

1 The roles of replication-transcription conflict in
2 mutagenesis and evolution of genome organization

3 Jeremy W. Schroeder*¹, T. Sabari Sankar*², Jue D. Wang*¹, Lyle A. Simmons*³

4
5 ¹ Department of Bacteriology, University of Wisconsin-Madison
6 ² Indian Institute of Science Education and Research Thiruvananthapuram
7 ³ Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann
8 Arbor, Michigan, USA.

9
10 *Correspondence:

11 jwschroeder3@wisc.edu (JWS)
12 sabari@iisertvm.ac.in (TSS)
13 wang@bact.wisc.edu (JDW)
14 lasimm@umich.edu (LAS)

15

16

17 Abstract

18 Replication-transcription conflicts promote mutagenesis and give rise to evolutionary signatures,
19 with fundamental importance to genome stability ranging from bacteria to metastatic cancer
20 cells. This review focuses on the interplay between replication-transcription conflicts and the
21 evolution of gene directionality. In most bacteria, the majority of genes are encoded on the
22 leading strand of replication such that their transcription is co-directional with the direction of
23 DNA replication fork movement. This gene strand bias arises primarily due to negative selection
24 against deleterious consequences of head-on replication-transcription conflict. However, many
25 genes remain head-on. Can head-on orientation provide some benefit? We combine insights
26 from both mechanistic and evolutionary studies, review published work, and analyze gene
27 expression data to evaluate an emerging model that head-on genes are temporal targets for
28 adaptive mutagenesis during stress. We highlight the alternative explanation that genes in the
29 head-on orientation may simply be the result of genomic inversions and relaxed selection acting
30 on nonessential genes. We seek to clarify how the mechanisms of replication-transcription
31 conflict, in concert with other mutagenic mechanisms, balanced by natural selection, have
32 shaped bacterial genome evolution.

33 Introduction

34 Studies of mutagenesis in bacteria have revealed conserved biological processes influencing
35 mutation rate across all domains of life and identified sources of bacterial evolution against host
36 defense, peer competition, and antibiotic exposure. Historical studies of bacterial mutations by
37 Luria and Delbrück led to a conclusive demonstration that spontaneous mutations generate the
38 genetic diversity to allow survival of subsequent selective pressure [1]. Mutations do not arise
39 uniformly across the genome, because multiple mechanisms for mutagenesis exist and the
40 effect of each mechanism depends on the genomic context of a given locus [2]. Replication-
41 transcription conflict is one mutagenic mechanism that is particularly influenced by genomic
42 context. Replication-transcription conflict is common to prokaryotic and eukaryotic systems [for
43 reviews, see [3–6]]. Insertions and deletions within genes, a key mutation signature of
44 replication-transcription conflict in bacteria, are also found in cancer cells [7–9], suggesting that
45 the mechanisms by which conflicts generate mutations may also be conserved.

46 Recently, the field of replication-transcription conflict has generated both excitement and
47 contradictions. There are new developments in the contribution of conflicting interplay between
48 replication-transcription machineries to genome evolution and genome organization. In most
49 bacterial species, the majority of genes are encoded in the leading strand of replication such
50 that their transcription is co-directional with DNA replication fork movement. The extent of gene
51 strand bias differs across bacteria, with *Escherichia coli*, *Bacillus subtilis*, and
52 *Thermoanaerobacter tengcongensis* having 55, 75, and 87 percent of genes co-directional,
53 respectively (Fig 1A and [5]). Gene strand bias is the result of purifying selection against head-
54 on genes, which are targets for mutagenesis and impede DNA replication when they are highly
55 expressed (Fig 1B and [7,10–12]). Experimental evidence demonstrates that deleterious

56 consequences of inverting co-directionally oriented genes to be head-on include slowed
57 replication fork progression, replication arrest, and DNA double-strand breaks/ends [7,10,13,14].
58 Given the deleterious consequences of head-on conflict, it is natural to wonder how bacterial
59 genomes have not evolved to have all genes in the co-directional orientation. After all, such an
60 arrangement of genes should increase genome stability and fitness. Is there a driving force for
61 some genes to be oriented head-on? One possibility is that head-on orientation of stress-
62 induced genes is favorable. Merrikh and colleagues proposed that stress-induced genes are
63 preferentially positioned in the head-on orientation to promote replication-transcription conflict
64 during stress, which in turn would promote adaptive mutagenesis of stress-induced genes [15–
65 19]. Alternatively, the prevalence of stress-induced genes in the head-on orientation may simply
66 be the result of two well-established phenomena: the occurrence of genomic inversions and
67 selection against head-on genes. This alternative model is supported by recent work
68 documenting the types of mutations generated by head-on conflict, the mechanisms of
69 mutagenesis in head-on genes, and the evolutionary forces driving strand-biased gene
70 distribution [7,20–23]. In this review, we present the evidence raised to support each view. We
71 first briefly review evolutionary work pertaining to head-on genes, then discuss the mechanisms
72 of mutagenesis of head-on genes, both dependent and independent of conflict, and finally
73 examine stress-induced genes specifically. We hope to clarify what has been learned about
74 replication-transcription conflict as it pertains to mutagenesis and evolution of head-on genes
75 and strand-biased gene distribution.

76 Main Text

77 An evolutionary explanation for the existence of head-on genes

78 Merrikh and colleagues proposed an adaptive hypothesis to explain the occurrence of genes in
79 the head-on orientation [17,19]. Using comparative genomics, they presented several lines of
80 evidence they propose support positive selection for head-on oriented genes. First, estimating
81 nucleotide substitutions of several genes, they showed that nonsynonymous substitutions (dN)
82 were higher in head-on compared to co-directional genes while synonymous substitutions (dS)
83 showed no difference. Therefore, the ratio of dN to dS, which is an indicator of selective
84 pressure on protein-coding genes, was higher for head-on genes [17,19]. Second, dN/dS ratios
85 that are significantly greater than one provide evidence that a gene is under positive selection
86 [24], and the authors showed that genes with dN/dS modestly above one from multiple bacterial
87 species were slightly more enriched in head-on genes compared to co-directional genes [17].
88 Finally, they proposed that convergent amino acid substitutions, a key criterion of adaptive
89 evolution, occurred more frequently in head-on genes [19]. Based on these observations,
90 Merrikh and colleagues proposed that head-on genes experience positive selection for
91 increased mutation rate caused by head-on conflicts.

92 Though the adaptive hypothesis is intriguing, the notion is contradicted based on the theory of
93 mutation-selection balance [20,23]. First, the increased dN observed for lagging strand-encoded
94 genes can be explained by either adaptive evolution or relaxed purifying selection. In this case,
95 purifying selection is the selection against deleterious mutations. Co-directional genes are

enriched with essential genes and house-keeping genes, and are therefore subject to stronger purifying selection than head-on genes. Nonsynonymous substitutions in co-directional genes are selected against, causing lower dN and dN/dS in co-directional genes. The finding that the mean dN/dS ratio of head-on genes is slightly higher than that of co-directional genes [17,19], while remaining well below one, provides strong support that head-on genes are under relaxed purifying selection compared to co-directional genes. Second, although the percentage of genes with dN/dS greater than one, i.e., under positive selection, is higher among genes in the head-on orientation, in absolute numbers, more co-directional genes counted by Merrikh and Merrikh have dN/dS greater than one (289 of 15627 total co-directional genes versus 234 of 9757 total head-on genes) [17]. Thus, on a gene-by-gene basis there is little evidence to suggest that genes with dN/dS greater than one receive additional adaptive benefits if they are head-on. Therefore, there remains poor evidence to suggest positive selection for head-on genes. Finally, Chen and Zhang [20] show that convergent substitution, a key criterion of adaptive evolution [25], is not observed to be higher in head-on genes as claimed in [19].

Instead of the head-on orientation being positively selected, gene strand bias can represent the equilibrium distribution of head-on and co-directional genes that arises due to a balance of random genetic inversion and purifying selection against head-on genes (Fig 1B and [20]). Therefore, despite negative selection against head-on genes in general, genes that remain head-on are those whose head-on conflict is either less costly to bacterial fitness, or that have not yet been purified from the genome. In agreement with this theory, the strength of selection against the head-on orientation depends on the type of gene in which conflict occurs. For example, inverting the ribosomal RNA operons to the head-on orientation has extremely deleterious consequences because they are highly expressed essential genes, and their head-on transcription disrupts replication fork progression [4,10,11,26]. Therefore, the extreme consequences of head-on conflict at inverted ribosomal RNA operons explain why all ribosomal RNA operons are oriented co-directional to replication [27]. Mutation-selection balance may also explain differences in gene strand bias between different bacteria. Inverting genes from co-directional to head-on results in a much stronger fitness defect in *B. subtilis* [10] compared to comparable inversions in *E. coli* [28,29]. Accordingly, *B. subtilis* has higher bias for co-directional genes (75 percent co-directional) than *E. coli* (55 percent co-directional) [5]. Thus, natural selection favors genes to be co-directionally transcribed [6], but due to unavoidable inversion events the presence of head-on genes is inevitable.

Are there sufficient inversion events to support the mutation-selection balance model for gene strand bias? Bacteria often contain a circular chromosome with a single origin of replication and two replication forks, each replicating half a chromosome (replicore). Any inversion event contained within a replicore will change the relative direction of replication-transcription conflict for all genes contained within the inversion. Inversions within a replicore would rarely be detected at the population level, and this is likely due to the fitness cost of having many genes oriented head-on [10,30,31]. Bioinformatic studies in many bacteria reveal that symmetric inversions around the origin of replication frequently occur [32,33]. This further suggests that non-symmetric inversions may be more common than currently realized, but only symmetric inversions are pervasively retained through evolution due to their low fitness cost. In studies selecting for inversion within a gene bearing 12- or 23-bp regions of inverted homology, Miller

139 and co-workers estimated inversion rates to be $4*10^{-9}$ to $1*10^{-7}$ per generation [34,35]. Inversion
140 rates will depend on many factors, including the length of homology at the inversion break-
141 points [36]. For comparison, the rate of base-pair substitution in bacteria varies around $3*10^{-10}$
142 per nucleotide replicated per generation, depending on the type of substitution and sequence
143 context [22,37]. Interestingly, both the Zhang group and the Merrikh group, although disagreeing
144 in the numbers, provide evidence for many inversion events resulting in co-directional to head-
145 on changes of gene orientation [17,21]. In summary, considering the potential rate of
146 chromosomal inversions, in both methodological and theoretical terms the mutation-selection
147 balance model best explains the existence of head-on genes [20,21,23].

148 Mutation signatures of head-on conflict: deleterious or beneficial?

149 Various reporters have been employed to study the mutagenic consequences of replication-
150 transcription conflicts. Mutation assays based on resistance to rifampin or trimethoprim [7,10],
151 and reversion of auxotrophic mutants to prototrophy [19], have all shown that mutation reporter
152 genes in the head-on orientation have modestly higher mutation rates than their co-directional
153 counterpart in *B. subtilis*. These similar results have been interpreted differently. The Merrikh
154 group interpreted the increased rate of reversion of auxotrophic mutants to prototrophy to
155 support their hypothesis favoring positive selection for head-on genes [18,19]. However, their
156 assays begin with a non-functional mutant gene and select for specific reversions to restore a
157 functional state. During natural evolution, head-on genes do not begin with a non-functional
158 state wherein the only direction for fitness to go is up. Rather, under more natural conditions,
159 mutagenesis comes with many risks to gene fitness. In addition, reversion assays only select for
160 specific nonsynonymous base substitutions at few positions, making them poorly suited to study
161 the impact of conflicts on mutagenesis. In contrast, forward mutation assays select for all loss-
162 of-function mutations in a gene and are thus more helpful in revealing the multiple types of
163 mutations that could inactivate a gene.

164 Using a forward mutation assay based on trimethoprim resistance, Sankar *et al.*
165 comprehensively identified mutation signatures of conflicts [7]. Among a wide spectrum of loss-
166 of-function mutations that were obtained, insertions/deletions (indels) and base substitutions at
167 the promoter were demonstrated as the major mutation signatures resulting from replication-
168 transcription conflicts. Indels were proximal to the sites where collisions occurred and spanned
169 from cis-regulatory elements to coding regions. The vast majority of indels are deleterious,
170 resulting in loss of gene function. Therefore, while there is no evidence that conflicts primarily
171 generate beneficial mutations, there is conclusive evidence that conflicts generate deleterious
172 mutations.

173 The forward mutation assay also detected hundreds of different base substitutions throughout
174 the coding region and at the promoter. Mutation rate in the coding sequence did not increase
175 when head-on transcription was induced compared to the uninduced condition [7]. Therefore,
176 most base substitutions in the coding sequence likely arise independently of head-on conflict. In
177 contrast, promoter substitutions appeared as a hotspot with a strongly elevated rate upon
178 induction of head-on transcription [7]. This hotspot is identical in nature and position to a
179 promoter hotspot previously identified in a head-on oriented mutation reporter in *E. coli* [38].

180 This striking similarity in mutagenic signature identified in two phylogenetically distant bacteria
181 (*E. coli* and *B. subtilis*), using two different reporter systems, supports the widespread existence
182 of promoter substitutions due to head-on replication-transcription conflict.

183 Promoter substitutions due to head-on conflict suggest another origin of gene strand bias. A
184 comparative genomic analysis demonstrated that long bacterial operons are strongly biased to
185 the leading strand and occur sparsely in the head-on orientation, especially when the operons
186 are conserved [39]. A single promoter mutation due to head-on conflict could inactivate every
187 gene in a multi-gene operon, causing a strong loss of fitness. Therefore, promoter mutations
188 caused by head-on conflicts are more likely to be deleterious than beneficial, and thus
189 convincingly explain the evolutionary pressure against head-on genes, especially for essential
190 and highly expressed genes.

191 Recently, Lang and Merrikh argued against mechanistic evidence bolstering the evolutionary
192 model of selection against head-on genes [15]. In their review, the authors conclude,
193 mistakenly in our opinion, that promoter base substitutions due to head-on conflicts are a
194 consequence of mutational bias introduced by toxic selection on trimethoprim [15]. We disagree
195 with this interpretation for several reasons. First, the fundamental tenet of the fluctuation test as
196 devised by Luria and Delbrück is that selection for mutants is separate from generation of
197 spontaneously-occurring mutations during growth [1,2]. In the Luria and Delbrück experiment,
198 phage-resistant mutant cells arose prior to exposure to phage, and not in response to phage
199 infection [1]. Likewise, mutations resulting from replication-transcription conflicts were revealed
200 by trimethoprim selection and were not generated in response to the drug, as demonstrated by
201 the Luria-Delbrück distribution of mutants per culture [7]. Hence, mutations identified after
202 selection for trimethoprim resistance represent authentic signatures of replication-transcription
203 conflicts.

204 Second, if the argument is that promoter mutations negate the toxic nature of trimethoprim, then
205 the same mutation should appear similarly enriched in the co-directional orientation, which was
206 distinctly not the case. Additionally, the promoter mutant showed no growth advantage in
207 competition with wild type and other types of mutants, suggesting that it was a *bona fide*
208 mutational outcome of conflicts and not a result of selection bias [7]. Therefore, loss-of-function
209 mutation assays facilitate less biased estimation of mutation rates than reversion assays and
210 are suitable for studying the impact of replication-transcription conflict on mutagenesis.

211 Are mutations in head-on genes largely dependent on replication- 212 transcription conflict?

213 Replication-transcription conflict is not the only mutagenic mechanism that can manifest in
214 different mutation rates between co-directional and head-on genes. One such mechanism is
215 differences between the accuracy of replication of the leading and lagging strands [40,41]. It is
216 hypothesized that leading and lagging strand replication fidelity is unequal due to intrinsic
217 differences in replication accuracy and error correction between leading and lagging strands
218 during DNA replication, not necessarily due to replication-transcription conflict [40–43]. When a
219 co-directional gene is inverted, its leading strand template would become the lagging strand

220 template and vice versa. This would have the effect of adjusting mutation rate in the inverted
221 gene due to changes in local genome context and error correction efficiency that are
222 independent of conflict.

223 What about the mutation rate in genomes with an established equilibrium of head-on and co-
224 directional genes? These questions can be addressed by mutation accumulation studies, which
225 bypass the limitations of mutation reporters by using whole genome resequencing to identify
226 mutations that become fixed in a population when selection is minimized. Many research groups
227 have performed mutation accumulation experiments over the past decade and made key
228 findings in the evolution of mutation rates, mechanisms of GC skew, the effect of replication
229 timing on mutagenesis, and factors associated with spontaneous mutagenesis [22,23,37,44–
230 49]. Strikingly, Lynch and colleagues demonstrated that mutation accumulation studies have not
231 found an association between base substitution rate and a gene's orientation relative to
232 replication [23]. Instead, one of the strongest determinants of substitution rate was the
233 neighboring DNA sequence context at a given genomic locus [22,45]. Importantly, the influence
234 of neighboring nucleotide sequence context on mutagenesis operates independently of the
235 orientation and expression of a gene. Therefore, mutation accumulation studies suggest that in
236 bacterial genomes that have established an equilibrium of head-on and co-directional genes,
237 replication-transcription conflict is unlikely to be a major driver of nonsynonymous mutagenesis.

238 Are stress-induced genes typically head-on?

239 Mechanistic and evolutionary evidence clearly demonstrate that the majority of head-on oriented
240 genes are not driven to be head-on through selection for conflict-induced adaptive mutagenesis.
241 However, there is precedence for selection causing heritable genetic change. For example,
242 upon phage infection, CRISPR loci acquire phage DNA in the form of new spacers [50,51].
243 Therefore, it remains possible that specific genes are head-on to benefit from conflict-induced
244 mutability. Merrikh and colleagues proposed that stress-induced genes benefit from
245 mutagenesis caused by head-on conflict when their expression is induced during stress [52].
246 We performed several analyses to test their model.

247 First, we examined the coding sequences (CDSs) regulated by nine stress-associated
248 transcription factors (Table 1). Are these stress-induced CDSs more likely to be oriented head-
249 on, as the adaptive mutagenesis model for head-on genes suggests? No. On the contrary, all
250 regulons except SigV contain more co-directional CDSs than head-on. For example, genes in
251 the SigM (cell envelope stress) regulon were suggested to be preferentially in the head-on
252 orientation [19]. However, we found that there are 70 co-directional CDSs in the SigM regulon
253 and 23 head-on. Furthermore, the Spx (oxidative stress) and Spo0A (sporulation) regulons were
254 enriched for co-directional CDSs (Table 1). We conclude that, in stark contrast to the prediction
255 of the adaptive hypothesis for head-on stress-induced genes, there is no compelling evidence
256 for selection driving stress-induced genes to be head-on.

257 Second, under the assumption that stress-induced genes are preferentially head-on, Lang and
258 Merrikh suggested that the reason mutation accumulation studies have not found head-on
259 genes to have higher mutation rates than co-directional genes is due to the relatively low-stress
260 conditions of mutation accumulation experiments [23]. However, RNA-seq data show that head-

261 on CDSs occupy a similar range of expression values as co-directional CDSs (Fig 2A) [22]. To
262 further test whether head-on genes tend to be “off” under most conditions and “on” under a
263 select few, we analyzed *B. subtilis* transcriptomic data from [53], in which gene expression was
264 measured under 104 conditions. We estimated each gene’s propensity for differential
265 expression by calculating its Gini coefficient over the 104 conditions. The range of Gini
266 coefficients was nearly identical between head-on and co-directional genes (Fig 2B). These
267 analyses indicate that head-on genes are not particularly special in their patterns of differential
268 expression when compared to co-directional genes.

269 Conclusions

270 Genome organization has been shaped by selective forces that minimize replication-
271 transcription conflict, resulting in enriched co-directionality between replication and transcription.
272 Although the hypothesis that positive selection promotes head-on orientation of stress-induced
273 genes to increase conflict and promote adaptive mutation is tempting [19], evolutionary
274 [20,21,23] and mechanistic analyses [7,38] suggest this is not the case. Together, the mutation-
275 selection balance theory and conflict-induced mutation signatures strongly support the
276 evolutionary model that head-on genes are a result of inevitable gene inversion [20,31,36], to be
277 later purified from the genome due to increased deleterious mutation rate and their greater
278 propensity to block DNA replication [7,10,13,14,20,38]. Genes remaining head-on tend to be
279 those in which purifying selection is relaxed. The distribution of stress-induced genes is not
280 significantly different between head-on and co-directional orientations. Hence, the adaptive
281 evolution model of head-on genes is poorly suited to explain the presence of genes on the
282 lagging strand and still requires compelling empirical support. Genomes in their current state
283 have likely evolved to an equilibrium distribution of co-directional and head-on genes which is
284 maintained by selective pressure against deleterious consequences resulting from genome
285 rearrangements.

286 Acknowledgements

287 This work was supported by National Institutes of Health grant R35 GM131772 to LAS, National
288 Science Foundation grant MCB 1714539 to LAS, R35 GM127088 from NIGMS to JDW, the
289 Howard Hughes Medical Institute Faculty Scholars Award to JDW, and DBT/Wellcome Trust
290 India Alliance Fellowship grant IA/I/18/2/504037 to TSS. The authors have no conflict of interest
291 to declare.

292 Methods

293 Transcriptomic microarray data were downloaded from the url
294 <http://genome.jouy.inra.fr/basysbio/bsubtranscriptome>. The intercept $\log_2(\text{signal})$ for each gene
295 and the effect of each of the 104 conditions tested in [53] on each gene’s $\log_2(\text{signal})$ was
296 inferred. To avoid obtaining many false positive effects a Bayesian model with a shrinkage prior
297 known as the Finnish Horseshoe prior [54] was employed.

298 Gene enrichment analysis was performed using regulon annotations hosted at the Subtiwiki
299 database [55]. A chi-square test for independence between gene regulation by each regulator
300 and gene direction relative to DNA replication was used to calculate the p-values in Table 1.
301 A detailed description of our methods, including all R and python code, and all the data required
302 to reproduce our analysis, can be found in the gitub repository hosted at
303 https://github.com/jadewanglab/2020_PGen_analysis.git.

304 References

- 305 1. Luria SE, Delbruck M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics. 1943;28: 491–511.
- 306 2. Schroeder JW, Yeesin P, Simmons LA, Wang JD. Sources of spontaneous mutagenesis in
308 bacteria. Crit Rev Biochem Mol Biol. 2017;2017/11/08: 1–20.
- 309 3. Hamperl S, Cimprich KA. Conflict Resolution in the Genome: How Transcription and
310 Replication Make It Work. Cell. 2016;167: 1455–1467.
- 311 4. Brewer BJ. When polymerases collide: replication and the transcriptional organization of
312 the *E. coli* chromosome. Cell. 1988;53: 679–686.
- 313 5. Rocha EP. The replication-related organization of bacterial genomes. Microbiology. 2004;150: 1609–1627.
- 314 6. Rocha EPC. The organization of the bacterial genome. Annu Rev Genet. 2008;42: 211–
316 233.
- 317 7. Sankar TS, Wastuwidyaningtyas BD, Dong Y, Lewis SA, Wang JD. The nature of mutations
318 induced by replication-transcription collisions. Nature. 2016;535: 178–181.
- 319 8. Imielinski M, Guo G, Meyerson M. Insertions and Deletions Target Lineage-Defining Genes
320 in Human Cancers. Cell. 2017;168: 460–472.e14.
- 321 9. Letouzé E, Shinde J, Renault V, Couchy G, Blanc J-F, Tubacher E, et al. Mutational
322 signatures reveal the dynamic interplay of risk factors and cellular processes during liver
323 tumorigenesis. Nat Commun. 2017;8: 1315.
- 324 10. Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD. Co-orientation of replication and
325 transcription preserves genome integrity. PLoS Genet. 2010;6: e1000810.
- 326 11. French S. Consequences of replication fork movement through transcription units in vivo.
327 Science. 1992;258: 1362–1365.
- 328 12. Kim N, Abdulovic AL, Gealy R, Lippert MJ, Jinks-Robertson S. Transcription-associated
329 mutagenesis in yeast is directly proportional to the level of gene expression and influenced
330 by the direction of DNA replication. DNA Repair. 2007;6: 1285–1296.
- 331 13. Vilette D, Ehrlich SD, Michel B. Transcription-induced deletions in plasmid vectors: M13
332 DNA replication as a source of instability. Mol Gen Genet. 1996;252: 398–403.

333 14. Mirkin EV, Castro Roa D, Nudler E, Mirkin SM. Transcription regulatory elements are
334 punctuation marks for DNA replication. *Proc Natl Acad Sci U S A*. 2006;103: 7276–7281.

335 15. Lang KS, Merrikh H. The Clash of Macromolecular Titans: Replication-Transcription
336 Conflicts in Bacteria. *Annu Rev Microbiol*. 2018;72: 71–88.

337 16. Lang KS, Hall AN, Merrikh CN, Ragheb M, Tabakh H, Pollock AJ, et al. Replication-
338 Transcription Conflicts Generate R-Loops that Orchestrate Bacterial Stress Survival and
339 Pathogenesis. *Cell*. 2017;170: 787–799 e18.

340 17. Merrikh CN, Merrikh H. Gene inversion potentiates bacterial evolvability and virulence. *Nat
341 Commun*. 2018;9: 4662.

342 18. Million-Weaver S, Samadpour AN, Moreno-Habel DA, Nugent P, Brittnacher MJ, Weiss E,
343 et al. An underlying mechanism for the increased mutagenesis of lagging-strand genes in
344 *Bacillus subtilis*. *Proc Natl Acad Sci U S A*. 2015;112: E1096–105.

345 19. Paul S, Million-Weaver S, Chattopadhyay S, Sokurenko E, Merrikh H. Accelerated gene
346 evolution through replication-transcription conflicts. *Nature*. 2013;495: 512–515.

347 20. Chen X, Zhang J. Why are genes encoded on the lagging strand of the bacterial genome?
348 *Genome Biol Evol*. 2013;5: 2436–2439.

349 21. Liu H, Zhang J. No support for the adaptive hypothesis of lagging-strand encoding in
350 bacterial genomes. *bioRxiv*. 2020. p. 2020.01.14.906818. doi:10.1101/2020.01.14.906818

351 22. Schroeder JW, Hirst WG, Szewczyk GA, Simmons LA. The Effect of Local Sequence
352 Context on Mutational Bias of Genes Encoded on the Leading and Lagging Strands. *Curr
353 Biol*. 2016;26: 692–697.

354 23. Lynch M, Ackerman MS, Gout JF, Long H, Sung W, Thomas WK, et al. Genetic drift,
355 selection and the evolution of the mutation rate. *Nat Rev Genet*. 2016;17: 704–714.

356 24. Nei M, Kumar S. *Molecular Evolution and Phylogenetics*. Oxford University Press; 2000.

357 25. Christin P-A, Weinreich DM, Besnard G. Causes and evolutionary significance of genetic
358 convergence. *Trends Genet*. 2010;26: 400–405.

359 26. Liu B, Alberts BM. Head-on collision between a DNA replication apparatus and RNA
360 polymerase transcription complex. *Science*. 1995;267: 1131–1137.

361 27. Nomura M, Morgan EA. Genetics of bacterial ribosomes. *Annu Rev Genet*. 1977;11: 297–
362 347.

363 28. Boubakri H, De Septenville AL, Viguera E, Michel B. The helicases DinG, Rep and UvrD
364 cooperate to promote replication across transcription units in vivo. *EMBO J*. 2010;29: 145–
365 157.

366 29. De Septenville AL, Duigou S, Boubakri H, Michel B. Replication fork reversal after
367 replication-transcription collision. *PLoS Genet*. 2012;8: e1002622.

368 30. Segall A, Mahan MJ, Roth JR. Rearrangement of the bacterial chromosome: forbidden
369 inversions. *Science*. 1988;241: 1314–1318.

370 31. Mackiewicz P, Mackiewicz D, Gierlik A, Kowalcuk M, Nowicka A, Dudkiewicz M, et al. The
371 differential killing of genes by inversions in prokaryotic genomes. *J Mol Evol.* 2001;53: 615–
372 621.

373 32. Eisen JA, Heidelberg JF, White O, Salzberg SL. Evidence for symmetric chromosomal
374 inversions around the replication origin in bacteria. *Genome Biol.* 2000;1:
375 RESEARCH0011.

376 33. Darling AE, Miklós I, Ragan MA. Dynamics of genome rearrangement in bacterial
377 populations. *PLoS Genet.* 2008;4: e1000128.

378 34. Slupska MM, Chiang JH, Luther WM, Stewart JL, Amii L, Conrad A, et al. Genes involved in
379 the determination of the rate of inversions at short inverted repeats. *Genes Cells.* 2000;5:
380 425–437.

381 35. Schofield MA, Agbunag R, Miller JH. DNA inversions between short inverted repeats in
382 *Escherichia coli*. *Genetics.* 1992;132: 295–302.

383 36. Gordon AJ, Halliday JA. Inversions with deletions and duplications. *Genetics.* 1995;140:
384 411–414.

385 37. Lee H, Popodi E, Tang H, Foster PL. Rate and molecular spectrum of spontaneous
386 mutations in the bacterium *Escherichia coli* as determined by whole-genome sequencing.
387 *Proc Natl Acad Sci U S A.* 2012;109: E2774–83.

388 38. Yoshiyama K, Higuchi K, Matsumura H, Maki H. Directionality of DNA replication fork
389 movement strongly affects the generation of spontaneous mutations in *Escherichia coli*. *J
390 Mol Biol.* 2001;307: 1195–1206.

391 39. Price MN, Alm EJ, Arkin AP. Interruptions in gene expression drive highly expressed
392 operons to the leading strand of DNA replication. *Nucleic Acids Res.* 2005;33: 3224–3234.

393 40. Fijalkowska IJ, Jonczyk P, Tkaczuk MM, Bialoskorska M, Schaaper RM. Unequal fidelity of
394 leading strand and lagging strand DNA replication on the *Escherichia coli* chromosome.
395 *Proc Natl Acad Sci U S A.* 1998;95: 10020–10025.

396 41. Maslowska KH, Makiela-Dzbenska K, Mo J-Y, Fijalkowska IJ, Schaaper RM. High-accuracy
397 lagging-strand DNA replication mediated by DNA polymerase dissociation. *Proc Natl Acad
398 Sci U S A.* 2018;115: 4212–4217.

399 42. Lujan SA, Williams JS, Pursell ZF, Abdulovic-Cui AA, Clark AB, Nick McElhinny SA, et al.
400 Mismatch repair balances leading and lagging strand DNA replication fidelity. *PLoS Genet.*
401 2012;8: e1003016.

402 43. Pavlov YI, Mian IM, Kunkel TA. Evidence for preferential mismatch repair of lagging strand
403 DNA replication errors in yeast. *Curr Biol.* 2003;13: 744–748.

404 44. Dillon MM, Sung W, Lynch M, Cooper VS. Periodic Variation of Mutation Rates in Bacterial
405 Genomes Associated with Replication Timing. *MBio.* 2018;9. doi:10.1128/mBio.01371-18

406 45. Sung W, Ackerman MS, Gout JF, Miller SF, Williams E, Foster PL, et al. Asymmetric
407 Context-Dependent Mutation Patterns Revealed through Mutation-Accumulation

408 Experiments. Mol Biol Evol. 2015;32: 1672–1683.

409 46. Foster PL, Lee H, Popodi E, Townes JP, Tang H. Determinants of spontaneous mutation in
410 the bacterium *Escherichia coli* as revealed by whole-genome sequencing. Proc Natl Acad
411 Sci U S A. 2015;112: E5990–9.

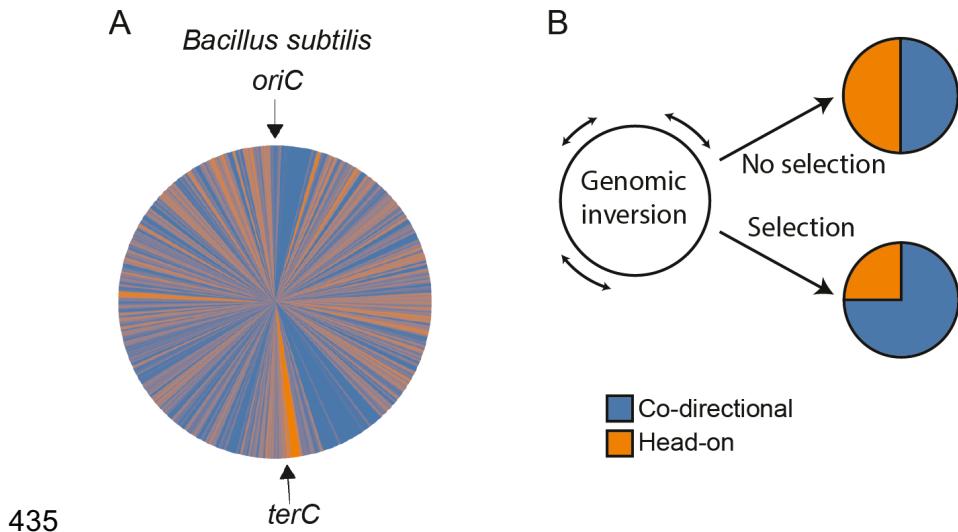
412 47. Lind PA, Andersson DI. Whole-genome mutational biases in bacteria. Proc Natl Acad Sci U
413 S A. 2008;105: 17878–17883.

414 48. Lee H, Doak TG, Popodi E, Foster PL, Tang H. Insertion sequence-caused large-scale
415 rearrangements in the genome of *Escherichia coli*. Nucleic Acids Res. 2016;44: 7109–
416 7119.

417 49. Bhagwat AS, Hao W, Townes JP, Lee H, Tang H, Foster PL. Strand-biased cytosine
418 deamination at the replication fork causes cytosine to thymine mutations in *Escherichia coli*.
419 Proc Natl Acad Sci U S A. 2016;113: 2176–2181.

420 50. McGinn J, Marraffini LA. Molecular mechanisms of CRISPR-Cas spacer acquisition. Nat
421 Rev Microbiol. 2019;17: 7–12.

422 51. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR
423 provides acquired resistance against viruses in prokaryotes. Science. 2007;315: 1709–
424 1712.


425 52. Merrikh H. Spatial and Temporal Control of Evolution through Replication-Transcription
426 Conflicts. Trends Microbiol. 2017. doi:10.1016/j.tim.2017.01.008

427 53. Nicolas P, Mäder U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, et al. Condition-
428 dependent transcriptome reveals high-level regulatory architecture in *Bacillus subtilis*.
429 Science. 2012;335: 1103–1106.

430 54. Piironen J, Vehtari A. Sparsity information and regularization in the horseshoe and other
431 shrinkage priors. Electron J Stat. 2017;11: 5018–5051.

432 55. Michna RH, Zhu B, Mäder U, Stölke J. SubtiWiki 2.0—an integrated database for the model
433 organism *Bacillus subtilis*. Nucleic Acids Res. 2016;44: D654–D662.

434

436 **Fig 1. Genome-wide bias against head-on genes reflects negative selection.** (A) The *B.*
 437 *subtilis* genome is represented to scale as a circle filled with blue or orange to represent loci of
 438 the genome containing co-directional and head-on genes, respectively. The origin (*oriC*) and
 439 terminus (*terC*) of replication are labelled. Strain PY79 is shown but the basic genome
 440 organization is conserved among *B. subtilis* strains. (B) Schematic of random inversions of
 441 genomic loci and evolutionary outcomes depending on selection. In the absence of selection
 442 against head-on genes, genomic inversions over time would eventually result in a 50:50
 443 distribution of head-on:co-directional genes. In the presence of selection against head-on
 444 genes, gene content is biased in favor of co-directional genes. Genes that remain head-on are
 445 typically those for which there is less selection against the head-on orientation.

446

447

448

449 **Table 1. Most stress-induced genes are co-directional.**

Stress-associated regulator	Number of head-on CDSs in regulon (% of 1177 total head-on)	Number of co-directional CDSs in regulon (% of 3148 total co-directional)	p-value (chi-square)
LexA	14 (1.2%)	46 (1.5%)	0.59
SigB	72 (6.1%)	149 (4.7%)	0.078
SigM	23 (2.0%)	70 (2.2%)	0.67
SigV	14 (1.2%)	7 (0.22%)	0.00013
SigX	9 (0.07%)	33 (1.0%)	0.50
SigY	0 (0%)	7 (0.22%)	0.23
SinR	13 (1.1%)	36 (1.1%)	0.96
Spo0A	25 (2.1%)	117 (3.7%)	0.012
Spx*	3 (0.25%)	38 (1.2%)	0.0069

450 *Only CDSs activated by Spx are included

451 The number of head-on and co-directional coding sequences in *B. subtilis* strain 168 regulated
452 by each transcription factor was tabulated. In addition, their percentage over the total number of
453 head-on or co-directional coding sequences is in parentheses.

454

455

456

457 **Fig 2. Head-on and co-directional genes have similar expression properties.** Distributions
 458 of two metrics relating to gene expression in *B. subtilis* transcriptomic datasets. Distributions
 459 were subset by direction of transcription relative to DNA replication. Vertical lines represent the
 460 mean for each class of genes. (A) The distribution of gene expression values for coding
 461 sequences in *B. subtilis* strain PY79. The z-score was calculated for each coding sequence's
 462 natural-logarithm-transformed RPKM values prior to subsetting by direction. RNA-seq data are
 463 from [22]. (B) Transcriptomic microarray data [53] were analyzed. Each gene's Gini coefficient
 464 was calculated over 104 conditions.