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Stem cells can precisely and robustly undergo cellular differentiation and
lineage commitment, referred to as stemness. However, how the gene
network underlying stemness regulation reliably specifies cell fates is not
well understood. To address this question, we applied a recently developed
computational method, random circuit perturbation (RACIPE), to a nine-com-
ponent gene regulatory network (GRN) governing stemness, from which we
identified robust gene states. Among them, four out of the five most probable
gene states exhibit gene expression patterns observed in singlemouse embryo-
nic cells at 32-cell and 64-cell stages. These gene states can be robustly
predicted by the stemness GRN but not by randomized versions of the stem-
ness GRN. Strikingly, we found a hierarchical structure of the GRN with the
Oct4/Cdx2 motif functioning as the first decision-making module followed
by Gata6/Nanog. We propose that stem cell populations, instead of being
viewed as all having a specific cellular state, can be regarded as a hetero-
geneous mixture including cells in various states. Upon perturbations by
external signals, stem cells lose the capacity to access certain cellular states,
thereby becoming differentiated. The new gene states and key parameters
regulating transitions among gene states proposed by RACIPE can be used
to guide experimental strategies to better understand differentiation and
design reprogramming. The findings demonstrate that the functions of the
stemness GRN is mainly determined by its well-evolved network topology
rather than by detailed kinetic parameters.
1. Introduction
Embryonic stem cells (ESCs) can differentiate into cells of specialized types in a
precise and organized manner, and dysregulation in stem cell differentiation
results in early fetal death or severe disease [1–3]. Due to its essential role in
survival for all multicellular organisms, stem cell differentiation must be
highly conserved in order to allow for precise decisions at each step of lineage
commitment. However, recent experimental results suggest that some transcrip-
tion factors (TFs) such as Nanog exhibit heterogeneous expression levels at the
single-cell level in mouse ESCs [4–8]. It remains largely unknown how the regu-
latory machinery of stemness performs its robust function in the presence of
significant cell-to-cell heterogeneity. The answer to this question will shed
light on the regulatory mechanism of stem cell differentiation, a crucial step
toward better cellular reprogramming and stem cell-based therapies.
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Figure 1. Schematic illustration of random circuit perturbation (RACIPE). The
gene regulatory network governing a specific cellular function can be divided
into two parts—a core decision-making module and the rest functioning as
input signals to the core. Through randomization, RACIPE generates an ensemble
of mathematical models, each of which is simulated by the same set of chemical
rate equations but with randomly sampled parameters. The simulation results of
the model ensemble are subject to statistical analysis, such as hierarchical clus-
tering analysis (HCA), and in silico gene/link perturbation analysis.
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A substantial amount of research has been conducted to
identify key TFs and their roles in directing stem cell differen-
tiation [9–11]. These accumulated data enable us to map the
underlying gene regulatory networks (GRNs). To elucidate the
operating principles of these GRNs, computational approaches
have been applied [12–16]. In particular, some of these compu-
tational studies adopted a bottom-up approach to construct
GRNs with a small set of master regulators, and assume that
the decision-making of stem cell differentiation is driven by
the master regulators, such as the TFs Oct4, Sox2 and Cdx2.
The dynamics of the GRNs can be simulated by either determi-
nistic [14,15,17] or stochastic approaches [12,13,18–21]. These
studies have indeed provided valuable insights into the regulat-
ory mechanism underlying stem cell differentiation. However,
these studies typically suffer from three issues. First, the model-
ling analysis typically focuses on only a standalone gene circuit,
and therefore the effects of other genes and heterogeneous
microenvironments cannot be included. Second, the exact
values of kinetic parameters needed for modelling are largely
unavailable, and since themodelling results depend on the esti-
mated parameters, this issue can severely limit the predictive
power of the models. Third, most studies do not provide a sys-
tematic way to quantify the robustness and plasticity of GRNs.

To address these issues, we here have applied a recently
developed mathematical modelling algorithm, random
circuit perturbation (RACIPE) [22,23], to explore the robust
dynamical behaviours of a proposed core GRN governing
stemness. RACIPE was developed to elucidate the robust
gene expression patterns (also referred to as gene states) and
generic features of transcriptional regulatory networks [22–24]
(figure 1). Unlike traditional approaches, RACIPE takes the
topological information of a network as the only input, and gen-
erates an ensemble ofmathematical models. Eachmathematical
model is simulated by the same set of chemical rate equations
with different sets of kinetic parameters representing hetero-
geneous signalling and epigenetic states. The parameters of
each model can differ by up to one or two orders of magnitude
and are generated randomly under a specially designed
sampling scheme (e.g. half-functional rule). Multiple initial
conditions are used for each model in order to identify all
possible steady-state solutions. The parameters and the
corresponding stable steady-state solutions generated by the
ensemblemodels are collected and subject to statistical analysis,
by which the robust gene states are elucidated. It has been
shown that RACIPE successfully identifies the gene states
enabled by circuitmotifs (i.e. toggle-switch-like circuit, repressi-
lator, coupled toggle-switches) andGRNs governing epithelial–
mesenchymal transition (EMT) and B cell development [22–24].

Here, we use RACIPE to analyse a core stemness GRN
which contains eight master regulatory TFs involved in stem
cell differentiation (figure 2a). We find that applying
RACIPE to the stemness GRN can recapitulate the gene
expression patterns of mouse ESCs at 32-cell and 64-cell
stages. These gene expression patterns are conserved robust
features of the stemness GRNbut disappearwhen the network
topology is randomized. Furthermore, through performing in
silico perturbation analysis, we show that (i) the presence of
external signals can exclude the accessibility of some of the
gene states enabled by the stemness GRN; (ii) the stemness
GRN has a hidden hierarchical structure, which enables a
two-step decision-making process with the Oct4/Cdx2 motif
functioning as the first decision-making module and the
Gata6/Nanog motif as the second one. In summary, we
demonstrate that the robustness of stemness regulation is
mainly determined by the topology of the stemness GRN,
and RACIPE can be applied straightforwardly to elucidate
the hierarchical decision-making of stem cell differentiation.

Before proceeding, it is important to clarify the connection
between RACIPE model ensembles and actual cell popula-
tions. Ever since the seminal work of Elowitz and co-
workers on ‘external’ noise, it has become clear that cell popu-
lations exhibit distributions of phenotypic properties due to
differing single-cell values of the kinetic parameters governing
the genetic circuitry. RACIPE, with one slight change from its
baseline algorithm (see Material and methods), also can be
used to create a nominal cell population, making use of the
null model choice of uniform uncorrelated parameter distri-
butions over relevant physiological ranges. This will then
need to bemodified to account for correlations among the par-
ameters. It is nonetheless useful to exhibit results for this
uncorrelated ensemble, just to provide a guide as to what
experimental data would indicate the need for a more biologi-
cally accurate formulation. Thus, we provide below initial
results for distributions with the aforementioned goal.
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Figure 2. The RACIPE method uncovers robust gene states allowed by the stemness GRN. (a) Diagram of the core gene regulatory network governing stem cell differ-
entiation. Red arrows represent excitatory regulation; blue bar-headed arrows represent inhibitory regulation. (b) Probability distribution of the number of stable steady states
generated by 10 000 RACIPE models. Different colours represent different cases characterized by different numbers of initial conditions (blue: 1000 times, red: 1500 times and
green: 2000 times) that are used to simulate each RACIPE model. Each case was repeated 10 times to estimate the mean and the standard deviation of the distribution. (c) 2D
probability density map of the RACIPE-predicted gene expression profiles projected onto the 1st and 2nd principal component (PC1 and PC2) axes. (d ) Contribution of each
gene to PC1 and PC2. The PCs were obtained by performing the principal component analysis (PCA) using the gene expression profiles from all 10 000 RACIPE models.
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2. Material and methods
2.1. Mathematical modelling of the stemness GRN
In this study, the dynamical behaviour of the stemness GRN (net-
work diagram illustrated in figure 2a, details illustrated in §3.1)
was studied by RACIPE. RACIPE is a free open source software
distributed under (Apache 2.0) license and can be downloaded
from GitHub (https://github.com/simonhb1990/RACIPE-1.0).
Specifically, the RACIPE procedure creates an ensemble of
models in each of which the temporal dynamics of the eight TFs
(Oct4, Sox2, Cdx2, Gata6, Gcnf, Pbx1, Klf4 and Nanog) and the
protein complex (Oct4–Sox2) are simulated by a set of ordinary
differential equations (ODEs) accounting for their production,
degradation and regulatory interactions. The transcriptional regu-
lation between these TFs is modelled by the shifted Hill function
[25]. The full details about the mathematical model and the
implementation can be found in electronic supplementary
material, §S1 and table S1. To account for the binding/unbinding
reactions between the TFs Oct4 and Sox2, which is not captured in
the original RACIPE, we generalize the algorithm by modifying
the rate equations to capture association and disassociation of
the protein complex Oct4–Sox2. Full details regarding generalized
RACIPE and its implementation can be found in electronic
supplementary material, §S2 and table S2.

2.2. Analysis of the RACIPE-generated gene expression
data and experimental data

The details about the normalization of RACIPE-generated gene
expression data can be found in electronic supplementary material,
§S3. Clustering analysis has been performed on the normalized
RACIPE-generated data to identify the gene expression patterns
(electronic supplementary material, §S4). The details of the
method to compare RACIPE-generated data with experimental
data can be found in electronic supplementarymaterial, §S5 and S6.

2.3. The RACIPE population model
To generate a null model of a cell population replete with pheno-
typic heterogeneity, we modify the RACIPE method to properly
count states found by the algorithm. In particular, when a given
set of parameters gives rise to multiple steady states, each steady
state is weighted by the proportion of the initial conditions
leading to that particular state.
3. Results
3.1. RACIPE identifies robust gene states enabled by the

stemness GRN
We integrate the master gene regulators of stemness character-
ized by previous studies [12,13,26], and construct a core
stemness GRN. The GRN is composed of eight TFs (Oct4,
Sox2, Cdx2, Gata6, Gcnf, Pbx1, Klf4 and Nanog) and one
protein complex (Oct4–Sox2) (figure 2a). Due to the complexity
of the GRN, elucidating its dynamical behaviours can be diffi-
cult through traditional modelling approaches. Here, we use
RACIPE to identify the robust gene states enabled by the stem-
ness GRN. As all regulatory links in the stemness GRN are
transcriptional except for the binding/unbinding process
between the TFs Oct4 and Sox2, for the simplicity, we initially

https://github.com/simonhb1990/RACIPE-1.0
https://github.com/simonhb1990/RACIPE-1.0
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model the temporal dynamics of the Oct4–Sox2 complex in the
same manner as the other TFs. Later, we will generalize
RACIPE to include binding/unbinding reactions and verify
that none of the results change in any meaningful ways.

In our approach, instead of finding a representative set of
kinetic parameters, we randomly generate 10 000 sets of
parameters (i.e. 10 000 RACIPEmodels) within their given bio-
logically reasonable ranges. For each model, we numerically
solve the governing ODEs with 1000 random initial conditions
so as to thoroughly identify all possible stable steady-state
solutions. These 1000 initial conditions give rise to 1000 sol-
utions, based on which we identify the number of distinct
stable states and their corresponding gene expression profiles.
We show that 1000 initial conditions are sufficient, as increasing
the number of initial conditions to 1500 or 2000 generates con-
sistent probability distributions of the number of stable states
(figure 2b) and stable states (electronic supplementarymaterial,
figure S1a) of the 10 000models. Similarly, we show that 10 000
models are sufficient to capture the robust gene states of the
stemness GRN, as the consistency of the top 14 clusters of
gene expression profiles from three distinct 10 000 sets of par-
ameters is statistically significant (electronic supplementary
material, figure S1b,c).

For the majority of RACIPE models (approx. 98%), the
stemness GRN allows one to six stable steady states (figure 2b).
There are rare occasions (less than 1%) where RACIPE models
generate more than six stable steady states. Since they are not
statistically significant, we excluded these data for further
analysis. The circuit also has approximately 2% chance of
having oscillatory or chaotic dynamics (e.g. time-dependent
dynamics), which are not the focus of this manuscript and
therefore are excluded from further analysis. We collected the
gene expression profiles from all 10 000 RACIPE models and
constructed a data matrix, where each column represents a
gene and each row represents a stable steady-state solution.
These data resemble experimental gene expression data, thus
inspiring us to apply similar statistical methods.

Since the kinetic parameters of the circuit are randomized
with large variations (up to one or two orders of magnitude),
one might expect that the gene expression profiles from differ-
ent models would be very different. Strikingly, we found that
the gene expression profiles can be segregated into only a few
clusters when projected onto two independent components
by the commonly used principal component analysis (PCA)
(figure 2c). Regarding the first principal component (PC1),
Oct4, Sox2 and Nanog contribute positively while Cdx2 and
Gata6 contribute negatively (figure 2d), indicating an anti-cor-
relation of the activity between these two sets of TFs, which is
consistent with the experimental observations [27]. We have
also shown that different ranges for parameter randomization
and different types of the random sampling distribution (Uni-
form or Gaussian) in RACIPE all generate largely consistent
probability density maps (electronic supplementary material,
figures S2 and S3), as comparedwith the one shown in figure 2c.

3.2. RACIPE-generated gene expression profiles are
consistent with experimental observations and
match single-cell gene expression data of mouse
ESCs at 32-cell and 64-cell stages

To identify the pattern of RACIPE-generated gene expression
profiles, we applied hierarchical clustering analysis (HCA) to
the RACIPE-generated gene expression data. We found that
the RACIPE-generated data form several major clusters, repre-
senting different gene expression patterns (figure 3a,b). We
found that most of the TFs exhibit bi-modal distributions,
which indicates the up/downregulation of these TFs is associ-
ated with different phenotypes during stem cell differentiation
(figure 3a, electronic supplementary material, figure S4).
To evaluate how well RACIPE can recapitulate the character-
istic gene expression of various cellular phenotypes during
stem cell differentiation, we compared the RACIPE-generated
gene expression profiles with those observed experimentally.
We found that the most significant RACIPE-generated gene
states, as determined by the reproducibility in different ensem-
bles of RACIPE models, recapitulate the gene expression
patterns measured by experiments (figure 3c, electronic sup-
plementary material, figures S1 and S5). We compare the
RACIPE-generated data with the gene expression data of
single mouse embryo cells at various stages during develop-
ment [8] (figure 3a, electronic supplementary material, §S6,
figures S6–S8). Interestingly, the RACIPE-generated gene
states match those during the late stage of embryo develop-
ment (greater than or equal to 32 cells), where totipotent cells
start to differentiate into trophectoderm (TE) and inner cell
mass (ICM) [28], but not those from the early stage (less than
or equal to 16 cells). The experimental verified gene states—
Cdx2Hi, Gata6Hi/NanogHi/Oct4Hi/Sox2Hi, NanogHi/Oct4Hi/
Sox2Hi and Gata6Hi/Oct4Hi/Sox2Hi—are among the most
probable gene states identified by RACIPE (figure 3b). Notably,
the matching between RACIPE data and experimental data is
statistically significant (electronic supplementary material,
figures S7 and S8).

Indeed, the RACIPE-generated gene expression patterns
can characterize multiple developmental stages. For example,
the first cell fate determination during embryonic develop-
ment happens at the blastocyst stage when the ICM and TE
are formed [28]. Oct4 and Sox2 were reported to be expressed
throughout ICM (State 1, the state numbers are indicated in
figure 3c) [29,30]. At the early stage of ICM differentiation,
Gata6 and Nanog exhibit coexpression (State 6) [31,32], but
Nanog, Oct4 and Sox2 are required for cells to commit to epi-
blast and reach the ground state of pluripotency (States 1 and
12) [29,30]. Further differentiation of mESCs into mesendo-
derm requires Nanog and Oct4 but not Sox2 (State 8) [33].
Upon Gata6 induction, mESCs exhibit a step-wise pluripo-
tency factor disengagement, starting with downregulation
of Nanog and Esrrb, then Sox2, and finally Oct4, along
with a step-wise coexpression of extraembryonic endoderm
(ExEn) genes (State 5) [30]. On the other hand, downregula-
tion of Oct4 induces the differentiation of mESCs into
trophoblast characterized with high expression of Cdx2 and
Gata6 (State 2) [26,34]. Overexpression of Cdx2 is sufficient
to generate proper trophoblast stem cells (State 3) [8,27]. TE
could further differentiate into ExEn, where Cdx2, Gata6
and Sox2 can be all expressed (States 7, 9, 11 and 15)
[27,35,36]. A summary of the correspondence between
RACIPE-generated gene states and experimental observed
gene expression profiles during development can be found
in electronic supplementary material, figure S5.

These results suggest that RACIPE can identify the
gene expression patterns of various cellular phenotypes
especially those of the late developmental stages and also
characterize potential additional gene states during stem
cell differentiation.
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3.3. The topology of the stemness GRN determines the
robust gene states

To further investigate the role of the topology of the stemness
GRN in maintaining the robust gene states, we compare the
stemness GRN with two types of its randomized versions
(Type I including 10 networks and Type II including 10 net-
works) with randomly generated connections among genes.
Both Type I and Type II randomized networks preserve the
total number of inward and outward links for each gene,
and the binding of Oct4 and Sox2 (electronic supplementary
material, figure S9). For the Type I randomized network, we
also keep the same numbers of excitatory and inhibitory
inward links for each gene. We then apply RACIPE to these
two types of randomized networks and compare their
dynamic behaviours with those of the actual stemness GRN.

Neither Type I nor Type II randomized networks can
generate the aforementioned robust gene states and recapitu-
late the experimentally observed gene expression features.
Compared to the stemness GRN, both Type I and Type II
randomized networks are much more likely to generate oscil-
latory or chaotic dynamics but not multi-stable states for each
RACIPE model. Instead, both randomized networks are more
likely to have only one stable state for each RACIPE model
(electronic supplementary material, figure S10). When
the gene states from all RACIPE models are combined, the
histogram of each gene expression generated by the stemness
GRN typically exhibits multi-modal distributions but
those generated by the randomized networks mainly exhibit
mono-modal distribution (electronic supplementary material,
figure S11). In addition, we also find that it is difficult to clus-
ter the gene expression data generated by the randomized
networks (electronic supplementary material, figure S12),
partly because the stemness GRN has much higher local
density of the RACIPE-generated gene expression data rela-
tive to the randomized networks (electronic supplementary
material figure S11). Furthermore, the RACIPE-predicted
gene expression profiles of the stemness GRN are signifi-
cantly better than those of the randomized networks in
recapitulating the experimental observation of the gene
expression features of various stages during development,
and especially the single-cell gene expression data of mouse
embryo (figure 4 and electronic supplementary material,
figure S13). Notably, even though randomized networks
can contain a similar number of self-excitatory and mutually
inhibitory feedback loops, they still cannot compete with the
stemness GRN in achievingmulti-stable behaviours and in reca-
pitulating the experimental observations. This indicates that the
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stemness GRN may indeed exhibit special properties beyond
what can be expected based on counting of simple motifs [37].
In summary, these results show that the topology of the stem-
ness GRN has been well-evolved to be robust in regulating
stem cell differentiation in the presence of perturbations.

3.4. RACIPE identifies the key parameters representing
key stimuli that promote transitions between
different phenotypes during stem cell
differentiation

In addition to characterizing the gene expression profiles of
different cell phenotypes, RACIPE enables us to uncover
the key parameters representing physiological conditions
that mediate the phenotypic transitions during stem cell
differentiation. From the output of RACIPE simulations, we
can identify the kinetic parameters that are significantly chan-
ged between gene states (electronic supplementary material,
§S7, figure 5a). We will discuss two examples of this feature
in the following paragraphs.

To characterize the most differential kinetic processes
between gene state 1 (representing the pluripotent epiblast
stage) and gene state 2 (representing the trophoblast stage),
we quantify the change of the mean values of each parameter
in gene state 2 relative to gene state 1. We identify the
parameters whose values increase the most (e.g. the degra-
dation rate of Sox2 and the degradation rate of Oct4–Sox2),
and the parameters whose values decrease the most (e.g. the
production rate of Sox2, the degradation rate of Gata6 and
the threshold of Gata6 self-activation) in gene state 2 relative
to gene state 1 (figure 5b). The results indicate the transition
from gene state 1 to gene state 2 is characterized by increased
degradation of Sox2, decreased production of Sox2 and
accumulation of Gata6. This indication is consistent with the
experimental result that loss of Sox2 results in the differen-
tiation of ESCs as characterized by the upregulation of
trophoblast markers [38].

To characterize the stimuli that can promote the transition
from gene state 1 (representing the pluripotent epiblast stage)
to gene state 6 (representing the early stage of ICM differen-
tiation), we quantify the changes of each parameter in gene
state 6 relative to gene state 1. We identify the parameters
whose values increase most (the maximum production rate
of Gata6) and the parameters whose values decrease most
(the threshold for Gata6 self-activation and fold-change of
the inhibition of Gata6 by Nanog) in gene state 6 relative to
gene state 1 (figure 5a,c). The results indicate that transition
from gene state 1 to gene state 6 requires the upregulation of
Gata6 that can be accomplished by either increasing Gata6 pro-
duction or decreasing the inhibition of Gata6 by Nanog. This
simulation result is again consistent with the experimental
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observation that Gata6 is highly expressed at the early stage of
ICM differentiation [31]. The full details regarding the key par-
ameters shifts between any two of the gene states, as shown in
figure 5a, can be found in electronic supplementary material,
figure S14.

In summary, RACIPE can identify the parameters that
differ the most between different gene states, such as the pro-
duction/degradation rates and the threshold/fold-change
of a regulatory link. Consequently, the biological process rep-
resented by these parameters can be considered as the
regulatory target needed to drive cells to undergo certain
phenotypic transitions.
3.5. The stemness GRN exhibits a hierarchical
decision-making structure

RACIPE also enables in silico perturbation analysis of the stem-
ness GRN, including knocking out genes and removing links,
by which we can understand the role of the knocked-out
gene or the removed link in the dynamical behaviours of the
stemness GRN. Here, we perform two types of perturbation
analyses, knocking out a gene each time or removing a regulat-
ory link each time (electronic supplementary material, §S8 and
S9). In both types of perturbation analyses, we quantify the
change of the probability distribution of the multi-stability
exhibited by the stemness GRN using the Kullback–Leibler
(KL) divergence (electronic supplementary material, §S10).

Through analysing the gene knockout results,we found that
the knockout of TFs Cdx2, Oct4, Sox2 and the complex OCT4–
SOX2 leads to themost significant changes in theprobabilitydis-
tribution of the multi-stable behaviour of the GRN (figure 6a).
Strikingly, removal of the regulatory links among these specific
TFs also leads to the most significant changes in the probability
distribution of the number of stable states (figure 6b). These TFs
and the regulatory links between them indeed form a sub-net-
work, representing the first decision-making module, referred
to as the Oct4/Cdx2 module (figures 6c,d). The rest of the TFs
and regulatory links form a sequential second sub-network,
referred to as the Gata6/Nanog module (figure 6d). The
RACIPE simulation results are consistent with experimental
observations showing that the TFs Oct4 and Cdx2 govern the
commitment of totipotent cells to either the ICM (Oct4high) or
the TE (Cdx2high) lineages and the Gata6/Nanog module
governing the commitmentof ICMcells toeitherepiblast (Nano-
ghigh) or primitive endoderm (Gata6high) lineages [39].

To compare the behaviours of these two sub-networks, we
apply RACIPE to each of them and then compared theRACIPE-
generated gene expression profiles with those generated by
applying RACIPE to the full network. In other words, we
want to evaluate how the dynamic behaviours of the two
sub-networks change upon removal of the regulatory links
connecting them. We find that the gene expression profiles
determined by the first decision-making module Oct4/Cdx2
is conserved while those determined by the second module
Gata6/Nanog are largely disrupted, upon the removal of the
regulatory links connecting these two modules (electronic sup-
plementary material, figure S15). The results here support the
hierarchical structure of these two decision-making modules.
3.6. Gene states of the stemness GRN can become
inaccessible upon external signals

As stem cell differentiation is a cascading event induced by sig-
nalling, we would like to analyse how the stemness GRN
responds to various external signals (e.g. signals acting on
the TFs in the network but getting no feedback from the circuit)
by RACIPE. The effects of external signals on a certain gene are
simulated by scaling the production rate of that gene to
50-times larger (representing excitatory signal) or smaller
(representing inhibitory signals). We then calculated the
probability distribution of gene states upon the imposition of
external signals (excitatory or inhibitory) on each gene. As
we showed before, without any external signals, the stemness
GRN allows 15 robust gene states, referred to as the wild-
type (WT) (figure 6e). Relative to the WT, upregulation of
Cdx2 restricts most RACIPE models to acquire the stable
states with Cdx2Hi (representing the TE stage) [27], while upre-
gulation of Oct4 restricts most RACIPE models to acquire the
states with Oct4hi (representing the ICM stage) [31,39]
(figure 6e). After cells reach the ICM stage, additional signals
acting on Nanog and Gata6 can convert the GRN largely to
either the NanogHi state (representing the epiblast stage) or
the Gata6Hi state (representing the primitive endoderm stage)
[39] (figure 6e). These simulation results indicate that external
signals often do not create new gene states but instead make
a subset of gene states more accessible and the rest less
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accessible as also observed in figure 5 in our previous work
[23]. In other words, a step-wise administration of external sig-
nals is able to restrict the gene expression of the stemness GRN
to specific cellular states.

As already mentioned, the usefulness of RACIPE does not
require that the RACIPE ensemble of models corresponds
to the actual cell population. Getting the latter feature correct
requires more input information specifically regarding
parameter correlations, information that goes beyond the top-
ology of the governing GRN. Hence, we have made no
predictions regarding the actual population structure, for
example, the percentage of cells in each of the allowed states
as a function of external conditions. It is nonetheless useful to
present some results under the null assumption that no such
correlations exist, so as to provide benchmark data to which
real populations can be compared and thereby to detect the
possible need for this additional input information.

With this in mind, we wish to quantify the effects that var-
ious signals would have on the population heterogeneity as
generated by the uncorrelatedRACIPE approach. To accomplish
this, we employed information entropy theory (electronic sup-
plementary material, §S11). As one set of parameters can give
rise to multiple stable state solutions, a weight factor pro-
portional to the percentage of initial conditions leading to a
stable state solution was multiplied to that solution. We sys-
tematically simulated the external signals acting on each TF
by scaling the maximum production rate of that TF from 1/
100 to 100 of the base level, representing inhibitory signals
and excitatory signals respectively. For each TF, we apply
RACIPE to the stemness GRN considering 20 different
scenarios representing 10 inhibitory and 10 excitatory signals
with varying strengths on that TF. We then applied the
entropy-based index to quantify the heterogeneity of the
ensemble stable states generated by RACIPE in each scenario
for each TF (electronic supplementary material, figure S16).
As we show that the WT stemness GRN exhibits the highest
entropy, e.g. highest heterogeneity, and external signals that
either upregulate or downregulate the maximum production
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rate of a TF usually decreases the entropy, leading to decreased
heterogeneity of the nominal cell population. The decrease of
heterogeneity partially results from the limited access to only
a few gene states instead of all due to external signals.

Altogether, our results suggest that RACIPE can explore the
possible roles of external signals in the dynamic behaviours of
the stemness GRN. These external signals may indeed restrict
the gene states that can be accessible and may thereby lower
population entropy. Indeed,we expect that it should be a generic
property for cellular networks that the numberof the stable states
will decrease when strong perturbation signals are imposed.

3.7. Toward generalizing RACIPE by including the
binding/unbinding details

RACIPE provides a straightforward way to identify the robust
dynamic behaviours of the stemness GRN. As we discussed
before, RACIPE was originally developed for transcriptional
regulation. In the stemness GRN, in addition to the majority
of the links representing transcriptional regulation, there is
one binding/unbinding process, between the TFs Oct4 and
Sox2. We have, therefore, extended the RACIPE framework
to explicitly model this binding/unbinding process to analyse
how that may affect the network behaviour. We performed a
parallel analysis of the stemness GRN using the updated
RACIPE including binding/unbinding details (referred to as
RACIPE-wb) (figure 7a, electronic supplementary material,
figures S17 and S18). We observed consistent gene states by
RACIPE-wb (figure 7b, electronic supplementary material,
figures S19–S21) relative to those acquired by RACIPE
(figure 2c). We show that the RACIPE-wb generated gene
expression profiles are quantitatively consistent with the
RACIPE-generated ones (figure 7c). By RACIPE-wb, we per-
formed perturbation analysis by knocking out genes and
removing regulatory links one by one. Consistent with the
result by RACIPE (figure 6a,b), we found that knocking out
the TFs Oct4, Sox2, Cdx2 or Oct4–Sox2 or removing the regu-
latory links among these genes have the most pronounced
effects on the multi-stable behaviours of the stemness GRN
(figures 7d,e). Indeed, RACIPE-wb amplifies the differences
observed under link removal relative to RACIPE (figures 6
and 7). Specifically, blockade of the binding between Oct4
and Sox2 (KL divergence = 0.32) in RACIPE-wb is so pro-
nounced that it is equivalent to a full removal of the protein
complex Oct4–Sox2 in the stemness GRN (KL divergence =
0.32). Blockade of the unbinding of Oct4–Sox2 (KL diver-
gence = 1.57) in RACIPE-wb is so pronounced that it is
approximately equivalent to knocking out bothOct4 (KLdiver-
gence = 0.95) and Sox2 (KL divergence = 0.64) (figure 7d,e). The
effects of link removal for the rest of the regulatory interactions
are in general smaller in RACIPE-wb than those in the original
RACIPE. But the overall trends are similar for both modelling
algorithms. Among these interactions, we found that removal
of the inhibitory link from Cdx2 to Oct4 exhibits the highest
KL divergence (electronic supplementary material, figure
S22). The result by RACIPE-wb also indicates a similar hier-
archical decision-making structure of the stemness GRN with
the Oct4/Cdx2 module forming the first decision-making
module and the rest forming the second decision-making
module. In summary, when the detailed binding/unbinding
processes are considered, the RACIPE-wb characterized
dynamic behaviours of the stemness GRN remain consistent
with RACIPE characterized ones.
4. Discussion
By applying RACIPE to the stemness GRN, we have identified
a significant number of distinct gene states. The four most
probable gene states generated by RACIPE match the gene
expression patterns of single mouse embryonic cells at 32-cell
and 64-cell stages quantitatively (figure 3a), and 11 RACIPE-
generated gene states are consistent with experimental results
qualitatively (electronic supplementary material, figure S5).
We also elucidate a hierarchical structure of the stemness
GRN by RACIPE, which is consistent with experimental obser-
vations. The fact that our results reproduce known findings is a
positive indicator of RACIPE’s validity in analysing the dyna-
mical behaviours of GRNs in general, including both
transcriptional regulation and binding/unbinding processes.

There are two important insights generated by RACIPE.
First, multiple RACIPE-generated gene states are associated
with one experimentally observed stage. This is because the
developmental stages are often characterized by expression of
a few genes and these few genes can have similar expression
patterns in various gene states. Our findings thus predict that
future work using the expression of additional stemness
genes to characterize developmental stages may help further
delimit possible sub-developmental stages. Second, RACIPE
can identify the specific parameters that differ themost between
different gene states, such as the production/degradation rates
of genes and the threshold/fold-change of regulatory links.
Consequently, the biological process represented by these par-
ameters can be considered as the regulatory targets needed to
drive cells to undergo certain phenotypic transitions.

We found that the external signals acting on the stemness
TFs can restrict the stemness GRN to acquire only certain
gene states corresponding to differentiated cell phenotypes.
The result may be related to a popular interpretation of Wad-
dington’s epigenetic landscape [40,41] for stem cell
differentiation. Of course, our RACIPE ensemble is only a
lowest-order approximation to an actual cell population. How-
ever, taking this approximation seriously, at least in the absence
at the moment of a more complete picture, our RACIPE simu-
lation results indicate an interesting perspective. Specifically, a
stem cell population, instead of consisting of cells in a highly
specific ‘stemness’ state, might instead be regarded as a hetero-
geneous population of cells with variable gene expression
patterns corresponding to a mixture of differentiated lineage
with a distinctive gene expression pattern (figure 8) [42]. Cells
with high cell potency are plastic and able to interconvert into
the various cell states stochastically by both the intrinsic factors
(gene expression noise, a fast process) and the extrinsic factors
(transient epigenetic regulation and cell signalling, a slow pro-
cess).However,when cells are subject to stable perturbations by
external signals, they lose the capacity to access certain cellular
states, therefore,making the population less heterogeneous, i.e.
having smaller information entropy, and differentiated. Our
view is consistent with the observation in experiments that
the stem cell progenitors of either totipotency or pluripotency
have highly heterogeneous gene expression, and several cell
sub-populations of differentiated types, called lineage priming,
have been identified in cell culture [43–45]. Some of the new
gene states proposed by RACIPE share similarities with the
gene states reported in [46]. For example, the state 2 character-
ized by GATA6highCDX2highNANOGlow proposed by
RACIPE (figure 3) is consistent with the intermediate state 2
during transdifferentiation reported in [46].
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Figure 7. Analysis results elucidated by applying the extended RACIPE (RACIPE-wb) to the stemness GRN reveals consistent characterization. (a) Top panel:
Diagram of the core stemness GRN highlighting the binding interactions between Oct4, Sox2, and the OCT4–SOX2 complex. Bottom panel: The main changes
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complex Oct4–Sox2. (e) The KL divergence of RACIPE-wb distributions before and after the removal of a regulatory link. Also included are the blocking of binding
between Oct4 and Sox2 and the blocking of the unbinding of OCT4–SOX2. ( f ) A schematic diagram depicting the relative importance of each gene and link as
inferred by the analysis in (d–e).
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We showed that RACIPE-generated gene expression
patterns recapitulate the gene expression profiles of mouse
embryos at late developmental stages (greater than or equal
to 32 cells) while not those at early stages. This may be due
to the incompleteness of the decision-making network of stem-
ness. Although the TFs in the stemness GRN have been shown
to be the master regulators governing stem cell differentiation
by experimental studies, and the stemness GRN is largely con-
sistent with stemness regulatory networks proposed by other
studies [12,13,47], it is possible that there are other important
molecular regulators that are not included here. An experimen-
tally validated GRN could be constructed by combining
genomics data such as ChIP-Seq with biochemistry exper-
iments [48–50]. However, it still remains a challenge to
reliably construct reasonably large GRNs. Notably, RACIPE
mainly considers the large variations in parameters without
including the effect of internal gene expression noise, which
can be critical in cellular dynamics. Although we do not
expect the inclusion of stochastic effects to change in any
important way the possible states of the system can acquire,
including the effect of noise will become important if we
want to focus on dynamical processes such as transitions
between those gene states. Some early efforts have already
been made in this direction [51,52].

To conclude, by applying RACIPE to a core stemness
GRN, we showed that the network topology plays an essen-
tial role in cell fate decision-making during stem cell
differentiation. This result is analogous to the findings from
protein structure modelling, where conformational motions
have been found to be determined by the overall molecular
shape [50] and protein folding process by native residue
contacts [50,53]. RACIPE allows the interrogation of the
robust dynamical behaviours of GRN by parametric ran-
domization, from which we can identify the operating
principles underlying the GRN functions.
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