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Abstract—We characterize the growth of the Sibson mutual
information, of any order that is at least unity, between a random
variable and an increasing set of noisy, conditionally independent
observations of the random variable. The Sibson mutual informa-
tion increases to an order-dependent limit exponentially fast, with
an exponent that is order-independent. The result is contrasted
with composition theorems in differential privacy.

I. INTRODUCTION

In the context of information leakage, composition theorems
characterize how leakage increases as a result of multiple,
independent, noisy observations of the sensitive data. Equiv-
alently, they characterize how security (or privacy) degrades
under the “composition” of multiple observations (or queries).
In practice, attacks are often sequential in nature, whether
the application is side channels in computer security [1]-[3]
or database privacy [4]-[6]. Thus composition theorems are
practically useful. They also raise theoretical questions that
are interesting in their own right.

Various composition theorems for differential privacy and
its variants have been established [4]-[6]. For the information-
theoretic metrics of mutual information and maximal leak-
age [7]-[10] (throughout we assume discrete alphabets and
base-2 logarithms)

P(z,y)
I(X;Y) = P(z,y)log -5/~ 1
L(X =Y) =log Ey zig}gﬁf@\@ 2)

and a-maximal leakage [11], less is known. While similar
theorems have been studied in the case that P(y|z) not known
[12], we assume it is known. For the metrics in (1)-(2) it is
straightforward to show the “weak” composition theorem that
if Y7,...,Y,, are conditionally independent given X, then

I(X;Y")SiI(X;Yi)
=1

LIX 5 Y") <> LX 2 Y).
i=1
These bounds are indeed weak in that if Y;,...,Y,, are

conditionally i.i.d. given X,
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then as n — oo, the right-hand
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sides tend to infinity while the left-hand sides remain bounded.
A “strong” (asymptotic) composition theorem would identify
the limit and characterize the speed of convergence.

We prove such a result for both mutual information and
maximal leakage. The limits are readily identified as the
entropy and log-support size, respectively, of the minimal
sufficient statistic of Y given X. In both cases, the speed
of convergence to the limit is exponential, and the exponent
turns out to the same. Specifically, it is the minimum Chernoff
information among all pairs of distributions Qy|x(:|) and
Qy|x (:|z"), where = and z’ are distinct realizations of X.

Mutual information and maximal leakage are both instances
of Sibson mutual information [10], [13], [14], the former
being order 1 and the latter being order oo. The striking fact
that the exponents governing the convergence to the limit are
the same at these two extreme points suggests that Sibson
mutual information of all orders satisfies a strong asymptotic
composition theorem, with the convergence rate (but not the
limit) being independent of the order. We show that this is
indeed the case.

The composition theorems proven here are different in
nature from those in the differential privacy literature. Here we
assume that the relevant probability distributions are known,
and characterize the growth of leakage with repeated looks in
terms of those distributions. We also assume that Y7,...,Y,
are conditionally i.i.d. given X. Composition theorems in
differential privacy consider the worst-case distributions given
leakage levels for each of Y7, ...,Y,, individually, assuming
only conditional independence.

Although our motivation is averaging attacks in side chan-
nels, the results may have some use in capacity studies of
channels with multiple conditionally i.i.d. outputs given the
input [15, Prob. 7.20].

II. SIBSON, RENYI, AND CHERNOFF

The central quantity of this study is the Sibson mutual
information.

Definition 1 ( [13], [14]). The Sibson mutual information of
order o between random variables X and Y is defined by

/o
e (X P(I)P(ylx)a)1 3)
yeY xzekX ISIT 2020

I3(X;Y) =
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for a € (0,1) N (1,00) and for o = 1 and o = oo by its
continuous extensions. These are

L(X;Y) = I(X;Y)

IZ(X;Y)=L(X =)
defined in (1)-(2) above.

We are interested in how I (X;Y™) grows with n when

Y1,...,Y, are conditionally i.i.d. given X for a« > 1. The
question for o < 1 is meaningful but is not considered here.

For o« > 1, we shall see that the limit is given by a Rényi
entropy.

Definition 2. The Rényi entropy of order o of a random
variable X is given by:

1
= 1_alogZP(x)
reX
for o € (0,1) N (1,00) and for o« = 0 and o = 1 by its
continuous extensions. These are
Ho(X) =log|{z: P(z
Hy(X)=H(X).

Ho (X “4)

) > 0} (5)
(6)
where H(X) is the regular Shannon entropy.

The speed of convergence of I5(X;Y™) to its limit will
turn out to be governed by a Chernoff information.

Definition 3 ( [15]). The Chernoff information between two
probability mass functions, Py and Ps, over the same alphabet
X is given as follows. First, for all x € X and X € [0,1], let:

P1 (:v)APg(x)lf)‘

P = P\(Py, P = 7

\ () NP1, Ps, ) Zm’eX Pl(x/)xp2(£/)1—A O
Then, the Chernoff information is given by:

¢ (P1]|Py) = D(Py-||Pr) = D( ) (8)

where \* is the value of \ such that the above two relative
entropies are equal.

III. MAIN RESULT

Let X be a random variable with finite alphabet X' =
{x1, 22, .5 }. Let Y™ = (¥1,Y5,..Y,) be a vector of
discrete random variables with a shared alphabet ) =
{y1,92, ...y }. We assume that Y1,Y5,...,Y, are condition-
ally i.i.d. given X. We assume, without loss of generality, that
X and Y have full support. We may also assume, without
loss of generality, that the distributions Py x (-|z) are unique
over x, which we call the unique row assumption. For if this
is not the case, we can divide X into equivalence classes
based on their respective Py|x (:|x) distributions and define
X to be the equivalence class of X. Then both Markov chains
XoXoY"amdX o XoYyn hold, so

I5(X;Y™) =I5(X;7™)

by the data processing inequality for Sibson mutual informa-
tion [16]. We may then work with X in place of X. Thus the
unique row assumption is without loss of generality.

2223

Note that, again by the data processing inequality, we have

= Hl/a(X)

for all n and all « € [1, 00]. Our main result is the following.

I5(X;Y™) < IS(X; X)

Theorem 1. Under the unique row assumption,

lim I (X

n—oo

Y™ = Hy /o (X) 9)

for any o € [1,00] and the speed of convergence is indepen-
dent ofa in the sense that for all o € [1, 0],

Jim —= “log (Hypa(X) — I5(6Y™)) = min % (Q: Q).
We prove the result separately for the cases o = 1, a = o0,
and 1 < a < oo in the next three sections. For this, the
following alternate characterization of the exponent is useful.
Let ), denote the distribution of Y given x for a given z € X,
and let P denote the set of all possible probability distributions
over ). For any P € P, let xx(P) denote x € X such
that D(P||Q,) is the k" smallest relative entropy across all
elements of X. Ties can be broken by the ordering of X.

Lemma 2.

Jnf D(P|Qzyp)) = min % (Qa||Qar)- (10)
Proof. The proof uses the Pythagorean theorem for relative
entropy [15, Thm. 11.6.1] and is omitted due to space con-
straints. O

Other Notation: We use P,, to denote the set of all possible
empirical distributions of Y. For any P € P, let

T(P)={y" € Y"|Pyn = P}

where P, is the empirical distribution of ™. Note that T'(P)
may be empty if P ¢ P,. We use Q(-) to denote true
distributions of X and Y™.

IV. PROOF FOR MUTUAL INFORMATION (a = 1)

We derive separate upper and lower bounds for mutual
information. Since I(X;Y") = H(X) — H(X|Y™), we can
equivalently upper and lower bound —H(X|Y™). For the
lower bound,

~ H(X|Y") = Z Q™) Y Qlaly™) log Q(aly™)
eyn reX
(1)
Q (@),  Q"|r)Qx)
EPIEPIICILDY D
PeP,, yneT(P) TEX
12)
S WD I EGEEEE
PEP, yn€T(P) z€X
log m@( ( )|z)Q () (13)

S e iy QP Q)
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() 1og . QIPIDQ)
Y rex QTP)Q)
(14

=2 > QU

PeEP, xe€X

- ¥

PePy:
Q(T(P))>0

Sex QT(P))Q()
QT (P)]a1 (P)) Q1 (P))
£ Y QP

z#xz1 (P):
Q(T(P)|z)>0

dowex Q(T(P)Ix')Q(I’)]
Q(T(P)|z)Q(x) ’

due to the convention that Olog0 = 0. Then, replacing

weighted sums over x with their largest summand gives

[Q(T(P)]1(P))Q(1(P))

-log

- log

15)

- S |arela P e)
PeP,:
Q(T(P))>0
1 S QTPI)QE)
log (1+ S e 7))
maX_,L./ex Q(T(P)‘.I‘/)
+ e {QUT(P) log =5rE S s }}
Q(T(P)|z)>0 16)

Note that the entire expression inside the summation over P is
0 if Q(T(P)|z2(P)) = 0. Letting Qmin(X) = minger Q(z)
and using In(1 + z) < « for the z = x1(P) term,

> Y { Y QT(P))Q)
PcPy: ' #x1(P)
Q(T(P))>0
+ max { T(P x}
max  {QUT(P)f)
Q(T(P)|x)>0
1
-log — ] a7
min - gz, (P): Q( ( )|I) len( )
Q(T(P)|z)>0
L o nD(PlIQuyr)) 1 91D (Pl Quy(r)
> — Z [11122 n 2(P) 4 971 2(P)
PeP,:
Q(T(P))>0
(n +1)I¥l ]
- InDgyp + log ——— (18)
[ b len(X)]
where
Dyup = sup D(P'[|Qx) (19)
z,P'eP
D(P'[|Qqz)<o0
P'(y)
= sup P'(y)log (20)
z,P'cP: Z Q(y\x)
D(P'||Qz)<o0
= sup P'(y - H(P) 1)
z,P'eP: yz;; y\x)
D(P'||Qqz)<o0

1

= Sl;p log minQ(y|I)>O Q(y|l‘) = 22
Hence,
- H(X|Y™)
1 |X]
> —(n+ 1) Pn [ +log (gin() 59 +nDyp)
(23)
where
Dn = }?é%ln D(PHQ;EQ(P)) 24)
and P is its minimizer.
For the upper bound,
— H(X[Y™)
Q(T(P)|)Q(x)
1
= 2 2 QTP s = o g
(25
. QT (P})|)Q(x)
(PY) 1
< 2 QIR o = o T e
(26)
< Q(T(P)|z1(P)Q(z1(Py))
Q(T(Py)|z1(P7)Q(z1(F7))
1 27
Y ex QP )R 7
= Q(T(Py)|z1(Py))Q(x1(Py))
Dwrtar(pry QUI(P)|2")Q(2)
-log 1 — “ 28
L ST ol N
recalling that — In(1 — z) > =z,
< —Q(T(By)|x1(P))Q (21 (P))
gy QTRDQE) 1 o)
Yarex QUI(PY)[2)Q(z)  In2
< —Q(T(Py)|z1(Py))Q(z1(Fy))
QEPeP)QaaP) 1
max, ex Q(T(PF)|z’) In2
1 -n o zq (PX *
<y QM ()
27" Q(aa(Py)) 1
. (n + D)X~ PEiQuy p)) "In2 D
_ _Q(xl(P;))Q(xQ(P;))27nD:L' (32)

(n+1)2¥n2
As we have now shown that mutual information is upper
and lower bounded by expressions of the form H(X) — K, -
2-"D7 for some subexponential sequence K, it remains to be
shown that this exponent approaches the minimum Chernoff
information as n — oo.
First, it can be shown using standard continuity arguments
that
lim inf D(Pl|Quy(r) = inf D(PI|Quy(r))

n—oo PeP,

(33)

since D(P||Q,,(p)) is a continuous function of P. Finally,

Xve arrive at the desired result using Lemma 2.
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V. PROOF FOR MAXIMAL LEAKAGE (a = 00)

While the lower bound on IJ(X;Y™) can be proven
directly, due to space constraints we will instead note that the
desired bound can be obtained from (62) to follow by letting
a — 00. For the upper bound, for fixed n, let

D, = {P € PIQ(T(P)[z) > Q(T(P)|a’) Va' # z}
D, = {P € PIQ(T(P)|z) > Q(T(P)a’) Vo' € X} (35)

Note that for any P € D, and P € D,, D(P||Q,) =
minIze;(D(PHQI/) and D(PHQ:E) = minz/e;( D(P”Qw/)
for all 2’ € X since

Qy"|z) =27

Fix 2, # 2, € X and a P € D,, and let {P,}52, be a
sequence such that P, € P, for each n and P,, — P. Then
P, € D, eventually and

(34)

D(P||Qz)+H(P)) Yy" € T(P). (36)

By <iogY. S QTP (37
z€X PeD,NP,
=log[|X|=) Y QT (38)
z€X PeP,\D,,
<log[lX[— Y QUI(P)zd)] (39)
PePp\Dq,
< log [|X] = Q(T(P)|za)], (40)
eventually. Thus for sufficiently large n,
I(X;Y™)
1
<log [|X] — ———r 27 P PnllQea) 41
<log [|¥] - oy ] @
1
< 1 X _ 72—7’LD(P”HQ1Q) 42
Thus,
1
limsup ~ —log (1% =I5 (X;Y™))
< Ciim D(P 1Qz,) = D(P[|Qx,)- 43)

n—oo
Since x, # xz, and P were arbitrary, the result follows by
Lemma 2.

VI. PROOF FOR (« € (1,00))

To lower bound 12 (X;Y™), we use the D, sets defined in
the previous proof:

I(f(X;Y")— log Z (ZQ (y"|z) )Ua
yreyn  xeX
(44)
’illog Y (3 ewar P>|x>a)” (45)
PeP, zeX
1/
“gY Y (X e
zeX PeD,NP, z'€X
(46%22

> —log Y Q@)Y Y QI(P)f) @7
TEX PeD,NP,
=21} QW) (1= Y QUIP)k)) @)
reX PeP,\Dy
= 1 log ( Z Q(x)l/a
reX
-3 Y e (49)
zEX PEP,\D,
Letting
. Yvex pep, b, Q(m)ll/“Q(T(P)Iw)7 50)
ZIEX Q(JJ) /a
we have
I5(X;7™) Jlog {(Y_ Q@Y -R)} 6D
reEX
= Hyu(X) + Oillogu—R). (52)
Note that
n(1—e) ¢ (53)
=1 Z
€ > Z €?
-5 Z € 30 =0 (54)
=1
for 0 < € < 1. Hence,
IS(X:Y™) > Hy (X « P
@ (KYT) 2 HyyolX0) + g R - 2(1_3)(1_5)

Next we derive an upper bound for R.

P e Q@)*(n+ 1) maxpep,\p, QT(P)|z)

R
= S Qe

1/a [T !
_ Decx Q@+ DY g s QU(P))

Ypex Q@)1
(57)
(n+ 1) max max  Q(T(P)lz) (58)
< (n+ 1)|X| . 9—n(mingex minpep,\p, D(P[|Qx)) (59)
< (n + 1)|X| . 2—n(minm#m/ ianEle D(P||Qxz)) (60)
= (n + l)le LT ming e C(Qal|Qar) = Rupper (61)

where we have used Lemma 2. Note that Rpe, is indepen-
dent of Q(z) and «. Then,

« R?

IaS(X,Yn) > Hl/a(X) o (a — 1) ]n2(R+ 2(1 —R))
2
o _ Mupper
Z Hl/a(X) (Oé _ 1) 1n2(RuppeT + 2(1 — Ruppe'r‘)) (62)

As a result, we also have the lower bound for maximal leakage

gimply by taking limits for & — oo on both sides.
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For the upper bound, for convenience, let

F(z,P) =

Q(z)Q(T(P)l|x). (63)

Then for each n, let {Eg(f:)}lill be a partition of P,, such that

P e EY implies F(x, P)!~/ = max,cx F(a/, P)1=1/.
Pick z, # xp and P* € D,,. Let {P,}>2; be a sequence
of types converging to P*. Note that P, € Eq(pf) eventually.
Then

B = e Y (X P e
TEX pep(m ' EX
(64)
x P) 1/«
1/
Y Y Fene( Y A0
reX PEE(n) z'#x
(65)
Using the Taylor series expansion of (1 +x)1/ “ and discarding
22 and higher order terms (since é < 1), we have
< 1 Fla, Py (142 30 200
- ,10gz Z (m, ) +aZF(Qz,P)
reX PGEg(c") ' F#x
(66)
< Ty Y (Fapy
£6X PEE(n)
+ F(z, P)/*1 Y P, P)), (67)
' #x

where we have used the fact that o > 1. For the remainder
of the proof, we redefine x4 (P) so that they are ordered by
F(z, P) instead of relative entropy. Then

= e (X

€X' pep(™

+ ) Fla(P

PeE(™

=y (X

€X' pep(™

2

F(z, P)/°

P)Velp(g, P)) (68)

F(xz, P)Y/

P)Ye 1R (z, P)

pgE(™
+ Y F@p)Ve- Y F:cpl/a) (69)
pgE™ pgE™
= Y (X Flap)e
z€X PEP,
+ Z P)M/e~1 — F(z, P)/*"") F(x, P))
pgE™

(70)

Using In(1+ z) < z and noting that the summand of the sum
over P ¢ EM s nonpositive,

SHl/a(X) (a_1)1n2 ZQ 1/a Z Z

veX e€X pgp(m
-(F(z1(P), P)/*"" — F(x, P)Y/* ") F(x, P))
(71)

« 1
(a—1)In2 Y Q(z)Y/e
rxeX
F(zq, P)Y* YF(2,, P,)).
(72)

< Hl/a(X) +

: (F(‘Tl(Pn)an)l/Ohl -

Note that eventually z;(P,) = x, and F(xlnpn)l/a—l <
1F(z,, P,)Y/*=1. Thus, eventually,

1 « 1 1
< — — /a
< HijalX) 2(a—1)In2 3 Q(z)V/« F(za, Pn)
rzeX
(73)
a 1
< Hy/o(X) - (X))
< Hijal(X) 2(—1)In2 > Q(w)l/anm( )
reX
1
(n+ D i
where Qmin = mingex (). This implies:
here @ X Q his impli
hmsup——log(Hl/a( ) — IaS(X;Y”))
n—oo

Since z, # = and P € D,, were arbitrarily chosen, this
implies:

hmbup—flog(Hl/a( ) — I(f(X;Y"))

n—roo
<min inf D(P||Qu) = min €(Q.||Qx). (76)
z#x’ PED, zFz!
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