 0.005 - 0.826 3.842 0.526 0.049 26.949 0.927 6.656 0.139
6 0.545 10.638 1.475 3.397 0.245 0.495 15.737 2.061 4.537 0.536
7 0.177 8.1365 0.690 5.618 0.130 0.827 22.502 2.194 4.472 0.337
8 0.308 9.4714 1.193 3.597 0.355 0.402 14.197 1.711 4.347 0.409
9 0.235 9.197 1.314 2.843 0.278 0.301 15.494 1.536 5.283 0.361
10 0.754 12.118 1.834 4.733 0.310 0.477 17.387 1.816 5.128 0.328
11 0.153 10.960 1.133 4.597 0.170 0.472 16.858 1.362 3.341 0.338
12 0.181 9.2510 1.281 2.995 0.428 0.067 - 1.884 4.947 0.381

and |φ| < φ0, where φ0 and δ are cutoff parameters and g(φ) = ag + bg e
−(φ/cg)2

466

(Black curve in 9(a)). By manually examining the 12 trials in Bright, we found 467

that setting φ0 = 1, ag = 2.8, bg = 27.2, cg = 0.26, and δ = 1 was a valid choice to 468

extract all relevant maneuvers. 469

(ii) To understand how fish turn based on the vicinity to a wall, we defined Gφ as the 470

quantity collecting the values of the difference of circulation strengths (Γl − Γr), 471

corresponding to the points (φ, d) obtained from the previous step. For the 472

example shown in Figure 9(a), the points Gφ correspond to black dots. Next, we 473

used a non-parametric locally weighted least squares (LOESS) filter in Matlab 474

(R2019b) with a 5% span on the absolute value of Gφ to smoothen the data. The 475

results are the green dots shown in Figure 9(b); 476

(iii) The output of the LOESS filter, yd, was utilized as input to fit the wall function 477
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KW /(Cyd + 1) using the nonlinear least-squares solver of Matlab (R2019b). The 478

fitted function corresponds to the red curve in Figure 9(b) and 479

(iv) Because we used the difference of circulation strengths for the fitting, the estimate 480

of KW should be corrected to obtain the true amplitude of turns corresponding to 481

each circulation strengths. Hence, we computed the maximum value of Γl and Γr 482

across all time instances near a wall. KW was selected as the maximum between 483

the values obtained in (iii) and (iv). Results are reported in Table 2. 484

Table 2. Calibrated wall parameters for the 12 fish tested in standard illumination
(condition Bright). For experiments in the dark, KW is set to zero and this form of
interaction is absent.

Trial KW [1/s] C [cm]
1 23.085 -
2 52.905 2.072
3 70.379 2.775
4 29.168 -
5 34.114 1.853
6 86.376 2.119
7 20.251 -
8 37.540 2.674
9 34.721 2.351
10 37.858 2.210
11 38.686 -
12 45.593 3.078
Mean 42.556 2.392
Median 37.699 2.281

Supporting information 485

S1 Video. Experiment of a subject in Bright condition: tracking the local 486

circulation of the fluid flow. 487

S2 Video. Example of rheotaxis predicted by the proposed mathematical 488

model in condition Bright. 489

S3 Video. Example of rheotaxis predicted by the proposed mathematical 490

model in condition Dark. 491

S4 Dataset. 492
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