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Abstract—We analyze the performance of the Tukey median
estimator under total variation (TV) distance corruptions. Previ-
ous results show that under Huber’s additive corruption model,
the breakdown point is 1/3 for high-dimensional halfspace-
symmetric distributions. We show that under TV corruptions, the
breakdown point reduces to 1/4 for the same set of distributions.
We also show that a certain projection algorithm can attain the
optimal breakdown point of 1/2. Both the Tukey median esti-
mator and the projection algorithm achieve sample complexity
linear in dimension.

I. INTRODUCTION

The Tukey median is the point(s) with largest Tukey
depth [1]; it is a generalization of the one-dimensional median
to high dimensions (see (1) for a formal definition). Its behav-
ior is well-understood under the additive, or Huber, corruption
model [2] in which an ε-fraction of the data are arbitrary
outliers. It is first shown in [3], [4] that the breakdown point
for Tukey median is 1/3 for halfspace-symmetric distributions
in dimension d ≥ 2, and the breakdown point is 1/(d + 1)
without the halfspace-symmetric assumption. Further analyses
in [5] quantify the influence function and maximum bias
for halfspace-symmetric distributions, and the finite-sample
behavior for elliptical distributions is analyzed in [6].

In this paper, we consider the stronger TV corruption
model, which allows both adding and deleting mass from
the original distribution. We quantify the maximum bias of
Tukey median and provide both upper and lower bounds for
the breakdown point under TV corruptions. Interestingly, the
breakdown point for halfspace-symmetric distributions in high
dimensions decreases from 1/3 under additive corruptions to
1/4 under TV corruptions. We show that a different algorithm,
projection under the halfspace metric, has breakdown point
1/2 in the same setting, which is the maximum breakdown
point any translation-equivariant estimator can achieve [7,
Equation 1.38]. We summarize the breakdown point for dif-
ferent algorithms in Figure 1.

We extend the population results on maximum bias and
breakdown point under TV corruptions to the finite-sample
case, showing that we approach the infinite-data limit within
a constant factor once the number of samples n is linear in
d. Our analysis holds under both the oblivious and adaptive
models considered in the literature [8].

II. PRELIMINARIES

We provide definitions for the Tukey median, halfspace-
symmetric distributions, the additive and TV corruption mod-
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Fig. 1: Summary of the breakdown point of different algo-
rithms. Here ‘Tukey’ denotes Tukey median and ‘projection’
denotes the projection algorithm. ‘Additive’ and ‘TV’ are the
two corruption models. ‘Symmetric’ denotes the family of
halfspace-symmetric distribution, and ‘general’ denotes the
family of all distributions.

els, maximum bias, and breakdown point.

A. Tukey median

For any distribution p and µ ∈ Rd, the Tukey depth is
defined as the minimum probability density on one side of
a hyperplane through µ:

DTukey(µ, p) = inf
v∈Rd

p(v>(X − µ) ≥ 0). (1)

The Tukey median of a distribution p is defined as the point(s)
with largest Tukey depth:

T (p) = arg max
µ∈Rd

DTukey(µ, p). (2)

When d = 1, Tukey median reduces to median. The Tukey
median may not be unique even in one dimension. When the
maximizer for Tukey depth is not unique, we use T (p) to
denote the set for all the maximizers and refer to this set as
the Tukey median for distribution p.

B. Halfspace-symmetric distributions

We adopt the definition of halfspace-symmetric distributions
from [5], [9]. We say a distribution p is halfspace-symmetric



if there exists a point µ ∈ Rd such that for X ∼ p, (X −
µ) and −(X − µ) are equal in distribution for all univariate
projections, i.e.

∀v ∈ Rd, v>(X − µ)
d
= −v>(X − µ). (3)

Here d
= represents equal in distribution. We call the point

µ the center of the distribution p. The class of halfspace-
symmetric distributions contains both the class of centro-
symmetric distributions in [4] and elliptical distributions in [6].
For a halfspace-symmetric distribution p, µ is the mean of p.
The Tukey depth satisfies DTukey(µ, p) ≥ 1/2 and the Tukey
median T (p) contains µ.

C. Population corruption models

In the population level, we consider two corruption models:
additive corruption model and TV corruption model [8], [10],
[11].

a) Additive corruption model: In a level-ε additive cor-
ruption model, given some true distribution p∗, the adversary
can generate corrupted distribution p = (1− ε)p∗ + εr, where
ε ∈ [0, 1) is the level of corruption, and r ∈ Md is an arbitrary
distribution selected by adversary. We denote the set for all
possible ε-additive corruptions from p∗ as

Cadd(p∗, ε) = {(1− ε)p∗ + εr | r ∈ Md}. (4)

b) Total variation distance corruption: The total varia-
tion distance between two distributions p, q is defined as

TV(p, q) = sup
A
p(A)− q(A). (5)

In a level-ε TV corruption model, given some true distribu-
tion p∗, the adversary can generate any corrupted distribution
p with TV(p, p∗) ≤ ε. For any p ∈ Cadd(p∗, ε), it is always
true that TV(p∗, p) = supA ε(p

∗(A) − r(A)) ≤ ε. Thus the
TV corruption model is a stronger corruption model than
the additive corruptions, since TV corruptions allow not only
additive corruption, but also deletion and replacement.

D. Maximum bias and breakdown point for Tukey median

Given a fixed distribution p∗, the maximum bias b(p∗, ε) for
Tukey median is defined as the maximum distance between
T (p) and T (p∗), where p is in the set of all possible level-ε
corruptions:

badd(p∗, ε) = sup
p∈Cadd(p∗,ε),x∈T (p),y∈T (p∗)

‖x− y‖, (6)

bTV(p∗, ε) = sup
TV(p∗,p)≤ε,x∈T (p),y∈T (p∗)

‖x− y‖. (7)

The corresponding breakdown point ε∗(p∗) is defined as the
minimum corruption level that can drive the maximum bias to
infinity:

ε∗add(p∗) = inf{ε | b(p∗, ε) =∞}, (8)
ε∗TV(p∗) = inf{ε | b(p∗, ε) =∞}. (9)

Based on the definition of the breakdown point for a single
distribution, we define the breakdown point for a family of dis-

tribution G as the worst breakdown point for any distribution
inside G, i.e.

ε∗add(G) = inf
q∈G

ε∗add(q), ε∗TV(G) = inf
q∈G

ε∗TV(q). (10)

III. POPULATION ANALYSIS OF TUKEY MEDIAN

In this section, we quantify the maximum bias and the
breakdown point of the Tukey median in population level. The
maximum bias of the Tukey median for halfspace-symmetric
distributions under additive corruption model is determined in
[5, Theorem 3.4], which shows that the worst-case perturbation
is to add a single point with mass ε. It is also shown in [6,
Theorem 2.1] that under additive corruptions, the Tukey me-
dian achieves near optimal maximum bias for mean estimation
if the true distribution p∗ belongs to the family of elliptical
distributions.

Here we demonstrate a gap in the breakdown point for
halfspace-symmetric distributions between the additive and
TV corruption models.

Theorem 1. Denote Ghalf as the set of all halfspace-symmetric
distributions. Then the breakdown point for Ghalf is

ε∗add(Ghalf) =

{
1/2, d = 1

1/3, d ≥ 2
, ε∗TV(Ghalf) =


1/2, d = 1

1/3, d = 2

1/4, d ≥ 3

Proof of Theorem 1. We first show the upper bound for both
breakdown points. We defer the lower bound to Theorem 2.

For d = 1, by adding 1/2 mass onto z and letting z → +∞,
the maximum bias can be driven to infinity. Thus ε∗(Ghalf) ≤
1/2 under both corruption models.

For d ≥ 2 under additive corruption model, the upper bound
of breakdown point ε∗add is proven in [4, Proposition 3.3].
For completeness we sketch the proof here. Consider p∗ as
a uniform distribution supported on unit ball. The adversary
adds 1/3 probability mass onto a point µ ∈ Rd outside the unit
ball to get a new distribution p. Then DTukey(µ, p) = 1/3. On
the other hand, for any point µ′ 6= µ, if µ′ is outside unit
ball, there must exist a hyperplane which goes through µ′

such that the unit ball is on one side of the hyperplane. Thus
DTukey(µ

′, p) ≤ 1/3. If µ′ is inside unit ball, consider any
hyperplane that goes through 0 and µ′. The mass of the side
of hyperplane which does not contain µ is 1/31. Thus we also
have DTukey(µ

′, p) ≤ 1/3. Overall µ must be one of the Tukey
median for p. By setting µ→∞ the proof is done.

Since TV corruption model is a stronger corruption model,
the upper bound of breakdown points for d = 1, 2 under TV
corruptions readily follows from that under additive corrup-
tions. Now we show the upper bound for ε∗TV when d ≥ 3.

Consider the following example as illustrated in Fig-
ure 2: in a 3-dimensional space, p∗ is a distribution with
equal probability on the four nodes of a 2-dimensional
square. To be precise, p∗(X = t) = 1/4 for any t ∈

1If µ is on the same hyperplane. One can slightly rotate the hyperplane
such that µ is not on it. This still guarantees the corresponding depth to be
arbitrarily close to 1/3.



Fig. 2: Illustration of worst case distributions achieving the breakdown point. Blue represents the original probability mass in
p∗, blue cross represents deleted points and red represents added points by adversary. In all three cases, the red point is a
Tukey median of p. Thus by driving the red point to infinity the estimator also goes to infinity.

{(−1,−1, 0), (−1, 1, 0), (1,−1, 0), (1, 1, 0)}. Thus p∗ is a
halfspace-symmetric distribution, and T (p∗) = (0, 0, 0) gives
a unique Tukey median for p∗.

Now we move one of the point (1, 1, 0) to (−0.5,−0.5, z)
to get corrupted distribution p, where z > 0. Now the four
points form a tetrahedron. For any point µ that is inside
the tetrahedron, the Tukey depth DTukey is always 1/4. For
any point that is outside the tetrahedron, the Tukey depth is
always 0. Thus all the points inside the tetrahedron are a Tukey
median for the corrupted distribution p. By taking z → +∞,
the Tukey median T (p) is driven to infinity. Thus we know
that ε∗TV(Ghalf) ≤ 1/4 when d ≥ 3.

Without the halfspace-symmetric assumption, the break-
down point for Tukey median under additive corruption model
is 1/(d + 1), which is shown in [4, Proposition 2.3]. This is
also true under TV corruption model.

To better illustrate the behavior of Tukey median, we ana-
lyze the maximum bias for halfspace-symmetric distributions.
The performance guarantee relies on the decay function of the
distribution, which characterizes how much probability mass is
around the center of distribution. Assume the true distribution
p∗ is halfspace-symmetric centered at µ∗. We define the decay
function h(t) : R≥0 7→ R≥0 as

h(t) = sup
v∈Rd,‖v‖∗≤1

p∗(v>(X − µ∗) > t), (11)

where ‖ · ‖∗ is the dual norm of ‖ · ‖. Note that h is
a non-increasing non-negative function and h(0) = 1 −
DTukey(µ

∗, p∗) ≤ 1/2 for halfspace-symmetric distributions.
In the next theorem, we show that the maximum bias

is controlled if the distribution has enough mass around its
center:

Theorem 2. Assume p∗ is halfspace-symmetric with center µ∗

and decay function h(t) defined in (11). Then the maximum
bias satisfies:

badd(p∗, ε) ≤


h−1

(
max( (1−ε)(1−h(0))−ε

(1−ε) , 1/2−ε1−ε )
)
, d = 1

h−1
(

max( (1−ε)(1−h(0))−ε
(1−ε) , 1/3−ε1−ε )

)
, d = 2

h−1
(

(1−ε)(1−h(0))−ε
(1−ε)

)
, d ≥ 3

,

(12)

bTV(p∗, ε) ≤


h−1 (max(1− h(0)− 2ε, 1/2− ε)) , d = 1

h−1 (max(1− h(0)− 2ε, 1/3− ε)) , d = 2

h−1 (1− h(0)− 2ε) , d ≥ 3

.

(13)

Here h−1 is the generalized inverse function of h defined as

h−1(y) = inf{x | h(x) < y}. (14)

For Gaussian distribution with the operator norm of covari-
ance bounded, µ∗ is the mean and h(t) = 1/2 − Θ(t) for
t small, and Theorem 2 implies that Tukey median achieves
the maximum bias O(ε) for robust Gaussian mean estimation,
which is known to be optimal up to constant factor.

For any fixed distribution p∗, it suffices to have t > 0 for
h−1(t) to be finite. Thus as a direct corollary of Theorem 2,
it provides tight lower bound on the breakdown point of
halfspace symmetric distributions in Theorem 1 via noting that
h(0) ≤ 1/2 for halfspace-symmetric distributions.

The results in Theorem 2 can be extended beyond halfspace
symmetric distributions. For any true distribution p∗, since the
Tukey median of p∗ may not be unique, we define the new
h(t) as

h(t) = sup
v∈Rd,‖v‖∗≤1,µ∗∈T (p∗)

p∗(v>(X − µ∗) > t). (15)

Then following the same argument as the proof, the result
in (12) and (13) still hold.

Proof of Theorem 2. We first show that it suffices to bound
DTukey(T (p), p∗) via the following lemma:

Lemma 1. Under the same condition as Theorem 2, if
DTukey(T (p), p∗) ≥ α, we have

‖T (p)− µ∗‖ ≤ h−1(α). (16)

Proof of Lemma 1. Let ṽ = arg max‖v‖∗≤1 v
>(T (p) − µ∗).

Indeed, for any t such that h(t) < α, if ‖T (p)− µ∗‖ > t, we
have

DTukey(T (p), p∗) ≤p∗(ṽ>(X − T (p)) ≥ 0)

=p∗(ṽ>(X − µ∗) ≥ ‖T (p)− µ∗‖)
≤p∗(ṽ>(X − µ∗) > t)

≤h(t) < α, (17)

resulting in a contradiction. Thus the lemma holds.



Now it suffices to lower bound DTukey(T (p), p∗) for differ-
ent dimensions and different corruption models.

Under the TV corruption model, from the definition of
DTukey and TV, we have for any µ ∈ Rd,

DTukey(µ, p)−DTukey(µ, p
∗)

= inf
v∈Rd

p(v>(X − µ) ≥ 0)− inf
v∈Rd

p∗(v>(X − µ) ≥ 0)

≤ sup
v∈Rd

p∗(v>(X − µ) < 0)− p(v>(X − µ) < 0)

≤TV(p, p∗) ≤ ε. (18)

Under the additive corruption model, we have a tigher bound:
from the definition we know that p(A) = (1 − ε)p∗(A) +
εr(A) ≤ (1− ε)p∗(A) + ε for any event A. Thus

DTukey(µ, p) = inf
v∈Rd

p(v>(X − µ) ≥ 0)

≤ inf
v∈Rd

(1− ε)p∗(v>(X − µ) ≥ 0) + ε

= (1− ε)DTukey(µ, p
∗) + ε. (19)

When d = 1, we know that DTukey(T (p), p) ≥ 1/2 for any
distribution p. Thus DTukey(T (p), p∗) ≥ DTukey(T (p),p)−ε

1−ε ≥
1/2−ε
1−ε under additive corruption, DTukey(T (p), p∗) ≥
DTukey(T (p), p)− ε ≥ 1/2− ε under TV corruption.

When d = 2, we know that DTukey(T (p), p) ≥ 1/3 for
any distribution p from [4, Proposition 2.3]. Thus following
the same argument as d = 1, we have DTukey(T (p), p∗) ≥
(1/3−ε)/(1−ε) under additive corruption, DTukey(T (p), p∗) ≥
1/3− ε under TV corruption.

For arbitrary dimension under additive corruption model,
we also have another lower bound:

DTukey(T (p), p∗) ≥ (DTukey(T (p), p)− ε)/(1− ε)
≥ (DTukey(µ

∗, p)− ε)/(1− ε)
≥ ((1− ε)DTukey(µ

∗, p∗)− ε)/(1− ε)
= ((1− ε)(1− h(0))− ε)/(1− ε). (20)

Here we use that p(A) = (1−ε)p∗(A)+εr(A) ≥ (1−ε)p∗(A)
for any event A. For TV corruption model, we have

DTukey(T (p), p∗) ≥ DTukey(T (p), p)− ε ≥ DTukey(µ
∗, p)− ε

≥ DTukey(µ
∗, p∗)− 2ε = 1− h(0)− 2ε.

Combining the lower bounds with Lemma 1 gives the proof.

IV. FINITE SAMPLE ANALYSIS OF TUKEY MEDIAN

In this section, we extend the population results in the
previous section to finite-sample case.

Given finite samples, there are two different corruption
models: oblivious corruption and adaptive corruption [8]. In
the oblivious corruption, the adversary first picks a corrupted
population distribution p from CTV(p∗, ε), then we take n
samples from p. In the adaptive corruption, we first take n
samples from p∗, then the adversary samples n′ from some
distribution that is stochastically dominated by a binomial
distribution n′ ∼ B(n, ε) and replace n′ points in the samples
by arbitrary points to get the corrupted empirical distribution

p̂n. It is shown in [8], [12] that adaptive corruption model is
a stronger corruption model than oblivious corruptions.

Now we bound the maximum bias in the finite-sample case.
We show that with d/ε2 samples, the estimation error can be
of the same order as the population error in Theorem 2:

Theorem 3. Assume the true distribution p∗ is halfspace-
symmetric centered at µ∗ with decay function h(t) defined
in (11). Denote p̂n as the corrupted empirical distribution
under either oblivious or adaptive TV corruptions of level
ε. When d ≥ 3, with probability at least 1 − δ, there exists
universal constant C > 0 such that for any µ̂ ∈ T (p̂n) as the
Tukey median of p̂n,

‖µ̂− µ∗‖ ≤ h−1 (1− h(0)− 2ε̃) (21)

when 2ε̃ < 1 − h(0). Here ε̃ = ε + C ·
√

d+1+log(1/δ)
n , h−1

is the generalized inverse function of h defined in (14).

Proof. It suffices to show the result for adaptive corruption
model. From Lemma 1, we know that it also suffices to lower
bound DTukey(µ̂, p

∗), where µ̂ ∈ T (p̂n).
We introduce the halfspace metric defined in [10] as

T̃V(p, q) = sup
v∈Rd,t∈R

|p(v>X ≥ t)− q(v>X ≥ t)|. (22)

From the definition we have T̃V(p, q) ≤ TV(p, q) for all p, q.
We first show that |DTukey(µ, p) − DTukey(µ, q)| ≤ T̃V(p, q)
for any two distributions p, q and any µ ∈ Rd. To see this,
note that the left hand side is

|DTukey(µ, p)−DTukey(µ, q)|
= inf
v∈Rd

p(v>(X − µ) ≥ 0)− inf
v∈Rd

q(v>(X − µ) ≥ 0)

≤ sup
v∈Rd

q(v>(X − µ) < 0)− p(v>(X − µ) < 0) ≤ T̃V(p, q).

For Tukey median µ̂ = T (p̂n) = arg maxµ∈Rd DTukey(µ, p̂n),

DTukey(µ̂, p
∗) ≥ DTukey(µ̂, p̂n)− T̃V(p̂n, p

∗)

≥ DTukey(µ
∗, p̂n)− T̃V(p̂n, p

∗)

≥ DTukey(µ
∗, p∗)− 2T̃V(p̂n, p

∗).

Now let p̂∗n be the uncorrupted distribution, so that p̂n is
obtained from p̂∗n by modifying part of samples as in adaptive
corruption model. Then by triangle inequality of T̃V,

DTukey(µ̂, p
∗) ≥ DTukey(µ

∗, p∗)− 2T̃V(p̂n, p̂
∗
n)− 2T̃V(p̂∗n, p

∗)

≥ 1− h(0)− 2TV(p̂n, p̂
∗
n)− 2T̃V(p̂∗n, p

∗).

where we repeatedly use the fact that for any p, q, µ, we have
|DTukey(µ, p)−DTukey(µ, q)| ≤ T̃V(p, q). Here p̂n | p̂∗n follows
adaptive corruption model. Now we upper bound the two terms
TV(p̂n, p̂

∗
n) and T̃V(p̂∗n, p

∗). From [8, Lemma B.1], we know
that with probability at least 1− δ,

TV(p̂n, p̂
∗
n) ≤ (

√
ε+

√
log(1/δ)

2n
)2. (23)

For the second term T̃V(p̂∗n, p
∗), from the VC inequal-



ity [13, Chap 2, Chapter 4.3] and the fact that the family
of sets {{x | v>x ≥ t} | ‖v‖ = 1, t ∈ R, v ∈ Rd} has VC
dimension d+1, there exists some universal constant Cvc such
that with probability at least 1− δ:

T̃V(p∗, p̂∗n) ≤ Cvc ·
√
d+ 1 + log(1/δ)

n
. (24)

Denote ε̃ = (
√
ε +

√
log(1/δ)

2n )2 + Cvc ·
√

d+1+log(1/δ)
n .

Combining the two lemmata together, we know that with
probability at least 1−2δ, DTukey(µ̂, p

∗) ≥ 1−h(0)−2ε̃. The
proof is completed by combining the result with Lemma 1.

As a direct corollary of the finite sample result, we can show
that for Gaussian distribution the estimation error is O(ε) with
sample complexity O(d/ε2). We remark that with the same
proof, the population results in Theorem 2 for d = 1, 2 and
additive corruptions can all be extended to finite-sample results
with sample complexity O(d/ε2). Similarly the halfspace-
symmetric assumption can be discarded.

V. T̃V PROJECTION ALGORITHM

In the previous two sections, we show that Tukey median
can achieve breakdown point 1/4 for halfspace symmetric
distributions under TV corruptions and the sample complexity
is linear in dimension. In this section, we show that projection
under halfspace metric T̃V, as defined in (22), is able to im-
prove the breakdown point to 1/2 under the same conditions.
The T̃V projection algorithm is first proposed in [10] for robust
mean estimation, and later generalized in [8] for general robust
inference problems.

Denote G(h) as the set of halfspace-symmetric distributions
with controlled cumulative density function around its center:

G(h) = {p |X ∼ p is halfspace-symmetric around µ and

sup
v∈Rd,‖v‖∗≤1

p(v>(X − µ) > t) ≤ h(t)}. (25)

The T̃V projection algorithm projects the corrupted empirical
distribution p onto the set G(h) under T̃V distance, i.e. the
output is

µ̂(p) = Eq[X], where q = arg min
q∈G(h)

T̃V(q, p). (26)

Note that the T̃V projection algorithm requires the knowledge
of the set G(h), while the Tukey median is agnostic to the
distributional assumption on p∗. In return, the T̃V projection
algorithm achieves a breakdown point of 1/2 and better max-
imum bias than the Tukey median, as shown in the following
theorem:

Theorem 4. Assume the true distribution p∗ is halfspace-
symmetric centered at µ∗ with decay function h(t) defined
in (11). Then for any p with TV(p∗, p) ≤ ε, the projection
estimator µ̂(p) in (26) satisfies

‖µ̂− µ∗‖ ≤ 2h−1 (1/2− ε) (27)

when ε < 1/2. Here h−1 is the generalized inverse function
of h defined in (14).

Proof. By triangle inequality and the property of projection,

T̃V(p∗, q) ≤ T̃V(p∗, p) + T̃V(p, q)

≤ T̃V(p∗, p) + T̃V(p, p∗)

= 2T̃V(p∗, p) ≤ 2TV(p∗, p) ≤ 2ε. (28)

We also know that p∗, q ∈ G(h). Let ṽ =
arg max‖v‖∗≤1 v

>(µ̂− µ∗). We have

q(ṽ>(X − µ∗ + µ̂

2
) < 0)

=q(ṽ>(X − µ̂) < −‖µ̂− µ
∗‖

2
) ≤ h(

‖µ∗ − µ̂‖
2

). (29)

We show that it implies for any ε < 1/2, ‖µ̂ − µ∗‖ ≤
2h−1(1/2− ε).

For any t such that h(t) < 1/2− ε, if ‖µ̂− µ∗‖ > 2t,

p∗(ṽ>(X − µ∗ + µ̂

2
) < 0) = 1− p∗(ṽ>(X − µ∗) ≥ ‖µ̂− µ

∗‖
2

)

≥1− p∗(ṽ>(X − µ∗) > t) ≥ 1− h(t) > 1/2 + ε. (30)

On the other hand, from T̃V(p∗, q) ≤ 2ε, we know that

p∗(ṽ>(X − µ∗ + µ̂

2
) < 0) ≤q(ṽ>(X − µ∗ + µ̂

2
) < 0) + 2ε

≤h(
‖µ∗ − µ̂‖

2
) + 2ε < 1/2 + ε,

resulting in a contradiction.

The population result can also be extended to finite-sample
case by projecting p̂n instead of p under T̃V. The proof follows
the same technique in Theorem 3. The key to the success of
T̃V projection is that it allows us to check the halfspace that
goes through the middle of µ∗ and µ̂, while Tukey median
is only allowed to check the halfspace that goes through µ∗

and µ̂. Although projection under TV would also give the
same population rate, the finite sample error can be huge since
TV(p̂n, p) = 1. For both Theorem 3 and 4, the results can be
extended to a more general perturbation model of corruptions
under T̃V distance.

VI. OPEN PROBLEM

Considering the TV corruption model, Tukey median is
an affine-equivariant estimator with breakdown point 1/4 in
high dimensions and good finite sample error for halfspace-
symmetric distributions. The T̃V projection algorithm is not
affine-equivariant, but achieves breakdown point 1/2 and good
finite sample error in the same set of distributions. Both
algorithms may not be efficiently solvable.

It is an open problem to find an estimator that is affine-
equivariant, with breakdown point 1/2 and good finite sample
error for halfspace-symmetric distributions without consider-
ing computational efficiency.
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