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Abstract—Side channels represent a broad class of security
vulnerabilities in practical systems. Because completely elimi-
nating side channels often leads to prohibitively high overhead,
there is a need for principled techniques that trade off cost
and leakage. Maximal leakage (MaxL) has been introduced as
an operationally-interpretable leakage metric well-suited to side
channels. We study the optimal trade-off between MaxL and
expected costs. We demonstrate that for an important class
of cost functions, optimal protection can be achieved using a
combination of at most two deterministic schemes. We discuss
the implications of this result for practical implementation
and provide a fast heuristic algorithm for finding the best
deterministic mechanism, which has a bounded suboptimality
guarantee.

I. INTRODUCTION

Side channels represent a broad class of security vul-
nerabilities that have received significant attention from the
cybersecurity community, especially after the demonstration
of multiple side channel-based attacks [4], [10], [12]. Re-
cently, maximal leakage (MaxL) [3] was introduced as an
operationally-interpretable measure of the usefulness of a
side channel to an attacker. While quantifying the leakage
from side channels is clearly of great interest, it alone is not
sufficient for deployment in practical settings. We address
a critical question that naturally arises, once armed with a
metric such as MaxL. Namely, how can a security-minded
system designer devise a protection scheme that minimizes
MaxL, subject to a cost constraint (or vice versa)? Such trade-
offs are certainly of interest, and tuneable protection schemes
have already been studied to an extent for other leakage
metrics[13], [1]. While some early attempts at studying MaxL
in the context of cost-leakage analysis have been made [2],
[6], [5], here we address the problem of formulating MaxL-
based, tuneable protection schemes from the perspective of
a system designer.

MaxL, in its most basic form, assumes the existence of
three random variables in a side channel. Let U denote the
random variable representing the victim’s secret, X denote
some intermediate value visible within the system but not
to the adversary, and Y denote the value observed by the
adversary. U, X, and Y form a Markov Chain (denoted as
U—-X—-Y), soY and U are conditionally independent
given X. While continuous versions of MaxL exist, for the
purposes of this study we will assume that X and Y are
discrete random variables with finite alphabets X and ).
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Given these random variables, MaxL is defined as [3]:

LX=2Y) = U:Urri%g(iylog maxg P(U = 1) 0
and also has a more easily computed, equivalent form [3]:
Z(X —»Y)=log %r&agp(ylw) )
Yy

The focus of this paper is on the design of protection
schemes (i.e., a conditional distribution of Y given X) that
optimally trade off MaxL with cost. We assume the existence
of a cost matrix (subject to a broadly applicable structural
constraint that we will define later) that defines the one-time
cost associated with mapping any particular element of X
to any particular element of ), and consider the ensuing
expected cost under the given protection scheme.

Our contributions in this paper are to show that: 1) the
linear program (LP) that follows from the above is achieved
by nearly deterministic protection schemes, a fact that has
some useful implications for practical deployment, and 2) the
entire cost-leakage trade-off curve can be derived by solving
the LP at no more than min{|X|, | Y|} points, and 3) a greedy
heuristic exists for approximating these points. Due to space
constraints, we omit discussion of related leakage metrics,
but we point out that metrics such as mutual information
or differential privacy do not have these properties. A more
complete comparison with other metrics is available in the
extended version of the paper [11].

II. DEFINITIONS AND COST FUNCTIONS

In this section, we will define some necessary terms
and variables, as well as clarify the class of costs under
consideration.

Definition 1. (Basic Notation) For X and Y as previously
defined, with alphabet sizes |X| = M and |Y| = N, we
define the following:

o c(x,y) is the nonnegative (but not necessarily finite)
cost of mapping each x € X to each y € ). We refer to
this function as the cost function and the corresponding
matrix {czy} as the cost matrix.

o For any matrix A = {agy}

D uy P(T)e(T,Y)azy is the total cost of A.

o For any matrix A = {agy}, Z(A) = ), max, agy

is the exponentiated maximal leakage (or exp-leak, for

¢(A)
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short) of A. Note that minimizing over exp-leak is
equivalent to minimizing over maximal leakage.

o Any M x N transition matrix (rows sum to I, non-
negative entries) P = {py,}, such that p,,, = P(Y =
y|X = x) Vax,y and €(P) is finite, is called a
protection scheme.

Definition 2. (Specialized Terminology)

A protection scheme P is deterministic if all p,, equal
0 or 1. It is stochastic otherwise.

o The ordered pair (L,C) € R? is achieved by protection
scheme P if £ (P) < L and €(P) < C.

e The ordered pair (L,C') is achievable if there exists
protection scheme P such that (L,C) is achieved by
it.

o The set S is the set of all achievable (L,C) pairs.

e C*(L)=inf[C:(L,C) € S). We refer to C*(L) eval-
uated for all values of L as the trade-off curve and the
set of points Sy, = [(L,C) € S|C = C*(L)] as the
boundary of S.

e P is optimizing in S if €(P) = C*(ZL(P)) (i.e. if P
achieves a point on the boundary of S).

o The set Sy is the set of all points in S that can be
achieved by a deterministic protection scheme.

e The ordered pair (L,C) is achievable in Sy if there
exists a deterministic protection scheme P that achieves
(L,C).

o« C5(L)=inf[C:(L,C) € Sy

o P is optimizing in Sy if €(P) = C}(Z(P)). Note
that a P that is optimizing in Sg is not necessarily a
deterministic protection scheme.

Finally, we discuss the aforementioned constraints on the
cost matrix that we will work with in this study:

Definition 3. (Staircase nondecreasing cost functions)
For |X| =M and |Y| = N, let X = {x1,22,...x7 } and

Y ={vy1,v2,...yn}. We refer to a cost function/matrix that

satisfies the following constraints as staircase nondecreasing:

) For 0 < i< j < Mandalvyel),if cle;,y) =
o0, then c(xj,y) = oo. (i.e. if one matrix element is
infinite, then that column is infinite all the way down).

2) ForO0<i<j<Nandal x € X, if c(x,y;) < 0,
then c(x,y;) < c(x,y;) < co. (Le. excluding infinities,
each row of the matrix is nondecreasing from left to
right).

Note that staircase nondecreasing cost matrices are exem-
plified by upper triangular cost matrices with ordered cost
entries for each row, a special case that is typical of most
power and timing side channels due to causality constraints.

III. MAIN RESULT

We consider the minimization of total cost subject to an
MaxL constraint, written as the following LP using standard
techniques (let ¢, denote the column maxima)

C*(L) = min €(P) st » ¢, <L, > psy=1Va,
Y Y

Pzy,qy
Pay 2 0, Pay < qy, V 2,y
3)

Remark. C*(L) is a convex function of L. The proof follows
from standard arguments.

Theorem 1. (Main Theorem)
If c(z,y) is staircase nondecreasing, then

min €+a? Va>0
,Sf,%)esd

2) For all L > 1, (L,C*(L)) can be achieved by
P = APy + (1 — NPy for some A € [0,1] and
some deterministic protection schemes P1 and Ps, such
that Z(P) < L and C*(L) < XC(Z(P1)) + (1 —
NC(ZL(Py)).

The proof proceeds as follows. First, for any protection
scheme, we will define its water-filled form and show that
for any staircase nondecreasing cost function, an optimizing
protection scheme’s water-filled form is also optimizing.
Second, we will show that any water-filled protection scheme
can be transformed in such a way that it progressively ap-
proaches a deterministic protection scheme while remaining
optimizing. The first part of the theorem will follow by
iteratively applying this transformation on an optimizing
protection scheme a finite number of times. The second part
of the theorem will follows using standard convex analysis.

1) min €+a% =
(&£, 6)eS

A. Proof of Theorem 1.1

Lemma 2. (Water-Filling Lemma)
Consider any protection scheme P. Define a 1 x N vector
P = [p1,D2,...pN] Such that p; = maXzcx Dyy, (i€, D
consists of the column maxima of P). Using p alone, we
construct a new protection scheme P’ as follows:
1) Start with a M x N zero matrix P’ = {p/,, }.
2) For each row x € X, iterate over each y;, 1 =
1,2,...N.
o IfC(;L',yZ) =09, let p/my1 =0
o Else, set p, = min{p;, 1 — Z;;ll Doy, -
In plain terms, we are constructing P’ by maintaining the
column maxima of P and “filling” in probability mass in
each row from left to right. We call P’ the water-filled form
of P. Also, if P and P’ are identical, we say that P is a
water-filled protection scheme.
Then, if the cost function satisfies definition 3, all optimiz-
ing P can be converted into water-filled form P’ such that

¢(P) = €(P’) and L (P) = L (P’).

Proof of Lemma 2. Suppose we are given optimizing P and
its water-filled form P’. By its construction, .Z(P) > .Z(P’)
since we did not increase the total sum of column maxima.
In addition, since we independently fill up each row’s entries
in P’ from least cost to greatest cost, €(P) > ¥(P’) for
any cost function that is staircase nondecreasing. It then
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follows that: . Z(P) < Z(P’) and € (P) < ¥(P’), since
P is optimizing so € (P) + a.Z(P) < € (P’) + a.Z(P’).
Therefore, € (P) = €' (P’) and £ (P) = Z(P’). O

For the rest of the proof of Theorem 1.1, for any optimizing
P, we assume it is already in water-filled form, since we have
already shown that doing so does not unnecessarily restrict
our space of optimizing solutions.

Now, we would like to show that there exists a special
choice of Q such that € (P + Q) + a.Z (P + 6Q):

1) is linear over some well-defined interval of & values

around O (linearity)

2) does not vary with ¢ for any fixed « (no improvement

with §)

3) results in protection scheme P + 0Q being strictly

“more deterministic” (to be defined shortly) than P for
a particular choice of § (more deterministic)
as doing so will allow us to transform P into an optimiz-
ing deterministic protection scheme by iteratively choosing
different Q’s and applying the above transformation.

Definition 4. (Types of Matrix Entries)
For the sake of discourse, we will define the following types
of matrix entries in any protection scheme:

e An entry is fractional if it is not equal to 0 or 1, and
integral otherwise. Similarly, a column is fractional if
its maximum entry is fractional and integral otherwise.

o An entry is maxed out if it is equal to the maximum
value in its column, and hanging otherwise.

Note that it is true by construction that a water-filled
protection scheme will have at most one hanging mass entry
and at least one maxed out entry in each row. Moreover, if
a row has a hanging mass entry, there do not exist other
non-zero entries further to the right of that entry.

Definition 5. (Measure of Randomness)

R(P) = (# fractional columns in P) + (# hanging entries
in P)

Note that R(P) = 0 if and only if P is a deterministic
protection scheme. R(P) should be thought of as a measure
of how stochastic a protection scheme is.

We first propose a particular choice of Q and 0.

Definition 6. (Q-Generation Procedure)

Given any water-filled protection scheme P with at least
one fractional entry, we now give a procedure to generate a Q
matrix. Note that any such protection scheme must also have
at least one fractional column or else it would contradict the
water-filled property.

1) Start with an M x N zero matrix Q that we will

populate with values.
2) Denote the leftmost fractional column index in P as y.
Further denote the current “sign” to “+”.

3) In the yth column of Q, if the sign is “+”, assign the
value 1 to all entries in that column that are maxed out
in P. If the sign is “-”, assign the value —1 instead.

”»” «

4) If the current sign is “+ , and vice
versa.

5) Consider the set of rows that are maxed out in the yth
column of P. Do all of these rows either have hanging
mass in P or already have 2 non-zero entries in Q? If
so, go to step 9; otherwise proceed to step 6.

6) Again consider the set of rows that are maxed out in
the y*" column of P. Choose the topmost row from this
set that does not have hanging mass in P and has only
1 non-zero entry in Q. Denote the row index of that
entry as x.

7) Set y to be the column index of the rightmost, maxed
out entry of the xth row in the P matrix. Note that y
must correspond to a fractional column here.

8) Go to step 3.

9) If any rows in Q have hanging mass and an odd number
of non-zero entries, assign either 1 or —1, so that each
of these rows sum to 0, to the hanging mass entries of
these rows.

, change it to

Lemma 3. (Q-Generation Properties) The procedure spec-
ified by definition 6 satisfies the following:
1) The procedure terminates.
2) All of the rows in the generated Q matrix sum to 0 (so
that P 4 0Q is a protection scheme).
3) P+ 00 is a water-filled protection scheme

Proof of Lemma 3.1. Since we never choose columns that
are not fractional, any row selected in step 6 must have
a maxed out entry (because we also ignore rows with
fractional entries) somewhere to the right of the current y
column. Certainly, this procedure must terminate if the y
value ever reaches the right-most column (and the process
may terminate earlier than that due to step 5). O

Proof of Lemma 3.2. Since we only assign 1 and —1 to
entries of Q in alternation, this is the same as saying that
each row must contain an even number of non-zero entries.
We see that this is true by noting that there are three types
of rows, differentiated by how their non-zero entries in Q (if
any) are assigned during the Q-generating procedure.

If a row has hanging mass in P, then step 9 will necessarily
adjust that row to have an even number of non-zero entries
by construction. In addition, we never assign mass to hanging
mass entries until step 9, when the procedure terminates,
which means that all hanging mass entries are free for us
to use at that point. So, rows that have hanging mass in P
will be valid rows in Q.

If a row has no hanging mass in P, then there are two
cases, depending on whether that row was ever used in step
6 to determine the next y value (we will refer to such a row
as “critical”). Note that, due to steps 5 and 6 filtering out
rows that already have 2 non-zero entries, no row will ever
be used in step 6 twice (i.e. a row will be a critical row at
most once).

If the row is critical, it must be the topmost one that had
only one non-zero entry in Q at that point of the procedure in

Authorized licensed use limited to: Cornell University Library. Downloaded on June 04,2021 at 16:44:26 UTC from IEEE Xplore. Restrictions apply.



IEEE WPS 2020 -

the previous yth column. Step 7 guarantees that the only other
non-zero entry in this row will correspond to its rightmost
non-zero entry in P. So this row will have exactly 2 non-zero
entries in Q, making it valid.

If the row is not critical, it must either be located below
one that is or not have any non-zero entries in Q at all. The
latter case results in a trivially valid row. In the former case,
the row must have at least two non-zero entries in columns
shared with the previous critical row, or else it would violate
our assumptions that P is water-filled and the cost function is
staircase nondecreasing. In addition, since P is water-filled,
each row is majorized by all rows above it (i.e. the cumulative
left-to-right sum of the upper row is no less than that of the
lower row for every column). This implies that a non-critical
row cannot have more than 2 non-zero entries either. O

Proof of Lemma 3.3. We observe that due to step 3, we only
ever change all of the maxed out entries in a column together.
So, for small §, P + §Q will remain water-filled. O

At this point, we will show that € (P+JQ) +a.Z (P+0Q)
has the aforementioned properties of linearity, no improve-
ment with §, and is more deterministic.

Definition 7. (Stopping Conditions)

Let §; = sup[d > 0 : P+ 6Q is stochastic and P and
P + 5Q are maxed out for the same entries and fractional
for the same entries]

and 6_ = inf[6 < 0 : P+ 0Q is stochastic and P and
P + 6Q are maxed out for the same entries and fractional
for the same entries]

Note that, by definition §+ > 0 and 6_ < 0.

Lemma 4. (Linearity Lemma)

If P is water-filled for fixed o and Q is generated according
to definition 6, then € + o evaluated with P+ 6Q is linear
with respect to § € [0_,04].

Proof of Lemma 4. For §_ < 6 < §4 and fixed a,

E(P+ Q)+ aZ(P+6Q)

=22l
= ZZP

where z(y) = arg max py,.

Since €' (P + 0Q) it aZ (P +6Q) is linear over (0_,0d4)
and continuous over [d_,d], it is linear over [0_,d;]. O

m y pwy + 5wa + aZmaX Pzy + aqu)
Yy

'I 7/ pacy + 5‘]Ty + az Px(y)y + O‘Qm(y)y)
Yy

Lemma 5. (No Improvement Lemma)

If P minimizes € + o.£ over S for fixed « and is water-
filled and Q is generated according to definition 6, then
Z(C+afl)=0at §=0.

Proof of Lemma 5. 1If 6%(‘5 + a?) # 0, then that implies
that P+ 0Q performs strictly better for some § close to zero,
which is a contradiction. O
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Lemma 6. (More Deterministic Lemma)

If P is water-filled for fixed o and Q is generated according
to Definition 6, then R(P + 5Q) < R(P) for both § = §_ or
0 = 04 as defined by Definition 7.

Proof of Lemma 6. As § increases from 0 to §,, some
fractional entries of P + 6Q change, and none of the in-
tegral entries change. In addition, if one maxed out entry
changes, all of the maxed out entries in that column change
together. It thus follows that the set of fractional columns
can only decrease with § and that the set of hanging entries
likewise can only decrease. So R(P) is nonincreasing in ¢
for § € [0,04]. From the definition of d in Definition 7,
R(P+46:Q) < R(P).

Similarly, we can show that R(P + 6_Q) < R(P). O

Proof of Theorem 1.1. Any P that minimizes € + o.% for
some « can be chosen to be optimizing and water-filled as
per Lemma 2. If P is not a deterministic protection scheme,
we can select Q as in Definition 6 with the properties shown
in Lemma 3.

By Lemmas 4, 5, 6, we know €' (P+0Q) + a.Z (P + 6Q)
is constant over [d_, 0] and R(P + 0Q) < R(P).

If P+4Q is not deterministic, then we can repeat the above
process since it is still water-filled and minimizes € + o.Z
for the same .

Eventually, after repeating this process some finite number
of times, R(P) will be O (since the function we defined is
always nonnegative), and therefore deterministic. O

B. Proof of Theorem 1.2

Theorem 1.2. Using standard convex analysis (e.g. [8], chap-
ter 12), Theorem 1.1 implies that that C*(L) and C}(L)
have the same lower semi-continuous hull (or the closure, as
defined by [8] chapter 7), which is equivalent to our definition
of the boundary of S. We can see this fact as follows:

First, we note that the left and right hand sides of the
equality in Theorem 1.1 are the conjugate functions of C*(L)
and C (L), respectively. We have shown that the conjugates
are equal for any o.

Second, since C*(L) is a convex function of L, the
conjugate of the conjugate of C*(L) is equal to the closure
of C*(L) ([8], Corollary 13.1.1).

Third, while C%(L) is not a convex function, its conjugate
is the same as the conjugate of the closure of its convex hull.
Therefore, the conjugate of its conjugate must be equal to the
closure of its convex hull.

Thus, we have shown that the convex hulls of S and S are
the same, since the two sets are the epigraphs of (all points in
R? on or above the curves defined by) the functions C*(L)
and C(L), respectively.

From this fact, it trivially follows that any (L, C') pair on
the boundary of S must also lie on the convex hull of S, and
therefore on the convex hull of S,.

Finally, as previously noted, C7(L) is a descending
staircase-like function for L € [1,00]. So, the convex hull
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of Sy is given by the largest convex linear interpolation of
the outer corner points of Cj(L) (for example, see figure)
Therefore, any (L,C) pair on the boundary of S is
achievable by a convex combination of no more than two
deterministic protection schemes. O

C. Discussion of Theorem 1

There are three practical implications of the main theorem.

First, any deterministic protection scheme can be com-
pressed to an NV x 2 (or smaller) look-up table, in contrast to
the NV x M table required for general stochastic schemes.
Deterministic schemes also naturally do not require the
generation of randomness. If a mixture of two deterministic
schemes is needed, one may implement a pre-determined
schedule alternating between the two deterministic schemes.
In addition, deterministic schemes are resistant to averaging
attacks, where the adversary attempts to learn additional
information by gathering statistics of Y, since the same X
value always maps the the same Y value.

Note that mechanisms designed to minimize mutual infor-
mation tend to be highly stochastic. As an example, consider
the alphabets X = {1, z2, 3,24} and Y = {y1,y2, Y3, Ya},
the marginal distribution of X, p(x) = [0.4,0.2,0.2,0.2], and
the cost function

C =

B = w
— N QO

2

1
00
00

888~

the MaxL-optimal and
cost are given by:

MI-optimal solutions for 0.5 units of

(25 75 0 0
. 0 1 0 0
Pur=109 o o0 1
|0 0 0 1
[.5235 .3031 0.1233  0.0502
pro | 0 4890 3120 .1990
MI— 1 0 6105 .3895
| 0 0 0 1

Second, the proof of the main theorem provides an al-
gorithm by which one may take any known optimizing
protection scheme and convert it to a deterministic form
that is also optimizing. This algorithm simply performs the
procedures specified in Definitions 2 and 6 recursively.

Third, if it is necessary to solve the entire optimal trade-
off curve (for example, if on-the-fly tuning of leakage is
expected), it is only necessary to solve for integer exp-leak
points and then connect the dots so that the overall curve is
convex.

IV. A HEURISTIC ALGORITHM

As we just noted, if the full trade-off curve and the
protection schemes are needed, then the entire curve can
be computed by solving the LP at only the integer exp-leak
points. Depending on the side channel, solving LPs for all

International Workshop on Privacy and Security for Information Systems

of these points may be resource intensive. In this section, we
present a fast heuristic with a bounded gap from optimality
that can be used to approximate these points.

A. Greedy Algorithm

Definition 8. For any nonempty set S C Y and cost matrix
{c(z,y)}, let Ps = {pyy} such that:

1 if y = minarg min c(z,y’)
y'eS

4)

Pzy =
0 otherwise

We refer to Ps as the deterministic protection scheme induced

by the subset S.
Definition 9. For any non-empty set S C ), let:

2(S) = Z(Ps) and €(S) = C(Ps) 5)

Definition 10. For a given staircase nondecreasing cost
matrix {c(x,y)}, we identify one (not necessarily unique)
Yo € Y such that:

yo = argmin ¢ ({y}) (6)
yeY

Define the subset Y' =Y — {yo}

Definition 11. For any set A C Y', we define the set
function:

f(A) = =C(AU{yo}) ©)

Definition 12. (Greedy Algorithm)

1) Start with A = {0}.

2) Choose y € V' — A such that f(AU{y}) is maximized
over all such choices of y. If Y' — A is empty or if
there does not exist such y that f(AU {y}) > f(A),
terminate this algorithm.

3) Set A=AU{y}.

4) Go to step 2.

B. Bounded Sub-optimality of the Greedy Algorithm

Using standard results in combinatorial optimization [7],
we can obtain bounds on how suboptimal the solutions
obtained from the greedy algorithm are. We will first prove
some basic facts about the set function f(.A) given in
Definition 11.

Lemma 7. f(A) is submodular.

Proof. For A,B C )’ such that AN B = {0},

fAUB) = *;{%Aggg{yo}p(x)cmy)

=" Z yefful?yo} z)e(z,y) + ex“%?’/ }p(w)C(x,y)
- Z yeAﬁnéB{yo} p(@)c(z, y)

S el @9 = s @)

zeX

= f(A)+ D(A, B)
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Then, for A C )’ and b,c € Y\ A,

FAU{b}) + f(AU{c}) — fF(AU{b,c}) — f(A)

= D(A,{b}) + D(A, {c}) — D(A,{b,c})

= IGZ;(p(af)[y€ min | cle.y) = mn c(z,y)
B QEAISi{I;yO} C(x y) + yeAiﬁibI}CaUO} C(m, y)]

= p@)[C1—Cy—C3+C4] >0

zeX

since () is equal to C5 or C3 (or both), and C7 is no smaller
than either Cy or C5. Hence,

FAU{}) + f(AU{e}) > f(AU{b,c}) + f(A)
so f(A) is submodular ([9], Thm 44.1).

®)

O

Definition 13. For integer exp-leak bound L, let Ay(L) be
the set obtained by running the greedy algorithm unil | AU
{yo}| = L (for simplicity, assume the greedy algorithm does
not terminate prior to this point).

For integer exp-leak bound L, let A*(L) C Y’ be the true
optimal set such that f(A) is maximized subject to |A U

{vo}| < L.

Now, since f(.A) is submodular, we can bound the greedy
algorithm for all L > 2 as follows ([7], Theorem 4.1):

fA*(L)) = f(Aq(L))
f(A*(L)) — F({0})
G (Ag(L) U{yo}) —

¢ ({vo}) -

C(A(L) U {yo})
G (A*(L) U{yo})

<(m=)"

©))

INA
Q| =
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