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ABSTRACT From nutrient uptake to chemoreception to synaptic transmission, many systems in cell biology depend on mol-
ecules diffusing and binding to membrane receptors. Mathematical analysis of such systems often neglects the fact that recep-
tors process molecules at finite kinetic rates. A key example is the celebrated formula of Berg and Purcell for the rate that cell
surface receptors capture extracellular molecules. Indeed, this influential result is only valid if receptors transport molecules
through the cell wall at a rate much faster than molecules arrive at receptors. From a mathematical perspective, ignoring recep-
tor kinetics is convenient because it makes the diffusing molecules independent. In contrast, including receptor kinetics intro-
duces correlations between the diffusing molecules because, for example, bound receptors may be temporarily blocked from
binding additional molecules. In this work, we present a modeling framework for coupling bulk diffusion to surface receptors
with finite kinetic rates. The framework uses boundary homogenization to couple the diffusion equation to nonlinear ordinary dif-
ferential equations on the boundary. We use this framework to derive an explicit formula for the cellular uptake rate and show
that the analysis of Berg and Purcell significantly overestimates uptake in some typical biophysical scenarios. We confirm our
analysis by numerical simulations of a many-particle stochastic system.

SIGNIFICANCE Many systems in cell biology involve molecules diffusing and binding to membrane receptors. To
simplify analysis, mathematical models of these systems often assume that receptors can process molecules at infinite
kinetic rates. Including finite receptor kinetics is challenging because it means the diffusive molecules are no longer
noninteracting, as they affect each other through their interactions with receptors. In this work, we present a modeling
framework for coupling diffusion to surface receptors with finite kinetic rates. We use this framework to show that an
influential analysis of Berg and Purcell significantly overestimates the rate that a cell can capture extracellular molecules in
some typical biophysical scenarios.

INTRODUCTION In most instances, the receptors cannot bind molecules
continuously, but rather binding one or more molecules
temporarily hinders binding additional molecules (see
Fig. 1 for an illustration). This could be due simply to
mutual exclusion at the receptor (i.e., a receptor can only
bind one molecule at a time). Alternatively, this effect could
be due to the finite rate that a receptor can transport bound
molecules into the cell, as in the case of nutrient transport
(6,7). Similarly, the effect could stem from a finite receptor
internalization rate (8—10). In the case of synaptic transmis-
sion, a receptor that captures a molecule changes conforma-
tion, and during this time it cannot capture additional
molecules (5,11,12). That is, the receptor must wait a tran-

Many biological systems depend on molecules diffusing and
interacting with membrane receptors. For example, cellular
nutrient uptake relies on cell surface receptors binding and
transporting diffusing molecules into the cell (1). Chemore-
ception and chemotaxis similarly depend on cell surface
receptors binding extracellular diffusing molecules (2).
An important part of the immune response involves anti-
bodies binding to epitopes on the surface of a virion (3,4).
In addition, synaptic transmission requires neurotransmitter
molecules released from one neuron to diffuse across
the synaptic cleft and bind to receptors on the adjacent

neuron (3). sitory “recharge” time after the capture of any molecule

before additional captures. A similar recharge time affects
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“receptor”) must wait after capturing a prey (the “mole-
cule”) before it can hunt again.

The common feature of these examples is that the recep-
tors process molecules at finite kinetic rates. Mathematical
models often neglect receptor kinetics, which greatly sim-
plifies the analysis because it allows the diffusing mole-
cules to be independent. Including receptor kinetics
makes the diffusing molecules dependent, as the molecules
may affect each other through their interactions with the re-
ceptors. For example, if one molecule binds to a receptor,
then additional molecules may be temporarily blocked
from that receptor.

An important example of mathematical analysis that ne-
glects receptor kinetics is the formula of Berg and Purcell
for the rate that cell surface receptors capture extracellular
molecules (2). Assuming that the receptors occupy a small
fraction of the cell surface, they found that the uptake rate is

N
A 1)

Jop 1 = ———
o eN+7

where ¢ is the ratio of the receptor radius to the cell radius,
N > 1 is the number of receptors, and J,,,x is the uptake rate
if the entire surface is covered by perfectly absorbing recep-
tors (2). In particular, Jy,,x is (14)

Jmax = 4wDRuy, 2)

where R is the cell radius, D is the diffusivity of extracellular
molecules, and uy is the concentration of extracellular
molecules.

Berg and Purcell’s formula in Eq. 1 has been very influen-
tial. Indeed, many works have sought to refine Eq. 1 to incor-
porate the effects of other details in the problem. For
example, Zwanzig used an effective medium formalism to
account for the effects of interference between receptors
(15). Other works have modified Eq. 1 to include other ef-
fects, including receptor arrangement, cell membrane curva-
ture, and receptor motion (16-26). In one particularly
important study, Wagner et al. (27) extended Eq. 1 to
nonspherical geometries and used this analysis to argue that
the cylindrical morphology of cell envelope extensions serves
to increase nutrient uptake.

To derive Eq. 1, Berg and Purcell (2) assumed that any
molecule that touches a receptor “is immediately (or within
a time short compared to the interval between arrivals)
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FIGURE 1 (a) The blue and black molecules
compete to bind to a surface receptor. (b) The
blue molecule binds to a receptor. The black mole-
cule is then temporarily blocked from binding to
that receptor. (c) After some time, the blue mole-
cule is absorbed by the receptor, and that receptor
is free to bind the black molecule. To see this figure
in color, go online.

captured and transported through the cell wall, clearing
the site for its next catch.”

This assumption makes the diffusing molecules indepen-
dent. However, it is clear that this assumption is violated
at sufficiently high extracellular concentrations.

In this work, we present a modeling framework for
coupling bulk diffusion of molecular species to surface re-
ceptors with finite kinetics. Mathematically, this framework
uses boundary homogenization to link the diffusion equa-
tion (a partial differential equation (PDE)) to boundary con-
ditions described by nonlinear ordinary differential
equations (ODEs). We then reduce this PDE-ODE system
to a PDE with a nonlinear boundary condition of Michae-
lis-Menten type. We confirm the predictions of this frame-
work and analysis with detailed numerical simulations of
a full, many-particle stochastic system. Although the gen-
eral framework can be applied in a variety of problems
and geometries, we develop the theory primarily in the
context of the Berg-Purcell problem described above. We
derive an explicit formula for the cellular uptake rate as a
function of the various parameters in the problem, including
the kinetic rates of receptors. We show that the classical
result in Eq. 1 significantly overestimates uptake in some
typical biophysical scenarios.

The rest of the study is organized as follows. We first re-
derive the classical result in Eq. 1, and then we present the
PDE-ODE framework and derive a reduced Michaelis-
Menten boundary condition. Next, we use the modeling
framework to find explicit formulas for various steady-state
quantities, including cellular uptake and the fraction of
bound receptors. We then describe our numerical methods
and verify the predictions of the modeling framework by
stochastic simulations. Finally, we explore some biophysi-
cal implications of our results in typical parameter regimes
of interest. We conclude by discussing related work and
highlighting future directions.

METHODS
Berg-Purcell and boundary homogenization

We begin by reviewing the model of Berg and Purcell (2) and boundary ho-
mogenization (17,19,23,28-30). Consider a spherical cell in a large me-
dium containing spherical molecules of some substrate. Fixing our



reference frame on the cell, the substrate concentration, u = u(r, 6, ¢, 1),
satisfies the diffusion equation in spherical coordinates (r, 6, @),

0
a—tu = DAu,

where D > 0 is the substrate diffusivity and R > 0 is the cell radius. The
concentration is held constant far from the cell,

r>R, 3)

limu = ug>0. )
r— o
The cell has N >> 1 surface receptors for the substrate. The receptors are
roughly evenly distributed on the cell surface, and each receptor is a small
circular patch of radius eR with ¢ << 1. Substrate molecules can be ab-
sorbed by receptors and otherwise reflect from the cell surface. We thus
have mixed boundary conditions at r = R,

ad D
DE” = glreclly I' = R, and (6, ¢) in a receptor,
a .
EC =0, r =R, and (6, ¢) not in a receptor,
,
&)
where

Krec€ (0, 0 )U {0}, (©)

is a dimensionless parameter describing the rate that a receptor binds a sub-
strate molecule. Berg and Purcell took k. = %, which means that a sub-
strate is immediately absorbed upon contact with a receptor (2). If ke = %,
then the first boundary condition in Eq. 5 means u = 0.

The method of boundary homogenization replaces the heterogeneous
boundary conditions in Eq. 5 by a homogeneous boundary condition of
the form

D a
ol TR
for some dimensionless trapping rate « > 0. The trapping rate « is chosen to
encapsulate the effective binding properties of the heterogeneous surface in
Eq. 5. Notice that k << 1 corresponds to a surface that is mostly reflecting,
whereas k >> 1 corresponds to a surface that is mostly absorbing. The benefit
of boundary homogenization is that it makes the substrate concentration u =
u(r, t) depend only on the radius » > R and time ¢ > 0 and not on the angular
variables (6, ¢) (assuming the initial condition is independent of (6, ¢)).
The idea behind boundary homogenization is that because of diffusion in
the angular variables, the surface heterogeneity only affects the substrate
concentration near the surface. In particular, the concentration is constant
in the angular variables outside a boundary layer, where the width of this
layer depends on the length scale of the surface heterogeneity. Many sophis-
ticated methods have been developed to choose the trapping rate « in Eq. 7
to incorporate the number, size, and arrangement of receptors (17-26). If
the receptors occupy a small fraction of the cell surface, then the trapping
rate is linear in the number of receptors N and is given by (16,19,28)

N 4\
k= 6(1 + ) , @®)
T EMKree

where 1/kee = 0 if Kpee = .

r=R @)

It is straightforward to solve Eqs. 3 and 4 and Eq. 7 at steady state to
obtain the large-time substrate flux into the cell by integrating over the sur-
face of the sphere of radius R > 0 (2),

t—

r=R

Berg-Purcell for finite kinetics

where J,.« is in Eq. 2 and is the flux in the case that the entire cell surface is
absorbing (14). If k. = o, then Eqs. 8 and 9 yield the Berg-Purcell (2) flux
formula in Eq. 1.

Including finite receptor kinetics

The model above assumes that receptors can continuously absorb sub-
strates. That is, it assumes that there is no limit to the rate that a receptor
can process substrate molecules. This modeling assumption is valid if re-
ceptors process molecules much faster than molecules tend to hit
receptors.
When is a system in this parameter regime? If we use the following char-
acteristic values (used in, for example (2)),
D = 10° um?s7!,

R =1pum, uy = 1uM,

then molecules arrive to the cell surface at rate (see Eq. 2)
Jmax = 7.5 x 10%s71.

If we use the following characteristic values (again, see Berg and Purcell
(2)) for the dimensionless receptor radius ¢ and the number of receptors N,

e=10"3 N = 10°,
then Eq. | implies that the arrival rate to a single receptor is
.Ib €
- Jox = 1.8 x 10°s7L (10)
N eN+7

Hence, in this parameter regime, the Berg-Purcell formula in Eq. |
gives a valid estimate of cellular uptake if a single receptor can transport
molecules through the cell wall at a rate much faster than Eq. 10. Howev-
er, the so-called turnover rates of membrane transporters are usually in the
range (31)

ke [3 x 10',3 x 10*] s7',
which is much slower than Eq. 10.
Receptors modeled by ODEs

To model membrane receptors with finite kinetics, we suppose that the sub-
strate molecules interact with the receptors via a classical substrate and
enzyme reaction scheme,

bk
S+EkiC£>P+E. (1)
b

Here, k, > 0, k, > 0, and k. > 0 denote, respectively, the rates of
“association,” “breakup,” and “catalysis” (32). In this formalism,
freely diffusing extracellular substrates are represented by S, and the re-
ceptors play the role of the enzyme E. In particular, a substrate §
diffuses and binds to a receptor £ when it forms the complex C.
During this time, the receptor is unavailable to bind with another sub-
strate molecule until it “recharges” by either producing P or releasing
the substrate S. The product P could represent a substrate molecule
that was transported into the cell or a modified substrate molecule
that was released back into the extracellular bulk but can no longer
interact with receptors. Note that we allow for the possibility that
ky = 0 or k. = 0.

Mathematically, we replace the homogenized boundary condition in Eq.
7 at the cell surface by

D%u(R,t) = kie(t)u(R, 1) — kyc(t), (12)

where the free receptor and bound receptor concentrations, e(f) and c(?),
satisfy the ODEs,
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Ee(t) = —ke(O)u(R,t) + (ky + ke )c(2),
a (3
$c(t) = kee()u(R,t) — (ky + ko )c(2).

Adding the equations in Eq. 13, we see that the total receptor concentra-
tion, given by the number of receptors per the surface area of the cell,

B N
"~ 4A7RY

is conserved. That is, e(f) = eg — c(t). Note that k, has dimension

(14)

[

k] = (length)’ (time) ",
whereas k, and k. are pure rates with dimension
ko] = [ke] = (time) .

Furthermore, if all of the receptors are free (i.e., c(f) = 0), we choose k,
so that Eq. 12 reduces to Eq. 7. In particular, we take

D
k=2 — 4DeR<1 +
€0R

-1
) >0. (15)

ETKec

Summarizing, the model consists of the following PDE with nonlinear
coupling to an ODE through a boundary condition,

d

—u = DAu, r>R, t>0,
ot

limu(r,t) = uo >0,

9 (16)
DEL{(R,I) = ky(eg — c(t))u(R,t) — kpe(2),
%c(t) = ky(eo — c())u(R,t) — (ky + ke)c ().

Michaelis-Menten boundary condition

Defining the dimensionless variables,

_ r i t _ u _ c
r = — = —= u = — cC = —
R R*/D’ o’ e’
Eq. 16 becomes
_6_ =Au, 7>1,7>0
- = AU, 1
at ) ) )

lim u(7,7) = 1,

T ®

aa,—ﬁ(l,i) = (1 =2(0)u(1,7) —xe (@),

0d -\ . — 2 Xb +Xc — N \N\=(7
S () =a(1n) - (Fera(1n))e@),  an
where « is in Eq. 8 and
N1 Ny Nk
- 47TR3 M07 Xb - = ]maxa Xc ' = Jmax. (18)

Hence, the solution to Eq. 16 depends on the four dimensionless param-
eters, K, 0, Xp, and Xe.
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Notice that the parameter § in Eq. 18 compares the volume concentrations of
receptors to substrates. The Briggs-Haldane analysis of Michaelis-Menten
enzyme Kinetics assumes that this parameter is small (33). In particular, if

6 < K, (19)
then we assume Eq. 17 is in quasi-steady state,

0=a(1,7) - (X a(17))e(0),

and thus,

u(1,7)

<) Tt Xe) [k +a(1,7)

In this parameter regime, the problem in Eq. 16 becomes

d

—u = DAu, r>R, t>0,

ot

lim I/l(l‘,[) = uy >0, (20)
ad Vu(R, 1)

D—u(Rt) = ———
ar (R,1) K +u(R,t)

where the maximal velocity and half-saturation constant in the boundary
condition are

__N L _ ke tk Nk +k)
47R2’ ' k, 47wDRk
21

That is, the ODE boundary condition in Eq. 16 is replaced by a Michae-
lis-Menten type boundary condition in Eq. 20.

Steady-state uptake and receptor occupation

At steady state, solving the full PDE-ODE system in Eq. 16 is equivalent to
solving the Michaelis-Menten system in Eq. 20. In either case, it is straight-
forward to obtain

ug(r) :

t— ®

= limu(r,t) = uo(l —a§),

F— - (—1=a
G i = lime(r) = ((xmc)/ma)eo’ (22)

where a is the dimensionless parameter,

1 + X FXe | )2
a= xc+u+1—\/<xc+u+1) — 4y,
2 K K

(23)

The fraction of receptors that are bound at steady state is cg/ep € (0, 1).
The steady-state total flux into the cell is

d
Joo = D/ auss dS = aJmax <Jop- (24)

r=R

The inequality in Eq. 24 is the desired result that the flux into the cell when
the receptors have finite kinetics is strictly less than the flux into the cell when
the receptors process molecules at infinite kinetic rates. To verify Eq. 24, note
first that the case x. = 0 is trivial because a = 0 if and only if . = 0. Next,
suppose X > 0. Note that Eq. 9 means Jyp = @pp/max Where app := k/(k + 1).
Hence, ay, satisfies



App = K(l —abp). 25)
On the other hand, the boundary condition at » = R implies that a satisfies
k(l—a

a = .
1+ Xb/Xc + (K/Xc)(l - a)
It is clear that the solution to Eq. 25 is larger than the solution to Eq. 26
because « and x. are strictly positive. Therefore,
K
ae (0 —) = (0,ay
) K+ 1 ( ’ P)’
which verifies Eq. 24.

In addition, fixing x and « and taking x. — o0 in Eq. 26 and comparing
to Eq. 25 shows that

J* = aJmax_)aprmax = pr as Yo . (27)

That is, J* reduces to Jy, if the receptor turnover rate k. is much faster
than J,,.,/N.

Other kinetic schemes and receptor internalization

The analysis above extends to more general kinetic schemes than the
standard substrate-enzyme reaction in Eq. 11. Indeed, alternative
kinetic schemes merely yield different systems of ODEs at the cell surface.

To illustrate, suppose that receptors transport substrate molecules by
endocytosis (i.e., receptor internalization), which is often seen in eukaryotic
cells (8-10). In this case, we replace Eq. 11 by

ka ke kg ke
S+HEZCHP, ESD, O5E
b

where k., and kg are the respective internalization rates for bound
receptors C and free receptors E, and k, is the rate that free receptors are
delivered to the membrane. In this case, the boundary condition at r = R
in Eq. 12 for the substrate flux is unchanged and the ODEs in Eq. 13 become

Le(r) = — kae(u(R, 1) + koc(r) — k2e() + ke,
%c(t) = kye(D)u(R, 1) — (ky + ke )c(2).

Numerical methods and simulations

To verify the predictions of the modeling framework developed above, we
perform numerical simulations of a stochastic, many-particle system. To
reduce computational cost, the stochastic simulations are performed in a cy-
lindrical spatial domain. We begin by extending the analysis above to this
spatial domain.

Cylindrical domain
Let the spatial domain Q be a cylinder of radius 2R, > 0 and height L > 0,
Q: ={(x,y,2)e R’ : x> +)* < 4R}, ze (0,L)}. (28)

Substrate molecules diffuse in Q with reflecting boundaries at the top
(z = L) and the sides (r := /x? + y2 = 2R,). Hence, the substrate concen-
tration u = u(x, y, z, t) satisfies

d
—u = DAu,

% (x,y,2)€Q, t>0,

d 0
—u=20, —u = 0,
or 0z

Analogous to the surface of the sphere in the model above, we assume
that the bottom of the cylinder (z = 0) is reflecting, except for N >> 1 small
circular receptors.

rZZRO; z = L.

Berg-Purcell for finite kinetics

If the receptors process substrates continuously, then the substrate con-
centration satisfies mixed boundary conditions at the bottom of the cylinder
(analogous to Eq. 5),

d
D—u = —«kpett;, z = 0, and (x,y) in a receptor,
0z R()
ad .
1= 0, z =0, and (x,y) not in a receptor,
VA

(29)

where k. is as in Eq. 6. If the N receptors are roughly evenly distributed
and have common radius eRy << Ry, then Eq. 29 can be replaced by

d
D—u=—«ku,
0z R()
where « is the same as in Eq. 8. Hence, the problem reduces to a one-dimen-
sional PDE for u = u(z, 1),

z =0, (30)

a
—u = DAu,

P 2€(0,L), t>0 31)

and

0
Zu=0
az” ’

with the boundary condition in Eq. 30 at z = 0.

z =L, (32)

As above, we can incorporate finite receptor kinetics by replacing the
boundary condition at z = 0 by a boundary condition that couples to an
ODE. Specifically,

D%M(Q 1) = ka(eo — c())u(0,7) — kye(t)  (33)

and

Se) = koo —el0)u(0,0) ~ (b +K)e(), 34

where c(1), e, ka, kv, and k. are as above (with R replaced by R, in Eqs. 14
and 15). Furthermore, in the parameter regime in Eq. 19, we can eliminate
Eq. 34 and replace Eq. 33 with a Michaelis-Menten type boundary condi-
tion with Vand K given in Eq. 21,

ad Vu(0, 1)

D—u(0,1) = K w0y 35)

0z

Stochastic simulation method

We now describe the stochastic simulation method. We use the standard
Euler-Maruyama method (34) for simulating the paths of many diffusing
substrate molecules in Q with reflecting boundary conditions on the
boundaries away from receptors. If a molecule hits a “free” receptor,
then that molecule immediately binds to the receptor (corresponding to
Kree = % in Eq. 6). If a receptor has a molecule bound to it, then that re-
ceptor is considered “occupied,” and any other molecule that hits it simply
reflects. We take k,, = 0, and thus, a bound molecule is removed from the
system after an exponentially distributed time with rate k. > 0. When a
bound molecule is removed from the system, the corresponding receptor
changes from “occupied” back to “free” and can thus bind additional
molecules.

All stochastic simulations were written in a combination of C and
MATLAB (The MathWorks, Natick, MA (35)). The simulations were
completed in the cylinder in Eq. 28 with height L = 1 um and radius
2Rp = 0.1 um, with N = 500 receptors of common radius 0.001 pum
placed uniformly at random (nonoverlapping) along the disk centered
at z = 0. We take D = 10° um? s~ and k. € {10, 10% 10°, 10*} s~
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Each trial began with all receptors “free” and 10* particles placed in
the domain according to a normal distribution with mean (xo, yo, 20) =
(0, 0, 0.9) um and standard deviation 0.01 um in each direction.
For each value of k., 10 trials were completed with a discrete
time step of 10™° s. Additional trials and smaller time steps were tested
on a subset of simulations and did not yield significant quantitative
changes.

PDE numerical solution method

We numerically solve the PDE-ODE system (Eqs. 31, 32, 33, and 34) and
the PDE with a Michaelis-Menten boundary condition (Eqs. 31, 32, and 35)
with the method of lines (36). Essentially, this method approximates the
PDE with a large system of ODEs by replacing spatial derivatives with
finite differences. The method is fairly standard, but the nonstandard bound-
ary conditions must be handled carefully.

‘We now give the details of the method. We approximate u(z, 1) atn >> 1
off-center grid points,

1
5 = <j+§>Az, forj =0,1,...n—1,  (36)

where Az = L/n << L, and denote the approximation by u;(t) = u(z;, t).
Replacing the Laplacian in Eq. 31 by a finite difference, u;(?) satisfies the
ODE,

d U .
—U; :D(uj ! u]jujﬂ), for
dt (Az)

i=01,...n—1. (37

Notice that the equations for 4u, and 4u,_; in Eq. 37 involve u_;
and u,, which are not yet defined. To ameliorate this issue, we make

use of so-called ghost points, z_; = —%Az and z, = (n + %) Az,

and solve for u_; and u, using the boundary conditions. Specifically,
we approximate the boundary condition at z = L in Eq. 32 with a
finite difference,

U, — U,
T . (38)
Az
Hence, Eq. 38 implies u,, = u,, _ 1, which we then use to solve Eq. 37 when

j=n-—1.
In the case of the PDE-ODE system, we approximate the boundary con-
dition at z = 0 in Eq. 33 by

D(MO%M) = ka(eo—c(’»(%

where we have replaced u(0, 1) with (uo + u_1)/2. We then solve Eq. 39 for
u_ and use this in Eq. 37 when j = 0. In addition to the n ODEs in Eq. 37,
we also have the ODE for c(f), which is obtained from Eq. 34 upon replac-
ing u(0, 1) by (4o + u_)/2.

In the case of the Michaelis-Menten boundary condition, we approximate
Eq. 35 by

) (), (39)

(I/l()—bl,l) o V(uo—|—u,1)/2

D = .
AZ K+(M0+M_1)/2

(40)

We then solve Eq. 40 for u_; > 0 and use this in Eq. 37 when j = 0.

Summarizing, the PDE-ODE system is approximated by n + 1 ODEs,
and the PDE with a Michaelis-Menten boundary condition is approximated
by n ODEs. In either case, the ODEs are solved using the ode15s function in
MATLARB (35) with n = 10* spatial grid points.

Code availability

Code for reproducing the stochastic and PDE numerical simulations is
available on the GitHub database (https://github.com/gregoryhandy).
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FIGURE 2 Comparison of stochastic simulations (squares and triangles)
to the deterministic PDE-ODE system (solid and dotted curves) for the cy-
lindrical domain for different values of the receptor turnover rate k.. The
insets zoom in at early times. See the text for details. To see this figure in
color, go online.

RESULTS AND DISCUSSION
Analysis confirmed by stochastic simulations

In Fig. 2, we plot the results of stochastic simulations
(squares and triangles) and the solution to the deterministic
PDE-ODE system (solid and dotted curves) for the cylindri-
cal spatial domain in Eq. 28 for various choices of the recep-
tor turnover rate k.. Specifically, we plot the number of
diffusing molecules remaining in the domain (molecules
which are unbound and have not been absorbed) as a func-
tion of time. This plot shows that the PDE-ODE system
accurately describes the dynamics of the full stochastic sys-
tem involving many interacting particles.

Notice in Fig. 2 that at early times (¢ < 0.2 ms), the num-
ber of remaining molecules rapidly drops from 10,000 to
9500, which corresponds to 500 molecules quickly binding
the N = 500 receptors. This initial rapid decrease is seen in
both the PDE-ODE solution and the stochastic simulations,
which is evident from the insets in Fig. 2, which zoom in at
early times. Then as time increases, the number of



remaining molecules decreases linearly with a slope of Nk,
which is readily seen in Fig. 2 for both the PDE-ODE solu-
tion and the stochastic simulations.

The PDE solution with a Michaelis-Menten boundary
condition also produces the desired linear decay with slope
Nk., but it does not exhibit the initial rapid decay of N mol-
ecules binding to the N receptors (plot not shown). This is
not surprising because the Michaelis-Menten boundary con-
dition was derived assuming that there are many more
diffusing molecules than receptors per some characteristic
volume. Indeed, in such a parameter regime, the size of
the initial drop in the number of molecules (namely the
number of receptors, N) would be small compared to the
number of molecules and would thus be negligible.

To reduce computational expense, the simulations were
performed in a bounded, cylindrical spatial domain rather
the unbounded domain exterior to a sphere in Eq. 3. Howev-
er, we expect that the agreement between stochastic simula-
tions and the PDE-ODE framework seen here extends to
more general geometries, including the unbounded spher-
ical geometry of Eq. 3. In fact, the cylindrical domain in
Eq. 28 can model a cylindrical region of height L = 1 um
and radius 2Ry, = 0.1 um directly above a cell, where the
base of the cylinder represents a flat patch of cell membrane
with many receptors. In particular, for cells of radius R >
1um, the membrane curvature is negligible at the base of
a cylinder of radius 2Ry = 0.1 um.

Parameter ranges

Before discussing some biophysical implications of our
analysis, we briefly discuss parameter values. We do not
seek precise values for any one specific application, but
rather, we choose ranges and orders of magnitude that are
relevant across multiple systems. Unless otherwise noted,
the following “default” parameter values are used in the fig-
ures and calculations below. The parameters are summa-
rized in Table 1.

Cell radii range from roughly 0.35 um for a small bacte-
rium to 15 um for a large mammalian cell (31). We set the
default radius to be R = 1 um, which is consistent with a
bacterial cell or a small eukaryotic cell. We set the default

TABLE 1 Summary of parameter values and ranges

Parameter Default value Range of interest
D (molecule diffusivity) 10 um? 57! (107, 10%] um? s~!
R (cell radius) 1 um [0.35, 15] um

€ (receptor/cell radius ratio) 1073

N (number of receptors) 10° [10%, 10°]

Krec (receptor trapping rate) o0

uo (extracellular concentration) 1 uM [1 nM, 1 mM]
k. (receptor turnover rate) 10% 7! [10', 10° s7!
ky, (receptor unbinding rate) 0 [0, 10*] s~

Unless otherwise noted, the “default” values are used in the figures and cal-
culations. See the text for details.
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diffusion coefficient to be D = 10° um?* s ™', which is the or-
der of magnitude relevant for glucose uptake by an Escher-
ichia coli cell or a yeast cell (37-40) and chemotaxis by
bacterial cells and slime mold (2). Following (2,27), we
take the radius of each receptor to be eR = 1 nm and
Kree = %, which means ¢ = 107> and k = eN/x. The number
of receptors N on a cell can vary greatly (4,41,42), and we
take N = 10° as the default value. Extracellular concentra-
tions of interest also vary considerably. For example, a char-
acteristic value in (2) is ug = 1 uM, the nutrient uptake study
(27) considers ug = 100 uM, and other nutrient uptake
studies involve uy on the order of 10° uM or greater
(37,38,40). We follow (2) and take uy = 1 uM as the default
value.

Finally, the kinetic rate parameters k,, and k. can also vary
considerably. The typical turnover rate for sugar trans-
porters is k. = 10% s, with a range of k. € [3 X 10t s,
3 x 10% s~ '], though chloride-bicarbonate transporters can
reach speeds on the order of k. = 10° s7! (31). We take
k. = 10% s~ ! as the default value. Breakup rates k;, have
been estimated on the order of 107* s7! (8), 1073 ¢!
(8,43), 1 s7! (43), and 10* s™' (2). Because most values
satisfy k, << k¢, we take k, = O as the default value for
simplicity.

Receptor kinetics can dominate uptake

In this subsection, we use our uptake formula (J* in Eqgs. 23
and 24) to show that finite receptor kinetics play a dominant
role in cellular uptake in some typical biophysical scenarios.
In Fig. 3 a, we plot the ratio J*/J,.x as a function of the
number of receptors N for different values of the receptor
turnover rate k.. Note that J* reduces to the Berg-Purcell
flux, Jyp, if k. is infinite (see Eq. 27). This figure shows
that J* is much less than Jy, for typical values of the recep-
tor turnover rate k.. For example, if k. = 10% s~ ! and the rest
of the parameters are the default values in Table 1, then
4 =0.05. (41)
Jop

The reason for the significant discrepancy in Eq. 41 is that
a large fraction of molecules that hit a receptor are blocked
from binding because that receptor is occupied by another
molecule (this is incorporated into J* but ignored by Jy,,).
Indeed, at these default parameter values, Eq. 22 implies
that more than 95% of the surface receptors are bound to
a molecule at any given time. Hence, any molecule that
manages to hit a receptor has less than a 5% chance of bind-
ing upon first contact with that receptor.

It is also evident from Fig. 3 a that Jy,, saturates at much
smaller values of N compared with J*. For example,
increasing the receptor number from N = 10* to N = 10° in-
creases Jy,, by a mere 27%, whereas this increase in the recep-
tor number increases J* by more than 600% if k. = 10* s~ .
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FIGURE 3 (a) Cellular uptake as a function of the number of cell surface
receptors for different turnover rates k.. (b) Number of receptors needed so
that J* = Jy,, (N* in Eq. 42) on the left axis as a function of k.. The right axis
gives the corresponding fraction of the cell surface covered by receptors (f
in Eq. 44). See Table 1 for parameter values. To see this figure in color,
go online.

This is because in the calculation of Jy,, increasing the
number of receptors merely increases the likelihood that a
single molecule hits a receptor rather than escaping to
spatial infinity. In contrast, if we include finite receptor ki-
netics, then increasing the number of receptors also increases
the number of molecules that can be bound to the cell at any
one time.

To further investigate this point, in Fig. 3 b we plot on the
left axis the number of receptors, N*, required for J* to
reach one-half of /.« as a function of k.. That is, we plot

_ ™ J max ﬂ'kb
e 2k k.

N, : (42)

where the formula in Eq. 42 was found by setting J* = J;,.x/2
and solving for N. The corresponding number of receptors
required for the Berg-Purcell flux, Jy,p,, to reach Jy,,,/2 is
kli_rg N, =1L 43)

Using Eqgs. 42 and 43, we see that Jy,, reaches one-half of
Jmax With N¥ = 3 x 10° receptors (k. = o), whereas J* re-
quires N* = 4 X 10* receptors to reach one-half of J,., if
k. =10%s"1.

On the right axis of Fig. 3 b, we plot the corresponding
fraction of the cell surface covered by receptors,
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- w(eR)’N. &N
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Interestingly, fis very small as long as k. is not very slow.
For example, f = 107> = 0.1% for N* = 3 x 10°, and f =
1072 = 1% for N* = 4 x 10*. Therefore, the remarkable
result of Berg and Purcell that a cell requires only a small
receptor surface fraction f to have uptake near the maximal
Jmax Still holds in the case of finite receptor kinetics.

As mentioned in the Introduction, many previous works
have sought to modify and refine the Berg-Purcell formula
to incorporate various details in the problem (16-26). It is
therefore worth pointing out that the discrepancy between
J* and Jy,p, is much greater than some previous modifications
of Jyp,. For example, Zwanzig posited the formula (15)

_ eN 7
eN+ (1 —eN/4)m ™

€ (0, 1). (44)

Jow :

to account for the effects of interference between receptors.
However, the percentage difference between Jy,, and J,, is
less than the dimensionless receptor radius € (25),

Jow=Jop __ Nme? . Nae?
T T WNetan = NIEIL edn S€G<E
That is, J,,, and J,,, typically differ by around one tenth of
one percent, whereas J* and Jy,;, can differ by at least an or-
der of magnitude in typical biophysical scenarios.

Uptake is almost Michaelis-Menten

The discrepancy between J* and Jy,, vanishes at low extra-
cellular concentrations and is magnified at high extracellular
concentrations. In Fig. 4, we plot J* and J,,, as functions of
the extracellular concentration u,. Here, we see that J* and
Jvp are indistinguishable at low concentrations (even for
slow k.-values), whereas J* can be several orders of magni-
tude less than Jy,, at high concentrations. The explanation
for this is straightforward. At sufficiently low concentra-
tions, molecules arrive at receptors at a much slower rate

10°

108

10

10° = —2 1 0 1 2 3
107 1072 10 10 10 10° 10°

u (extracellular conc.) [pM]

FIGURE 4 Cellular uptake as a function of the extracellular concentra-
tion for different turnover rates k.. The dashed horizontal lines are the
maximal uptake rates for different turnover rates. See Table 1 for parameter
values. To see this figure in color, go online.



than receptors can process molecules, which is the assump-
tion used to derive Jy, (2). Because the per receptor arrival
rate is Jy,,/N and the receptor kinetic rates are ky, and k., a
sufficiently low concentration is defined by the following
dimensionless number being much less than one,

_ pr/N _ ﬁ“-ﬂ'DRMO
ok + ke N(ky + ko)

< 1. 45)

As the concentration increases and Eq. 45 is violated, the
arrival rate exceeds the receptor kinetic rates, and thus, re-
ceptor kinetics modify cellular uptake.

It is intuitively clear that cellular uptake cannot increase
linearly as a function of u, indefinitely, but rather, uptake
must saturate at some maximal rate. In light of this observa-
tion, a Michaelis-Menten functional form for the uptake rate
is often posited (6),

VmaxuO

Jmm )
KM+M0

(46)
for some maximal uptake rate V,,,,x and half-saturation con-
stant K;. We stress that the uptake equation in Eq. 46 is not
to be confused with the boundary condition in Eq. 20, which
was derived to approximate the PDE-ODE system in Eq. 16.

The values of V,,.x and Ky, in Eq. 46 are usually deter-
mined by matching Eq. 46 to experimental data. However,
it is possible to relate V. and Ky to microscopic biophys-
ical parameters. First, it is clear that the maximal uptake rate
must be V,.x = Nk.. Next, if we force J,,,,, to coincide with
Juvp atlow concentrations (i.e., g << Kyp), then we must have

Vinaxtlo  Nke(1 + k)

Ky = = : 47
T Ty 47DR«k “n

Now, it is straightforward to use Eqs. 23 and 24 to check
that J* has the desired property that it saturates at Nk, at
high concentrations,

lim J, = Nk,

Uy — ®©

and J* reduces to Jy, at low concentrations,

limJ*/pr — 1.
ll()"()

Hence, J* and J,,, agree at high and low concentrations.
However, it is evident from the formula for J* in Egs. 23
and 24 that J* # J,,, at intermediate concentrations.

In Fig. 5 a, we plot J* (solid curves) and J,, (dotted
curves) as functions of the concentration for k, = O.
Although J* does not have the exact Michaelis-Menten
functional form as in Eq. 46, this plot shows that the J*
curve does have a profile very similar to the profile gener-
ated by the Michaelis-Menten functional form (i.e., a
sigmoidal curve). This is an important feature of the formula
for J*, as this profile is observed in experiments measuring
cellular uptake (6,37-39).
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FIGURE 5 Cellular uptake as a function of the extracellular concentra-
tion for different turnover rates k., with breakup rate k, = 0 in (a) and
k, = 10k, in (b). The solid curves correspond to J* in Eqs. 23 and 24,
and the dotted curves correspond to J,,, in Eq. 46. See Table 1 for other
parameter values. To see this figure in color, go online.

Furthermore, it is straightforward to use the formula in
Eqgs. 23 and 24 for J* to find the half-saturation constant
(i.e., the “apparent Ky;” of J*). Indeed, solving the equation
J* = Va2 for the concentration u, gives the half-satura-
tion constant,

_ Nk(1+x/2) Nk

K, : = . 48
M 4wDRk +47TDRK “8)

Comparing Eq. 48 with Eq. 47, we see that these two half-
saturation constants are similar if k, << k.. Indeed, the
close agreement between J* and J,, in Fig. 5 a results
from taking k, = 0. However, it follows from comparing
Eqgs. 48 and 47 that taking k, not much less than k. can
make J,,, saturate at much lower concentrations than J*.
This is illustrated in Fig. 5 b, in which we plot J* and J,,,
with k, = 10k..

CONCLUSIONS

We have developed a framework for modeling molecular
species that diffuse in a three-dimensional bulk region and
interact with receptors embedded on a two-dimensional sur-
face. The receptors bind and process molecules at finite ki-
netic rates, which introduces significant statistical
correlations between the individual diffusing molecules.
We developed the framework in the context of the Berg-Pur-
cell cellular uptake model (2). We found that in some typical
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biophysical scenarios of interest, finite receptor kinetics can
reduce cellular uptake by at least an order of magnitude
compared with the Berg-Purcell estimate. The predictions
of our analysis were confirmed by numerical simulations
of a many-particle stochastic system.

Mathematically, the framework uses the theory of bound-
ary homogenization to couple a PDE (the diffusion equa-
tion) to nonlinear ODEs on a boundary. In a certain
parameter regime (or at steady state), the boundary condi-
tions can be reduced to a nonlinear, Michaelis-Menten
flux condition. Several interesting prior works have used
PDEs with ODE boundary conditions to model reaction-
diffusion systems (44-50). These prior works have gener-
ally studied Turing patterns and spatiotemporal oscillations.
To estimate how receptor diffusion and cellular rotation in-
fluence cellular uptake, (25) used the diffusion equation
with boundary conditions described by stochastic differen-
tial equations.

In contrast to both this work and (44-50), some models
have coupled bulk diffusion to surface reactions by
analyzing the concentration in a thin layer near the surface
(51-54). For example, the ODE in Eq. 4 in (53) describes
the time evolution of the volume concentration of unbound
molecules in a thin layer of width / > 0 of the surface, where
the width of the layer can be derived from the potential
mean force near the boundary. Here, we implicitly assume
a flat potential, allowing us to set / = 0. Setting [ = 0 in
Eq. 4 in (53) yields Eq. 12 in this work, where F and ¢,I";
in (53) correspond to k.e(f)u(R, t) and kyc(t), respectively,
in this work. Although our simulations and theory can be
extended to account for / > 0, Fig. 4 in (53) suggests the re-
sults will only differ at very short times, leaving our results
regarding the steady-state flux unchanged.

Following Berg and Purcell (2), a series of works have
studied the ability of a cell to estimate an external concen-
tration based on receptor occupancy (8,55-60). Such esti-
mates are inherently noisy because they depend on the
stochastic diffusion, binding, and unbinding of single
molecules. To approximate the accuracy of cell sensing
over a finite time period, these works often estimate the
variance in receptor occupancy. Many prior models
consider only a single receptor, and there have been con-
flicting results even in this simplified scenario (59). (57)
considered a cell with a finite set of receptors that bind
and unbind molecules according to a continuous-time
Markov chain with rate constants that depend on the diffu-
sion coefficient. In our model, we have taken a continuum
limit of receptors and consider concentrations of free and
bound receptors. Although our approach provides analyt-
ical results pertaining to the steady-state flux, it does not
yield results pertaining to the variance in receptor
occupancy.

Previous works have employed mathematical models to
study how finite receptor kinetics affect diffusive uptake.
(11,12) formulated and analyzed stochastic models of diffu-
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sive interactions with receptors that must wait a transitory
“recharge” time between captures. In (11), it was proven
that such a recharge time can drastically reduce the number
of captured molecules (the number of captures grows loga-
rithmically in the number of total molecules versus linear
growth in the absence of recharge). (12) used a variety of
stochastic models to analyze similar systems. There is a
rather large amount of literature on cellular nutrient uptake
that takes the Michaelis-Menten uptake equation in Eq. 46
as its starting point (6,37-39). The maximal uptake rate
and half-saturation constant (i.e., Vi, and Ky) are chosen
to fit experimental uptake rates. Our uptake formula (J* in
Eqs. 23 and 24) does not have the Michaelis-Menten func-
tional form in Eq. 46, but it nevertheless exhibits the same
sigmoidal uptake curve as a function of the extracellular
concentration.

Although we developed the framework in the context of
cellular uptake in a spherical geometry, it can be applied
to other systems with potentially different geometries and
receptor kinetic schemes. For example, synaptic transmis-
sion involves neurotransmitter molecules diffusing across
the synaptic cleft and binding to receptors on the adjacent
neuron (5). In this case, the shape of the synaptic cleft is
similar to a cylinder, and the framework of our study could
be used to investigate the effect of the finite kinetic rates of
neural receptors. As another example amenable to this
framework, cylindrical domains with receptors on the
“sides” have been used to model catheter-based drug deliv-
ery systems (61).

Finally, we conclude by discussing the important study
by Wagner et al. (27) on nutrient uptake by bacterial cells.
This work used fluorescent tracing to show that bacterial
cell “stalks,” which are long and thin extensions of the
cell envelope, can bind and import nutrients from the
extracellular environment. These authors then used novel
mathematical analysis to generalize the Berg-Purcell
model to a domain exterior to a stalk (modeled by a prolate
spheroid). Based on this analysis, the authors argued
that the stalk morphology increases nutrient uptake
compared to a sphere. For future work, it would be inter-
esting to extend the analysis in this work to the geometry
considered in (27) to investigate the effect of finite recep-
tor kinetics.

Indeed, the model in (27) assumes that receptors can
absorb nutrient molecules continuously. As in Berg-Purcell,
this assumption is valid if receptors can import molecules at
a much faster rate than molecules tend to arrive at receptors.
We now use the parameter p in Eq. 45 to compare these two
rates in (27), where p << 1 means that receptor kinetics
are much faster than arrivals. The model in (27) considered
N = 10* perfectly absorbing receptors (meaning K. = % in
our notation). The radius of each receptor was 1 nm, and
stalk lengths varied from 1 to 10 um. The extracellular con-
centration used in the experiments was uy = 100 uM. If we
take these values and set R = 1 um, D = 10* um? s, and



ky = 0 in Eq. 45, then the receptor turnover rate k. would
need to satisfy

k. > 5.7 x 10*s7!

to have p << 1. That is, a single receptor would need to
import molecules at a rate much faster than 10* s_l, whereas
characteristic rates are on the order of 10% s™' (31).
Although this simple calculation ignores the stalk geometry,
it nevertheless suggests that finite receptor kinetics may play
an important role in the uptake rate for the system studied in
(27). More broadly, the framework developed in this study
provides a method for investigating how receptor kinetics
affect a variety of biophysical systems.
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