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Abstract

Understanding how animals navigate complex environments is a fundamental challenge
in biology and a source of inspiration for the design of autonomous systems in
engineering. Animal orientation and navigation is a complex process that integrates
multiple senses, whose function and contribution are yet to be fully clarified. Here, we
propose a data-driven mathematical model of adult zebrafish engaging in counter-flow
swimming, an innate behavior known as rheotaxis. Zebrafish locomotion in a
two-dimensional fluid flow is described within the finite-dipole model, which consists of
a pair of vortices separated by a constant distance. The strength of these vortices is
adjusted in real time by the fish to afford orientation and navigation control, as a
function of the multi-sensory input from vision, lateral line, and touch. Model
parameters for the resulting stochastic differential equations are calibrated through a
series of experiments, in which zebrafish swam in a water channel under different
illumination conditions. The accuracy of the model is validated through the study of a
series of measures of rheotactic behavior, contrasting results of real and in-silico
experiments. Our results point at a critical role of hydromechanical feedback during
rheotaxis, in the form of a gradient following strategy.

Author summary

The astounding feats of animal orientation and navigation have fascinated scientists and
engineers for decades. The refined and elegant processes of orientation and navigation
are generally thought to be the outcome of a complex feedback process, which involves
the integration of multiple cues gathered from the surroundings. Fish rheotaxis is an
innate behavior through which an animal is able to orient itself and swim against a flow
current, even in the absence of visual cues. To date, little is known about the
information pathways that underlay this behavior and how they are integrated. To help
address this challenge, we propose a data-driven mathematical model of rheotaxis in
zebrafish— an emerging species of choice in biomedical research. Our model explains
how zebrafish make use of visual, hydrodynamic, and tactile cues in a feedback loop to
adjust their heading and speed during swimming. We validate the accuracy of our model
by comparing real and synthetic data across two experimental conditions, in which we
vary the illumination of a water channel. Our results demonstrate how a simple, yet
effective, feedback control mechanism can explain a complex process such as rheotaxis.
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Introduction

The ability of animals to orient themselves and navigate in complex environments has
fascinated scientists and engineers for decades [1-3]. Understanding the mechanism
underlying this behavior is of paramount importance in behavioral ecology for
elucidating complex processes such as foraging [4], mating [5], and survival [6]. Animal
orientation and navigation has also inspired technological solutions ranging from
sensors [7] to computer algorithms for coordinating teams of construction robots [8].

Animal orientation and navigation typically involves the integration of different
sensory systems such as vision, olfaction, and touch. These systems are used to gather
information from the surrounding environment, which are, in turn, used to “close the
loop” by the animal. Using this information, the animal can adjust its position and
orientation. Remarkable examples include homing in salmon, which use a combination
of geomagnetic and olfactory cues to swim back to their natural streams to spawn, after
spending several years in the open ocean [9,10]. Moths, on the other hand, are able to
use intermittent olfactory cues in odour plumes to control their maneuvers to reach
their mating partner [11]. Interestingly, navigation and orientation can be very complex
even for insects, which are far in the evolutionary tree from vertebrates [12].

In some cases, animals display a specific orientation of locomotory behavior (taxis),
elicited by environmental stimuli like gravity (geotaxis) [13], light (phototaxis) [14], or
fluid flow (rheotaxis). For instance, fish rheotaxis is an innate behavior from early
stages of life [15] that is essential for survival [16-18]. This behavior can be performed
even in the absence of visual cues [19], whereby fish can use their lateral line to aid their
navigation in the dark [17,20]. The lateral line consists of a collection of neuromasts
(clusters of sensory cells), sensitive to changes of water pressure, that enable a fish to
create a hydrodynamic image of the surroundings [21-23]. Empirical evidence suggests
that the lateral line plays a key role in the animals’ orientation process [15,20,24]. For
example, it has been recently shown that larval zebrafish use the lateral line to estimate

the local vorticity of the surrounding fluid flow, which aids their orientation process [25].

In general, rheotaxis is regarded as a multi-sensory feedback process that integrates
visual, hydromechanical, olfactory, and even tactile cues [26,27]. A full understanding of

how all the sensory information is processed by rheotacting fish is yet to be established.

Here, we seek to contribute insight into the mechanisms underlying rheotaxis through
the development of a data-driven mathematical model of adult zebrafish locomotion in a
fluid flow.

Zebrafish is a freshwater species widely used as a model organism for its several
advantages, ranging from its fully sequenced genome to physiological and neurological
homologies with humans [28,29]. Zebrafish has been used in a wide array of preclinical
efforts, from drug discovery [30] to the study of complex brain disorders such as
depression, autism, and psychoses [31]. The possibility of investigating the neural and
genetic basis of behavior through zebrafish [32] offers compelling motivation for the
study of their rheotactic response.

Mathematical models of zebrafish locomotion have been shown to be a powerful tool
to complement and inform experimental research. For instance, in [33], a simple
mathematical model of the burst-and-coast swimming style of zebrafish, revealed that
adult fish have longer coasting due to their larger body mass and higher speed at the
beginning of a burst. Data-driven models of fish locomotion typically describe the time
evolution of the heading and the linear speed of fish using stochastic differential
equations (SDEs) [34-38]. For instance, a pair of coupled Ornstein-Uhlenbeck processes
were proposed in [36] to model the coupled evolution of the turn rate and speed of adult
zebrafish. Similarly, the jump persistent turning walker was introduced to faithfully

capture the burst-and-coast swimming of zebrafish in two [37] and three dimensions [39)].

Building on these efforts, mathematical models have addressed the role of spatial
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constraints on zebrafish range of vision [40], as well as pharmacological
manipulations [41,42].

Common to this entire body of literature on mathematical modeling of zebrafish
locomotion is the premise of a quiescent fluid environment. In its natural habitat,
however, zebrafish can experience different flow speeds between 3.5 to 13.9 cm/s [43].
Existing mathematical models exclude the effects of a fluid flow, thereby challenging the
study of rheotaxis. To the best of our knowledge, the only mathematical model of fish
rheotaxis in the literature is the phenomenological model proposed in [44]. Therein, the
authors established a simple model of rheotaxis based on a Kuramoto-like oscillator,
which describes fish heading through a bias towards the flow source. Despite its
promise, the model does not consider the flow physics nor the multi-sensory feedback
that fish should employ to orient and swim in the flow.

A potential line of approach to develop a data-driven model of zebrafish rheotaxis is

to leverage recent theoretical results on finite-dipole models of animal swimming [45,46].

Within the finite-dipole model, a fish is assimilated to a pair of point vortices separated
by a finite distance [45], whose strengths can adapt according to behavioral rules [46].
Based on this modeling paradigm, we explore a multi-sensory feedback control system,
which allows the animal to adjust its orientation as a function of visual,
hydromechanical, and tactile cues.

More specifically, we expand on the finite-dipole paradigm to encompass a
data-driven model that allows the fish to adjust the vortex strengths as a function of
multi-sensory input from the surroundings. Sensory input from the lateral line, is used
to estimate the local circulation of the fluid flow, and visual and tactile cues inform the
interaction with the walls. The model is calibrated using a data set consisting of
overhead recordings of adult zebrafish swimming in a water channel in standard
illumination conditions or in the dark. We demonstrate the effectiveness of our
approach by comparing the scoring of behavioral metrics on real and synthetic data
from in-silico experiments.

Results

Zebrafish swimming as a finite-dipole

We treat a zebrafish as a self-propelled body swimming in two dimensions within a
uniaxial inviscid flow, as shown in Figure 1. Here, (z(t), y(t)) is the coordinate of the
fish centroid in the global reference frame (X)), where ¢ is the time variable. The
angle 6(t) € [—m, ) represents the fish heading. For § = — the fish is heading
upstream, while for 8 = 0 it is heading downstream. Following [45,46], we assimilate the
fish to a finite-dipole, consisting of a pair of point vortices separated by a distance [,
corresponding to the fish thickness. These two point vortices of circulation strengths
Ty(t) and T',.(t) describe the fish self-induced propulsion. The fish thickness is about
5mm for adult zebrafish, which is much smaller than either dimensions of the water
channel, 22, and 2y ax.

Hence, the time evolution of the fish position and heading angle can be described by
the following set of ODEs:

da(t) _ Tu(t) +D0(t)

T g cos(6(t)) + U(y(t)), (1a)
dy(®) _ Tul) 100 0 900 (1)
dt 4rl ’
do(t) = —U'(y(t)) cos*(A(t)) + L) ~ 1+ () (1c)
d+ 2ml? ’
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(a)
Fig 1. Modeling zebrafish swimming in a flow as a finite-dipole. U(}) is the profile of
the uniaxial background flow. The black dot and arrow denote the fish centroid position
(z(t),y(t)) and heading angle 6(t), with respect to the global reference frame (X,)).

The green and red dots represent the left and right location of the vortices of circulation
strengths T';(t) and T',.(¢), respectively.

where U()) and U’(Y) are the axial flow velocity and its gradient along the width of
the channel, respectively; see Materials and methods for details on the derivation. These

scalar spatial fields entirely capture the effect of the background flow on the fish motion.

The vortex strengths encapsulate the self-propelling mechanism along with the
feedback contributions for controlling both heading and speed. In particular,
Ty(t) > I',-(t) indicates that the fish performs a counterclockwise turn, while the
opposite, I',.(t) > T';(t), refers to clockwise turns. For T';(t) = I',.(t), the fish swims
straight. The fish relative speed with respect to the background flow is
(Tu(t) + T (1)) /(470).

Vortex strengths from experimental data

We conducted an experiment using 24 adult zebrafish swimming in the flow. In order to
understand the role of vision on the fish swimming mechanism, we considered two
experimental conditions on groups of 12 individuals: Bright and Dark. In Bright, fish
swam with standard illumination (250 Ix), and in Dark they swam in the darkness.
Using an automatic tracking software, we obtained time series for the position of the
centroid and the heading angle. These time series were used in equations (1a) and (1b)
to estimate the vortex strengths I',. and I'; for all trials, as described in Materials and
methods.

Figures 2(a) and 2(b) exemplify two typical distributions for the vortex strengths of
adult zebrafish swimming in a flow for Bright and Dark, respectively. In both cases, the
distributions of I'; and T, are highly correlated with R? values of 0.879 and 0.880, for
Bright and Dark, respectively. This suggests that these processes are not independent.
In particular, the phase plots in Figures 2(c) and 2(d) indicate that both processes
unfold around the line I'; = T, (red dashed-line in Figures 2(c) and 2(d)) with random
fluctuations corresponding to turning maneuvers.

The phase plots for the vortex strengths share similarities with phase plots of
diffusively coupled dynamical systems, often studied in the context of
synchronization [47-49]. Just like oscillators tend to synchronize their phase against
noise [50], the two vortices seek to match their circulation strengths against random
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Fig 2. Estimated vortex strengths I'; and I', from real data. (a,b) Histograms and
(c,d) phase plots of vortex strengths for conditions (a,c) Bright and (b,d) Dark.

fluctuations. Based on this analogy, we hypothesize that the coupling between the 122
processes associated with the circulation strengths is diffusive. 123
Modeling the time evolution of the vortex strengths 124

From Figures 2(a) and 2(b), we note that the vortex strengths I';(¢) and I',.(¢) can be
approximated by a Gamma distribution [51]. Based on the analogy with diffusively
coupled systems, we propose the following pair of coupled Cox—Ingersoll-Ross
processes [52] to model the time evolution of the vortex strengths:

ALy (t) = (@(B = Tu(t)) + u(t)) dt + o/ T{E)AWi(2), (20)
AT, (1) = (a(B — T,(1)) — u(t)) dt + o/T, (AW, (¢), (2b)

where o [1/s] and 3 [cm?/s] are positive parameters representing the linear rate of
decay and a baseline value of the vortex strengths, respectively. The parameter [ is
associated with the speed of the fish relative to the background flow, whereby 3/(2l)
would be the relative speed of the finite-dipole during straight swimming, without the
effect of noise. The positive parameter o [cm/s| measures the strength of both added
noises W;(t) and W,.(t), which are assumed to be independent Wiener processes [s'/?].
u(t) is a feedback term [cm?/s?] modeling the coupling between the circulation
strengths, the hydromechanical orientation mechanism, and the visual interaction of the
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fish with the walls, such that
u(t) = £(Lr(t) = Tu(t)) + un(t) + uw(t), (3)

The feedback term u(t) acts differentially on I';(¢) and I',.(¢), that is, it takes
opposite signs in equations (2a) and (2b) to produce adequate turning maneuvers. For
instance, when the fish performs clockwise turns, the vortex strengths should satisfy
I'; > T',.. Then, the feedback would tend to increase I'; and decrease I',.. The first term
on the right hand side of equation (3) corresponds to a classic bidirectional diffusive
coupling, with x [1/s] being the coupling strength [49,50]. This positive parameter is
associated with the ability of a fish to resume straight swimming after a maneuver. The
diffusive coupling forces both processes to evolve along the synchronization manifold
I, =T, similar to the experiments (Figures 2(c) and 2(d)). The terms uy,(t) and uy(¢)
capture the hydromechanical orientation mechanism and wall interactions through
visual cues, respectively. Tactile interactions with the walls are separately addressed by
modifying equations (2a) and (2b) to account for collisions.

Hydromechanical feedback mechanism

Here, we model the feedback process allowing zebrafish to gather information from
hydrodynamic cues and use them to orient in the flow, that is, modulating the vortex
strengths through the term wy () in equation (3). Similar to zebrafish larvae [25], we
propose that adult zebrafish perform rheotaxis on the basis of an estimate of the local
vorticity field. We compute the circulation of the background flow around a circle C
with radius r centered at (z(t), y(t)), which approximates the fish perimeter (see Figure

3(a)),
LJﬂ:éU@ﬁb:—w%Wmm. (4)

Here, U(s) = [U(sy), 0] is the vector-field of the uni-axial background flow and the last
equality is true up to the order O(r*); see Materials and methods for details on the
derivation. We set r = 1/2BL, with BL = 3.6 cm being the average fish body length.
Positive values of L.(t) indicate that the background flow induces counterclockwise
rotations, while negative values refer to induced clockwise rotations. The value of the
local circulation L.(t) depends on the fish position in the swimming channel, as
sketched in Figure 3(a). To illustrate how a zebrafish use this information to adjust its
heading angle towards the flow, we extracted sixty seconds from the time series of a
subject in Bright. In Figure 3(b), we plot the turn rate w(t) = df(t)/dt and the
circulation L.(t), each normalized between —1 and 1. We further computed the phases

of both signals, namely, ¥,,(t) and ¢ r,_(t) using a Hilbert transform in Matlab (R2019b).

We note that zebrafish tend to track (or follow) the rotation induced by the flow (see
supplementary video S1 Video). For completeness, in Figure 3(c), we plot L.(t) against
the turn rate w(t), which suggests a linear correlation between the variables, such that
the fish tendency to turn clockwise or counterclockwise depends on the local circulation
of the background flow.

We propose that a fish linearly adjusts its heading on the basis of the local
circulation of the flow. First, we verified the tendency of a fish to follow the rotation
induced by the background flow. We focused on instances when fish were sufficiently far
from the wall such that they could not touch it (1BL away form the walls). We
computed the quantity F, as the percent of the experimental time in which fish turn
according to the rotation induced by the background flow. With reference to Figure
3(c), we scored the fraction of points in the first and third quadrants out of the total
number of points. We further scored F, by smoothing the turn rate via a robust
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Fig 3. Ability of zebrafish to track the local circulation of the fluid flow. (a) Example of rotation induced by a parabolic
flow; the red circle of radius r is the approximation used for the fish perimeter in the computation of the local circulation of
the background flow. (b) Time series of the normalized turn rate and normalized local circulation (top panel) and their
respective phases (bottom panel), normalized between —1 and 1. (c¢) Relationship between the rotation induced by the flow
(circulation L. (t)) and the turn rate (w(t) = df(t)/dt). The red dashed-line is a linear least-squares fit, on the initial 60 s of
the time series, with a slope of 0.163 and R? = 0.151. Quantification of the ability of a fish to follow local rotations induced
by the background flow with and without visual cues using the (d) original or (e) smoothed turn rate. The blue dashed-line

represents the random chance level of 50%. Each box reports median, first and third quartiles, and minimum and maximum.

Symbol * indicates a significant difference from chance with p < 0.050. (f) Synchronization index between the phases of the
normalized turn rate and local circulation.

weighted linear least squares in Matlab 2019, to account for oscillations that rapidly
change the sign of turns. Finally, we quantified the ability of a zebrafish to track (or
follow) the local circulation by scoring the synchronization index [53]
p = (1/2)(e™« + e™¥rc) with i = \/—1, between the phase of the turn rate v,,(t) and
the phase of the circulation ¢r,_(t). A value of p = 0 indicates the absence of
synchronization, while p = 1 identifies perfect synchronization.

Results of this analysis are shown in Figures 3(d), 3(e), and 3(f). We report a
significant difference between chance and the tendency of the fish to follow the rotation
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Fig 4. Hydromechanical feedback mechanism in adult zebrafish. (a) Relationship between the local circulation L. and the
difference of vortex strengths (I'; — T';) for instances when the turn rate and local circulation have the same signs, based on
the same time series considered in Figure 3(c). The red dashed-line is a linear least-squares fit with slope Kr = 0.248 and
R? =0.191. (b) Goodness-of-fit of the linear relationship between L. and I'; — T',.. (c) Analysis of the estimated slope for
conditions Bright and Dark. (d) Intercept of the linear regression. Each box reports median, first and third quartiles, and
minimum and maximum. (e) Block diagram describing the feedback mechanism to orient in the flow and perform rheotaxis.

of the local curl for condition Bright (V = 67;p < 0.050), while for condition Dark we
failed to detect a significant difference (V' = 62;p = 0.077). Using the smoothed turn
rate we register a significant difference for both condition Bright (V = 70;p < 0.050)
and Dark (V' = 65;p < 0.050). Finally, we did not register a significant difference
between condition Bright and Dark (W = 106; p = 0.053) with respect to the
synchronization index p.

Next, we focus on the instances when the turn rate and the circulation match their
signs. We investigate the response of the difference of vortex strengths I';(t) — T'.(t) as a
function of the circulation L.(t) as illustrated in Figure 4(a). We fitted a linear model
I — T, ~ L, to calculate the goodness-of-fit measure R?, slope Kg [1/s], and intercept
B[cm?/s] for all trials in both conditions, Bright and Dark. The results are shown in
Figures 4(b), 4(c), and 4(d). The regression analysis indicates that a linear model could
be used as a first approximation to capture the dependence between the difference in
the vortex strengths and the circulation of the background flow. Pairwise comparison
between conditions Bright and Dark on the slope Kr and the intercept B did not reveal
significant differences (Kr: W = 59;p = 0.477 and B: W = 53;p = 0.291).

Based on this empirical evidence, we propose that the hydromechanical feedback uy
in equation (3) should be a linear function of the local circulation of the background
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(a)

flow,

un(t) = KrLe(t), (5)

where K g [1/s] is a positive parameter weighting the hydrodynamic information, as
illustrated in Figure 4(e). For positive L., the fish feedback control mechanism would
induce counterclockwise turns as the circulations would satisfy I'; > I';., while for
negative values of L. the turns would be clockwise and the vortex strengths satisfy

I, >TI.

Wall interaction: visual and tactile feedback
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(e)

Fig 5. Analysis of the wall interaction. (a) Illustration of the process to compute the projected distance and angle to
collision. (b)-(c¢) Two-dimensional projection of the circulation error as a function of the projected distance, d, and angle to

collision, ¢, for conditions Bright and Dark, respectively. The blue and red color scales denote positive or negative turn rate

w, corresponding to counterclockwise and clockwise turns, respectively. (d) Quantification of the fish ability to turn away

from a wall using information about the angle to collision. The blue dashed-line represents the random chance level of 50%.
(e) Quantification of fish ability to turn away from a wall for distances to collision less than 1 BL. Each box reports median,
first and third quartiles, and minimum and maximum. Symbols * and * % % indicate a significant difference from chance with

p < 0.050 and p < 0.001, respectively.

Here, we study the interaction of the fish with the walls, which comprises two
different feedback mechanisms using vision and touch. Visual feedback is captured
through u, in equation (3). Tactile feedback instead is modelled as a collision that
modifies the evolution of the vortex strengths with respect to equations (2a) and (2b),

as the fish collides with the walls.
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Following [34, 36], we quantified the wall effect by measuring the projected distance
d and angle of collision ¢, as illustrated in Figure 5(a). We only considered those
instances when the centroid was within 1 BL range from the wall. The angle ¢ is
measured from the wall axis to the projected heading vector, as indicated by the blue
arrows in Figure 5(a). Specifically, ¢ = 7/2 if the fish is heading straight to the wall,
and ¢ = 0 if it is perfectly aligned to the wall axis. In addition, ¢ > 0 (clockwise) and
¢ < 0 (counterclockwise) indicate instances when a fish approaches the wall with its
right or left side, respectively.

To understand how a fish turns in the vicinity of a wall, we focused on one
individual from Bright and one individual from Dark. We plotted the difference in the
turn rate w(t) as a function of the distance and of the angle to collision, as shown in
Figures 5(b) and 5(c). Predictably, the animal swimming in normal lighting conditions
tends to turn according to the sign of the angle to collision ¢. More specifically, the fish
preferred to turn clockwise as it approached the wall from its left side, while it tended
to rotate counterclockwise if it approached the wall from its right side. The subject
swimming in the dark did not exhibit this response, since visual cues were not available
for correcting its heading as it swam towards the wall.

From these two representative subjects, we moved forward to the systematic
quantification of zebrafish tendency to make turns based on the angle ¢. Toward this
aim, we scored Fy; as the percent of instances when the sign of turn rate w(t) was the
opposite of the sign of ¢, irrespective of the distance from it. Results are shown in
Figure 5(d), where we compared the value of Fy for conditions Bright and Dark with
chance. We registered a significant difference for both conditions Bright
(V =78;p < 0.001) and Dark (V = 60;p < 0.050).

To further delve into how fish interacts with the wall, we examined only instances
when they were in close proximity or in direct contact to a wall. In these instances, the
animal could exploit other sensing mechanisms beyond vision to avoid the wall. We
scored Iy by only considering those instances when the distance to collision d was less
than 1 BL. Results are shown in Figure 5(e), where we document a significant difference
for condition Bright (V = 75;p < 0.001). Although we failed to register a significant
difference for Dark (V' = 64;p = 0.052), this observation offers partial support in favor

of the presence of other mechanisms to detect walls when swimming in close proximity.

Following [35], we model the visual feedback as a function of the projected distance
and angle of collision which is given by

K

w(t) = e (e ). (6)
where Ky [cm?/s?] and C [1/cm] are positive constant parameters capturing the
maximum intensity of turns and the decay of the wall effect as a function of the
distance d [cm]. In the dark, we assume that animals do not have visual cues and this
term is not present in the model, that is, Ky = 0.

Next, we model the tactile component of turning in the vicinity of a wall, which is
crucial for describing the wall interaction of the fish in the dark. In the vicinity of a
wall, turns are captured through

dry (¢

dlt( ) = nsign(¢™ (1)), for all |z(t)] > Zmax — €, |Y(t)] > Ymax — €, (7a)
dr,(t . _

A sien(om (@), forall [a(0)] > Zmax € 0] > yax €, (7D)

where ¢~ (t) denotes the angle of collision previous to the impact, 1 [cm?/s2] is the rate
of turning once a collision occurs, and € [cm] is an arbitrary small constant representing
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Fig 6. Comparison between calibrated model parameters for conditions Bright and Dark. (a) Linear rate of decay of the
vortex strengths. (b) Baseline value of the vortex strengths. (¢) Intensity of the noise added to the time-evolution of vortex
strengths. (d) Coupling gain between vortex strengths associated with the ability of a fish to resume straight swimming after
a maneuver. Each box reports median, first and third quartiles, and minimum and maximum. Symbols $ and $$ indicate
significant differences between conditions with p < 0.050 and p < 0.010, respectively.

wall touching. We heuristically found that setting n = 10 cm?/s? and € = 0.001 cm
reproduces realistic turns, as observed in real experiments.

There is an additional consideration to make for the right wall which corresponds to
the test section outlet, shown in Figure 1. In this case, the fish experiences suction forces
and could hit the wall while heading in a direction opposite to it, thereby preventing the
use of equations (7a) and (7b) for capturing the impact. To account for this case and
counter-balance the suction force, we should modify equations (7a) and (7b) as follows:

I
%p =7, for all z(t) > xmax — €, [0(t)] > g, (8a)
dr, (¢

dt( ) _n foran 2(t) > Tmax — 6 0(t)] > g (8b)

Here, the constraint on the heading angle guarantees that the animal is heading in the
opposite direction to the right wall. Also, the signs in equations (8a) and (8b) are both
positive, indicating that the interaction with this particular wall is repulsive to counter
the suction force.

Model validation: comparison between real and in-silico experiments

We calibrated our model using experimental data, as detailed in Material and methods;
the resulting parameter values are shown in Figure 6 for both conditions Bright and
Dark. We found that the condition significantly influenced the baseline value of the
circulation strengths 8 (W = 17;p < 0.010), and the intensity of added noise

o (W =37;p < 0.050). We did not register a significant difference on the linear rate of
decay of the vortex strengths o (W = 64; p = 0.670) and the coupling strength

k(W = 37;p = 0.079). Supplementary videos S2 Video and S3 Video show exemplary
instances of rheoactic behavior predicted by the mathematical model in conditions
Bright and Dark, respectively.

In order to validate the predictive power of our model, we compared the scoring of
two different metrics used to quantify rheotaxis, the mean of (negative) cosine of the
heading and the mean rheotaxis index (RI); see Materials and methods for a
mathematical definition. Both metrics take values between —1 and 1 corresponding to
biased headings towards downstream and upstream, respectively. A zero value
represents the case in which a fish does not have a preference to swim either upstream
or downstream.
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From the results in Figure 7, in the real experiments, we determined that the cosine
of the heading was different from chance in both Bright (V = 78;p < 0.001) and Dark
(V =T71;p < 0.010). Likewise, for the RI we registered significant differences from
chance in both Bright (V' = 78;p < 0.001) and Dark (V' = 68;p = 0.021). In pairwise
comparisons between Bright and Dark, we identified a superior rheotactic response for
animals swimming in standard illumination conditions, with respect to the cosine of the
heading (W = 134;p < 0.001) and RI (W = 134;p < 0.001). Finally, to measure
locomotory activity of the animal in the form of exploration of the entire test section,
we calculated the spatial entropy; see Materials and methods for a mathematical
definition. The comparison between the two conditions suggest the presence of a trend,
with fish swimming in the dark displaying a higher locomotory activity than subjects
swimming in standard illumination conditions (W = 40;p = 0.068). This trend was
accompanied by a significant difference of the variance of the spatial entropy between
conditions, (F = 12.053;p < 0.010), with animals swimming in the dark displaying a
lower variability.

Equivalent relationships were predicted by in-silico experiments. In these
experiments, we used a five times larger sample size to improve statistical power. Two
outliers were detected using the iterquantile range rule [54] on the spatial entropy
variable and thus neglected from the analysis. The cosine of the heading differed from
chance in both Bright (V' = 1711;p < 0.001) and Dark (V = 1711;p < 0.001). Similarly,
RI registered significant differences in both Bright (V' = 1711;p < 0.001) and Dark
(V =1711;p < 0.001). Pairwise comparisons between Bright and Dark indicated
significant differences for the cosine of the heading (W = 2944; p < 0.001), RI
(W =2947;p < 0.001), spatial entropy (W = 854;p < 0.001), and variance of spatial
entropy (F = 4.279; p < 0.050).

Discussion

Rheotaxis is a complex multi-sensory process that involves the integration of different
cues to orient in a flow and engage in counter-flow swimming. Toward a better
understanding of how fish interacts with their surroundings and integrate different
sensory cues during rheotaxis, we developed a data-driven mathematical model of
zebrafish swimming in a flow. With respect to the state of knowledge on data-driven
modeling of zebrafish locomotion, this study contributes the first mathematical model of
swimming in a fluid flow. To generalize existing data-driven models that were
intentionally developed for studying swimming in quiescient fluids [34-38], we tap into
recent advancements in hydrodynamic modeling of fish swimming based on the
finite-dipole paradigm [45,46].

The proposed modeling framework is articulated in three main steps: (i)
multi-sensing, through which the fish appraises its surroundings from visual,
hydrodynamic, and tactile cues; (ii) orientation and navigation control, which uses the
multi-sensory input to modulate the vortex strengths that are associated with
self-propulsion; and (iii) motion in the flow based on the finite-dipole model, as a
function of the background flow and the circulation strengths of the vortex pair.

Our results indicate that hydromechanical cues play a key role on the orientation
and navigation whereby the fish tends to make turns by following the rotation induced
by the flow, regardless of the availability of visual cues. This suggests that information
about the environment provided by the lateral line alone is sufficient to perform
rheotaxis. This is also evident in our calibrated model parameters, where the feedback
gain that is associated with hydromechanical sensory information did not vary with the
illumination conditions. Our findings are in line with previous results in the literature,
where it has been shown that the lateral line organ is fundamental to aid the orientation
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Fig 7. Scoring of three behavioral metrics for real and in-silico experiments.
Rheotactic metrics taking values between —1 and 1 corresponding to biased headings
towards downstream and upstream, respectively, for real (a,b) and synthetic (d,e) data.
Spatial entropy for real (c) and synthetic (f) data. Each box reports median, first and
third quartiles, and minimum and maximum. Symbols *, #x and * % * indicate

significant differences from zero with p < 0.050, p < 0.010, and p < 0.001, respectively.
Symbol $$$ indicates significant difference between conditions with p < 0.001.

Bright Dark

process of fish [20,24].

In a uniaxial flow, the feedback mechanism used by zebrafish reduces to tracking the
gradient of the background flow. Specifically, the difference in the vortex strengths of
the finite-dipole model is linearly controlled by the variation of the axial flow with
respect to the width of the test section. Orientation strategies based on gradients have
also been observed in other biological domains such as light gradient sensing in fish [55]
where animals are able to track variations of light intensity and adjust their
maneuvers [56]. Another example is chemical gradient sensing in cells [57,58], where
chemoattractant fields are sensed by proteins whose information is then used to
modulate the orientation of the cell.

We observed that the scoring of behavioral metrics in real experiments was
successfully paralleled by simulations. In particular, fish swimming in the dark
displayed a higher locomotory activity in the test section, when compared to subjects in
standard illumination conditions. Increased activity is likely related to an
anxiety-related response, which is triggered by the presence of a dark, threatening
environment, as widely documented in zebrafish literature on scototaxis [59]. In-silico
experiments are also successful in predicting a significantly lower rheotactic performance
for animals swimming in the dark. While sensing local circulation through the lateral
line is not affected by the presence of visual cues, animal locomotion varies with the
illumination conditions. Specifically, the mathematical model identifies that animals
swimming in the dark have a higher relative speed with respect to the background flow
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than subjects in standard illumination conditions. This increased speed challenges the
ability of zebrafish to adjust their orientation in response to the gradient of the
background flow during rheotaxis.

Our approach has limitations that call for future research. First and foremost, the
data-driven mathematical model focuses on two-dimensional swimming, thereby
preventing the possibility of studying diving maneuvers along the height of the test
section. Several studies [60-62] have pointed out the critical role of diving maneuvers on
the response of this freshwater species, thereby suggesting the use of a three-dimensional
ethogram for scoring zebrafish behavior. Three-dimensional effects are also likely to play
a role on the difference between the rheotaxis metrics of real and in-silico experiments,
whereby live animals have access to a richer flow physics than the two-dimensional
background flow used in the simulations. Extending the proposed approach to three
dimensions poses a number of methodological challenges, which requires a more complex
representation than a vortex pair to encapsulate zebrafish swimming. Second, we
cannot exclude that zebrafish might exploit other systems for performing rheotaxis,
such as the vestibular system [26,27]. Disentangling the contribution of the vestibular
system would require further experimental conditions, potentially involving the selective
impairment of the potentially contributing sensory systems.

In summary, we proposed a simple, yet effective, multi-sensory feedback control
process for describing rheotaxis of an adult zebrafish. In particular, we incorporated
three types of sensory feedback mechanism relying on visual, hydromechanical, and
tactile cues. Interestingly, our model suggests that the gradient of the flow profile is the
key information that drives rheotactic behavior. Similar to zebrafish larvae [25], our
model indicate that rheotacting adults tend to follow the negative direction of the
velocity gradient to adjust their orientation and swim upstream.

Materials and methods

Ethics statement

Experiments were performed in accordance with the guidelines and regulations
approved by the University Animal Welfare Commitee (UAWC) of New York University
under protocol number 13-1424.

Animal care and maintenance

A total of 24 wild-type adult zebrafish (Danio rerio), 12 male and 12 female, were used
in this study. The fish were purchased from Carolina Biological Supply Co. (Burlington,
NC, USA), and housed in a 615 L vivarium tank divided into two compartments to
mantain sexes separated. Fish were kept under a 12 h light/12 h dark photo-period and
fed with commercial flake food once a day, approximately at 7 PM. Water parameters of
the holding tanks were regularly checked, and temperature and pH were maintained at
26°C and 7.2, respectively. Prior to the beginning of the experiments, fish were
acclimatized in the holding facility for one month.

Experimental apparatus

The experimental set-up (Figure 8(a)) consisted of a 151 L Blazka-type water channel
(Engineering Laboratory Design Inc., Lake City, MI, USA), a video camera (Logitech
C910 HD Pro Webcam without infrared filter, Logitech, Switzerland) located at the
bottom of the channel, an array of lights, and black curtains to minimize outside visual
stimuli. We used two different lighting systems for the Bright and Dark conditions. In
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Fig 8. Experimental set-up. (a) Overview of the experimental apparatus. (b,c) U
shape-like honeycomb grids for straightening the flow in the water channel. (d)
Measurements of the flow velocity profile and parabolic fit at the mid-span.

particular, for the Bright condition, we used a pair of fluorescent lamps (Aqueon Full
Spectrum Daylight T8, Aqueon, USA) located at the top of the channel along with a
white plexiglass sheet to dim the light intensity and provide a homogeneous light
background of 250 Ix. For recording fish swimming in the dark, we used infrared lights
(Tluminar TRC99 Series, Iluminar, Irvine, CA) with wavelength 940 nm, which is greater
than the adult zebrafish threshold of spectral sensitivity [63]. Two pairs of infrared
lights were located at the bottom and top of the water channel to provide a clear
background for recording videos in the dark.

A test section of 30 cm X 13 cm (2Zmax X 2Ymax) at a water height of 10 cm was
arranged within the channel using flow straighteners, as shown in Figure 8(a). The flow
profile was created using an array of U-shaped flow straighteners with different opening
sizes to manipulate the flow speed (Figures 8(b) and 8(c)). The flow velocity was
measured at the mid-span of the test section using a Laser Doppler Velocimeter (BSA
F50, Dantec, Denmark). We obtained five velocity measurements for nine different
points across the test section (Y-coordinate). The flow velocity measurements along
with the fitted parabolic flow profile is shown in Figure 8(d). The maximum speed was
5.3 cm/s, which was on the order of 1 BL/s. The fitting was performed using standard
least squares in Matlab (R2019b) yielding U()) = —0.084)2 + 3.720, with the velocity
measured in cm/s and position in cm.
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Experimental procedure

Two different illumination conditions were tested, namely Bright and Dark. Each trial
consisted of three main phases. The first two phases were introduced for habituation to
the new environment and the flow, while the third phase was the actual testing. Only
the last phase was recorded. At the beginning of the trial, the animal was transferred

from the vivarium to the water tunnel (using a hand net) and kept there for five minutes
of habituation with the water velocity set to zero. Then, the water flow was turn on for
two minutes of further habituation and five minutes of testing. A total of 24 naive adult
fish were tested, 12 (6 male and 6 female) for each condition (Bright and Dark).

Tracking

A total of 300 s were recorded for each trial at 30 frames per second. All videos were
post-processed using a foreground detection algorithm in Matlab (R2019b) for
highlighting the animal shape on the image and improve the tracking process [64]. The
resulting images were input to a slightly modified version of the multi-target tracking
algorithm Peregrine [65], accounting for manual repairs in body shape tracking mode.
The software fitted a parabola on the fish blob and returned: the fish centroid position
(2(t),y(t)) with their respective velocities, shape parameters (coefficients of the
parabola), and heading vector h = [cos(6(t)), sin(6(¢))], from which the heading angle
and turn rate were calculated.

Statistical analyses and behavioral scoring

All statistical analyses were performed with the statistics software R (version 3.6.1). We
used the Wilcoxon signed-rank test and the Mann-Whitney U test (Wilcoxon rank sum),
with a significance level of 0.050, for comparing one-sample and two-sample data,
respectively [66]. For testing the equality of two-sample data variances we use the
Levene’s test [67] with a significance level of 0.050.

To study rheotaxis, we averaged the time series of — cos((t)) in each trial, and we
scored RI, defined as the difference between the cumulative distribution functions of
the absolute value of the heading and a uniform random variable [27]. More specifically,
RI =1—(2/m) [y A(6]) df, with A(-) being the empirical cumulative distribution
function. Here, m/2 represents the area under the curve of an empirical cumulative
distribution function of a uniform random variable over the interval [0, 7].

We further quantified the fish exploratory behavior in the test section through spatial
entropy. This quantity was measured by first dividing the test section in 10 x 4 squares
of approximately 3 cm x 3.25 cm each, corresponding to a grid of 1 BL in size. Then,
using the centroid trajectory (z(t),y(t)), we estimated the probability of occupying each
boxes in the grid, p;. The spatial entropy is then given by — Zfﬂl pi logs(pi)-

In-silico experiments

We replicated the real experiment by considering 24 trials, 12 for Bright and 12 for
Dark. We numerically integrated equations (1), (2), (3), (5), and (6) using the
Euler-Maruyama scheme with a time step of 1/30s, matching the sampling rate of the
tracked data). To ensure convergence to a steady state probability distribution, we
chose a simulation time of six times the experimental time (6 x 300 s), and we only
considered the last 300 s. The parameter values a, k, and K were taken from

Gaussian distributions corresponding to the data across all 24 trials (Bright and Dark).

Because the parameters § and o were significantly different between Bright and Dark,
their values were drawn from two different Gaussian distributions for each parameter,
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corresponding to the data shown in Figure 6(b) and Figure 6(c), respectively. Given
that the test section is rectangular, unrealistic turns or oscillations might arise on the
corners due to their discontinuous nature [36]. To avoid this problem, we kept the angle
to collision constant when the fish was inside a square region of 1cm? on the corners.

Derivation of the governing equations of the finite-dipole model

The zebrafish dipole representation is depicted in Figure 1. By adapting the equation
set (2) from [46], the centroid position and heading angle can be obtained by integrating
the following set of ODEs:

dz(t)  Tu(t)+T(¢)

— cos(A(t)) + Ulyr(t) + U(w(t))

(9a)

dt 4rl 2 ’
d?f)::rﬂﬂ4;frﬁ)snm9@)% (91)
do(t) _ Uly: (1) —Uw(t)) Li(t) - T (t)
ek 7 d cos(6(t)) + IQT’ (9¢)
where
(1) = y(t) + © cos(01)). (1) = (1) — & cos(6(1)). (10)

Considering that the animal thickness, [ ~ 5 mm, is small with respect to the
dimensions of the water channel, we expand the velocity field at the location of the two
vortices, U(y,(t)) and U(y,;(t)), around the centroid coordinate y(t) using a Taylor
series, yielding

U () = V(1) + U0 costo(0) + T3 (G eostoe) )
" 3
+ % <é cos(ﬂ(t))) + 01", (11a)
" 2
U0 () = Ulo(0) = U0 eost0(0) + A (G eontoe))
" 3
-Lfig“”<écoqeu»> + o, (11b)

where O(-) is Landau’s symbol. By considering a first order approximation in equations
(11a) and (11b), we determine

U(yr(t)) ;" Uyi(t)) ~ U(y(t)), (12a)

Ulyr(t) —Uu(t)) _
l ~

—U'(y(t)) cos(6(t)). (12b)

Finally, replacing equations (12a) and (12b) in equations (9a)-(9c) yields equations

(1a)-(1c).

Estimation of the circulation strengths from experimental time
series

To estimate the circulation strengths we used experimental data of the fish centroid
position (z(t), y(t)), heading angle 6(t), and turn rate w(t). Using a first order
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approximation, equations (9a)-(9¢) can be written as

#(kT) ::Q%é(Iﬁ(kZU + T, (KT)) cos(0(kT)), (13a)
@wm=£§nwm+n@ﬂmmwmw (13b)
BKT) = 5 (Ni(KT) = T, (KT)), (13¢)

Here, k =1,2,..., N — 1 is the time step, T = 1/30 s is the video-camera sampling
period, N = 9000 is the total number of samples, and

(U(y:(kT)) + U(ui(kT)))T

#(kT) = 2((k + 1)T) — z(kT) — . : (14a)
Y(kT) = y((k +1)T) — y(kT), (14b)
SkT) = wikT) — LW D) U)o pery), (14c)

l

with U(y,(kT')) and U(y;(kT)) being the flow velocities in correspondence of the right
yr(KT) = y(kT) — (1/2) cos(8(kT)) and left y;(kT) = y(kT) + (1/2) cos(6(kT)) vortices,
respectively.

By squaring both sides of equations (13a) and (13b), we determine that

VE( P (kT) =

Finally, from equations (13c) and (15) we obtain the sought expression of the
circulations strengths as function of fish motion

1 (TUET) + T, (KT)), (15)

ﬂ( VX kﬂ+MM» (16a)

_.ﬁz( V( 72 (kT) — za(k13>. (16b)

Expansion of the line integral for the local circulation

The fish perimeter is approximated by a circle C around the fish centroid (z(t),y(t))
defined by

sy = x(t) +rcos(p), sy =y(t)+rsin(p), forall ¢ € 0,2n]. (17)

The line integral in equation (4) is thus given by

2m
%U(s) ds = —T/ U(y(t) + rsin(y)) sin(p) de. (18)
c 0
By a using a Taylor expansion of the velocity around y(t), we establish
2w 2
pueas——r [ vamsndo—r? [ U0)sin ) dp

27T

- % U" (y(t)) sin® () dg + O(r). (19)

0

Finally, from the fact that fo% sin(p) dp = 0, fo sin?(¢) dp = 7, and
fOQTr sin®(¢) dp = 0 we derive equation (4).
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Model calibration

We began by approximating the solutions of the stochastic differential equations in
equation (2a) and (2b) away from the wall (neglecting uy, and wuy) and with no uy,
using the Euler-Maruyama method, thereby yielding the following Markov chain:

Py((k + 1)T) = Ty(kT) + [a(8 — Tu(kT)) + #(T (KT) — Ty(kT))] T

+ o/T,(kT)T& (KT), (20a)
Lo ((k+1)T) = To(kT) + [a(B — T (kT)) 4+ w(T1(KT) — T (KT))] T

+ o/T, (kT)T&, (KT, (20b)

where & and &, are two independent standard Gaussian random variables, with zero
mean and unit variance. After some algebraic manipulations, equations (20a) and (20b)
can be rewritten as

(2

2
Zl(kT) = f(Pl(kT)a Fl((k + 1)T),]_—‘T(/€T),()é,ﬁ70, H) = (I(O) Tgl(kT)v (21)

Z,(kT) == f(Lo(kT),T,((k + 1)T), Ty (kT), o, B, 0, k) = (;;

)QT@(kT), (22)

where the scalar function f(X,Y, Z, «, 8,0, k) is given by

Y+ XTI +rT—-1)—afT —-kTZ
KovVX ’

with K being an arbitrary positive constant, introduced to avoid numerical issues when
the circulations strengths are close to zero. To calibrate the model we estimated the
parameters ® = [«, 8,0/ Ky, k] using the maximum likelihood estimation method [68]
by solving the following constrained optimization problem:

fX)Y, Z, o, B,0,k) = (23)

N*

O =arg ngn l Z log g(®, Z;(kT)) + log g(®, Z,.(kT)) (24a)
k=1

such that o2 < 2043, (24b)

where N* < N is the total number of samples where the fish was swimming away from
the wall. The function ¢(®, Z) is the Gaussian distribution with zero mean and
variance (0/Ko)*T, given by

9(0,7) = ———e T0H)

- 2
QWT(R?)

The estimated parameters are shown in Table 1 for the 24 experimental trials.
Moreover, for calibrating the wall parameters in equation (6), we implemented the
following steps:

(25)

(i) We first extracted instances when the fish turns according to the opposite sign of
the angle to collision ¢, that is, blue points (I'; — I',. > 0) for ¢ < 0 and red points
(It =Ty < 0) for ¢ > 0 as shown in Figure 9(a). To undertake this step, we
utilized a cutoff function, which was informed by the following rationale. As the
angle ¢ approaches /2 or the distance to collision d increases, fish turns
becomes less predictable. Hence, we retained pairs (¢, d) such that |g(¢) —d| < ¢
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Fig 9. Illustration of the wall calibration process. (a) Two-dimensional projection of
the difference of vortex strengths I'; — I, as a function of the projected distance, d, and
angle to collision, ¢, for one trial from Bright. The black curve is a normal function
utilized to select relevant values of (¢, d) associated with those instances when the fish
turns according to the angle to collision ¢. (b) Example of calibration of the wall
function. Black dots correspond to Gy and green dots correspond to the filtered output
of |Gy|. The red line is the fitted wall function.

Table 1. Calibrated model parameters for the 24 experimental trials.

Bright Dark
Parameters
Trial | a[1/s] Blem?/s] ofem/s] rw[1/s] Kgr[l/s] | a[l/s] Blem?/s] o[em/s] k[1/s] Kgl[1/s]
1 0.030 10.602 0.808 3.536 0.173 0.082 21.870 1.282 4.740 0.241
2 0.306 10.223 1.185 3.655 0.248 0.024 - 1.328 4.066 0.358
3 1.020 18.348 3.078 - 0.490 0.750 11.944 0.898 6.452 0.056
4 0.059 6.6422 0.889 5411 0.190 0.246 16.410 1.653 3.919 0.316
5 0.005 - 0.826 3.842 0.526 0.049 26.949 0.927 6.656 0.139
6 0.545 10.638 1.475 3.397 0.245 0.495 15.737 2.061 4.537 0.536
7 0.177 8.1365 0.690 5.618 0.130 0.827 22.502 2.194 4.472 0.337
8 0.308 9.4714 1.193 3.597 0.355 0.402 14.197 1.711 4.347 0.409
9 0.235 9.197 1.314 2.843 0.278 0.301 15.494 1.536 5.283 0.361
10 0.754 12.118 1.834 4.733 0.310 0.477 17.387 1.816 5.128 0.328
11 0.153 10.960 1.133 4.597 0.170 0.472 16.858 1.362 3.341 0.338
12 0.181 9.2510 1.281 2.995 0.428 0.067 - 1.884 4.947 0.381
and [¢| < ¢o, where ¢y and § are cutoff parameters and g(¢) = ag + by e~ (/)
(Black curve in 9(a)). By manually examining the 12 trials in Bright, we found
that setting ¢g = 1, ag = 2.8, by = 27.2, ¢, = 0.26, and J = 1 was a valid choice to
extract all relevant maneuvers.
(ii) To understand how fish turn based on the vicinity to a wall, we defined G, as the
quantity collecting the values of the difference of circulation strengths (I'; — I,.),
corresponding to the points (¢, d) obtained from the previous step. For the
example shown in Figure 9(a), the points G4 correspond to black dots. Next, we
used a non-parametric locally weighted least squares (LOESS) filter in Matlab
(R2019b) with a 5% span on the absolute value of G4 to smoothen the data. The
results are the green dots shown in Figure 9(b);
(iii) The output of the LOESS filter, y4, was utilized as input to fit the wall function
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Kw /(Cyq + 1) using the nonlinear least-squares solver of Matlab (R2019b). The
fitted function corresponds to the red curve in Figure 9(b) and

(iv) Because we used the difference of circulation strengths for the fitting, the estimate
of Kyy should be corrected to obtain the true amplitude of turns corresponding to
each circulation strengths. Hence, we computed the maximum value of I'; and T,
across all time instances near a wall. Ky, was selected as the maximum between
the values obtained in (iii) and (iv). Results are reported in Table 2.

Table 2. Calibrated wall parameters for the 12 fish tested in standard illumination
(condition Bright). For experiments in the dark, Ky is set to zero and this form of
interaction is absent.

Trial Kw[l/s] C[cm]

1 23.085 -
2 52.905 2.072
3 70.379 2.775
4 29.168 -
) 34.114 1.853
6 86.376 2.119
7 20.251 -
8 37.540 2.674
9 34.721 2.351
10 37.858 2.210
11 38.686 -
12 45.593 3.078

Mean 42.556 2.392
Median 37.699 2.281

Supporting information

S1 Video. Experiment of a subject in Bright condition: tracking the local
circulation of the fluid flow.

S2 Video. Example of rheotaxis predicted by the proposed mathematical
model in condition Bright.

S3 Video. Example of rheotaxis predicted by the proposed mathematical
model in condition Dark.

S4 Dataset.
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