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Abstract—Side channels represent a broad class of security
vulnerabilities in practical systems. Because completely elimi-
nating side channels often leads to prohibitively high overhead,
there is a need for principled techniques that trade off cost
and leakage. Maximal leakage (MaxL) has been introduced as
an operationally-interpretable leakage metric well-suited to side
channels. We study the optimal trade-off between MaxL and
expected costs. We demonstrate that for an important class
of cost functions, optimal protection can be achieved using a
combination of at most two deterministic schemes. We discuss
the implications of this result for practical implementation
and provide a fast heuristic algorithm for finding the best
deterministic mechanism, which has a bounded suboptimality
guarantee.

I. INTRODUCTION

Side channels represent a broad class of security vul-

nerabilities that have received significant attention from the

cybersecurity community, especially after the demonstration

of multiple side channel-based attacks [4], [10], [12]. Re-

cently, maximal leakage (MaxL) [3] was introduced as an

operationally-interpretable measure of the usefulness of a

side channel to an attacker. While quantifying the leakage

from side channels is clearly of great interest, it alone is not

sufficient for deployment in practical settings. We address

a critical question that naturally arises, once armed with a

metric such as MaxL. Namely, how can a security-minded

system designer devise a protection scheme that minimizes

MaxL, subject to a cost constraint (or vice versa)? Such trade-

offs are certainly of interest, and tuneable protection schemes

have already been studied to an extent for other leakage

metrics[13], [1]. While some early attempts at studying MaxL

in the context of cost-leakage analysis have been made [2],

[6], [5], here we address the problem of formulating MaxL-

based, tuneable protection schemes from the perspective of

a system designer.

MaxL, in its most basic form, assumes the existence of

three random variables in a side channel. Let U denote the

random variable representing the victim’s secret, X denote

some intermediate value visible within the system but not

to the adversary, and Y denote the value observed by the

adversary. U , X , and Y form a Markov Chain (denoted as

U − X − Y ), so Y and U are conditionally independent

given X . While continuous versions of MaxL exist, for the

purposes of this study we will assume that X and Y are

discrete random variables with finite alphabets X and Y .

Given these random variables, MaxL is defined as [3]:

L (X → Y ) = max
U :U−X−Y

log
maxũ(·) P (U = ũ(Y ))

maxũ P (U = ũ)
(1)

and also has a more easily computed, equivalent form [3]:

L (X → Y ) = log
∑

y∈Y

max
x∈X

p(y|x) (2)

The focus of this paper is on the design of protection

schemes (i.e., a conditional distribution of Y given X) that

optimally trade off MaxL with cost. We assume the existence

of a cost matrix (subject to a broadly applicable structural

constraint that we will define later) that defines the one-time

cost associated with mapping any particular element of X
to any particular element of Y , and consider the ensuing

expected cost under the given protection scheme.

Our contributions in this paper are to show that: 1) the

linear program (LP) that follows from the above is achieved

by nearly deterministic protection schemes, a fact that has

some useful implications for practical deployment, and 2) the

entire cost-leakage trade-off curve can be derived by solving

the LP at no more than min{|X |, |Y|} points, and 3) a greedy

heuristic exists for approximating these points. Due to space

constraints, we omit discussion of related leakage metrics,

but we point out that metrics such as mutual information

or differential privacy do not have these properties. A more

complete comparison with other metrics is available in the

extended version of the paper [11].

II. DEFINITIONS AND COST FUNCTIONS

In this section, we will define some necessary terms

and variables, as well as clarify the class of costs under

consideration.

Definition 1. (Basic Notation) For X and Y as previously

defined, with alphabet sizes |X | = M and |Y| = N , we

define the following:

• c(x, y) is the nonnegative (but not necessarily finite)

cost of mapping each x ∈ X to each y ∈ Y . We refer to

this function as the cost function and the corresponding

matrix {cxy} as the cost matrix.

• For any matrix A = {axy}, C (A) =
∑

x,y p(x)c(x, y)axy is the total cost of A.

• For any matrix A = {axy}, L (A) =
∑

y maxx axy
is the exponentiated maximal leakage (or exp-leak, for
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short) of A. Note that minimizing over exp-leak is

equivalent to minimizing over maximal leakage.

• Any M × N transition matrix (rows sum to 1, non-

negative entries) P = {pxy}, such that pxy = P (Y =
y|X = x) ∀x, y and C (P) is finite, is called a

protection scheme.

Definition 2. (Specialized Terminology)

• A protection scheme P is deterministic if all pxy equal

0 or 1. It is stochastic otherwise.

• The ordered pair (L,C) ∈ R
2 is achieved by protection

scheme P if L (P) ≤ L and C (P) ≤ C.

• The ordered pair (L,C) is achievable if there exists

protection scheme P such that (L,C) is achieved by

it.

• The set S is the set of all achievable (L,C) pairs.

• C∗(L) = inf [C : (L,C) ∈ S]. We refer to C∗(L) eval-

uated for all values of L as the trade-off curve and the

set of points Sb = [(L,C) ∈ S|C = C∗(L)] as the

boundary of S.

• P is optimizing in S if C (P) = C∗(L (P)) (i.e. if P

achieves a point on the boundary of S).

• The set Sd is the set of all points in S that can be

achieved by a deterministic protection scheme.

• The ordered pair (L,C) is achievable in Sd if there

exists a deterministic protection scheme P that achieves

(L,C).
• C∗

d(L) = inf [C : (L,C) ∈ Sd].
• P is optimizing in Sd if C (P) = C∗

d(L (P)). Note

that a P that is optimizing in Sd is not necessarily a

deterministic protection scheme.

Finally, we discuss the aforementioned constraints on the

cost matrix that we will work with in this study:

Definition 3. (Staircase nondecreasing cost functions)

For |X | = M and |Y| = N , let X = {x1, x2, ...xM} and

Y = {y1, y2, ...yN}. We refer to a cost function/matrix that

satisfies the following constraints as staircase nondecreasing:

1) For 0 < i < j ≤ M and all y ∈ Y , if c(xi, y) =
∞, then c(xj , y) = ∞. (i.e. if one matrix element is

infinite, then that column is infinite all the way down).

2) For 0 < i < j ≤ N and all x ∈ X , if c(x, yi) < ∞,

then c(x, yi) ≤ c(x, yj) < ∞. (i.e. excluding infinities,

each row of the matrix is nondecreasing from left to

right).

Note that staircase nondecreasing cost matrices are exem-

plified by upper triangular cost matrices with ordered cost

entries for each row, a special case that is typical of most

power and timing side channels due to causality constraints.

III. MAIN RESULT

We consider the minimization of total cost subject to an

MaxL constraint, written as the following LP using standard

techniques (let qy denote the column maxima)

C∗(L) = min
pxy,qy

C (P) s.t.
∑

y

qy ≤ L,
∑

y

pxy = 1 ∀x,

pxy ≥ 0, pxy ≤ qy, ∀ x, y

(3)

Remark. C∗(L) is a convex function of L. The proof follows

from standard arguments.

Theorem 1. (Main Theorem)

If c(x, y) is staircase nondecreasing, then

1) min
(L ,C )∈S

C + αL = min
(L ,C )∈Sd

C + αL ∀α > 0

2) For all L ≥ 1, (L,C∗(L)) can be achieved by

P = λP1 + (1 − λ)P2 for some λ ∈ [0, 1] and

some deterministic protection schemes P1 and P2, such

that L (P) ≤ L and C∗(L) ≤ λC∗
d(L (P1)) + (1 −

λ)C∗
d(L (P2)).

The proof proceeds as follows. First, for any protection

scheme, we will define its water-filled form and show that

for any staircase nondecreasing cost function, an optimizing

protection scheme’s water-filled form is also optimizing.

Second, we will show that any water-filled protection scheme

can be transformed in such a way that it progressively ap-

proaches a deterministic protection scheme while remaining

optimizing. The first part of the theorem will follow by

iteratively applying this transformation on an optimizing

protection scheme a finite number of times. The second part

of the theorem will follows using standard convex analysis.

A. Proof of Theorem 1.1

Lemma 2. (Water-Filling Lemma)

Consider any protection scheme P. Define a 1×N vector

~p = [p1, p2, ...pN ] such that pi = maxx∈X pxyi
(i.e., ~p

consists of the column maxima of P). Using ~p alone, we

construct a new protection scheme P’ as follows:

1) Start with a M ×N zero matrix P’ = {p′xy}.

2) For each row x ∈ X , iterate over each yi, i =
1, 2, ...N .

• If c(x, yi) = ∞, let p′xyi
= 0

• Else, set p′xyi
= min {pi, 1−

∑i−1
j=1 p

′
xyj

}.

In plain terms, we are constructing P’ by maintaining the

column maxima of P and “filling” in probability mass in

each row from left to right. We call P’ the water-filled form

of P. Also, if P and P’ are identical, we say that P is a

water-filled protection scheme.

Then, if the cost function satisfies definition 3, all optimiz-

ing P can be converted into water-filled form P’ such that

C (P) = C (P’) and L (P) = L (P’).

Proof of Lemma 2. Suppose we are given optimizing P and

its water-filled form P’. By its construction, L (P) ≥ L (P’)
since we did not increase the total sum of column maxima.

In addition, since we independently fill up each row’s entries

in P’ from least cost to greatest cost, C (P) ≥ C (P’) for

any cost function that is staircase nondecreasing. It then
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follows that: L (P) ≤ L (P’) and C (P) ≤ C (P’), since

P is optimizing so C (P) + αL (P) ≤ C (P’) + αL (P’).
Therefore, C (P) = C (P’) and L (P) = L (P’).

For the rest of the proof of Theorem 1.1, for any optimizing

P, we assume it is already in water-filled form, since we have

already shown that doing so does not unnecessarily restrict

our space of optimizing solutions.

Now, we would like to show that there exists a special

choice of Q such that C (P + δQ) + αL (P + δQ):

1) is linear over some well-defined interval of δ values

around 0 (linearity)

2) does not vary with δ for any fixed α (no improvement

with δ)

3) results in protection scheme P + δQ being strictly

“more deterministic” (to be defined shortly) than P for

a particular choice of δ (more deterministic)

as doing so will allow us to transform P into an optimiz-

ing deterministic protection scheme by iteratively choosing

different Q’s and applying the above transformation.

Definition 4. (Types of Matrix Entries)

For the sake of discourse, we will define the following types

of matrix entries in any protection scheme:

• An entry is fractional if it is not equal to 0 or 1, and

integral otherwise. Similarly, a column is fractional if

its maximum entry is fractional and integral otherwise.

• An entry is maxed out if it is equal to the maximum

value in its column, and hanging otherwise.

Note that it is true by construction that a water-filled

protection scheme will have at most one hanging mass entry

and at least one maxed out entry in each row. Moreover, if

a row has a hanging mass entry, there do not exist other

non-zero entries further to the right of that entry.

Definition 5. (Measure of Randomness)

R(P) = (# fractional columns in P) + (# hanging entries

in P)

Note that R(P) = 0 if and only if P is a deterministic

protection scheme. R(P) should be thought of as a measure

of how stochastic a protection scheme is.

We first propose a particular choice of Q and δ.

Definition 6. (Q-Generation Procedure)

Given any water-filled protection scheme P with at least

one fractional entry, we now give a procedure to generate a Q

matrix. Note that any such protection scheme must also have

at least one fractional column or else it would contradict the

water-filled property.

1) Start with an M × N zero matrix Q that we will

populate with values.

2) Denote the leftmost fractional column index in P as y.

Further denote the current “sign” to “+”.

3) In the yth column of Q, if the sign is “+”, assign the

value 1 to all entries in that column that are maxed out

in P. If the sign is “-”, assign the value −1 instead.

4) If the current sign is “+”, change it to “-”, and vice

versa.

5) Consider the set of rows that are maxed out in the yth

column of P. Do all of these rows either have hanging

mass in P or already have 2 non-zero entries in Q? If

so, go to step 9; otherwise proceed to step 6.

6) Again consider the set of rows that are maxed out in

the yth column of P. Choose the topmost row from this

set that does not have hanging mass in P and has only

1 non-zero entry in Q. Denote the row index of that

entry as x.

7) Set y to be the column index of the rightmost, maxed

out entry of the xth row in the P matrix. Note that y

must correspond to a fractional column here.

8) Go to step 3.

9) If any rows in Q have hanging mass and an odd number

of non-zero entries, assign either 1 or −1, so that each

of these rows sum to 0, to the hanging mass entries of

these rows.

Lemma 3. (Q-Generation Properties) The procedure spec-

ified by definition 6 satisfies the following:

1) The procedure terminates.

2) All of the rows in the generated Q matrix sum to 0 (so

that P + δQ is a protection scheme).

3) P + δQ is a water-filled protection scheme

Proof of Lemma 3.1. Since we never choose columns that

are not fractional, any row selected in step 6 must have

a maxed out entry (because we also ignore rows with

fractional entries) somewhere to the right of the current y

column. Certainly, this procedure must terminate if the y

value ever reaches the right-most column (and the process

may terminate earlier than that due to step 5).

Proof of Lemma 3.2. Since we only assign 1 and −1 to

entries of Q in alternation, this is the same as saying that

each row must contain an even number of non-zero entries.

We see that this is true by noting that there are three types

of rows, differentiated by how their non-zero entries in Q (if

any) are assigned during the Q-generating procedure.

If a row has hanging mass in P, then step 9 will necessarily

adjust that row to have an even number of non-zero entries

by construction. In addition, we never assign mass to hanging

mass entries until step 9, when the procedure terminates,

which means that all hanging mass entries are free for us

to use at that point. So, rows that have hanging mass in P

will be valid rows in Q.

If a row has no hanging mass in P, then there are two

cases, depending on whether that row was ever used in step

6 to determine the next y value (we will refer to such a row

as “critical”). Note that, due to steps 5 and 6 filtering out

rows that already have 2 non-zero entries, no row will ever

be used in step 6 twice (i.e. a row will be a critical row at

most once).

If the row is critical, it must be the topmost one that had

only one non-zero entry in Q at that point of the procedure in
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the previous yth column. Step 7 guarantees that the only other

non-zero entry in this row will correspond to its rightmost

non-zero entry in P. So this row will have exactly 2 non-zero

entries in Q, making it valid.

If the row is not critical, it must either be located below

one that is or not have any non-zero entries in Q at all. The

latter case results in a trivially valid row. In the former case,

the row must have at least two non-zero entries in columns

shared with the previous critical row, or else it would violate

our assumptions that P is water-filled and the cost function is

staircase nondecreasing. In addition, since P is water-filled,

each row is majorized by all rows above it (i.e. the cumulative

left-to-right sum of the upper row is no less than that of the

lower row for every column). This implies that a non-critical

row cannot have more than 2 non-zero entries either.

Proof of Lemma 3.3. We observe that due to step 3, we only

ever change all of the maxed out entries in a column together.

So, for small δ, P + δQ will remain water-filled.

At this point, we will show that C (P+δQ)+αL (P+δQ)
has the aforementioned properties of linearity, no improve-

ment with δ, and is more deterministic.

Definition 7. (Stopping Conditions)

Let δ+ = sup[δ ≥ 0 : P + δQ is stochastic and P and

P + δQ are maxed out for the same entries and fractional

for the same entries]

and δ− = inf[δ ≤ 0 : P + δQ is stochastic and P and

P + δQ are maxed out for the same entries and fractional

for the same entries]

Note that, by definition δ+ > 0 and δ− < 0.

Lemma 4. (Linearity Lemma)

If P is water-filled for fixed α and Q is generated according

to definition 6, then C +αL evaluated with P+δQ is linear

with respect to δ ∈ [δ−, δ+].

Proof of Lemma 4. For δ− < δ < δ+ and fixed α,

C (P + δQ) + αL (P + δQ)

=
∑

x

∑

y

p(x)c(x, y)(pxy + δqxy) + α
∑

y

max
x

(pxy + αqxy)

=
∑

x

∑

y

p(x)c(x, y)(pxy + δqxy) + α
∑

y

(px(y)y + αqx(y)y)

where x(y) = argmax
x

pxy .

Since C (P + δQ) + αL (P + δQ) is linear over (δ−, δ+)
and continuous over [δ−, δ+], it is linear over [δ−, δ+].

Lemma 5. (No Improvement Lemma)

If P minimizes C + αL over S for fixed α and is water-

filled and Q is generated according to definition 6, then
∂
∂δ
(C + αL ) = 0 at δ = 0.

Proof of Lemma 5. If ∂
∂δ
(C + αL ) 6= 0, then that implies

that P+ δQ performs strictly better for some δ close to zero,

which is a contradiction.

Lemma 6. (More Deterministic Lemma)

If P is water-filled for fixed α and Q is generated according

to Definition 6, then R(P + δQ) < R(P) for both δ = δ− or

δ = δ+ as defined by Definition 7.

Proof of Lemma 6. As δ increases from 0 to δ+, some

fractional entries of P + δQ change, and none of the in-

tegral entries change. In addition, if one maxed out entry

changes, all of the maxed out entries in that column change

together. It thus follows that the set of fractional columns

can only decrease with δ and that the set of hanging entries

likewise can only decrease. So R(P) is nonincreasing in δ

for δ ∈ [0, δ+]. From the definition of δ+ in Definition 7,

R(P + δ+Q) < R(P).
Similarly, we can show that R(P + δ−Q) < R(P).

Proof of Theorem 1.1. Any P that minimizes C + αL for

some α can be chosen to be optimizing and water-filled as

per Lemma 2. If P is not a deterministic protection scheme,

we can select Q as in Definition 6 with the properties shown

in Lemma 3.

By Lemmas 4, 5, 6, we know C (P+ δQ)+αL (P+ δQ)
is constant over [δ−, δ+] and R(P + δQ) < R(P).

If P+δQ is not deterministic, then we can repeat the above

process since it is still water-filled and minimizes C + αL

for the same α.

Eventually, after repeating this process some finite number

of times, R(P) will be 0 (since the function we defined is

always nonnegative), and therefore deterministic.

B. Proof of Theorem 1.2

Theorem 1.2. Using standard convex analysis (e.g. [8], chap-

ter 12), Theorem 1.1 implies that that C∗(L) and C∗
d(L)

have the same lower semi-continuous hull (or the closure, as

defined by [8] chapter 7), which is equivalent to our definition

of the boundary of S. We can see this fact as follows:

First, we note that the left and right hand sides of the

equality in Theorem 1.1 are the conjugate functions of C∗(L)
and C∗

d(L), respectively. We have shown that the conjugates

are equal for any α.

Second, since C∗(L) is a convex function of L, the

conjugate of the conjugate of C∗(L) is equal to the closure

of C∗(L) ([8], Corollary 13.1.1).

Third, while C∗
d(L) is not a convex function, its conjugate

is the same as the conjugate of the closure of its convex hull.

Therefore, the conjugate of its conjugate must be equal to the

closure of its convex hull.

Thus, we have shown that the convex hulls of S and Sd are

the same, since the two sets are the epigraphs of (all points in

R
2 on or above the curves defined by) the functions C∗(L)

and C∗
d(L), respectively.

From this fact, it trivially follows that any (L,C) pair on

the boundary of S must also lie on the convex hull of S, and

therefore on the convex hull of Sd.

Finally, as previously noted, C∗
d(L) is a descending

staircase-like function for L ∈ [1,∞]. So, the convex hull
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of Sd is given by the largest convex linear interpolation of

the outer corner points of C∗
d(L) (for example, see figure)

Therefore, any (L,C) pair on the boundary of S is

achievable by a convex combination of no more than two

deterministic protection schemes.

C. Discussion of Theorem 1

There are three practical implications of the main theorem.

First, any deterministic protection scheme can be com-

pressed to an N ×2 (or smaller) look-up table, in contrast to

the N × M table required for general stochastic schemes.

Deterministic schemes also naturally do not require the

generation of randomness. If a mixture of two deterministic

schemes is needed, one may implement a pre-determined

schedule alternating between the two deterministic schemes.

In addition, deterministic schemes are resistant to averaging

attacks, where the adversary attempts to learn additional

information by gathering statistics of Y , since the same X

value always maps the the same Y value.

Note that mechanisms designed to minimize mutual infor-

mation tend to be highly stochastic. As an example, consider

the alphabets X = {x1, x2, x3, x4} and Y = {y1, y2, y3, y4},

the marginal distribution of X , p(x) = [0.4, 0.2, 0.2, 0.2], and

the cost function

C =









1 2 3 4
∞ 1 2 3
∞ ∞ 1 2
∞ ∞ ∞ 1









the MaxL-optimal and MI-optimal solutions for 0.5 units of

cost are given by:

P ∗
ML =









.25 .75 0 0
0 1 0 0
0 0 0 1
0 0 0 1









P ∗
MI =









.5235 .3031 0.1233 0.0502
0 .4890 .3120 .1990
0 0 .6105 .3895
0 0 0 1









Second, the proof of the main theorem provides an al-

gorithm by which one may take any known optimizing

protection scheme and convert it to a deterministic form

that is also optimizing. This algorithm simply performs the

procedures specified in Definitions 2 and 6 recursively.

Third, if it is necessary to solve the entire optimal trade-

off curve (for example, if on-the-fly tuning of leakage is

expected), it is only necessary to solve for integer exp-leak

points and then connect the dots so that the overall curve is

convex.

IV. A HEURISTIC ALGORITHM

As we just noted, if the full trade-off curve and the

protection schemes are needed, then the entire curve can

be computed by solving the LP at only the integer exp-leak

points. Depending on the side channel, solving LPs for all

of these points may be resource intensive. In this section, we

present a fast heuristic with a bounded gap from optimality

that can be used to approximate these points.

A. Greedy Algorithm

Definition 8. For any nonempty set S ⊆ Y and cost matrix

{c(x, y)}, let PS = {pxy} such that:

pxy =







1 if y = min argmin
y′∈S

c(x, y′)

0 otherwise
(4)

We refer to PS as the deterministic protection scheme induced

by the subset S .

Definition 9. For any non-empty set S ⊆ Y , let:

L (S) = L (PS) and C (S) = C (PS) (5)

Definition 10. For a given staircase nondecreasing cost

matrix {c(x, y)}, we identify one (not necessarily unique)

y0 ∈ Y such that:

y0 = argmin
y∈Y

C ({y}) (6)

Define the subset Y ′ = Y − {y0}.

Definition 11. For any set A ⊆ Y ′, we define the set

function:

f(A) = −C (A ∪ {y0}) (7)

Definition 12. (Greedy Algorithm)

1) Start with A = {∅}.

2) Choose y ∈ Y ′−A such that f(A∪{y}) is maximized

over all such choices of y. If Y ′ − A is empty or if

there does not exist such y that f(A ∪ {y}) > f(A),
terminate this algorithm.

3) Set A = A ∪ {y}.

4) Go to step 2.

B. Bounded Sub-optimality of the Greedy Algorithm

Using standard results in combinatorial optimization [7],

we can obtain bounds on how suboptimal the solutions

obtained from the greedy algorithm are. We will first prove

some basic facts about the set function f(A) given in

Definition 11.

Lemma 7. f(A) is submodular.

Proof. For A,B ⊆ Y ′ such that A ∩ B = {∅},

f(A ∪ B) = −
∑

x∈X

min
y∈A∪B∪{y0}

p(x)c(x, y)

= −
∑

x∈X

min
y∈A∪{y0}

p(x)c(x, y) +
∑

x∈X

min
y∈A∪{y0}

p(x)c(x, y)

−
∑

x∈X

min
y∈A∪B∪{y0}

p(x)c(x, y)

= f(A) +
∑

x∈X

p(x)[ min
y∈A∪{y0}

c(x, y)− min
y∈A∪B∪{y0}

c(x, y)]

≡ f(A) +D(A,B)
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Then, for A ⊆ Y ′ and b, c ∈ Y ′\A,

f(A ∪ {b}) + f(A ∪ {c})− f(A ∪ {b, c})− f(A)

= D(A, {b}) +D(A, {c})−D(A, {b, c})

=
∑

x∈X

p(x)[ min
y∈A∪{y0}

c(x, y)− min
y∈A∪{b,y0}

c(x, y)

− min
y∈A∪{c,y0}

c(x, y) + min
y∈A∪{b,c,y0}

c(x, y)]

≡
∑

x∈X

p(x)[C1 − C2 − C3 + C4] ≥ 0

since C4 is equal to C2 or C3 (or both), and C1 is no smaller

than either C2 or C3. Hence,

f(A ∪ {b}) + f(A ∪ {c}) ≥ f(A ∪ {b, c}) + f(A) (8)

so f(A) is submodular ([9], Thm 44.1).

Definition 13. For integer exp-leak bound L, let Ag(L) be

the set obtained by running the greedy algorithm unil |A ∪
{y0}| = L (for simplicity, assume the greedy algorithm does

not terminate prior to this point).

For integer exp-leak bound L, let A∗(L) ⊆ Y ′ be the true

optimal set such that f(A) is maximized subject to |A ∪
{y0}| ≤ L.

Now, since f(A) is submodular, we can bound the greedy

algorithm for all L ≥ 2 as follows ([7], Theorem 4.1):

f(A∗(L))− f(Ag(L))

f(A∗(L))− f({∅})

=
C (Ag(L) ∪ {y0})− C (A∗(L) ∪ {y0})

C ({y0})− C (A∗(L) ∪ {y0})
≤

(L− 2

L− 1

)L−1

≤
1

e
(9)
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