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ABSTRACT: Tandem catalysis enables the rapid construction of complex architectures from simple building blocks. This
Perspective shares our interest in combining stereoselective hydrogenation with transformations such as isomerization, oxidation,
and epimerization to solve diverse challenges. We highlight the use of tandem hydrogenation for preparing complex natural products
from simple prochiral building blocks and present tandem catalysis involving transfer hydrogenation and dynamic kinetic resolution.
Finally, we underline recent breakthroughs and opportunities for asymmetric hydrogenation.

B INTRODUCTION

Once an academic curiosity, asymmetric hydrogenation (AH)
now stands among the most robust and industrially relevant
strategies to construct chiral centers with M§h selectivity, atom
economy, low cost, and minimal waste.'™ The 2001 Nobel
Prize in chemistry was awarded to Knowles, Noyori, and
Sharpless for inventing the field of enantioselective catalysis by
achieving early examples of both hydrogenation and
epoxidation or dihydroxylation.”'" Today, AH enables large-
scale manufacturing. Monsanto’s synthesis of levodoa (i-
DOPA) used a Rh(I)—DiPAMP catalyst and revolutionized
industrial production standards (Figure 1).' Syngenta’s
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Figure 1. Impacts of hydrogenation on the chemical industries.

commercial synthesis of the herbicide metolachlor features a
chiral Ir(I)—diphosphine complex, with an impressive
2,000,000 turnover number (TON) and 400,000 h™" turnover
frequency (TOF).'>"* Pfizer developed a large-scale synthesis
of the fibromyalgia drug pregabalin, whereas Merck reduced an
unprotected enamine in the commercial synthesis of sitagliptin,
an anti-diabetic.' ™"
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Inspired by its broad applicability, our laboratory has
focused on developing cascade and tandem processes that
feature hydrogenation. Herein, we give our perspective on
breakthroughs in this research area while emphasizing our own
contributions. First, we highlight cascade hydrogenations to
target natural products, with selected examples from other
laboratories to provide context for our studies on cyclic
peptides. In the second part, we show ways in which
hydrogenation can be merged with other mechanisms via
tandem catalysis. Lastly, we share our outlook on the future of
the field by highlighting areas for further discovery.

B CASCADE HYDROGENATION

Cascade transformations represent an attractive strategy to
rapidly build complexity in the target-oriented synthesis of
complex natural products. Despite their diverse biosynthetic
pathways, a wide array of natural products can be addressed by
asymmetric reduction. Herein, we highlight how cascade
hydrogenations have been applied in the synthesis of terpenes,
polyketides, peptides, and alkaloids.

Terpenes and Polyketides. Two of the largest and most
complex natural product families are terpenes and polyketides.
Despite vast structural diversity, the biosynthetic pathways for
each family have similar origins: they both arise from simple
chains of repeating units. For terpenes, this unit is derived from
isoprene.'”* For polyketides, this unit is derived from acetate
and propionate fragments.”””> As a result of further
modifications, terpenes and polyketides bear intricate stereo-
chemical structures. Thus, these natural products present
formidable synthetic challenges, and many strategies have been
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embarked upon to streamline their synthesis. These processes
include radical poly-cyclizations, consecutive Michael addi-
tions, and pericyclic cascades.”””* The use of hydrogenation
for this purpose, however, has been underdeveloped, largely
due to the difficulty of reducing unactivated, non-directed,
and/or sterically hindered tri- and tetra-substituted ole-
fins.”*~* Early reports by Kagan and Buchwald centered
around chiral titanocene and zirconocene complexes, respec-
tively.”*~** These highly electrophilic complexes overcome the
low reactivity of tetra-substituted olefins; however, low
stability, large catalyst loadings, and high pressure have
prevented these methods from becoming more mainstream.
Alternatively, Ir catalysis has shown effectiveness for the AH of
unfunctionalized and sterically hindered substrates that have
been largely unreactive with traditional Rh- and Ru-based
complexes. In 1998, Pfaltz developed this technology using a
cationic Ir—BAr" complex bearing a chiral phosphinooxazoline
(PHOX) ligand.™ In this report, several tri- and tetra-
substituted styrene and stilbene derivatives were hydrogenated
in up to 98% ee. Since this pioneering work, numerous reports
have emerged showcasing the power of chiral varants of
Crabtree’s catalyst for the AH of unfunctionalized and
sterically hindered olefins.

With this catalyst design breakthrough, Pfaltz achieved the
synthesis of y-tocotrienol, a component of vitamin E, through
the cascade hydrogenation of the poly-unsaturated precursor y-
tocotrienyl acetate. A model system employing cyclohexyl
butene 1 was successfully hydrogenated to cyclohexylbutane 2
in 92% ee using a cationic Ir complex containing the pyridine-
based P,N ligand L1 (Figure 2).*” The purely alkyl substrate is
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Figure 2. AH of unfunctionalized tri-substituted olefins for the global
reduction of y-tocotrienyl acetate and E,E-farnesol.

void of directing groups and aromatic rings that have the
potential to assist with binding of the olefin to the catalyst.
These conditions were extended to the triple hydrogenation of
y-tocotrienyl acetate to y-tocopherol acetate in >49:1 dr using
L2. Additionally, (E,E)-farnesol was reduced to compound 3 in
99% ee and 10:1 dr.””*® These advancements showcase the
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potential of cascade AH for the synthesis of complex
terpenoids.

Two factors explain the greater reactivity of cationic Ir
catalysis toward the AH of hindered unactivated olefins: (1)
oxidation state and (2) steric hindrance. Experimental studies
and DFT calculations reported by Burgess, Andersson, and
Bayer elucidated a mechanism involving an Ir(I) double
oxidative addition to two molecules of H,. This transformation
leads to an Ir(V) complex which is higher in oxidation state,
and thus more electrophilic, than the Rh(III) intermediates
generated by variants of Wilkinson’s catalyst. Furthermore, the
resulting seven-coordinate L,Ir(V)H,—olefin complex, with its
four small hydride ligands, is less sterically hindered than the
corresponding L,XRh (IITI)H,—olefin complexes.‘w_“

More recently, this technology has been developed for the
AH of terpenoid and polyketide precursors. Burgess outlined
chiral variants of Crabtree’s catalyst for the stereocontrolled
synthesis of commonly found natural product fragments
(termed chirons) that lack strongly coordinating directing
groups and with adjacent stereocenters. These studies have
produced predictable stereochemical outcomes for mostly
single olefin reductions; however, the double hydrogenation of
allylic diene 4 was accomplished to provide alcohol § in 83%
yield (Figure 3).””*° The diastereoselectivity is catalyst
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Figure 3. Ir-catalyzed AH of allylic dienes for the synthesis of
polyketide chirons.

controlled, giving 35:1 preference for the antisyn isomer
over the syn,syn isomer with the matched (R)-C1 substrate
pair. The selectivity is reversed for the mismatched pair albeit
to a lesser degree. This lowering of selectivity is attributed to
substrate influences involving the minimization of 1,3-allylic
strain, syn-pentane interactions, and the promotion of facial
selectivity governed by conformational bias of nearby stereo-
centers. In addition, modulation of the ligand can affect the
acidity of the resulting Ir—H intermediates, which leads to the
formation of byproducts from acid-labile substrates. Carbene
ligands (such as the one found in C1) and other o-donor
ligands give more electron-rich metal centers, which can alter
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the acidity of intermediate complexes. In this manner, the
catalyst might act as an H-bond donor in the presence of
acceptor functional groups such as alcohols. These findings are
supported by DFT calculations and deuterium labeling
studies."' Nonetheless, this strategy has been applied to the
synthesis of natural products such as (—)-spongidepsin,
(—)-dihydromyoporone, (—)-lasiol, and (+)-kalkitoxin.**"*”
Altogether, these findings are a promising step forward in
the application of cascade hydrogenation for the synthesis of
complex terpenes and polyketides.

Peptides. Dehydroamino acid derivatives have been the
historic models for testing homogeneous AH. An early report
from Kagan showed the double hydrogenation of a bis-
dehydro—dlgeptide 6 to the bis-phenylalanine-dipeptide 7
(Figure 4)."" Using a cationic Rh catalyst and (R,R)-DiPAMP
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Figure 4. AH of a bis-dehydro-dipeptide with Rh catalyst.

(L3), dipeptide 7 was formed in excellent enantio- and
diastereoselectivity. This early example demonstrated the
potential for cascade hydrogenation via catalyst control.

There has been a growing interest in strategies for accessing
cyclic peptides. In contrast to their linear counterparts, these
more constrained structures provide enhanced metabolic
stability and can act as mimics of protein—protein interactions,
properties that enhance their potential as therapeutics, such as
immunosuppressants and antibiotics.*””>* Traditionally, cyclic
peptides are made by the macrolactamization of their saturated
and enantiopure linear counterparts; however, this strategy
poses a challenge when applied to medium sized cyclic
peptides.”*** Oftentimes, dimerization and C-terminal epime-
rization become compehtlve s1de reactions which require
dilute concentrations to avoid.”®

Our group reported the hydrogenation of unsaturated cyclic
peptides as a strategy for the total synthesis of dichotomin E.
The synthesis was accomplished using dehydroammo acids as
traceless turn inducers for macrocyclization.”” Dehydrophenyl-
alanine has been studied for its ability to modulate the
backbone conformation of small peptides by inducing folded
structures such as compounds 8 and 9 (Figure 52).*"* Due
to the imposed a-turn, observable by NMR analysis and
molecular modeling, the N- and C-termini are prearranged for
macrocyclization to the cyclic peptides 10 and 11. These were
obtained in high yield, excellent monomer selectivity, and at
100 times the concentration of previously reported methods.**
The diastereoselective conversion of 10 to either dichotomin E
or its epimer could be controlled by the ligand. Using 1,3-
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Figure 5. (a) Macrocyclization studies with dehydro amino acids as traceless turn inducers at high concentrations. (b) Ligand-controlled
diastereoselectivity in the global hydrogenation of dehydro cyclic peptides for the synthesis of dichotomin E and epi-dichotomin E.
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Figure 6. Unidirectional AH of poly-unsaturated cyclic peptides through catalyst binding via substrate recognition.

bis(diphenylphosphino )propane (dppp), the epimer of dichot-
omin E was formed in 8:1 dr; however, (5,5",R,R’)-DuanPhos
(L4) gave the proper natural product stereochemistry in >20:1
dr (Figure Sb). In addition, L4 was able to achieve the global
hydrogenation of bis-dehydro cyclic peptide 11, furnishing
dichotomin E as a single diastereomer.

Following these results, we reported a unidirectional cascade
hydrogenation of fully unsaturated cyclic peptides. Compound
12 was fully reduced to the saturated cyclic peptide 13 with
complete diastereocontrol using a cationic Rh catalyst
precursor and dppp as the ligand (Figure 6).°° The (+)-cyclic
p,L-a-peptides, such as 13, have been used to treat Gram-
negative and Gram-positive bacteria.°**” In contrast, the
synthesis of 13 from 12 was accomplished using heterogeneous
catalysis with Pd/C. This process was non-selective and gave a
mixture of all eight diastereomers. The Rh-catalyzed process
sets four stereocenters in a unique mechanism involving a C-
to-N unidirectional hydrogenation via catalyst—substrate
recognition. The mechanism involves dissociation and re-
association as opposed to a processional pathway whereby the
catalyst remains bound to the substrate. The Rh catalyst first
binds to the prochiral olefin of C1, enabled by the flexibility of
the adjacent glycine residue. As each reduction occurs, the
adjacent olefin becomes more flexible and is reduced in
sequence with high anti-diastereoselectivity. This sequential
unidirectional mechanism was supported by time-point “F
NMR and mass spectrometry studies as well as conformational
analysis using computational models. Furthermore, single
enantiomers of cyclic peptides 15 and 16 can be obtained
from 12 and 14, respectively, with the use of L4 as a chiral
ligand. This stereoselective sequential hydrogenation through
catalyst—peptide recognition is reminiscent of the substrate
specificity exercised by enzymatic processes as well as gene
regulation through ribosome—codon binding. It is an inspiring
design highlighting the possibility of molecular recognition in
organic synthesis. Subsequent to our work, Ding has reported
the use of Ir-catalyzed AH of cyclic dipeptides using a similar
processive hydrogenation strategy.” Collectively, these studies
outline a route to cyclic peptides from oxidized achiral building
blocks.
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Alkaloids. With an array of biological activities from anti-
microbial to anti-cancer, alkaloids compnse a large class of
structurally diverse natural products.””’ Their most distin-
guishing feature is the presence of a basic nitrogen atom that
often poses synthetic challenges. Heteroarene reduction by
cascade hydrogenation has shown potential for piecing
together these intricate frameworks from achiral sub-
strates.”' ~’® Multiple stereocenters can be generated in one
step by global reduction of a simple, highly oxidized aromatic
substrate. This strategy has had an impact on the production of
fine chemicals, with large multi-thousand-ton scale industrial
processes developed. It poses an attractive and direct route to
rapidly construct complex motifs from simple prochiral
substrates.

The difficulties of this strategy are seen in its prerequisites.
Namely, the limitations of arene functionalization arise largely
from the added kinetic barrier for de-aromatization which is
not present in other reductively labile functional groups, such
as alkenes and ketones. This disparity requires a level of
reactivity to overcome issues of chemoselectivity. For strongly
stabilized rings, such as benzene derivatives, few catalysts are
able to overcome the activation barrier for de-aromatization,
resulting in adverse side reactions such as hydro-defunction-
alization.”

Despite these challenges, recent years have seen break-
throughs in arene hydrogenation. For example, Glorius has
reported the hydrogenation of fluorinated benzenes and
pyridines. The Rh-CAAC complex C2 (CAAC = cyclic-alkyl-
amino-carbene) was found to circumvent the issue of hydro-
defluorination and shortcut the cis-selective synthesis of
polyfluorinated cycloalkanes and piperidines (Figure 7).”" %'
The high bond dissociation energy and strong dipole moment
of the C—F bond along with the relatively small fluorine atom
have allowed industrial scientists to fine-tune the properties
(such as polarity and acidity) of fine chemicals.**™**
Compounds 17 and 18 were obtained as single diastereomers,
cutting previously 12- and 6-step syntheses, respectively, down
to a single step. This strategy gives access to two important
design features used in medicinal chemistry. Piperidine 18 has
since been commercialized on a large scale (Sigma-Aldrich
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Figure 7. Hydrogenation of per-fluorinated benzenes and piperidines.
Dipp = 2,6-diisopropylphenyl.

product no. 903817). Catalyst C2 has also been used for the
hydrogenation of numerous other functionalized arenes (such
as aryl ketones, silanes, and boronate esters), giving access to
bulldm% blocks for pharmaceutical and polymer chemis-

#="! The highly electron-donating CAAC ligand creates
an electmn-nch metal center. Therefore, arene binding is
favorable due to strong back-donation into its anti-bonding 7
orbitals.””” More recently, Glorius reversed the selectivity
from the traditional cis-relative stereochemistry to trans by
using a heterogeneous Pd catalyst and para-substituted
phenols. This method was applied to the synthesis of the
mucolytic agent ambroxol.”*

AH methods have been developed for approximately three
dozen heteroarenes, with quinolines, quinoxalines, indoles, and
isoquinolines being the most common.”'~”® General strategies
employ chiral auxiliaries, organocatalysis, and transition metal
catalysis, the latter being the most frequently used, with many
recent applications to the synthesis of complex alkaloids. For
example, Zhao used a hydrogen-borrowing approach (vide
infra) to effect an asymmetric reductlve amination cascade for
the synthesis of tetrahydroquinolines.” Similarly, Fan reported
a tandem process involving an AH and intramolecular
reductive amination of quinolines and quinoxalines 19 to
produce complex tricyclic ring systems using a Ru catalyst and
a chiral amino-sulfonamide ligand (Figure 8).”° Each of the 46
examples provided the desired products with exquisite enantio-
and diastereoselectivities. A challenge for this method is the
chemoselective reduction of the heteroarene 19 and tetra-
substituted iminium intermediate 20 over the ketone to
provide product 21 over the byproduct 22. This method was
employed in the total synthesis of (+)-gephyrotoxin, where
intermediate 24 was formed from 23 with excellent enantio-
and diastereoselectivity.

Over the past four decades since their discovery, the bis-
tetrahydroisoquinoline alkaloids have drawn interest for their
potent anti-cancer activity.”””® Natural products such as
(—)-jorumycin and (—)-jorunnamycin A contain pentacyclic
scaffolds with highly oxygenated outer rings A and E as well as
a pro-iminium ion motif that provides a covalent attachment to
DNA resulting in cell death (Figure 9).”* Although the
mechanism of action of these alkaloids has been elucidated,
drug development efforts for determining structure—activity
relationships (SARs) have been largely understudied. Previous
synthetic approaches to (—)-jorumycin and (—)-jorunnamycin

R' HBpin (<4.0 equiv) F"'(/-)Y (I
——
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Figure 8. Tandem arene AH/reductive amination for the synthesis of
tricyclic nitrogen heterocycles and applications to total synthesis.

A have not been flexible to broad diversification and are
therefore not amenable to extensive biological investigations.

Recently, Stoltz sidestepped the common Pictet—Spengler-
ase biomimetic approach to report an elegant synthesis of
(—)-jorumycin and (—)-jorunnamycin A. Therein, the key step
involved a cascade hydrogenation cychzatlon of a highly
oxidized achiral common intermediate, 25.” Inspired by O-
directed imine hydrogenation for the industrial synthesis of
metolachlor (Figure 1),'”"” treatment of 25 with [Ir(cod)Cl],
and L5 under an H, atmosphere afforded the desired
pentacyclic natural product scaffold 28 in excellent yield and
enantioselectivity and as a single diastereomer. The reaction is
believed to proceed through the initial reduction of ring B,
assisted by the appended hydroxy methylene to intermediate
26. The conformational rigidity of 26 allows for the selective
hydrogenation of ring D from the more accessible bottom face,
leading to intermediate 27. Finally, lactamization of 27
provides 28, which was subsequently converted to (—)-jor-
umycin and (—)-jorunnamycin A in 16 and 1S total linear
steps, respectively. Through these studies, the Stoltz group
expanded the SAR analysis through the synthesis of previously
inaccessible analogues to probe the importance of the
oxygenation of rings A and E on the biological activity.
Thus, the cascade hydrogenation of 25 arose from a strategic
disconnection to introduce four equivalents of H,, generate
four stereocenters from an achiral substrate, and provide the
natural product scaffold in a single step.

There are several examples of de-aromative cascade
hydrogenation strategies being used for the synthesis of
therapeutics in addition to the ones discussed above. For

https//doiorg/10.1021/jacs.1c00750
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recrystallization.

instance, a concise multi-kilogram synthesis of an intermediate
en route to the anti-diabetic active pharmaceutical ingredient
(API) 29 was reported by Boehringer Ingelheim Pharmaceut-
icals. This strategy featured an asymmetric fused-piperidine
hydrogenation to install the two stereocenters in a seven-step
synthesis (Figure 10).""’ Zhou and co-workers have developed

canadine
=, N N ."l o o /
. >
29 o CO,H
anti-diabetic (~)-galipinine (S)-flumequine

Figure 10. Applications of cascade AH of arenes in total synthesis.

an Ir-catalyzed AH of quinolines that has been applied for the
synthesis of (—)-galipinine as well as the antibiotic (S)-
flumequine.'”" Additionally, Tong and co-workers have
demonstrated an asymmetric synthesis of canadine using this
de-aromative hydrogenation strategy.wl The field of de-
aromative cascade hydrogenation has grown significantly in
recent years. More efficient methods are continually being
developed and promise a bright future for this impactful field.

As a whole, cascade hydrogenations have become attractive
strategies for the rapid installation of molecular complexity in a
single step, giving rise to numerous natural products and
biologically relevant scaffolds from simple building blocks. The
coupling of oxidized prochiral building blocks and subsequent
global asymmetric reduction is emerging as a modemized
approach for the synthesis of complex natural products and
fine chemicals. This technology introduces multiple complex
stereocenters in a single transformation while improving step
and atom economies and showing great potential for use in the
chemical industries.
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B TANDEM CATALYSIS

In tandem catalysis, two or more mechanistically distinct
transformations can be performed in one pot with either one
(auto tandem catalysis) or multiple (orthogonal tandem
catalysis) catalysts.'”*~'"° Such transformations save time
and money by improving step economy, lowering production
costs, and generating less waste. Orthogonal tandem catalysis
has been used by Brookhart and Goldman in alkane
metathesis. Here, a dual Ir dehydrogenation/hydrogenation
catalyst and a cross olefin metathesis catalyst stitch together
low-molecular-weight n-hexane to n-decane with highly
controlled molecular weight distribution and selectivity for
linear alkanes.'”'®” Because alkanes comprise the major
components of petroleum, this strategy could greatly impact
the fuel industry. As oil reserves diminish, the world may rely
on manufacturing procedures such as the Brookhart—Goldman
method and the Fischer—Tropsch process, which involves the
reductive oligomerization of CO and H,.'""*”"'" On the flip
side, auto tandem catalysis has been used with AH to promote
cascade reductions (vide supra) as well as mechanistically
distinct transformations. In this way, reactions such as
oxidations, isomerizations, and rearrangements can be merged
with hydrogenation to effect unique transformations. Numer-
ous AHs feature the use of hydrogen-transfer reagents and
dynamic kinetic resolution (DKR). Herein, we provide brief
historical perspectives followed by our group’s interest in
merging hydrogenation with tandem catalysis.

Transfer Hydrogenation. While enzymes use cofactors
(e.g, NADH, NADPH, and FADH,), chemists exploit
reagents (e.g., isopropanol, Hantzsch esters, and formic acid)
as the hydrogen source for AH. These inexpensive and readily
available hydride-transfer reagents provide a convenient and
safe alternative to pressurized H,. The earliest knowledge of
transfer hydrogenation dates back to 1903, when Knoevenagel
showed the disproportionation of dimethyl 1,4-dihydrotereph-
thalate using Pd black.'"" Subsequent improvements in catalyst
preparations broadened the scope and applications of
heterogeneous transfer hydrogenation.''”""* The first examples
of homogeneous transfer hydrogenation catalysts were devel-

https//doiorg/10.1021/jacs.1c00750
1. Am. Chem. Soc. 2021, 143, 6724—6745



Journal of the American Chemical Society

pubs.acs.org/JACS

oped by Bailar, who used Pd or Pt complexes and methanol to
hydrogenate unsaturated fatty acid esters. """ Henbest and
Blum were the first to report homogeneous Ir and Ru
complexes, respectively, for the transfer hydrogenation of a,f-
unsaturated ketones.'"*~""”

The first asymmetric transfer hydrogenation (ATH) was
achieved by Noyori. The Noyori catalyst consists of a Ru arene
complex containing a chiral amino sulfonamide ligand (L6)
and has been used for the ATH of aryl ketones to secondary
alcohols with high enantiocontrol and without directing groups
(Figure 11).'%""®'"" Subsequent reports use base-free

[RuCly(mesitylene)], (0.5 mol%) 2 5 & *
o L6 (1 mol%), KOH (2.5 mol%) R0 OH
A
Ar 'R -PrOH (0.1 M), rt Ru-N A TR
\R'
11 examples

six-membered

o o
up to 98% yield transition state

up to 98% ee

o5, Q
Me
M O b
e
SNH O s
H,N  HN-Ts
‘ on Ly
< Fluoxetine Duloxetine
Ph L6 Ph Prozac® Sarafem® Cymbalta®
anti-depressant anti-depressant

$2.6 billion (2001) $708 million (2018)

Figure 11. ATH of aryl ketones with a bifunctional Ru catalyst.

conditions and proceed with exceedingly low catalyst loadings
(0.001 mol%), hl&h TON (in some cases on the order of 10°),
and high TOF."”’ Theoretical and experimental analysis
revealed a bifunctional mechanism whereby simultaneous
delivery of the Rh—H hydride and N—H proton proceeds
through a six-membered pericyclic transition state through
hydrogen bonding to the ligand rather than coordinating
directly to the metal center. Ketone hydrogenations such as
these have seen many applications to the synthesis of
pharmaceutically relevant compounds, including the anti-
depressant drugs fluoxetine and duloxetine.'”"'**

Since this discovery, much progress has been made in
develogmg alternative catalysts and expanded variants of

*® Our laboratory leveraged transfer hydrogenation
to taclde three distinct challenges: (1) enantioselective ketone
hydroacylation, (2) diastereoselective amination, and (3) semi-
reduction of allenes.

The y-butyrolactone scaffold occurs in over 15000 natural
products and biologically active compounds and is a useful
synthetic intermediate. Our research group has used Rb-
catalyzed hydroacylations to target chiral lactones.'”’~'*’
During these early studies, we found success with substrates
bearing coordinating heteroatoms or rigid backbones;
however, these Rh catalysts failed to cyclize 1,4-keto aldehydes
to generate y-butyrolactones efficiently (Figure 12a). Decar-
bonylation was a common decomposition pathway for these
conformationally flexible substrates. Tishchenko-type cycliza-
tions of related 1,5-keto aldehydes had been reported using
Sml, and chiral alcohols or mercaptans as auxiliares to
promote enantioinduction.'*” Additionally, Krische and co-
workers have used ATH conditions to effect the hydro-
acylation of alkynes and 1,3-dienes with alcohols."*' ™"
Inspired by these studies, we achieved an enantioselective
intramolecular hydroacylation of keto alcohols using a Noyori
ATH catalyst (Figure 12b)."** The reduction proceeds via
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a. Challenges with Rh-Catalyzed Ketone Hydroacylation

coordinating heteroatom flexible backbone

Oy CF
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b. Alternative Route Using Asymmetric Transfer Hydrogenation
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Figure 12. (a) Intramolecular ketone hydroacylation becomes more
challenging as backbone flexibility increases. (b) Alternative route to
7-butyrolactones with flexible backbones via ATH.

reversible asymmetric hydride transfer from isopropanol to the
alcohol substrate 30 to give diol 31. This is followed by
reversible hydride transfer from the primary alcohol of diol 31
to acetone, giving hydroxy aldehyde 32. Finally, the acetal
isomer 33, which is in equilibrium with 32, undergoes
irreversible hydride transfer to give lactones 34 and 35 in up
to 98% isolated yield and up to 96% ee. The transformation
gives much higher enantioselectivity for the electron-rich
substrate 34a (92% ee) than for Noyori’s hydro: ﬁemhon of the
analogous p-methoxyacetophenone (72% ee).”'® This result
along with deuterium labeling studies indicates that the ATH
of ketone 30 is rate-limiting. The protocol works well for other
m-aromatic substrates such as 34b and for the synthesis of six-
membered lactones such as 35a, despite the greater ring strain.

A kinetic profile revealed a rate dependence on the
equivalents of acetone and a process that was autocatalytic
with respect to the isopropanol byproduct. Addition of three
equivalents of isopropanol significantly increased the rate and
reduced the induction period. This behavior was attributed to
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an isopropanol-promoted formation of the Ru hydride;
however, a delicate balance of equivalencies was required for
success. Too much isopropanol led to over-reduced tetrahy-
drofuran products, whereas too much acetone led to catalyst
inhibition.

A number of methods have since been reported for the
synthesis of y-butyrolactones that follow a hydrogenation
strategy. Ogiwara has reported a lactonization of y-keto acids
using catalytic GaCl; and PhSiH; as a hydride-transfer
reagent.'” This Lewis acid-catalyzed process is free of
transition metals and provides good yields for a number of
aryl-substituted y-keto acids. Other reports by Zhan and Zhou
have used chiral Ru and Ir complexes, respectively, to effect
similar hydrogenaﬁon/lactonizaﬁon of y-keto acids with high
enantioselectivities.'*”'*” Lastly, enzymatic approaches have
also been reported. Gotor and Borowiecki have demonstrated
stereodivergent enzyme-catalyzed AH/cyclizations of y-keto
esters, giving both enantiomers of the corresponding lactone,
depending upon the enzyme chosen."**'*” Collectively, these
reports demonstrate clever design of hydrogenation conditions
to solve synthetic challenges.

Polyoxygenated stereocenters are common fragments of
polyketides. Stereoselective strategies for the synthesis of these
molecules have relied upon chiral auxiliaries and organo-
metallic nucleophiles."*” These approaches, however, require
complicated multi-step substrate synthesis and stoichiometric
reagents. To bypass these disadvantages, Krische reported an
alternative C—C bond-forming transfer hydrogenation using a
chiral Ir complex and L7 to combine alcohol dehydrogenation
with carbonyl allylation (Figure 13)."*"'** Alcohol dehydro-

[Ir(cod)Cl]; (5 mol%)
L7 (10 mol%)

OH OH OH OH
i Cs,CO4 (40 mol%)
10 equiv S ’ 70%, >99% ee, >30:1 dr
4-C1-3-NO,-BZOH (20 mol%)
1,4-dioxane, 90 °C, 3 d
o OH OH OH OH OH

&

MeO' PPh,
MeO. PPh, add
O HOY Y NN o

Cl Me
L7 (+)-roxaticin
20 steps

Figure 13. Synthesis of polyoxygenated polyketide motifs via a
tandem transfer hydrogenation/allylation process and application to
the total synthesis of (+)-roxaticin.

genation forms an aldehyde which then undergoes asymmetric
allylation. This process can be iterated for the asymmetric
synthesis of polyoxygenated motifs. For instance, the total
synthesis of (+)-roxaticin was accomplished in 20 steps from
1,3-propanediol. Seven hydroxy stereocenters were formed by
Ir-catalyzed C—C bond-forming hydrogenation without the
need for chiral auxiliaries or complex pre-activated substrates.

Our laboratory was interested in developing a direct
conversion of racemic alcohols to enantioenriched amines.
Historically, this required a multi-step process consisting of
oxidation, imine formation, and finally, reduction. Advance-
ments in ATH, however, have allowed for the borrowing of
hydrogen from racemic alcohols followed by transfer of this H,
equivalent back to an in situ-generated imine. This redox-
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neutral process converts alcohols directly to enantioenriched
amines by avoiding stoichiometric reagents and producing
water as the sole byproduct.""’ Zhao reported the first
asymmetric variants by using a chiral Ir complex bearing an
amino sulfonamide ligand capable of producing acyclic amines
in high yields and enantioselectivities.'** This transformation
was limited to the synthesis of chiral anilines. As a
complementary approach, in collaboration with the Guan
lab, we reported the conversion of racemic secondary alcohols
to sulfinamides."*> Using the chiral Ru P)N,P-type pincer
catalyst Ru-Macho and Ellman’s auxiliary, a diastereoselective
amination of racemic secondary alcohols to sulfinamides was
realized (Figure 14). Oxidation of 39 with Ru-Macho to

(o]
OH o Ru-Macho (1 mol%) g
X A N U H0
R OR? H,N”" “t-Bu KOH (15 mol%) 5
39 Ellman's auxili R"O\R2
uxiliary toluene, 120 °C
42
proposed mechani toctad ples —
PPh, 0
Il
(n, | _S.,
N-Ru-CO HN™ ™¢Bu
39 el B
Ph” O Et
PPh, 42a
Ru-Macho 31%, >95:5 dr
o
(e} Ellman's i
auxilia S,
J N HN “t-Bu
R'” “R2 H
40  -H,0 RVOR? n-Bu” “Me
1 42b
81%, 70:30 dr
PPh, :
| ¢
(H-N-Ru-co _S.,
HN” “t-Bu
16 examples PPh /\
31-89% yield Rasaahactia t8u” Me
up to >95:5 dr u(Hz :‘2;

Figure 14. Diastereoselective hydroamination of racemic secondary
alcohols via borrowing hydrogen.

ketone 40 and subsequent condensation to sulfinylimine 41
were followed by hydrogenation by Ru(H,)-Macho to form
the desired a-chiral sulfinamide 42 and water. This trans-
formation was demonstrated on 16 examples with excellent
diastereoselectivities and a few notable limitations. Yields were
diminished for substrates such as 42a which lack an a-methyl
substituent for R' or R%. Moreover, the outcome is sensitive to
sterics, where similar sized f-substituents afford lower
diastereoselectivities (42b) and no reactivity is observed with
bulky groups (42c).

Subsequent to our studies, there have been a number of
breakthroughs. Related strategies for borrowing hydrogen have
used first-row transition metals such as Fe, Co, and Ni for
hydroaminations, nitrile reductions, and C—C bond forma-
tions."*“~'* Mutti and Turner have reported a dual enzyme-
catalyzed hydrogen-borrowing strategy for the enantioselective
amination of racemic alcohols.*” This environmentally benign
protocol uses ammonium as the nitrogen source to provide
direct access to primary amines. In addition, a transition-metal-
free procedure was reported by Wang, detailing the diastereo-
selective Meerwein—Ponndorf—Verley-type reduction of
imines using Ellman’s auxiliary and sodium hydroxide. The
diastereoselectivity is believed to arise via a chelated transition
state whereby a Na ion directs the hydride transfer from an
alkoxide to the C atom of an in situ-generated imine. The

https//doiorg/10.1021/jacs.1c00750
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transformation slows down with increased concentration of 15-
crown-S, a known sequester of Na ions, indicating support for
the proposed mechanism."*'

Biomimetic reductions using natural sources of hydrogen are
an attractive feature of transfer hydrogenation. Naturally
occurring C—H stereocenters are installed by enzymes such
as oxidoreductases using hydride donor cofactors such as
NADH and NADPH."”” MacMillan reported a biomimetic
enantioselective hydrogenation of a,f-unsaturated aldehydes
using an organocatalyst, chiral amine co-catalyst, and Hantzsch
ester as the hydrogen source."”* Other reports by MacMillan
and List used chiral phosphoric acid catalysts and Hantzsch
esters in a counterion-directed approach.'>*~"%’

We sought to use Hantzsch esters in the Rh-catalyzed
asymmetric semi-reduction of allenes. This approach would
generate compounds 43 with allylic stereocenters, which are
traditionally made by the substitution of pre-formed allylic
leaving groups with organometallic reagents (Figure 152)."%*
Overcoming issues with chemo- and regioselectivity is a
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c. Optimized Conditions and Selected Examples
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Figure 15. (a) Current and proposed methods for the reduction of
allenes. (b) Proposed mechanism involves Rh(III)—z-allyl inter-
mediate. (c) Conditions along with selected examples.
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challenge for allene reductions. Previous reports have shown
that the less substituted double bond tends to be reduced over
the more substituted ones, giving rise to internal olefins, 159-161
whereas methods that reduce the more substituted alkene were
limited to mono-substituted allenes.'*”'® Over-reduction to
the saturated alkane can also compete, as well as isomerization
to 1,3-dienes. Therefore, we sought to identify a catalyst
capable of promoting semi-reduction over isomerization.

The hydrofunctionalization of allenes through the gen-
eration of metal allyl complexes has become an emerging
atom-economical technology for the construction of allylic
stereocenters.'®™"”' Mechanistically, we proposed that Rh(I)
oxidative addition to a Brensted acid would generate a Rh(III)-
H (Figure 15b). After insertion of allene 44 and formation of
the Rh allyl complex 45, allylic substitution with Hantzsch
ester 46 generates product 43 and pyridinium 47. Labeling
experiments showed complete transfer of deuterium from the
para position of 46 to the chiral tertiary C—H bond of 43.
Additional deuterium labeling studies suggested that pyridi-
nium 47 may participate in the oxidative addition step. The
conditions provided excellent yields, enantioselectivities, and
regioselectivities for allylic tertiary stereocenters using the
chiral Josiphos ligand L8 (Figure 15c). Although I-aryl-1-
propynes are known to undergo isomerization in the presence
of Rh(Il1)~H,"”*""”” compound 43a was formed as the major
product, leaving the alkyne untouched. Sterically hindered
substrates, however, pose limitations on the enantioselectivity;
compound 43b was obtained with a lower 76% ee. Regardless,
this method demonstrates a promising tool for generating
allylic tertiary stereocenters.

Tandem reactions involving ATH have provided significant
contributions to the field of AH. Biomimetic approaches allow
for work-around strategies to address common challenges in
many areas of synthesis. Future innovations in this area can be
coupled with more sustainable catalysts to provide greener
solutions for modemn technologies.

Dynamic Kinetic Resolution. In contrast to kinetic
resolution, DKR allows full conversion of both enantiomers
of a racemic mixture to an enantioenriched product by way of
rapid epimerization. A classic example of a DKR is Noyori’s
hydrogenation of racemic a-substituted f-keto esters 48 to
generate f}-hydroxy esters bearing two contiguous stereo-
centers (Figure 16a). The (S,R)-49 isomer is obtained out of
four possible stereoisomers with excellent enantio- and
diastereocontrol. Quantitative analysis of the process revealed
kg and k,, to be 15 and 92 times faster than ky, respectively.'”
The diastereoselectivity was found to be dependent upon the
solvent. When the reduction is conducted in methanol, the
diastereoselectivity of (S,R)-49 and (R,R)-49 is reduced from
99:1 to 1:1. This is due to a smaller disparity between kg and
kg. The Noyori DKR-AH of fi-keto esters enables the industrial
synthesis and commercialization of the carbapenem core,
which can be found in Merck’s multi-million-dollar antibiotic
ertapenem.lw'180

Non-directed ketone hydrogenation using DKR to construct
vicinal stereocenters has also been demonstrated. Early reports
by Noyori showed the reduction of 2-isopropylcyclohexanone
to one of four stereoisomers of 2-isopropylcyclohexanol using
C7 to give 93% ee and 99.8:0.2 dr (Figure 16b).""' The
diastereoselectivity can be rationalized by considering steric
interactions in the transition states. The catalyst approach from
one face places the isopropyl group in a pseudo-equatorial
conformation on the opposite side (TS1), whereas approach

https//doiorg/10.1021/jacs.1c00750
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Figure 16. (a) Noyori's pioneering DKR-AH of f-keto esters. (b)
Noyori’s DKR-AH of simple cyclic ketones.

from the same side causes a disfavored steric interaction
between the catalyst and the a-substituent (TS2). The favored
transition state, TSI, gives rise to the cis relative stereo-
chemistry observed in the product.

Since Noyori’s pioneering work, DKR-AH has become an
expanding area of research. In a recent example, Zhou used
spiro diphosphine ligands for the reduction of aldehydes and
ketones bearing a-stereocenters.'*”~"'*® Johnson reported the
enantioselective merging of an ATH lactonization with DKR
for the reduction of ff-substituted a-keto esters to form densely
functionalized y-butyrolactones (Figure 17).'""” Using a newly
designed Ru catalyst and the chiral amino sulfonamide ligand
L9, efficient access to three contiguous stereocenters of tri-
substituted y-butyrolactones was obtained with high enantio-
selectivity and remarkable diastereocontrol from easily
accessible starting materials. This dynamic reduction leads to
diastereoselective formation of a- and fi-stereocenters, and the
nascent a-hydroxy group undergoes lactonization to an
appended methyl ester, generating the third stereocenter.

Asymmetric reductive aminations using DKR-AH provides
access to f-chiral amines and f-amino alcohols. Zhao
pioneered hydrogen-borrowing strategies for the direct
conversion of alcohols to amines with water as the sole
byproduct.”>""**'*%*% The first asymmetric DKR variants by
Zhao featured a chiral Ir complex (C9) and a chiral phosphoric
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Figure 17. Johnson’s synthesis of y-butyrolactones bearing three
contiguous stereocenters via DKR-ATH of a-keto esters.

188

acid co-catalyst (C8) as a cooperative pair (Figure 18).
Here, secondary alcohols bearing a-stereocenters comprised of
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Figure 18. Hydrogen-borrowing strategy for the dynamic AH of
racemic secondary alcohols to chiral amines bearing vicinal stereo-
centers.

all four stereoisomers were oxidized to the corresponding
ketones and epimerized by enamine formation, assisted by the
acid co-catalyst. In addition to differentiating between (S)-50
and (R)-50, the catalyst must also distinguish between the
enantiotopic faces of each imine to control the diastereo- and
enantioselectivity. The synthesis of chiral acyclic amines (S,S)-
51 containing vicinal stereocenters was accomplished with
excellent stereoselectivities for up to 16 examples. Further-
more, all four stereoisomers of 52 converged to a single isomer
of f-amino alcohol 53 with comparable yields and stereo-
selectivities. Traditional asymmetric routes to f-amino alcohols
can become arduous multi-step processes if not derived from
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natural chiral pool sources such as the canonical amino acids.
These developments demonstrate the power of DKR-AH as a
viable route to traditionally difficult-to-access motifs.
Sigmatropic rearrangements represent a pathway for
racemization that is unique from the epimerization of carbonyl
a-stereocenters.'”’~ "% For instance, the Mislow—Evans [2,3]-
sigmatropic rearrangement of allylic sulfoxides passes through
an intermediate sulfenate ester, resulting in epimerization of a
sulfur stereocenter (Figure 19).'” Considering the value of
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Figure 19. Dynamic AH of sulfoxides via auto tandem catalysis.

chiral sulfoxides in medicines (esomeprazole, modafinil,
dexlansoprazole, and pantoprazole) and ligands,'”*~'**
sought to access enantiopure sulfoxides via DKR. Previous
asymmetric routes to chiral sulfoxides primarily relied upon
oxidative strategies. In contrast, we imagined a complementary
asymmetric reductive method. Using a Rh catalyst, successful
hydrogenation of (R)-54 over (S)-54 was achieved in
moderate yields and enantioselectivities to give saturated
sulfoxides (R)-55.'"Y Kinetic studies demonstrated an
enhancement of racemization by a factor of 33 when the
reaction was performed in MeOH and in the presence of
[RhL10(cod)]BF,. Computational analysis and deuterium
labeling studies support an auto tandem catalytic process
whereby the rate of epimerization is accelerated by the Rh
catalyst through oxidative addition and formation of the z-allyl
complex 56. Polar protic solvents are critical for this Rh-
catalyzed rearrangement; rate enhancement was not observed
in a non-polar medium (i.e., toluene:CH,CL,). Following this
report, Vidal-Ferran demonstrated a Rh-catalyzed hydro-
genative kinetic resolution of vinyl sulfoxides.””” These reports
provide mutual reaction toolbox contributions for the
reductive synthesis of sulfoxide stereocenters.

Tandem hydrogenations involving DKR have become an
expanding technology. The ability to access a product with a
single stereoconfiguration out of multiple possible stereo-
isomers is a powerful tool with broad applications for the
synthesis of biologically relevant motifs. The usage of novel
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modes of epimerization is sure to lead to further discoveries in

the field of AH.

B FUTURE PROSPECTS

The future of AH will hinge upon the design of cheaper,
greener, and more sustainable catalysts. Within this framework,
we highlight recent advancements in two general categories:
(1) chemocatalysis and (2) biocatalysis. We imagine
opportunities for further catalyst improvements through the
design of ligands that can control the reactivity of more earth-
abundant metals. We also envision metalfree alternative
strategies. In addition, enzyme-catalyzed processes will play
an ever increasing and competitive role.

Chemocatalysis. The greatest feats of AH are due almost
exclusively to the design of catalysts involving the late second-
and third-row transition metals. However, interest in
sustainability has ushered a search for more environmentally
friendly methods to address critical challenges of the modern
era. Recent advancements have identified (1) earth-abundant
first-row transition metals, (2) novel ligand design, and (3)
metal-free catalysts as viable paths. Herein, we highlight
notable developments in these areas.

AH methods using Fe, Co, and Ni would be more
sustainable and cost-effective alternatives to the use of their
second- and third-row counterparts. Early catalysts derived
from first-row metals often suffered from poor functional group
tolerance and issues with stability owing to a lower HOMO/
LUMO gap compared to second- and third-row metals. Morris
developed an Fe-catalyzed ATH using the so-called FeATHer
complexes. These Fe(II) catalysts bear tetradentate P,N,N,P
ligands and have been shown to hydrogenate ketones and
imines with up to >99% ee.”’”** Ligand design was key to
discovering highly active Fe complexes with catalytic TOFs
(>200 s7" at 28 °C and TON up to 6100) comparable, or even
superior, to those obtained with precious metal catalysts
(analogous Ru-PN,N,P complexes give a TOF of 92 s™' at 60
°C).*"” These FeATHer complexes and others have been used
for the ATH of numerous other groups such as imines and
mt!'lles 204—206

Methods of AH catalyzed by Co and Ni have surged in
popularity in recent years. Pfaltz reported an early example of a
Co-catalyzed hydrogenation using borohydrides as the
reductant; however, this method was limited in scope and
was poorly selective.””’ Recent modifications have been
reported by Chirik using Co catalysis.”**~>'' Here, the high-
throughput screening (HTS) of 216 bidentate ligands led to
the 200 g scale AH of 57 to give 97% yield and 98.2% ee of the
anti-convulsant drug levetiracetam (Keppra) used to treat
epilepsy (Figure 20).”'" Zn dust was employed as a mild
activator, along with CoCl, and L12 at incredibly low catalyst
loadings of 0.08 mol%. Deuterium studies support a pathway
involving the homolytic cleavage of H,. This report is
analogous to studies from Kagan and Knowles on the Rh-
catalyzed hydrogenation of dehydroamino acids and computa-
tional studies from Zhou on Ir-catalyzed systems.”'>™>'* A
complementary and patented procedure with Rh requires
much higher catalyst loadings and a less environmentally
friendly solvent (CH,Cl, as compared to MeOH). 21 Along-
side these studies, Chirik has disclosed the AH of af-
unsaturated carboxylic acids using both Co and Ni*''*'®
Contrary to Co-catalyzed hydrogenation, the Ni-catalyzed
method involves heterolytic cleavage of H, analogous to the
Ru-catalyzed mechanism. Co has also been used for the AH of
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Figure 20. Co-catalyzed AH for the synthesis of levetiracetam.

1,1-diboryl olefins, whereas Ni has been used for the AH of N-
sulfonyl imines and dehydroamino acid derivatives.”'”~*"?
Evidenced by these reports, first-row transition metals are
taking the lead for the modernization of AH.

When considering the future of AH, one would be remiss to
ignore the most important design element: the ligand. While
the options for metals are discretely limited to the periodic
table, the options for ligands are seemingly endless and provide
a toolbox for the stereoelectronic fine-tuning of metal centers.
After more than 50 years, accurate stereochemical predictions
with computational models remain a challenge.””” This is
because the energy difference for achieving 95% ee is
comparable to the energy of the C—C bond rotation of ethane
(~2 kcal'mol™). Therefore, ligand design has been partly a
guessing game governed often by trial and error rather than
rationale. Regardless, major achievements have led to
innumerable highly selective and modular ligand classes that
have expanded the scope of accessible chiral motifs. A detailed
review of ligands is beyond the scope of this Perspective;
however, highlights here will demonstrate the importance of
ligands on the future of AH.

The discoveries of homogeneous Rh-centered hydrogena-
tion catalysts by Wilkinson and methods for preparing
enantioenriched phosphines by Horner and Mislow enabled
Knowles to report the first asymmetric transition-metal-
catalyzed reaction in 1968, wherein a Rh catalyst bearing
(—)-methyl-propyl-phenyl-phosphine was used to reduce a-
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phenylacrylic acid in 15% ee.” The earliest ligand designs
targeted monodentate phosphines with chirality centered at
the P atom. Ligands such as PAMP and CAMP (Figure 21)
could hydrogenate N-acyl-dehydrophenylalanine in 58% ee and
88% ee, respectively. At his 2001 Nobel lecture, Knowles
recounted the following about the significance of these

results:”
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Figure 21. Ligand diversity in stereoselective hydrogenation.

“It all seems too easy and simple, but this was the first time
ever that anyone had obtained enzyme-like selectivity with a
man-made catalyst! .. I don’t think that even we were
emotionally equipped to realize what we had done. Here,
with this simplest of molecules [ CAMP], we had solved one

of the toughest synthetic problems. For the past hundred

years, it had been almost axiomatic among chemists that

only nature’s enzymes could ever do this job.”

Following these discoveries, C,-symmetric bidentate bi-
sphosphines were found to greatly impact the enantio-
selectivity of AH. Some ligands include DIOP by Kagan’**
(1971) which introduced backbone chirality, DiPAMP by
Knowles””***** (1977) which gave .-DOPA in 95% ee (Figure
1), and BINAP by Noyori'”***~**7 (1980) which demon-
strated the potential for axial chirality. Each of these pushed
structural boundaries and expanded the scope of AH.
Subsequently, rigid electron-rich ligands such as DuPhos and
BPE by Burk***? (1991) as well as DuanPhos by
Zhangzzo’z‘w (2007) were highly modular and gave increased
TON at lower catalyst loadings. The C,-symmetric ligands
improve selectivity by reducing the number of geometrically
unique transition states and providing identical steric environ-
ments from each face of the complex.

The ligand toolbox for AH continues to grow with greater
structural diversity. Some bidentate P,N ligands include PHOX
by Pfaltz”*' 7> (1998) for the AH of unfunctionalized and
sterically hindered olefins and SIPHOX by Zhou™*™>*°
(2006) for the AH of ketones and imines. The spiro SDP
series by Zhou (2003), when complexed to Ru, can
hydrogenate simple ketones with up to 99.5% ee.”*”**
Ferrocene backbones such as the C,-symmetric planar chiral
Josiphos by Togni from Solvias (1990) provide exceedingly
high TON and TOF for the AH of olefins, carbonyls, and
imines.”*”**" Additionally, carbene-based ligands such as
CAAC by Bertrand”**' (2005) have been used for the
hydrogenation of aromatic rings. These represent just a few
examples of the immense ligand arsenal available for
asymmetric metal-catalyzed processes.

Efforts to streamline transition-metal catalysis into safer,
more robust, and cost-effective strategies could greatly improve
industrial applications. With virtually infinite possible ligand
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scaffolds, manually fine-tuning the stereoelectronics of metal
centers can be arduous, and screening countless ligands is a
nearly impossible task. Time is valuable, and HTS technologies
have alleviated the period to evaluate hundreds (or even
hundred-thousands) of conditions from months or even years
to just days.”***** The use of in silico techniques to expedite
ligand design has become the “holy grail” for the advancement
of asymmetric catalysis.”*' Computational strategies have
shown promise in recent years for predicting stereochemical
outcomes.”**"*** One example employs the quantum-guided
molecular mechanics (Q2MM) model developed by Wiest.
Here, Q2MM computes transition-state force fields used for
analysis of conformational ensembles to predict stereo-
selectivity by Boltzmann distribution averaging. This has
been used to predict stereochemical outcomes of Rh- and
Ru-catalyzed hydrogenations.”>”**~>*> In fact, the mean
unsigned error for the Ru-catalyzed AH model is 0.65 kcal-
mol ™', which is within the range required to accurately identify
a highly stereoselective transformation.”** Here, predictions of
98% ee would result in experimental values within a range of
2%. In addition, machine learning (ML) technology has had
major impacts across many fields, including AH. Sunoj
demonstrated the use of a random forest ML algorithm to
predict stereochemical outcomes of AH. Analysis of catalyst—
substrate molecular parameters across 368 known binaphthyl
catalyst families led to a root-mean-square error (rmse) of 8.4
+ 1.8 for the prediction of enantiomeric excess compared to
experimental values.”*® This method was an improvement to
conventional ML approaches such as extreme gradient
boosting (rmse = 9.6 + 19) and convolutional neural
networks (rmse = 11.6 + 2.8). Despite early success, in silico
design has not become widely available, due in part to limited
computing power as well as insufficient accessibility to and
specialized knowledge by average synthetic chemists. Regard-
less, as computer technology advances rapidly, new possibilities
in computational methods will continue to thrive.

Along with in silico design, continuous-flow processes have
shown promise in recent years. Commercial reactors such as
the H-Cube by ThalesNano have become popular for safe and
convenient small-scale hydrogenations up to 100 bar.*”’
Moreover, Kobayashi has reported a heterogeneous AH of
20 enamides and dehydroamino acids in >95% yield and >95%
ee.”®® A chiral Rh-QuinoxP* catalyst was immobilized by a
heteropoly-acid/amine-functionalized mesoporous silica com-
posite through acid—base electrostatic interactions and
remained active for up to 90 h without any detectable leaching
into the crude mixture. Furthermore, the AH of three API
intermediates showed the feasibility of this method for the
synthesis of drug candidates. Another example by Vincent used
an enzyme-modified nanotube for the AH of ketones with
excellent enantioselectivities.””” Scientists at Eli Lilly have
developed a pressurized flow reactor for the 144 scale
hydrogenation of an API intermediate in 99% ee”” The
process included liquid—liquid extraction, solvent exchange
distillation, and crystallization steps while using equipment that
fits inside common laboratory fume hoods. Additionally,
scientists at AstraZeneca have used AH flow technology with
a solid-supported Rh catalyst for the kg-scale synthesis of an
API intermediate in 98% yield, >99% ee, and with <1 ppm Rh
content.”®' Compared to batch protocols, continuous flow
provides simplified workups, greater efficiencies, and improved
safety profiles, leading to a more sustainable, robust, and cost-
effective option for industrial scale-up efforts.
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There are a number of promising metal-free alternatives to
AH. An incipient strategy developed by Stephan demonstrates
the activation of H, by non-metal catalZsts coined frustrated
Lewis pairs (FLPs) (Figure 22a).29%7%5 FLPs arise from

a. The Frustrated Lewis Pair Paradigm
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Figure 22. (a) FLP paradigm and its potential impacts. (b) Formal
AH of ketones using silyl enol ethers and an axially chiral bis-FLP
catalyst. (c) AH of imines with chiral bimolecular FLP catalyst via an
eight-membered transition state.

electron donor—acceptor pairs in which dative bond formation
is impeded by factors such as sterics. This obstruction results
in a dissociative equilibrium favoring the free acid and base.
Chiral variants of FLP catalysts have been developed.”**™*""
Du reported the AH of silyl enol ethers 58 to enantioenriched
alcohols 59 using the axially chiral bis-FLP catalyst C10 as a
formal asymmetric reduction of ketones (Figure 22b).**® This
was applied to 17 substrates in high yields and excellent
enantioselectivities. In addition, Du has developed an FLP-
ATH of imines 60 to enantioenriched amines 61 using a
bimolecular catalyst consisting of Pier’s borane (HB(C4F;),)
and Ellman’s auxiliary (Figure 22c).””' Experimental and
computational studies indicate an eight-membered transition
state (TS3) upon binding with 60. The FLP catalyst is
regenerated by hydrogen transfer from ammonia borane and is
the first highly enantioselective example using this hydrogen
source. Collectively, these developments show promise for the
discovery of metal-free catalysts. Further developments of
processes such as this could impact industry by lowering costs,
eliminating toxic metal impurities from drug intermediates, and
improving sustainability.

Electrochemical hydrogenations provide another avenue for
further development. Transfer hydrogenations using ammo-
nium have shown success for the reduction of heterocycles and
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olefins.””*™*"*  Asymmetric electrochemical transformations

have been developed in recent decades.””> An early method
by Osa used modified Raney Ni powder electrodes with
tartaric acid for the AH of ketones.”” Although poorly
selective, this example demonstrated that electrodes modified
with chiral agents could be a platform for electrochemical AH.
The low enantioselectivity of this system was attributed to
poor distribution of the chiral tartaric acid across the electrode.
Subsequent methods used chiral polymer-coated””” (such as a
poly-L-valine graphite cathode), transition-metal-com-
plexed®”*™** (Rh and Pd), or alkaloid-doped**'~**” (yohim-
bine, strychnine, and cinchonidine) electrodes for the AH of
olefins and carbonyl derivatives with low to moderate
stereoselectivities. Enzyme-catalyzed electrochemical reduc-
tions have also been reported. Tischer demonstrated the
ATH of sodium a-methylcinnamate in 95% yield and 95% ee
using an enolate reductase and NADH.”** Methyl viologen
acts as a mediator between the cathode and the reduction of
NAD" to regenerate NADH. Similarly, Yoneyama reported the
AH of ketones via an alcohol dehydrogenase giving >99% ee in
most cases.”*” Yoneyama also demonstrated the asymmetric
imino hydrogenation of pyruvic acid using a p-amino acid
oxidase-modified glassy carbon electrode and an electron
mediator to give p-alanine in >99% yield and >99% ee.””
Schmid reported the ATH of 3-methylcyclohexanone in 96%
dr using an alcohol dehydrogenase, NADH, and a Rh
complexed cathodic mediator.””" These investigations provide
a way forward for the development of more robust asymmetric
electrochemical hydrogenations.

Biocatalysis. In contrast to chemocatalysis, biocatalysis has
leapt to the forefront of modern chemistry. The revolutionary
technique known as directed evolution has allowed for the
discovery of enzymes with novel non-natural functions.””*~*""
This technology continues to replace traditional methods of
organic synthesis, and the 2018 Nobel Prize in Chemistry was
awarded to Arnold for her pioneering work.”"' In addition,
recent advancements in the use of enzymes for the synthesis of
complex biologically active molecules have had enormous
impacts on medicinal chemistry and industrial synthe-
ses.””? 7% There are several advantages to using biocatalysts.
(1) They are renewable and biodegradable, which could
positively impact long-term cost and sustainability. (2) They
tend to be more environmentally benign and less toxic than
heavy metals. (3) Their specificity and selectivity can be
evolved to suit a specific substrate by eliminating arduous
substrate syntheses and screening of reaction parameters.

This technology has been applied to industrial processes. A
notable example is Merck’s synthesis of the anti-diabetic drug
sitagliptin. The original process involved an asymmetric
chemocatalyzed hydrogenation of the unprotected enamine
64, which was derived from the pro-sitagliptin f-keto amide
intermediate 63 (Figure 23)."*"” This route provided Januvia
in 95% ee; however, it suffered from unsatisfactory enantio-
selectivity, necessitated high pressures of H, (250 psi), and
required rigorous purification at the expense of yield due to
residual Rh contamination. Using a clever combination of in
silico design and biocatalyst engineering followed by directed
evolution, scientists at Merck were able to evolve a
transaminase that was highly active for ketone 64."" Since
the reaction conditions were much different from those that
enzymes experience in nature, the challenges with this historic
development were multi-dimensional. Namely, the chemical
process had to be iteratively optimized in tandem with each
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Figure 23. Evolution of sitagliptin synthesis from chemocatalysis to
biocatalysis.

newly evolved enzyme to obtain varants both increasingly
more tolerant of the reaction conditions (such as reagent
concentrations, solvent solubility, and temperature) and that
could provide the desired product with >99.9% ee. Ultimately,
all of these prerequisites were met, and sitagliptin was obtained
in >99.95% ee without a trace of the enantiomer. Improve-
ments from the chemocatalyzed process included (1) an
increase in overall yield and productivity, (2) a decrease in
waste and manufacturing cost, and (3) overall milder
conditions under ambient pressure without the use of toxic
heavy metals.

B CONCLUSIONS

From humble beginnings as an academic curiosity to use in
large-scale industrial manufacturing, AH has revolutionized the
construction of chiral centers. Its continual relevance hinges
upon mechanistic understanding, catalyst evolution, and
innovative applications. When combined, these form a
synergistic connection that has sustained AH as the state-of-
the-art among modern transformations.
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