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CONSPECTUS: By using transition metal catalysts, chemists have — diverging acyl-metal-hydride species

altered the “logic of chemical synthesis” by enabling the o ML 8
functionalization of carbon—hydrogen bonds, which have tradition- R/\)L" MeRhGo (’;,:J\/\a

ally been considered inert. Within this framework, our laboratory o

has been fascinated by the potential for aldehyde C—H bond ldenydes Scyhmetalhydrides
activation. Our approach focused on generating acyl-metal-hydrides olefin hydroacylati bonyl hydroacylati transfer hydroformylation
by oxidative addition of the formyl C—H bond, which is an Ho . —
elementary step first validated by Tsuji in 1965. In this Account, we M"" ))\t'f>:° O N\ = O
review our efforts to overcome limitations in hydroacylation. Initial Me ’ o R " Y
studies resulted in new variants of hydroacylation and ultimately linear and cyclic ketones esters and hy ylated olefins

spurred the development of related transformations (e.g.,

carboacylation, cycloisomerization, and transfer hydroformylation).

Sakai and co-workers demonstrated the first hydroacylation of olefins when they reported that 4-pentenals cyclized to
cyclopentanones, using stoichiometric amounts of Wilkinson’s catalyst. This discovery sparked significant interest in hydroacylation,
especially for the enantioselective and catalytic construction of cyclopentanones. Our research focused on expanding the asymmetric
variants to access medium-sized rings (e.g., seven- and eight-membered rings). In addition, we achieved selective intermolecular
couplings by incorporating directing groups onto the olefin partner. Along the way, we identified Rh and Co catalysts that transform
dienyl aldehydes into a variety of unique carbocycles, such as cyclopentanones, bicyclic ketones, cyclohexenyl aldehydes, and
cyclobutanones. Building on the insights gained from olefin hydroacylation, we demonstrated the first highly enantioselective
hydroacylation of carbonyls. For example, we demonstrated that ketoaldehydes can cyclize to form lactones with high regio- and
enantioselectivity. Following these reports, we reported the first intermolecular example that occurs with high stereocontrol.
Ketoamides undergo intermolecular carbonyl hydroacylation to furnish a-acyloxyamides that contain a depsipeptide linkage.
Finally, we describe how the key acyl-metal-hydride species can be diverted to achieve a C—C bond-cleaving process. Transfer
hydroformylation enables the preparation of olefins from aldehydes by a dehomologation mechanism. Release of ring strain in the
olefin acceptor offers a driving force for the isodesmic transfer of CO and H,. Mechanistic studies suggest that the counterion serves
as a proton-shuttle to enable transfer hydroformylation. Collectively, our studies showcase how transition metal catalysis can
transform a common functional group, in this case aldehydes, into structurally distinct motifs. Fine-tuning the coordination sphere of
an acyl-metal-hydride species can promote C—C and C—O bond-forming reactions, as well as C—C bond-cleaving processes.
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key challenges to address
« Can we discover new asymmetric variants of olefin hydroacylation?

« Can we develop asymmetric ketone hydroacylations for ester synthesis?

« Can we diverge the key acyl-metal-hydride species to novel pathways?
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Figure 1. Overview of divergent transformations triggered by formyl C—H bond activation and ligands featured in this Account as they appear in
chronological order (black, commercially available; blue, ligands our lab designed and synthesized).

hydroacylation; ketoaldehydes cyclize to the correspond-
ing lactones under Rh catalysis.

Murphy, S. K; Park, J.-W.; Cruz, F. A;; Dong, V. M. Rh-
catalyzed C—C bond cleavage by transfer hydroformyla-
tion. Science 2015, 347, 56—60." The design and
development of transfer hydroformylation, which is a
method for transferring CO and H, from an aldehyde
substrate to a strained olefin acceptor. The isodesmic
reaction is driven by the release of ring strain in the olefin
acceptor.
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1. INTRODUCTION

One of the largest applications of homogeneous catalysis by
volume is the Rh-catalyzed hydroformylation of olefins to
generate aldehydes.” We reasoned that metal-catalyzed trans-
formations similar in design to hydroformylation would have the
same potential for broad use. Hydroformylation involves an
acyl-Rh-hydride species that undergoes reductive elimination to
generate the formyl C—H bond. Over the past decade, our
laboratory has been interested in the reverse elementary step:
activation of the aldehyde C—H bond to generate an acyl-metal-
hydride species (Figure 1). By tuning the coordination sphere of

https://dx.doi.org/10.1021/acs.accounts.0c0077 1
Acc. Chem. Res. 2021, 54, 12361250
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this acyl-metal-hydride species, we have discovered C—C and
C—O bond-forming reactions, as well as C—C bond-cleaving
methods. In this Account, we present a personal report of our
studies on Rh- and Co-catalyzed olefin hydroacylation and
ketone hydroacylation, and the related carboacylation and
transfer hydroformylation. We share how some discoveries were
serendipitous, while others were guided by mechanistic insights.
We identified the appropriate ligand by examining representa-
tive ligands from different families, searching for trends, and then
fine-tuning the most promising scaffolds. In each case, however,
the choice of ligand plays a key role in promoting reactivity and
selectivity (see Figure 1 for an overview of the ligands featured in
this Account).

2. ALDEHYDE C—H BOND FUNCTIONALIZATION

In 1965, Tsuji reported that aldehyde C—H bonds undergo
oxidative addition to generate an acyl-metal-hydride species

A. Olefin Hydroacylation Mechanism and Challenges
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linear or branched R’ RJ\ H decarbonylation
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B. Chelating Atoms Inhibit Off-Cycle Reductive Decarbonylation
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Figure 2. (A) Olefin hydroacylation mechanism and (B) strategy for
suppressing decarbonylation.

during his studies on decarbonylation.® Future efforts focused
on diverting aldehyde reactivity away from decarbonylation. In
1972, Sakai and co-workers found that a series of 4-pentenals
cyclized to the corresponding cyclopentanones when using
stoichiometric Wilkinson’s complex.” This study spurred
developments in catalytic hydroacylation, which is defined as
the addition of a hydrogen atom and acyl group across an alkene,
alkyne, or carbonyl. To date, a range of transition metals (Rh,
Ru, Ni, Co) and organic molecules (NHC’s), catalyze
intramolecular and intermolecular olefin hydroacylation.® The
most efficient hydroacylation catalysts are designed around
cationic Rh(I) centers, which were originally shown to be
effective catalysts by Bosnich and co-workers.” Figure 2A depicts
the well-accepted mechanism for Rh-catalyzed olefin hydro-
acylation. Oxidative addition of I to a formyl C—H bond
generates acyl-Rh(III)-hydride II. Subsequent olefin coordina-
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tion (IV), followed by migratory insertion, affords either linear
or branched acyl-Rh(III)-alkyl species V or VI, respectively.
Reductive elimination of V or VI releases the corresponding
ketone product and regenerates catalyst I. The propensity for
the acyl-Rh(III)-hydride species II to undergo an off-cycle
reductive decarbonylation (i.e., Tsuji-Wilkinson decarbon-
ylation) via Rh-carbonyl I1I presents a problem.®

Advances in Rh-catalyzed hydroacylation focus on inhibiting
reductive decarbonylation. One successful strategy uses
aldehyde partners that possess proximal coordinating atoms
(Figure 2B). The coordination of an additional ligand to 16-
electron Rh species Il results in a fully saturated organometallic
species. Following initial reports of intramolecular olefin
hydroacylation, Suggs showed that quinoline aldehydes do not
undergo decarbonylation but, instead, couple to olefins by
intermolecular hydroacylation.'” Next, Jun and co-workers
discovered that 2-(diphenylphosphino)benzaldehyde couples to
a range of olefins.'' Miura and Willis expanded the scope of the
aldehyde partner to include proximal coordinating groups, such
as alcohols, sulfides, and amines.'” An alternative strategy uses
catalytic scaffolding groups to achieve similar levels of reactivity
and selectivity. Jun and co-workers demonstrated that 2-amino-
3-picoline acts as a cocatalyst for intermolecular hydroacylation
by forming a chelating picolyl imine."* After hydroacylation, the
resulting imine product undergoes hydrolysis to afford the
corresponding ketone and regenerate the amine catalyst.

An overview of progress in hydroacylation can be found in a
Chemical Review™ by Willis and an Organic Reactions chapter®
by our laboratory. For a recent review on asymmetric
hydroacylation, we direct the reader to a Chemical Communi-
cations viewpoint from our group.'* The majority of studies in
the field of asymmetric hydroacylation focused on the
cyclization of 4-pentenals, which bear different substitution
patterns to afford cyclopentanones.”'* For intermolecular
couplings, using chelating aldehydes has allowed for the
enantioselective synthesis of ketones.”'* A rare example of
intermolecular olefin hgrdroacylation with simple aldehydes was
reported by Tanaka.'” In this example, the authors demon-
strated that acrylamides are suitable olefin partners and
hypothesize that the proximal amide coordinates to the Rh
center during catalysis to stabilize the acyl-Rh(III)-hydride
intermediate. With this background in mind, our research team
focused on three main questions:

(1) Can we expand asymmetric variants by incorporating
directing groups on the olefin component?

(2) Can we develop an analogous transformation where
ketones could be used in place of olefins to generate the
corresponding esters and lactones?

(3) Canwe diverge the key acyl-Rh(III)-hydride intermediate
to other pathways, including those that involve C—C
bond cleavage?

2.1. Olefin Hydroacylation with Chelating Substrates

Our work in the area of olefin hydroacylation with chelating
substrates centers around four themes, which are summarized in
Figure 3. Our contributions include (1) developing the enantio-
and regioselective synthesis of medium-sized heterocyclic
ketones, (2) using ring-strain to drive intermolecular hydro-
acylation, (3) incorporating an additional directing group on the
olefin partner to control regioselectivity for intermolecular
couplings, and (4) identifying a catalyst that allows for the
intermolecular hydroacylation of unactivated olefins (e.g., a-
olefins).

https://dx.doi.org/10.1021/acs.accounts.0c00771
Acc. Chem. Res. 2021, 54, 12361250
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Figure 4. Enantioselective intramolecular hydroacylation for the
synthesis of seven- and eight-membered heterocydles.

In 2009, we reported an enantioselective intramolecular olefin
hydroacylation to afford seven- and eight-membered hetero-
cycles (Figure 4).'° The heteroatom (X) in the carbon
framework of 1 promotes desired reactivity over decarbon-
ylation. Starting with aldehyde 1, a cationic Rh catalyst modified
by (R,R)-Me-DuPHOS allows for the enantioselective prepara-
tion of seven- and eight-membered heterocyclic ketones 2.
Matching the ancillary ligand with the aldehyde substrate
enabled high reactivity and stereoselectivity.

Preventing unwanted decarbonylation becomes more chal-
lenging with the intermolecular variant of olefin hydroacylation.
To create a driving force for desired reactivity, we selected hlghlz
strained cyclopropenes 4 as the olefin partner (Figure §).'
Josiphos ligands promoted the desymmetrization of cyclo-
propenes to set vicinal stereocenters in S. High levels of
diastereoselectivity (up to >20:1 dr) and enantioselectivity (up
to >99% ee) were obtained. This method complemented the
limited reports for synthesizing enantioenriched cyclopropanes
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bearing a quaternary stereocenter at the time. However, the
optimal conditions were not applicable to linear olefins.

To control for branched selectivity in olefin hydroacylations,
we used distal directing groups on the olefin partner (Figure 6).
Transition metal-catalyzed reactions involving directing groups
tethered to olefins have seen large success. % However, this
approach was rarely used for enantio- and regioselective
intermolecular olefin hydroacylation. Two examples were
reported in 2009 at the time of our initial studies: Tanaka
demonstrated that acrylamides are suitable chelating olefins,"”
and Suemene reported that 1,5-hexadienes promote branched
selectivity."®” Building on this strategy, we used homoallylic
sulfides 6 as the olefin partner because we had previously
demonstrated that intramolecular olefin hydroacylation occurs
in the presence of a sulfide tether (Figure 6A).'” Various
salicylaldehydes 3 undergo the coupling reaction to afford aryl
ketones 7 bearing a-stereocenters. Moreover, a multitude of aryl
homoallylic sulfides 6 are compatible. Decarbonylation is
mitigated by combining low reaction temperatures, an
appropriate ligand, and the presence of directing groups on
both reactants. To investigate the regioselective outcome, we

https://dx.doi.org/10.1021/acs.accounts.0c00771
Acc. Chem. Res. 2021, 54, 12361250
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A. Sulfide-directed homoallylic sulfide hydroacylation
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Figure 6. (A) Regio- and enantioselective coupling of salicylaldehydes
and homoallylic sulfides. (B) Analogous regioselective hydroacylations
of allylic and homoallylic alcohols.
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Figure 7. Rh-catalyzed hydroacylation of unactivated olefins and
octaketide natural product synthesis.
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Figure 9. Design and strategy for the intramolecular DKR hydro-
acylation of racemic 4-pentenals.

subjected allylic sulfide 6a to the standard reaction conditions
and observed linear ketone 7a. This result suggests that a five-
membered rhodacycle intermediate influences the branched
versus linear regioselectivity.

Toward branch-selective hydroacylation, we developed a
tandem catalytic cycle that converts allylic and homoallylic
alcohols 8 to (homo)aldol motifs 9 (Figure 6B).”” The design
leverages the reversible alcoholysis of phosphinites. Methyl
diphenylphosphinite undergoes exchange with an equivalent of
alcohol 8 to afford an allylic phosphinite, which is a competent
directing group for Rh-catalyzed hydroacylation. A variety of

https://dx.doi.org/10.1021/acs.accounts.0c0077 1
Acc. Chem. Res. 2021, 54, 12361250
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Figure 10. Optimal ligands for the enantioselective DKR hydro-
acylation.

salicylaldehydes 3 and (homo)allylic alcohols 8 couple to form
hydroxy ketones 9. Reactivity depends on the ability of the
hydroxyl group to form a phosphinite; the analogous methyl
ether of 8 shows no reactivity under these standard conditions.

We then discovered a Rh catalyst that allows for the
regioselective preparation of linear ketones 11 (Figure 7).
The combination of a phosphoramidite ligand (R-SIPHOS-PE)
and a heterogeneous base are critical for reactivity and
regioselectivity. We proposed that (R)-SIPHOS-PE aids in
inhibiting decarbonylation by lowering the barrier for reductive
elimination of the acyl-Rh(III)-alkyl species. In agreement with
this proposal, mechanistic findings suggest that hydrorhodation
to form a branched acyl-Rh(III)-alkyl species is reversible,
whereas linear hydrorhodation is irreversible. We prepared eight
biologically active octaketide natural products (i.e., dothior-
elones, cytosporones, and phomopsin C). In a related study, we
synthesized 12 analogs of the cytosporone family and ultimately
found an increase in cytotoxicity with a densely fluorinated acyl
carbogenic chain.”'

We aimed for hydroacylations with simple, nonfunctionalized
aldehyde partners by using olefins bearing directing groups
(Figure 8).” Vinylphenols 13 undergo Rh-catalyzed hydro-
acylation with a broad scope of aldehydes 12, including aryl,
alkenyl, and alkyl aldehydes—none of which contained a
coordinating functional group.”** Benzylic ketones 14 can then
undergo an acid-mediated dehydrative cyclization to afford the
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Figure 11. Co-catalyzed hydroacylation of 1,3-dienes.
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Figure 12. (A) Enzyme-directed cydlizations of geranyl pyrophosphate.
(B) Transition metal-catalyzed hydroacylation to afford various
carbocyclic frameworks.

corresponding benzofurans. This sequence leads to four natural
products: eupomatenoids 12, 16—18. The kinetic profile shows
saturation kinetics for the vinylphenol partner.”” Chelation of
the vinylphenol aids in favoring hydroacylation over decarbon-
ylation. Moreover, the small bite-angle ligand (dcpm) lowers the

https://dx.doi.org/10.1021/acs.accounts.0c0077 1
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Figure 13. Divergent cyclizations of a dienyl aldehyde 22a based on
ligand choice.
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Figure 14. Rh-catalyzed desymmetrization of quaternary centers by
hydroacylation.

barrier of oxidative addition of the Rh catalyst to the formyl C—
H bond, which we determined to be the turnover-limiting step.
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Figure 16. Mechanistic pathways for the Rh-catalyzed cydlizations of
dienyl aldehydes.

2.2. Other Strategies and Metals for Olefin Hydroacylation

James and Young reported the first enantioselective intra-
molecular olefin hydroacylation, a kinetic resolution of racemic
4-pentenals.”’ While this was a groundbreaking result, the
cyclization was limited to a theoretical yield of 50%. Nearly four
decades later, we set out to achieve a related variant using
dynamic kinetic resolution (DKR).** However, examples of C—
C bond-forming DKR processes are rare.”> Our strategy relies
on a cocatalyst (a bulky primary amine) to selectively racemize
the aldehyde starting material 15, by means of enamine 16, and
not the cyclopentanone product 17 (Figure 9).*° This selective

https://dx.doi.org/10.1021/acs.accounts.0c0077 1
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racemization exploits the electrophilicity of these different
carbonyls. If the amine cocatalyst condenses onto enantioen-
riched ketone 17, the formation of the less-substituted enamine
18 is preferred. Therefore, avoiding allylic strain prevents
product epimerization to 19.

Similar to other intramolecular olefin hydroacylations, we
observe a strong ligand dependence for the DKR hydroacylation
of homoallylic aldehydes 15 (Figure 10).*° The cyclization
depends on matching the ligand with the substituents on both
the a-carbon atom and pendant olefin. We identified three
combinations of substrate, ligand, and amine cocatalyst that
allow access to various alkyl- and aryl-substituted cyclo-
pentanones 17. In the case of @-aryl cyclopentanones, Houminer
demonstrated that this motif undergoes oxidative decomposi-
tion.”” Therefore, to inhibit product decomposition and
epimerization, we performed a reductive workup with L-
selectride to furnish cyclopentanols. Preliminary mechanistic
findings suggest that reductive elimination is the turnover-
limiting step. This DKR enables access to a,y-disubstituted
cyclopentanones that are difficult to access otherwise.”

Our laboratory,z‘” Yoshikai,*” and Vinogradov"'l have found
that the more earth abundant, Co-derived catalysts, can also
promote olefin hydroacylation. By using Co catalysis, we
accessed allylic ketones 21 with 1,3 dienes 20 acting as the
olefin partner (Figure 11).”” The mechanism differs from the
typical Rh-catalyzed olefin hydroacylation mechanism. In the
initial step, oxidative cyclization of the two substrates and Co
catalyst forges the new C—C bond. Subsequently, an endocyclic
f-H elimination of the seven-membered cobaltacycle affords a
Co—H species. Reductive elimination completes the cycle to
afford ketone 21. We applied this method to aryl, alkenyl, and
alkyl aldehydes, forming ketones 21 in high yield with excellent
regioselectivity. This method contributes to the emerging
hydroacylation strategies that exploit nonprecious metal
catalysis.”

2.3. Divergent Synthesis of Carbocycles

Cyclase enzymes convert geranyl pyrophosphate to a variety of
structurally unique carbocycles (Figure 12A). Inspired by
Nature, we hypothesized that a common dienyl aldehyde
could undergo a variety of metal-catalyzed bond formations,
which would all be triggered by C—H bond activation (Figure
12B). Our investigations began with a chiral Rh catalyst and
symmetric dienyl aldehyde 22a (Figure 13).”” We found that
changing the ancillary ligand yields different mixtures of
cyclopentanone 23a, bicyclic ketone 24a, and bicyclic diketone
25a. When using (R)-BINAP, we observe cyclopentanone 23a
as the major product alongside bicyclic ketone 24a; both
ketones 23a and 24a are formed with low levels of
enantioinduction. However, when using BzDPPB the product
ratio favors bicyclic ketone 24a, which arises from a novel
carboacylation pathway that is triggered by C—H bond
activation.”” Lastly, the use of (R)-DTBM-MeO-BIPHEP solely
affords cyclopentanone 23a with high levels of enantioselectiv-
ity. Interested by the array of products formed from 22a, we
sought to develop the divergent carbocyclization chemistry and
unearth the mechanistic pathways.

Our initial study focused on expanding the substrate scope of
the enantioselective cyclopentanone synthesis (Figure 14).*
Desymmetrization of dienyl aldehydes 22 proceeds with high
enantiocontrol In the presence of lower catalyst loadings than
our initial lead (see Figure 12), an array of a-aryl and a-alkyl
aldehydes 22 transform to carbocycles 23. This method allows
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Figure 17. Co-catalyzed hydroacylation affords enantioenriched
cyclobutanones.

for the synthesis of cyclopentanones bearing a stereodefined
quaternary center. Mechanistic findings support an irreversible
and enantioselective olefin isomerization followed by hydro-
acylation of the remaining terminal olefin (vide infra). We
proposed that the a-vinyl group, which is initially formed by
olefin isomerization, not only directs hydroacylation to the
remaining terminal olefin but also coordinates to the Rh center
to slow decarbonylation.

A. Synthesis of Ethyl Acetate via the Tishchenko Reaction

(<]
o o) H
Al(OEt); (EtO),AIQ  H ~AI(OEt);
Me)l\ Xoé\ M.)ko)\ Me

H Me Me
(€]

B. Catalytic Carbony! Hydroacylation and Potential Challenges
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Jk )\/m R'
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R'—H co J]\/ RS
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OH O o
R/K(U\Rz R'/\ARZ
R? R?

Figure 18. (A) Inspiration for carbonyl hydroacylation and (B)
challenges to overcome.

hydroacylation

decarbonylation
-

aldol products

After observing olefin isomerization in the synthesis of
cyclopentanones 23, we were interested in intercepting a related
acyl-Rh-hydride intermediate (Figure 15).** Changing the chiral
ligand to a spirobiindane (SDP) backbone and the salt additive
to NaBAr; diverted the reactivity of 22 to cyclohexenyl
aldehydes 26. The scope of this cycloisomerization compares
favorably to the previous olefin hydroacylation to afford

https://dx.doi.org/10.1021/acs.accounts.0c00771
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Figure 19. Rh-catalyzed carbonyl hydroacylations furnishes medium-
sized heterocydlic lactones.
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Figure 20. Design of a strategy uses coordinating counterions to expand
the scope to nonchelating aldehydes.

cyclopentanones 23. This method sets a quaternary stereo-
center, as well as a distal tertiary stereocenter, with high levels of
stereocontrol. Moreover, cyclohexenes 26 are complementary to
the regioisomers formed from a Diels—Alder reaction between
terminal dienes and a,f-unsaturated aldehydes.*® The cyclo-
isomerization proceeds by formyl C—H bond activation,
regioselective carbometalation, and then endocyclic f-H
elimination (vide infra).

On the basis of literature precedent and our own mechanistic
findings, we propose that a key intermediate can diverge into the
four distinct products 23—26 (Figure 16).****" Initial oxidative
addition of the Rh catalyst to the aldehyde C—H bond affords an
acyl-Rh(III)-hydride intermediate. Stereoselective hydrorhoda-
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Figure 21. Enantioselective preparation of phthalides by Rh-catalyzed
carbonyl hydroacylation.

tion of one olefin then affords five-membered rhodacycle VII,
which is the common denominator between all four products we
observe in our studies. Collectively, these findings showcase that
fine-tuning the Rh catalyst can diverge the reactivity of a
common aldehyde into unique carbocycles. However, at no
point in our studies did we observe reductive elimination of VII
to furnish a cyclobutanone product. Interested by the possibility
of forming densely substituted cyclobutanones, we decided to
explore Co catalysis.

Bergman and co-workers characterized a five-membered
cobaltacycle that undergoes oxidatively induced reductive
elimination to form cyclobutanones.” In addition, Vinogradov
showed that paramagnetic Co(0)-complexes catalyze intra-
molecular hydroacylation of 4-pentenal to afford cyclo-
pentanone.”’ This precedent, paired with our previous success
in Co catalysis,” led us to investigate hydroacylation to form
cyclobutanones. We identified that a Co catalyst, modified by
(8,5)-BDPP, and substoichiometric amounts of Zn reductant
formed cyclobutanones 27 with high selectivity (Figure 17).” A
variety of a-aryl bisallyl aldehydes 22 undergo the trans-
formation to favor cyclobutanones 27 over cyclopentanones iso-
23 (>10:1 rr). This study features enantioselective construction
of cyclobutanones 27 by hydroacylation and complements
previous methods that rely upon parallel kinetic resolutions.™"*
Mechanistic findings support a canonical hydroacylation
mechanism that involves reductive elimination of a five-
membered cobaltacycle to afford 27.

3. CARBONYL HYDROACYLATION

In comparison to olefin hydroacylation, the corresponding
carbonyl hydroacylation for asymmetric ester synthesis remains
much less explored.”” Bosnich reported the first example of
ketone hydroacylation.* In this study, 1,4-ketoaldehydes cyclize

https://dx.doi.org/10.1021/acs.accounts.0c00771
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Figure 22. Diastereodivergent construction of bicyclic lactones by enantioselective carbonyl hydroacylation.

to racemic y-lactones under Rh catalysis. While distinct in
mechanism, hydroacylation to generate esters bears similarities
to the Tishchenko reaction,®” which is a process catalyzed by
base. For example, the industrial synthesis of ethyl acetate
involves a Tishchenko reaction of acetaldehyde with an alkoxide
catalyst (Figure 18A).* While industrially relevant, enantiose-
lective variants of the Tishchenko reaction were rare at the time
we began our studies."' We imagined that functionalization of
aldehyde C—H bonds would represent an attractive and unified
approach to making both ketones and esters. Preventing
reductive decarbonylation and controlling regioselectivity
(Tishchenko-like versus Benzoin-like products) are main
obstacles shared between carbonyl and olefin hydroacylation
(Figure 18B). However, an additional challenge arises when
attempting to couple two carbonyl starting materials. The aldol
and aldol condensation reactions represent well-established
pathways that compete with carbonyl hydroacylation.

3.1. Intramolecular Carbonyl Hydroacylation

We started investigations with the intramolecular cyclization of
ketoaldehydes 28, which contain an oxygen atom in the tether
(Figure 19A).” Despite all possible products, we identified a Rh
catalyst that affords the Tishchenko-type ester 29, with only
minor amounts of decarbonylation. A variety of ketoaldehydes
28 undergo the desired cyclization to afford seven-membered
heterocyclic lactones 29, with high reactivity and selectivity. Ina
related study, we expanded the scope of the ketoaldehydes to
include nitrogen atom tethers that cyclize to afford benzox-
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azecinones 31 (Figure 19B).** Therefore, both oxygen and
nitrogen atoms bind to Rh to inhibit decarbonylation and lower
the entropic cost for medium ring formation. While limited in
scope, this breakthrough afforded an enantioselective prepara-
tion of medium-sized rings and provided an opportunity to study
the mechanism of ketone hydroacylation.

While the mechanism was assumed to mirror olefin
hydroacylation, experiments were necessary to confirm. Kinetic
isotope effects and Hammett plot studies suggest that ketone
insertion into the Rh—H bond is the turnover-limiting step."’
Moreover, the absence of crossover products supports an
intramolecular hydrorhodation of the ketone. This elementary
step affords an acyl-Rh-alkoxide species, which then undergoes
reductive elimination to afford heterocyclic lactones 29 and 31.
Density functional theory (DFT) studies support our
experimental observations.

While we successfully identified a chiral Rh catalyst for
enantioselective carbonyl hydroacylation, only medium-sized
lactones could be accessed. Therefore, to identify a catalyst for
small-membered ring construction we focused on substrates
without a coordinating atom in the tether (Figure 20). We
hypothesized that tuning the counterion for the Rh catalyst
would expand the scope of intramolecular carbonyl hydro-
acylation. For this study, we chose the intramolecular hydro-
acylation of ketoaldehyde 32 to afford phthalides 33 (Figure
21).*" Fine-tuning of a silver salt resulted in inhibiting
decomposition pathways. Specifically, the coordinating ability
of the anion (depicted as X) needed to be matched with the

https://dx.doi.org/10.1021/acs.accounts.0c00771
Acc. Chem. Res. 2021, 54, 12361250
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Figure 23. Enantioselective coupling of aldehydes and ketoamides.
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Transfer Hydroformylation

-

via

ketone substituent (depicted as R). Empirical studies revealed a
nitrate anion is optimal for alkyl-substituted ketones, whereas
aryl-substituted ketones require a mesylate counterion. In
general, stronger coordinating counterions can help prevent
decarbonylation. However, the resulting catalysts are often more
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sluggish. As a result, the counterion remains a valuable
parameter for tuning both reactivity and selectivity. Currently,
the substrate scope is limited to aryl-substituted ketoaldehydes
32. Careful selection of the bisphosphine ligand alongside the
counterion resulted in high reactivity and enantioselectivity.
With this method, we prepared (S)-3-n-butylphthalide in 93%
yield and 97% ee. This natural product imparts the flavor of
celery and its racemate reached phase-III clinical trials for
treating strokes."’

In a subsequent study, we focused on desymmetrization of
bisketoaldehydes 34 for the enantioselective preparation of
bicyclic lactones 35 and 36 (Figure 22).% Choosing the
appropriate Rh source, solvent, and temperature allowed for the
diastereodivergent synthesis of anti- and syn-bicyclic lactones
(35 and 36, respectively). With dimeric [Rh(nbd)Cl],, an
ethereal solvent, and a lower reaction temperature, we observed
selective formation of the anti-lactone 35. Changing to cationic
[Rh(cod),]SbF4 an alcoholic solvent, and increasing the
temperature furnished syn-fused lactones 36. Both trans-
formations progress with high levels of reactivity and selectivity.
We propose that the use of polar, coordinating solvents (i.e.,
DME and ‘AmOH) inhibits decarbonylation. This strategy
enables an enantioselective formal synthesis of (—)-mesembr-

e."” Starting with bisketoaldehyde 34a, carbonyl hydro-
acylation affords syn-fused lactone 36a. Redox manipulations
and an allylic alcohol transposmon affords lactone 37 and
completes the formal synthesis.**

3.2. Intermolecular Carbonyl Hydroacylation

Like Rh-catalyzed olefin hydroacylation, intermolecular carbon-
yl hydroacylation poses more challenges compared to the
intramolecular counterpart. We hypothesized that a directing
group on the carbonyl partner could address these challenges.
We selected ketoamides 38 as the carbonyl partner and
identified a Rh catalyst that could afford the corresponding a-
acyloxyamides 39 with high regio- and enantiocontrol (Figure
23)."” Key to the success of this coupling was the design and
synthesis of a new Josiphos ligand (L4) that possessed both a 7-
accepting diarylphosphine and a ¢-donating dialkyl phosphine
substituent. We propose that the zm-accepting phosphine
substituent is positioned frans to the carbonyl partner, making
it more prone to migratory insertion. Likewise, the o-donating
dialkyl phosphine is positioned trans to the hydride ligand
therefore increasing hydricity. This dual activation explains why
the Josiphos ligand class was uniquely effective for the
transformation. In a follow-up study, we prepared a novel
dcpp-inspired bisphosphme ligand (LS) that contains two P-
stereogenic centers.”’ This bidentate ligand for Rh expands the
scope to include isatins and linear a-ketoamides with aliphatic
aldehydes.

4. TRANSFER HYDROFORMYLATION

Nature uses cytochrome P450 enzymes to oxidize C—H bonds
in a highly selective manner.”" Within this family of enzymes, the
demethylases excise methyl groups in the biosynthesis of sterols
(Figure 24A).>” In this cascade, an aldehyde intermediate
undergoes dehydroformylation to access the olefin product.
Inspired by this biosynthetic sequence, we envisaged developing
a dehydroformylation of aldehydes as a complementary tool for
organic synthesis (Figure 24B). Notably this transformation
would occur via the cleavage of one C—C bond to generate
olefins. This approach stands in stark contrast to staple
olefinations where aldehydes transform to olefins via C—C

https://dx.doi.org/10.1021/acs.accounts.0c00771
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Figure 25. Rh-catalyzed C—C bond deavage by transfer hydroformylation.

bond formations, such as the Wittig, Julia—Lythgoe, and
Horner—Wadsworth—Emmons reactions.>

Our proposal relied on triggering C—C bond cleavage by
chemoselective activation of formyl C—H bonds using Rh
catalysis. This process requires trapping the acyl-Rh(III)-
hydride species in a pathway that outcompetes known
hydroacylation and decarbonylation. Olefins generated by
dehydroformylation have been observed in reactions that use
stoichiometric catalysts or require elevated reaction temper-
atures (160—300 °C).”* We imagined that a Rh catalyst could
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work in tandem with a sacrificial strained olefin acceptor to
transfer a hydrogen atom and formyl group from the aldehyde
substrate. We postulated that the release of substantial ring
strain in the olefin acceptor could offer a driving force for the
isodesmic reaction® and allow for selective access to the desired
olefin product. Notably, this process would avoid the
intermediacy of CO gas, which could potentially act as a catalyst
poison. If successful, this strategy could pave the way for future
transfer hydroformylations that use alcohols and alkanes as
substrates with an oxidizing agent.

https://dx.doi.org/10.1021/acs.accounts.0c0077 1
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A Rh catalyst promotes selective transfer hydroformylation of
a variety of aldehydes 40 (Figure 25)." Crucial to the success of
this process was the appropriate counterion (i.e.,, 3-methoxy-
benzoate) and strained olefin acceptor (nbd = norbornadiene or
nbe = norbornene). An array of aldehydes 40 transform to
terminal and internal olefins, conjugated dienes, as well as cyclic
and trisubstituted olefins (41). The transformation tolerates a
range of functional groups. We demonstrated a late-stage
transfer hydroformylation of natural product derivatives.
Specifically, we prepared indole alkaloid (+)-yohimbenone in
three-steps from the inexpensive, commercially available
precursor (+)-yohimbine. Our synthesis starts with reduction
of the exocyclic ester to afford the corresponding aldehyde.
Subjecting this aldehyde to the transfer hydroformylation
conditions affords (+)-yohimbenone in 65% yield. The cascade
initially forms the corresponding allylic alcohol, but after a
prolonged reaction time, a transfer hydrogenation event occurs
to afford the enone functionality in (+)-yohimbenone.

We sought to understand the mechanistic underpinnings of
transfer hydroformylation. Deuterium labeling studies and
characterization of organometallic intermediates support the
catalytic cycle shown in Figure 25. Oxidative addition of
Rh(benzoate) species VIII to aldehyde 40a affords acyl-Rh-
hydride IX. Reductive elimination of IX releases an equivalent of
3-OMeBzOH and affords coordinatively unsaturated complex
X. Species X then undergoes CO-migratory extrusion followed
by f-hydride elimination to yield olefin complex XII. Ligand
exchange with the strained olefin partner releases olefin 41a.
Migratory insertion of the olefin into the Rh—H bond of XIII
yields XIV. CO-insertion, oxidative addition to 3-OMeBzOH,
and finally, reductive elimination furnishes the acceptor
byproduct 42 and regenerates the active catalyst VIIL

The proposed transfer hydroformylation mechanism high-
lights why the judicious choice of counterion and olefin acceptor
facilitate productive chemistry. The counterion effectively acts
as a proton-shuttle between the two distinct acyl-Rh-hydride
species IX and XVI. Therefore, fine-tuning the basicity of this
chemical species is paramount. Moreover, the olefin acceptor
needs to be sufficiently strained to drive the reaction in the
forward direction. Following our study, Morandi and co-workers
have unlocked an array of exciting transformations that bear
similar design features, which they refer to as shuttle catalysis.”®
Also, the Nozaki laboratory has reported an Ir-catalyzed
dehydroformylation of aldehydes that directly expels CO gas
instead of transferring it to a strained acceptor.”” Recently,
Sorenson and co-workers have developed a Co catalyst that
works in tandem with photoredox catalysis to transform
aldehydes to olefins by dehydroformylation.”® Our laboratory
has also developed a cascade that enables the conversion of
alcohols to dehomologated olefins via the intermediacy of an
aldehyde.*”

5. OUTLOOK

Discovered in the late 1700s and coined in 1835, the aldehyde
represents one of the most fundamental functional groups in
organic synthesis.”’ Aside from oxidations and reductions,
aldehydes act as both nucleophiles and electrophiles. In
addition, they engage in atom economical transformations
with olefins (e.g., the Paterno—Biichi reaction) and umpolung
chemistry (e.g., the Stetter reaction and Benzoin condensa-
tion).** Chemists today continue to develop strategies to both
synthesize and transform aldehydes. This Account summarizes
our efforts in diverting the reactivity of an organometallic
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intermediate that arises from aldehyde C—H bond activation to
prepare novel motifs. The resulting methodologies allow for the
rapid construction of C—C and C—O bonds and also C—C bond
cleavage. The idea of taking common functional groups and
discovering new ways to couple them with other partners is an
emerging area of theoretical and experimental research.®'

Our efforts have aided in the development of (1) intra-
molecular hydroacylations to afford carbocycles other than five-
membered systems and (2) regio- and enantioselective
intermolecular hydroacylations. There remains significant
opportunities to (1) expand the substrate scope of directed
hydroacylations and (2) identify more earth-abundant catalysts.
The use of earth-abundant catalysts that promote formal
hydroacylation via distinct mechanisms represents an emerging
area of research.”” We hope these insights will guide the use of
transition metal catalysis to enable divergent reaction pathways
for aldehydes and other common functional groups.
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