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There are two mass generating mechanisms in the standard model of particle physics
(SM). One is related to the Higgs boson and fairly well understood. The other is
embedded in quantum chromodynamics (QCD), the SM’s strong interaction piece; and
although responsible for emergence of the roughly 1 GeV mass scale that characterises
the proton and hence all observable matter, the source and impacts of this emergent
hadronic mass (EHM) remain puzzling. As bound states seeded by a valence-quark
and -antiquark, pseudoscalar mesons present a simpler problem in quantum field
theory than that associated with the nucleon. Consequently, there is a large array
of robust predictions for pion and kaon properties whose empirical validation will
provide a clear window onto many effects of both mass generating mechanisms and
the constructive interference between them. This has now become significant because
new-era experimental facilities, in operation, construction, or planning, are capable of
conducting such tests and thereby contributing greatly to resolving the puzzles of EHM.
These aspects of experiment, phenomenology, and theory, along with contemporary
successes and challenges, are reviewed herein. In addition to providing an overview of
the experimental status, we focus on recent progress made using continuum Schwinger
function methods and lattice-regularised QCD. Advances made using other theoretical
tools are also sketched. Our primary goal is to highlight the potential gains that can
accrue from a coherent effort aimed at finally reaching an understanding of the character
and structure of Nature’s Nambu–Goldstone modes.
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1. Emergence of mass

When considering the origin of mass in the standard model of particle physics (SM), thoughts typically turn to the
iggs boson because couplings to the Higgs are responsible for every mass-scale that appears in the SM Lagrangian. The
otion behind this Higgs mechanism for mass generation was introduced more than fifty years ago [1–3] and it became an
ssential piece of the SM. In the ensuing years, all the particles in the SM Lagrangian were found; although the Higgs boson
roved elusive, escaping detection until 2012 [4,5]. With discovery of something possessing all the anticipated properties
f the Higgs boson, the SM became complete and the Nobel Prize in physics was awarded to Englert and Higgs [6,7]
‘. . . for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic
articles . . . ’’
Higgs boson physics is characterised by an explicit mass scale vH = 1/

√
GF
√
2 = 246 GeV, where GF is the Fermi

coupling for muon decay, which also controls the rate of neutron β decay. Governed by this scale, the SM’s weak bosons
disappeared from the equilibrium mix when the age of the Universe was roughly 10−12 s. The large value of vH is known
hrough comparisons between SM predictions and contemporary experiment; it is not a SM prediction. The size of vH is
ritical to the character of the Universe as it is seen today because it fixes the weak boson mass-scale to be commensurate
n magnitude; thereby, e.g. protecting Universe evolution from the destabilising influence of electrically charged gauge-
osons that propagate over great distances. Evidently, the Higgs mechanism, or something practically identical at all length
cales which have thus far been probed, is a crucial piece in the puzzle that explains our existence.
It is therefore peculiar that Higgs couplings to those fermions which are most important to everyday existence,

.e. the electron (e−) and the up (u) and down (d) quarks, produce such small mass values [8]: me = 0.511 MeV,
u ≈ 4me ≈ 2.2 MeV, md ≈ 2mu. These particles combine to form the hydrogen atom, the most abundant element in the
niverse, whose mass is 939 MeV. Somehow one electron, two u quarks and one d quark, with a total Higgs-generated
ass of ∼ 13me ≈ 6.6 MeV, combine to form an object whose mass is 140-times greater.
The energy levels of the hydrogen atom are measured in units of meα

2
e , where αe ≈ 1/137 is the fine structure constant

n quantum electrodynamics (QED). Both quantities appear explicitly in the SM Lagrangian; and all of atomic and molecular
hysics are unified when these two fundamental parameters have their small values. The solution to the mystery of the
2
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issing mass of the Hydrogen atom must therefore lie somewhere else; and there is only one other place to look, viz. the
roton at the heart of the atom, whose mass is mp = 0.938 GeV.
Protons and other hadrons began to appear following another key step in the evolution of the Universe. Namely, after

he cross-over from the quark–gluon plasma phase into the domain of hadron matter, which occurred when the Universe
as approximately 10−6 s old [9–11]. This marks the beginning of the emergence of hadron mass (EHM).
Within the SM, the proton is supposed to be explained by quantum chromodynamics (QCD), a Poincaré-invariant local

uantum gauge field theory with interactions based upon the non-Abelian group SU(3). The QCD Lagrangian is simple to
rite:1

LQCD =
∑

f=u,d,s,...

q̄f [γ · ∂ + ig 1
2λ

aγ · Aa
+mf ]qf +

1
4G

a
µνG

a
µν, (1.1a)

Ga
µν = ∂µA

a
ν + ∂νA

a
µ − gf abcAb

µA
c
ν, (1.1b)

here {qf | f = u, d, . . .} are the quark fields, of which six flavours are currently known, and {mf } are their Higgs-
enerated current-quark masses; {Aa

µ | a = 1, . . . , 8} are the gluon fields, whose matrix structure is encoded in {λa},
he generators of SU(3) in the fundamental representation; and g is the unique QCD coupling. Similar to QED, one
onventionally defines α = g2/[4π2

].
It is worth noting here that when {mf ≡ 0}, Eq. (1.1) divides into two separate pieces, one describing massless left-

anded fermions, qL = 1
2 (I−γ5)q, and the other describing right-handed fermions, qR = 1

2 (I+γ5)q. No interactions in the
agrangian can distinguish between qL and qR; hence, the Lagrangian possesses a chiral symmetry.
Eq. (1.1) is almost identical to the QED Lagrangian. The principal difference is the underlined term in Eq. (1.1b), which

enerates self interactions amongst the gluons. Yet, whereas QED is probably only an effective field theory, currently
eing ill-defined owing to the presence of a Landau pole at some (huge) spacelike momentum (see, e.g. Refs. [12, Ch. 13]
nd [13–16]), QCD appears empirically to be well-defined at all momenta. Theoretically, asymptotic freedom [17–19]
nsures that QCD’s ultraviolet behaviour is under control. At the other extreme, i.e. the infrared domain, all circumstantial
vidence, including our existence, indicates that there are no issues either. Gluon self interactions are certainly the origin
f asymptotic freedom; and, logically, if QCD is also infrared complete, then the underlined term in Eq. (1.1b) must be

the effecting agent.
So, where is the proton’s mass in Eq. (1.1)? As noted already, mp is not contained in the sum of the light-quark

current masses that appear explicitly. It is therefore worth exploring the character of the theory defined without them, i.e.
QCD with all quark couplings to the Higgs boson turned off. The resulting Lagrangian is scale invariant; and it is readily
established that in such a theory, compact bound states are impossible. For suppose the field equations admit a nontrivial
solution for a bound state with size ‘‘r ’’, then simple dilation transformations, under which the theory is invariant, can be
used to inflate r →∞, i.e. to eliminate the bound state. Consequently, scale invariant theories do not support dynamics,
only kinematics. Plainly, therefore, if Eq. (1.1) is really the basis for, inter alia, an explanation of the proton’s mass and
size, then something remarkable must happen in completing the definition of QCD.

In a Poincaré invariant quantum field theory, observables are independent of spacetime translations. This places a
constraint on the theory’s energy–momentum tensor, Tµν :

∂µTµν = 0 . (1.2)

Focus now on QCD and consider a global scale transformation in the classical action defined by Eq. (1.1):

x→ x′ = e−σ x , Aa
µ(x)→ Aa′

µ(x
′) = e−σAa

µ(e
−σ x) , q(x)→ q′(x′) = e−(3/2)σ q(e−σ x) . (1.3)

The Noether current connected with these transformations is

Dµ = Tµνxν , (1.4)

the dilation current. In the absence of Higgs couplings into QCD, the classical action is invariant under dilations; hence,
using Eq. (1.2),

∂µDµ = 0 = [∂µTµν]xν + Tµνδµν = Tµµ . (1.5)

This proves that the trace of the energy–momentum tensor is zero in any theory that is truly scale invariant. So much for
the classical theory: in the absence of an explicit mass-scale, none can emerge.

Quantisation preserves Poincaré invariance. It also entails the appearance of loop diagrams, which typically possess
ultraviolet divergences. A workable mathematical definition of such loop integrals requires introduction of a regularisation
procedure and associated mass-scale, ν̄. Following regularisation, a systematic renormalisation scheme must be introduced
in order to eliminate from all computed quantities any dependence on the arbitrary scale ν̄, which can differ between loop
integrals, and replace it by a dependence of Lagrangian parameters on a single scale ζ , i.e. the renormalisation scale [20].

1 We use a Euclidean metric throughout; so, e.g. {γµ, γν} = 2δµν ; γ †
µ = γµ; γ5 = γ4γ1γ2γ3 , tr[γ5γµγνγργσ ] = −4ϵµνρσ ; a · b =

∑4
i=1 aibi; and Qµ

imelike ⇒ Q 2 < 0.
3
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his outcome is known as ‘‘dimensional transmutation’’: everything in the QCD action comes to depend on ζ , even those
uantities which are dimensionless.
Dimensional transmutation has consequences. Under the scale transformation in Eq. (1.3), the renormalisation mass-

cale ζ → eσ ζ . For infinitesimal transformations of this type:

α→ σ αβ(α) , LQCD → σ αβ(α)
δLQCD

δα
⇒ ∂µDQCD

µ =
δLQCD

δσ
= αβ(α)

δLQCD

δα
, (1.6)

here β(α) is the QCD β-function, which measures the response rate of the coupling to changes in ζ . To compute the
inal product in Eq. (1.6), one can first absorb the gauge coupling into the gluon field, i.e. express the action in terms of
˜ a
µ = gAa

µ, whereafter the running coupling appears only in the pure-gauge term as an inverse multiplicative factor:

LQCD(α) = −
1

4πα
1
4
G̃a
µν G̃

a
µν + α-independent terms, (1.7)

here G̃a
µν is the field-strength tensor expressed using Ãa

µ. Eqs. (1.6), (1.7) then yield

TQCD
µµ = ∂µD

QCD
µ = αβ(α)

δLQCD

δα
= αβ(α)

1
4πα2

1
4
G̃a
µν G̃

a
µν = β(α)

1
4G

a
µνG

a
µν . (1.8)

vidently, following regularisation and renormalisation, Eq. (1.5) is broken because the trace of the QCD stress–energy
ensor is nonzero; so these necessary steps have introduced the chiral-limit trace anomaly into the dilation current:

Θ0 = β(α) 14G
a
µνG

a
µν . (1.9)

Switching on the Higgs couplings into QCD, Eq. (1.9) becomes

Θ := TQCD
µµ =

1
4β(α(ζ ))G

a
µνG

a
µν + [1+ γ (α(ζ ))]

∑
f=u,d,...

mζ
f q̄f qf , (1.10)

here γ (α) is the anomalous dimension of the now scale-dependent current-quark mass, mζ
f . Notably, the trace anomaly

n Eq. (1.10) is not homogeneous in the running coupling, α(ζ ); so, renormalisation-group-invariance does not imply
orm invariance of the right-hand-side [21]. This is a material point because many discussions implicitly assume that all
perators and associated identities are expressed with reference to a partonic basis, i.e. using elementary field operators
hat can be renormalised perturbatively, wherewith the state-vector for any hadron must be an extremely complicated
ave function. A different perspective is required at renormalisation scales ζ ≲ mp, whereupon a metamorphosis

rom parton-basis to quasiparticle-basis occurs. Under such reductions in ζ , light partons evolve into heavy dressed
bjects, corresponding to complex and highly nonlinear superpositions of partonic operators; and using the associated
uasiparticle degrees-of-freedom, the wave functions can be expressed in a relatively simple form. These statements are
llustrated, e.g. in Refs. [22–24], and will be discussed further in Section 2.

The existence of the trace anomaly means that QCD can support a mass-scale and potentially explain the origin of mp
ven in the absence of Higgs couplings and even though that scale is not evident in Eq. (1.1). It is therefore natural to
eek information on the size of the trace anomaly’s contribution to mp. So consider the forward limit of the expectation
alue of QCD’s energy momentum tensor in the proton state (hereafter, the superscript ‘‘QCD’’ is omitted):

⟨p(P)|Tµν |p(P)⟩ = −PµPν , (1.11)

here the equations-of-motion for an asymptotic one-particle proton state have been used to obtain the right-hand-side.
ow it is clear that, in the chiral limit,

⟨p0(P)|Tµµ|p0(P)⟩ = −P2
= m2

p0 = ⟨p0(P)|Θ0|p0(P)⟩ . (1.12)

rom this perspective, the size of the trace anomaly is measured by the magnitude of the proton’s mass in the chiral limit,
p0 . Many analyses have sought to determine this value using a variety of theoretical techniques [25–27], with the result
p0 ≈ 0.89 GeV ≈ 0.94mp, illustrated by the blue domain in Fig. 1.1A. Evidently, a very large fraction of the measured
roton mass emerges as a consequence of the trace anomaly; and viewed from a perspective built on partonic degrees
f freedom, this fraction appears to be generated entirely by gluon partons and the interactions between them because
hese things define Θ0 in Eq. (1.9).

The proton is a basic building block of nuclei; but one cannot bind neutrons and protons into any nucleus without
he pion, which is responsible for, inter alia, long-range attraction and tensor forces within all nuclei. Hence, in nuclear
hysics terms, the pion, the proton and neutron are all equally important. Drawing a connection with LQCD in Eq. (1.1),
he pion is seemingly the simplest of these bound states, being constituted from a single valence quark partnered by a
alence antiquark, e.g. π+ = ud̄. It is therefore natural to consider the pion analogue of Eq. (1.12):

⟨π0(q)|Tµµ|π0(q)⟩ = ⟨π0(P)|Θ0|π0(P)⟩ = −q2 = m2
π0
= 0 , (1.13)

here the last identity follows because the chiral-limit pion is the Nambu–Goldstone (NG) mode associated with

ynamical chiral symmetry breaking (DCSB) [28–31]. Comparing Eqs. (1.12), (1.13), one is presented with a dilemma:

4
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Fig. 1.1. Mass budgets for A—proton, B—kaon and C—pion, drawn using a Poincaré invariant decomposition. There are crucial differences. The
roton’s mass is large in the chiral limit, i.e. even in the absence of Higgs boson (HB) couplings into QCD. This nonzero chiral-limit component is an
xpression of emergent hadronic mass (EHM) in the SM. Conversely and yet still owing to EHM via its dynamical chiral symmetry breaking (DCSB)
orollary, the kaon and pion are massless in the chiral limit — they are the SM’s Nambu–Goldstone modes [28–31]. (See Eq. (2.22).) (Units MeV,
eparation at ζ = 2 GeV, produced using information from Refs. [8,25–27].)

ow can it be that the trace anomaly evaluates to a ∼ 1 GeV mass-scale in the proton; yet, despite the anomaly, scale
nvariance is seemingly preserved in the pion? It has been argued that Eq. (1.13) means, e.g. that the gluon energy and
uark energy in the pion separately vanish [32]. However, such an explanation would actually compound the puzzle
ecause the pion’s valence-quark and -antiquark are supposed to be bound together by gluon-mediated attraction: how
ould a bound state survive in the absence of any gluon energy?
Restoring Higgs boson couplings to light quarks, then using Eq. (1.10), Eq. (1.12) becomes

⟨p(P)|Θ|p(P)⟩
ζ≫mp
= ⟨p(P)|

⎡⎣ 1
4β(α(ζ ))G

a
µνG

a
µν + [1+ γ (α(ζ ))]

∑
f=u,u,d,

mζ
f q̄f qf

⎤⎦ |p(P)⟩ . (1.14)

onsequently, two other slices appear in the pies drawn in Fig. 1.1. The grey wedge in Fig. 1.1A shows the sum of the
roton’s valence-quark current-masses, which appear in perturbative analyses of QCD phenomena: the sum amounts to
ust 0.01×mp. The remaining slice (orange) expresses the fraction of mp generated by constructive interference between
HM and Higgs-boson (HB) effects. It is largely determined by the in-proton expectation value of the chiral condensate
perator [33–35]: ⟨p(P)|q̄f qf |p(P)⟩, and responsible for 5% of mp. Unsurprisingly given Eq. (1.13), the picture for the pion
s completely different: in Fig. 1.1C, EHM+HB interference is seen to be responsible for 95% of the pion’s mass. The kaon
ies somewhere between these two poles. It is a would-be NG mode; hence, there is no blue-domain in Fig. 1.1B. On the
ther hand, the sum of valence-quark and -antiquark current-masses in the kaon accounts for 20% of its measured mass,
hich is four times more than in the pion; and EHM+HB interference produces 80%.
The mass budgets drawn in Fig. 1.1, and Eqs. (1.12), (1.13) demand interpretation. They highlight that any answer to the

uestion ‘‘How does the mass of the proton arise?’’ will only explain one part of a greater puzzle. It will be incomplete
nless it simultaneously clarifies Eq. (1.13). Moreover, whilst not manifest in Eq. (1.1), Eqs. (1.12), (1.13) are coupled
ith confinement, i.e. the fact that no gluon- or quark-like object has been seen to propagate over a length scale which
xceeds the proton radius. These observations stress the ubiquitous influence of emergent mass. Consequently, the SM will
emain incomplete until verified explanations are provided for the emergence of nuclear-size masses, its many attendant
orollaries, and the modulations of these effects by Higgs boson interactions. All these things are basic to forming an
nderstanding of the evolution of our Universe.
In approaching these questions, many observables can be used to draw insights [36–39]. However, unique opportunities

re provided by studies of the properties of the SM’s (pseudo-)Nambu–Goldstone modes, viz. pions and kaons. A diverse
ange of phenomenological and theoretical frameworks are now being employed in order to develop a cogent description
f these bound states. Progress in this direction is profiting from the formation of tight links between dynamics in QCD’s
5
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auge sector and properties of the light-front wave functions (LFWFs) which enable a probabilistic interpretation of pion
nd kaon structure. In this connection, pion and kaon elastic form factors and distribution amplitudes and functions all
lay a prominent role [40–44]. These efforts have a special resonance today because an array of upgraded and anticipated
xperimental facilities promise to provide new, high precision data on kinematic domains that have never before been
eached or have not been plumbed for more than thirty years [40,44–51]. There is much to be learnt: the internal structure
f pions and kaons is far more complex than often imagined; and their properties provide the clearest windows onto EHM
nd its modulation by Higgs-boson interactions.
At this point it is worth remarking that measurements of distribution amplitudes and functions, form factors, spectra,

harge radii, polarisabilities, etc., are all on the same footing. Theory delivers predictions for such quantities. Good experi-
ents measure precise cross-sections; and cross-sections are expressed, using truncations that sometimes have the quality
f approximations, in terms of a given desired quantity. At issue is the reliability of the truncation/approximation used in
elating the measured cross-section to this quantity. The phenomenology challenge is to ensure that all contributions
nown to have a potentially material effect are included in building the bridge. The quality of the phenomenology
annot alter either that of the experiment or the theory; but inadequate phenomenology can deliver results that
islead interpretation. The reverse is also true; so, progress demands the building of a constructive synergy between
ll subbranches of the programme.
As it was known five years ago, the status of experiment and theory relevant to pion and kaon elastic electromagnetic

orm factors is reviewed in Ref. [31]. One must look ten years back to find a comparable overview of pion and kaon
istribution functions [52]. In this review, therefore, we focus on more recent associated developments in experiment
nd also in theory, paying particular attention to continuum Schwinger function methods and lattice-regularised QCD, but
lso noting advances made using other theory tools, because much has changed in the past decade. In fact, during this
eriod, many threads of experiment and theory have been drawn together; so that they are now recognised as facets and
xpressions of EHM, the understanding of which defines one of the last SM frontiers. The approaching few decades should
ee that border crossed as high-profile initiatives in experiment deliver data whose sound interpretation will deliver full
omprehension of EHM and its modulation by Higgs-boson couplings into QCD; to wit, complete understanding of the
M’s two mass generating mechanisms, the interplay between them, and all the observable consequences thereof. The
otential for an array of pion and kaon structure studies to play a critical role in achieving these goals is the focus of the
aterial which follows.

. Masses, coupling, and the emergence of Nambu–Goldstone modes

.1. Gluon mass scale

The QCD trace anomaly exerts a material influence on every one of QCD’s Schwinger functions; but for those unfamiliar
ith analyses of QCD’s gauge sector, the most striking impact, perhaps, is that expressed in the gluon two-point

unction. Interaction induced dressing of a gauge boson is expressed through the appearance of a nonzero polarisation
ensor, Πµν(k). The generalisation of gauge symmetry to the quantised theory is expressed in Slavnov–Taylor identities
STIs) [53,54]. Regarding gluons, a crucial STI requires kµΠµν(k) = 0 = Πµν(k)kν , which entails

Πµν(k) = [k2δµν − kµkν]Π (k2). (2.15)

amely, in a quantised gauge theory, no interaction may introduce a longitudinal component to the polarisation tensor.
n these terms, the fully dressed gluon propagator takes the form

Dµν(k) = [δµν − kµkν/k2]
1

k2[1+Π(k2)]
, (2.16)

here any gauge parameter dependence is trivial; hence, omitted here.
In setting the QCD stage, it is useful to recall that the gauge boson propagator in two-dimensional quantum electro-

ynamics (QED), defined with massless fermions, was analysed in Ref. [55]. Owing to the peculiar kinematic character of
wo dimensions, this theory is confining, i.e. effectively strongly coupled. In computing Πµν(k), one must sum a countable
nfinity of loop diagrams, each of which involves massless fermion+antifermion pairs. Such pairs provide screening; and
ecause the screening fields are massless and there are infinitely many loops, the screening is a long-range effect. Hence,
he complete vacuum polarisation acquires a mass-scale: limk2→0 k2Π(k2) = m2

γ ; and the gauge boson acquires a mass
ith no cost to gauge invariance. This effect is now called the Schwinger mechanism of gauge-boson mass generation.
qualitatively similar outcome is found in three-dimensional QED [56–58]. However, there is a difference between both

hese cases and QCD, viz. the Lagrangian coupling possesses a mass dimension in lower dimensional theories; hence, scale
nvariance is broken even at the classical level and the size of the gauge-sector mass is fixed by that of a parameter in
he Lagrangian.

Against this backdrop, it was first suggested forty years ago that a Schwinger-like mechanism is active in QCD [59].
sing QCD’s Dyson–Schwinger equations (DSEs), it was argued that gauge sector dynamics transforms the massless gluon
artons in Eq. (1.1) into complex quasiparticles, characterised by a momentum-dependent mass-function whose value
s large at infrared momenta: m (0) = 0.5 ± 0.2 GeV. The intervening years have seen this first sketch refined into a
g
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Fig. 2.2. mg (k) — solid blue curve: renormalisation-group-invariant (RGI) gluon running-mass obtained, following the method described in Ref. [68],
from the gluon 2-point Schwinger function computed using the lattice-QCD configurations in Refs. [64–66]. (The barely visible bracketing band
expresses extraction uncertainty from all sources. Curve provided by J. Rodríguez-Quintero.) M0(k) — dot-dashed green curve: for comparison, RGI
chiral-limit dressed-quark running-mass, discussed in Section 2.3.

detailed picture, with an important step along the way being the unification of bottom-up (matter sector based) and
top-down (gauge sector focused) approaches to understanding QCD’s interactions [60]. Comprehensive perspectives are
provided elsewhere [61,62]. Nevertheless, it is worth remarking here that the Schwinger-like 1/k2 pole in Π(k2) can only
emerge in QCD because a long-range (massless) longitudinally-coupled coloured correlation is dynamically generated in
the three-gluon vertex. Since the correlations are longitudinally coupled, they do not contribute to any directly measurable
amplitude.

A combination of tools, capitalising on the various strengths of continuum and lattice formulations of QCD, have today
arrived at a precise determination of the ζ -independent gluon mass scale [63]:

m0 = 0.43(1) GeV. (2.17)

This value was obtained using lattice configurations generated with three domain-wall fermions at a physical pion mass.
The lattice scale was set by computing the mass of the ρ- and ω-mesons [64–66]. Ref. [67] tested the scheme by verifying
hat it simultaneously produces a value of the QCD running coupling at the Z-boson mass that agrees with the world
verage [8].
The calculated renormalisation group invariant (RGI, ζ -independent) momentum-dependent gluon mass is depicted

n Fig. 2.2. This curve is arguably the cleanest expression of EHM in the SM. It shows that the massless gluon parton
n Eq. (1.1) evolves into a mass-carrying dressed object, whose structure derives from complex and highly nonlinear
uperpositions of partonic operators. No finite sum of diagrams in perturbation theory can recover the result in Fig. 2.2.
he existence of mg (k) ̸= 0 is enabled by Eq. (1.8), but is not a guaranteed outcome; and its infrared magnitude, Eq. (2.17),
s precisely that required to produce the measured mass of the ρ-meson from QCD. Moreover, with the ρ being like the
roton, in the sense that it fits neatly into the standard hadron spectroscopic pattern, then the value of m0 must also be
material part of any solution to the puzzle of the origin of the proton mass.
The existence and magnitude of mg (k) have been firmly demonstrated by forty years of theory. New opportunities

nd challenges are now located in the need to elucidate a diverse array of observable consequences so that this basic
anifestation of EHM can be confirmed empirically.

.2. Process-independent effective charge

Owing to dimensional transmutation, the QCD coupling depends on the scale at which it is measured. In perturbation
heory, within a given renormalisation scheme, this running coupling is unique. A familiar example is found within QED. At
irst glance, the renormalisation group flow of the QED coupling would appear to be governed by three renormalisation
onstants. However, the Ward identity [69] ensures equality between the renormalisation constants for the fermion–
hoton vertex and fermion field operator. Hence, αe(ζ ) is completely determined by the flow of the photon field operator;
quivalently, by the single renormalisation constant that survives in the expression for the photon polarisation tensor.
s apparent from Eq. (2.15), Π (k2) is a function of one momentum variable; so, QED possesses a unique running
oupling whose momentum dependence is prescribed by that of the renormalised photon vacuum polarisation. This is
he Gell-Mann–Low effective charge [70], commonly known as the QED running coupling.

As a non-Abelian theory, QCD is more complicated: there are four individual interaction vertices; three associated STIs;
o method in the usual treatments of diagram resummations by which any of the vertex couplings can be related to the
luon vacuum polarisation; and, of course, a renormalisation scheme must be chosen in addition. From this position, one
as four choices for the vertex that can be used to define a running coupling. The simplest is the ghost-gluon vertex,
ut even that depends on two independent momenta; so one momentum pairing must be selected from an uncountable
nfinity of choices in order to define a single momentum with which the coupling can flow. All such schemes produce
he same running coupling on any domain within which perturbation theory is valid; but, unsurprisingly, there are
7
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Fig. 2.3. Process-independent running-coupling, α̂(k2)/π , obtained by combining the best available results from continuum and lattice analyses [63].
World data on the process-dependent charge αg1 [71], defined via the Bjorken sum rule, is presented for comparison [77–102].
Source: Image courtesy of D. Binosi.

great differences between the behaviours at infrared momenta. A compendium of these results is presented elsewhere
[71, Ch. 4].

Such ambiguities are removed if one approaches the problem of diagram resummation by combining the pinch
technique [59,72–74] and background field method [75]. This framework enables one to systematically rearrange both
classes and sums of diagrams and thereby obtain modified Schwinger functions that satisfy linear STIs, i.e. to make QCD
ppear Abelian in some important ways. In the gauge sector, the approach leads to a modified gluon polarisation tensor
hose renormalisation is identical to that of the coupling; hence, analogous to QED, one arrives at a unique RGI running
oupling, α̂(k2), with momentum dependence prescribed by that of the renormalised gluon vacuum polarisation [76].
dditionally, thus defined, the coupling is process independent (PI); to wit, irrespective of the scattering process
onsidered, gluon+gluon→ gluon+gluon, quark+quark→quark+quark, etc., precisely the same result is obtained.
The key to a reliable determination of α̂(k2) is an accurate result for the dressed-gluon two-point function. Such is

available from Refs. [64–66], employed to computemg (k) in Fig. 2.2. Using this input, Ref. [63] delivered the parameter-free
prediction depicted in Fig. 2.3, an interpolation of which is provided by

α̂(k2) =
γmπ

ln
[

K 2(k2)
Λ2

QCD

] , K 2(y = k2) =
a20 + a1y+ y2

b0 + y
, (2.18)

m = 4/[11 − (2/3)nf ], with (in GeV2): a0 = 0.104(1), a1 = 0.0975, b0 = 0.121(1). The curve was obtained using a
omentum-subtraction renormalisation scheme: ΛQCD = 0.52 GeV when nf = 4. The following features of α̂ deserve to
e highlighted.

o Landau pole The PI charge is a smooth function, which saturates in the infrared: α̂(s = 0)/π = 0.97(4). Hence,
whereas the perturbative running coupling exhibits a Landau pole at k2 = Λ2

QCD, the PI charge is finite. The value of
K (k2 = Λ2

QCD) defines a screening mass ζH ≈ 1.4ΛQCD because α̂(k2) is approximately k2-independent on k2 ≲ ζ 2H ;
consequently, the theory is effectively conformal on this domain. These outcomes owe to EHM as expressed in
Eq. (2.17): the existence of m0 ≈ mp/2 ensures that long wavelength gluons are screened, playing practically
no dynamical role. From this standpoint, ζH marks a border between nonperturbative/soft and perturbative/hard
physics. Hence, it is a natural choice for the ‘‘hadronic scale’’, i.e. the renormalisation scale whereat one formulates
and solves the bound state problem in terms of quasiparticle degrees-of-freedom [63,103,104].

Match with Bjorken charge Along with α̂(k), Fig. 2.3 also depicts data relating to αg1 (k), a process-dependent effective
charge defined via the Bjorken sum rule [105,106], which expresses a central constraint on measurements of
nucleon spin structure in deep inelastic scattering. The concept of a process dependent charge was introduced
in Ref. [107]: ‘‘. . . to each physical quantity depending on a single scale variable is associated an effective charge,
whose corresponding Stückelberg–Peterman–Gell-Mann–Low function is identified as the proper object on which
perturbation theory applies’’. Such charges have subsequently been widely discussed and employed [71,108,109]. So
far as extant data can show, the predicted form of α̂ is practically identical to αg1 . This feature may be attributed to
the fact that the Bjorken sum rule is an isospin non-singlet relation, which eliminates many physical contributions
that might distinguish it from α̂. It is highlighted by the following result [76]: on any domain within which
8
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Fig. 2.4. Gap (Dyson) equation for the dressed-quark self energy, Eq. (2.19b): solid line with open circle, dressed-quark propagator; open-circle
‘‘spring’’, dressed-gluon propagator, Dµν (k− q); and (red) shaded circle, dressed gluon–quark vertex, Γ a

µ (k, q). Here, q is the loop momentum.

perturbation theory is valid, αg1 − α̂ ≲ 0.05α2
MS

, where αMS is the textbook one-loop coupling computed in the
MS renormalisation scheme. (The gluon mass in Eq. (2.17) is commensurate with the scale κ = mp/2 obtained in a
light-front holographic approach to connecting the infrared and ultraviolet domains of αg1 (s) [110]. This may point
to a deeper connection.)

nfrared completion As a process independent charge, α̂(s) fulfils a wide range of purposes and unifies numerous
observables; hence, it is a strong candidate for that function which describes QCD’s interaction strength at any
accessible momentum scale [108]. Furthermore, its features support a conclusion that QCD is a well-defined four
dimensional quantum field theory. As such, QCD emerges as a candidate for use in extending the SM by attributing
compositeness to particles that may today seem elementary. For instance, it was suggested long ago that all spin-
J = 0 bosons may be [55] ‘‘. . . secondary dynamical manifestations of strongly coupled primary fermion fields and
vector gauge fields . . . ’. Adopting this standpoint, the SM’s Higgs boson might also be composite.

.3. Dynamical chiral symmetry breaking

Nuclear and particle physics began roughly 100 years ago, following discovery of the proton [111–114]. The neutron
ollowed thirteen years later [115]; then the pion and kaon, fifteen years after that [116,117]. Subsequently, the expanding
se of particle accelerators revealed many more particles; so many, in fact, that Enrico Fermi is widely believed to have
aid ‘‘. . . if I could remember the names of these particles, I would have been a botanist’’. At this point, order was restored
hrough development of the constituent quark model (CQM) [118,119], which made apparent that many gross features
f the hadron spectrum could be explained by supposing the existence of constituent-quarks with proton-scale masses
120–122]: MU ≈ MD ≈ 0.4 GeV, MS ≈ 0.5 GeV, etc. Given the remarkable array of CQM successes, it is necessary to ask
hether the idea has a connection with QCD. An affirmative answer has emerged in the past vicennium and it can be
ade via the two-point quark Schwinger function.
The dressed-quark two-point function (propagator) can be written

S(k; ζ ) = Z2(ζ ,Λ) (iγ · k+mbm)+Σ(k; ζ ) , (2.19a)

Σ(k; ζ ) = Z1(ζ ,Λ)
∫ Λ

dq
g2Dµν(k− q)Γ a

µ (k, q)S(q)
λa

2
γν , (2.19b)

here
∫ Λ
dq represents a Poincaré invariant regularisation of the four-dimensional integral, with Λ the regularisation mass-

cale; mbm is the Lagrangian current-quark (parton) mass; Γ a
µ (k, q) is the dressed gluon–quark vertex; and Z1,2(ζ ,Λ), are,

espectively, the gluon–quark vertex and quark wave function renormalisation constants. This fully dressed propagator
s mathematically connected to the current-quark in Eq. (1.1) via summation of the Dyson series of quark self-energy
iagrams depicted in Fig. 2.4. The solution has the following Poincaré covariant form:

S(k; ζ ) =
1

iγ · kA(k2; ζ )+ B(k2; ζ )
=

Z(k2; ζ )
iγ · k+M(p2)

. (2.20)

Attempts to compute S(k; ζ ) for light-quarks began with the birth of QCD [123,124]. They became increasingly
ophisticated as proficiency grew with formulating and solving Eq. (2.19) [42,43,62,125,126]; and the first computations
sing lattice QCD were completed roughly twenty years ago [127]. Today, continuum and lattice QCD agree that even in
he absence of Higgs couplings into QCD, the then massless partonic quarks in Eq. (1.1) acquire a momentum dependent
ass function which is large at infrared momenta, see e.g. Refs. [128–132]. This is dynamical chiral symmetry breaking

DCSB): perturbatively massless quarks acquire a large infrared mass through interactions with their own gluon field. The
otential for such an outcome to be realised has been known for sixty years [133,134], but it is no less important for that
ecause this is the first time the phenomena have been demonstrated in a fully-interacting four-dimensional quantum
ield theory that is possibly well-defined.

The chiral limit mass function obtained using a modern kernel for the quark gap equation [135] is drawn in Fig. 2.5. This
unction is essentially nonperturbative: no sum of a finite number of perturbative diagrams can produce M0(k2) ̸≡ 0 [136,
ec. 2.3]. Kindred families of curves have been obtained in many analyses, e.g. Refs. [137–140]. In all such studies,
(0) ≈ 0.4 GeV, which is a typical scale for the constituent quark mass used in phenomenologically successful quark
0
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Fig. 2.5. Dressed-quark mass function, M(k), obtained as the nonperturbative solution of the QCD gap equation using a modern kernel [135]: with
ζ2 = 2 GeV, M0(0) = 0.40 GeV; Mu/d(0) = 0.406 GeV, Mu/d(ζ2) = M0(ζ2) + 0.0034 GeV; Ms(0) = 0.526 GeV, Ms(ζ2) = M0(ζ2) + 0.095 GeV;

c (ζ2) = 1.27 GeV; Mb(ζ2) = 4.18 GeV.
ource: Curves and image courtesy of D. Binosi.

odels [120–122]. When Higgs couplings are reintroduced, the mass function becomes flavour dependent and its k2 = 0
value is roughly the sum of M0(0) and the appropriate current-quark mass, as illustrated in Fig. 2.5.

Interesting, too, is a comparison between the quark and gluon RGI running masses: M0(k) and mg (k), respectively,
hich is made in Fig. 2.2. Evidently, scale breaking in the one-body sectors, enabled by the trace anomaly and driven
y gauge sector dynamics, is expressed in commensurate infrared values for these mass functions. Naturally, since it is
he gauge-boson mass-squared which has scaling power 2, i.e. m2

g (k) ∼ 1/k2 at ultraviolet momenta, compared with the
uark mass function itself, M0(k) runs more quickly to zero.
Indeed, for subsequent use, it is important to highlight here that the chiral-limit dressed-quark mass function has the

ollowing ultraviolet behaviour [124]:

M0(k2)
k2≫ζ2H
=

2π2γm

3
−⟨q̄q⟩0

k2 ln
[

k2

Λ2
QCD

]1−γm , (2.21)

here ⟨q̄q⟩0 is the RGI chiral-limit quark condensate [33–35]. On this large-k2 domain, B0(k2) ≈ M0(k2). The behaviour in
Eq. (2.21) is uniquely determined by the interaction in QCD: no other interaction can produce this behaviour. For instance,
if the interaction is momentum independent, then M0(k2) = constant [141]; and if the exchanged boson propagates as
Dn(k2) = [1/k2]n>1 on k2 ≫ m̂2

0, then M0(k2) ∼ Dn(k2) on this same domain.
It is now possible to explain the general spectroscopic success of the constituent-quark picture. The mass of a hadron

is a global, volume-integrated property. Hence, calculated using bound-state methods in quantum field theory, its value
is largely determined by the infrared size of the mass function of the hadron’s defining valence quarks [142]: integrating
over volume focuses resolution on infrared properties of the quasiparticle constituents. This feature is underscored by
the fact that even a judiciously formulated momentum-independent interaction produces a fair description of hadron
spectra [143,144]. The necessary infrared scales are provided by the mass functions in Fig. 2.2; and those scales are
generated by the effective charge in Fig. 2.3 augmented by the Higgs-generated current-quark masses.

2.4. Nambu–Goldstone bosons

Amongst the ground-state pseudoscalar mesons, the π and K mesons are NG modes. The η and η′ would also be NG
modes if it were not for the non-Abelian anomaly [145], whose magnitude is set by the scale of EHM [146, Eq. (20)].
Hence, the magnitude of the η′ − η mass splitting is a direct measure of emergent mass: mη′ −mη ≈ 0.41 GeV ∼ m0.

It has been known for more than fifty years that the SM’s NG bosons do not fit naturally into a mass pattern typical
of CQMs. For instance, whereas pseudoscalar meson masses in quark models increase linearly with growth of the explicit
chiral symmetry breaking term in the CQM Hamiltonian, just like the mass of every other system, in the neighbourhood
of QCD’s chiral limit, it is the mass-squared of NG modes that rises linearly with the current-quark mass in Eq. (1.1) [30].
In modern terms, for a NG mode defined by f , ḡ valence-quark degrees-of-freedom [147,148]:

fNG m2
NG = (mζ

f +mζ
g )ρ

ζ

NG , (2.22)

where fNG is the meson’s leptonic decay constant, i.e. the pseudovector projection of the meson’s wave function onto the
ζ ζ
origin in configuration space, and ρNG is the pseudoscalar analogue. For ground-state pseudoscalar mesons, both fNG, ρNG

10
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Fig. 2.6. Inhomogeneous Bethe–Salpeter equation (BSE) for a colour-singlet vertex, GM (k; P). The channel is defined by the inhomogeneity, e.g.
with gM =

1
2 τ

iγ5γµ , where τ i is a Pauli matrix associated with SU(2) flavour, one gains access to all states that communicate with an isovector
axial-vector probe, such as the pion and a1 meson. The interaction between the dressed valence-constituents is completely described by the two-
particle-irreducible (2PI) scattering kernel, K . The appearance of the dressed-quark propagator (solid line with open circle) highlights that the BSE
must be solved in tandem with the quark gap equation, Fig. 2.4.

are order parameters for chiral symmetry breaking. The Poincaré-covariant wave function of a pseudoscalar meson can
be written

χ
f ḡ
PS (k, P) = Sf (p1)Γ

f ḡ
PS (k, P)Sg (p2) , (2.23a)

Γ
f ḡ
PS (k, P) = γ5

[
i E f ḡ

PS (k, P)+ γ · PF
f ḡ
PS (k, P)+ γ · kG

f ḡ
PS (k, P)+ σµνkµPνH

f ḡ
PS (k, P)

]
, (2.23b)

here P = p1 − p2 is the bound-state total-momentum and k = (1 − η)p1 + ηp2, η ∈ [0, 1], is the relative-momentum.
(Hereafter, for notational simplicity, the dependence on ζ is not indicated explicitly unless for a specific purpose.)

Eq. (2.22) has many corollaries, e.g. Refs. [148–151], not least of which is the fact that NG boson masses must vanish
in the absence of Higgs couplings into QCD. As highlighted by Fig. 1.1, this last feature means that the mass-scale which
characterises all visible matter is hidden in π and K mesons and its manifestation in the physical π and K mesons is very
different from that in all other hadrons.

These two quite particular consequences of EHM can be understood by studying the colour-singlet axial-vector vertex,
which may be obtained by solving an inhomogeneous Bethe–Salpeter equation (BSE) [152,153] of the type depicted in
Fig. 2.6. Both owe to the Ward–Green–Takahashi identity satisfied by the axial-vector vertex, which is a basic expression
of chiral symmetry and the pattern by which it is broken in QCD:

PµΓ
fg
5µ(k, P) = S−1f (p1)iγ5 + iγ5S−1g (p2)− i [mζ

f +mζ
g ]Γ

fg
5 (k, P) , (2.24)

here: Γ fg
5 (k, P) is the associated pseudoscalar vertex (four-point Schwinger function). Eq. (2.22) states that in the

resence of Higgs-quark couplings, the actual mass of any pseudoscalar meson results from constructive interference
etween Higgs-boson effects and EHM.
Considered in the chiral limit, Eq. (2.24) can be used to show that a necessary and sufficient condition for the existence

f NG modes is [147,148]

f 0PSE
0
PS(k; 0) = B0(k2) . (2.25)

rudimentary form of this identity can be found in Ref. [133] and the first sketch of a proof appropriate to QCD was
iven in Ref. [154]. This identity is remarkable and revealing. First, it is a mathematical statement of equivalence between
he pseudoscalar two-body and matter-sector one-body problems in chiral-limit QCD. These problems are normally
onsidered to be completely independent. Second, it shows that the most direct expressions of EHM in the SM are located
n the properties of the massless NG modes. It is worth reiterating here that π- and K -mesons are indistinguishable in the
bsence of Higgs couplings. At realistic Higgs couplings, π and K observables are windows onto EHM and its modulation
y the Higgs boson. Phrased differently, there are two mass generating mechanisms in the SM and π and K properties
rovide clear and direct access to both.
At this point, it is worth returning to Eq. (1.13). If one insists on working with a partonic basis, then a straightforward

nderstanding of this identity and its reconciliation with Eq. (1.12) seems impossible; at least, no approach from that
irection has yet achieved the goal.
A different track is described in Ref. [155]. Namely, m2

π can be calculated by solving a Bethe–Salpeter equation (BSE) of
he type illustrated in Fig. 2.6. This is a scattering problem. In the chiral limit and considering partonic degrees of freedom,
wo massless fermions interact via massless-gluon exchange, viz. the initial system is massless; and it stays massless at
very order in perturbation theory. However, any complete analysis of the scattering process involves the summation of a
ountable infinity of one-body dressings, using Eq. (2.19), and two→ two scatterings, via the BSE in Fig. 2.6. At ζ = ζH , the
kernels are naturally built using a dressed-parton basis, i.e. from valence-quark quasiparticles interacting via the exchange
of quasiparticle gluons, each of which has a dynamically generated running mass. Now using Eq. (2.25), one can prove
algebraically [156,157] that in the chiral limit, at any order in a symmetry-preserving construction of the kernels for the
gap- and BS-equations, there is an exact cancellation between the mass-generating effect of dressing the valence-quark
and -antiquark, which produces the chiral limit mass function in Fig. 2.5 for both fermions, and the attraction produced

by the scattering events. This mathematical identity guarantees that the simple, originally massless system becomes a
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Fig. 3.7. Drell–Yan process: with appropriately chosen kinematics [162], meson–nucleon collisions that produce lepton pairs with large invariant
mass provide access to momentum distribution functions within the initial-state hadrons.
Source: Image courtesy of D. Binosi.

omplex bound system, with a nontrivial wave function attached to a pole in the scattering matrix which remains at
2
= 0. This entails

Γ 0
5µ(k, P)

P2≃0
= 2f 0PS

Pµ
P2 Γ

0
PS(k, P) ; (2.26)

ence, the bound-state is also massless.
These statements can be written as follows:

⟨π0(P)|Θ0|π0(P)⟩
ζ≫ζH
= ⟨π0(P)| 14β(α(ζ ))G

a
µνG

a
µν |π0(P)⟩ →

ζ≃ζH
= ⟨π0(P)|[D2 + I2] |π0(P)⟩ (2.27a)

D2 =
∑

f=u,d̄

Mf (ζ )Q̄ f (ζ )Q f (ζ ) , I2 =
1
4

[
β(α(ζ ))Ga

µν(ζ )G
a
µν(ζ )

]
2PI
, (2.27b)

which describes the transformation of the parton-basis chiral-limit expression into a new structure, written in terms of
nonperturbatively-dressed quasiparticles, with dressed-quarks denoted by Q and the dressed-gluon field strength tensor
by G. Here, the first term is positive: it realises the one-body-dressing content of the trace anomaly, whose reality
is demonstrated by the chiral-limit mass function in Fig. 2.5. The second term is negative because the net effect of
interactions between the quark quasiparticles is attraction. This term, too, has acquired a mass scale from the gluon-
and quark-propagators; and owing to Eq. (2.25), it precisely cancels ⟨π0(P)|D2|π0(P)⟩.

Away from the chiral limit for NG modes, the cancellation is incomplete and one arrives at Eq. (2.22). Similar destructive
interference takes place in other systems, like the ρ-meson and proton; but in these cases, no symmetry ensures complete
cancellation. Consequently, as revealed mathematically when solving bound-state integral equations, all other hadron
masses have values that are commensurate in magnitude with the strength of the scale anomaly in the solution of the
gluon and quark one-body problems, i.e. accounting for the number of valence quasiparticles, on the GeV scale. The
combination of outcomes described here resolves the dichotomy expressed by the union of Eqs. (1.12) and (1.13) and
ts analogues.

. Pion and kaon distribution amplitudes

.1. Essentials of light-front wave functions

If one seeks to describe a given hadron’s measurable properties in terms of the probabilities typical of quantum
echanics, then the hadron’s LFWF, ψH (x, k⃗⊥; P), takes a leading role. Here [158,159]: P is the total four-momentum of the
ystem, x is the light-front longitudinal fraction of this momentum, and k⃗⊥ is the light-front perpendicular component of
. In principle, this LFWF is an eigenfunction of a QCD Hamiltonian defined at fixed light-front time and may be obtained
y diagonalisation thereof [160]. It is also invariant under Lorentz boosts [158,159]. This means that when solving bound-
tate scattering problems using a light-front formulation, one never encounters compressed or contracted objects [161].
s an example, the cross-section for the meson+proton Drell–Yan (DY) process illustrated in Fig. 3.7 is the same whether
he proton is at rest or moving.

A primary obstacle on the path to a direct computation of a hadron’s LFWF is the need to construct a sound
pproximation to QCD’s light-front Hamiltonian. This is made complicated by, inter alia, the necessity of solving complex
onstraint equations along the way [163]. The challenge is amplified if one elects to tackle the problem of expressing
using a partonic basis, maintaining a connection to perturbative QCD, in which case a Fock-space decomposition of

he LFWF is typically introduced. The coefficient function attached to a given n-particle basis vector in that expansion
epresents the probability amplitude for finding these n partons in the hadron with momenta {(xi, k⊥i) | i = 1, . . . , n},
onstrained by requiring conservation of total momentum. As noted above, such methods have not yet succeeded in
escribing EHM in QCD’s gauge and matter sectors. A contemporary perspective on the direct approach is presented in
ef. [164].
12
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Fig. 3.8. Left panel—A. Light-front wave function in Eq. (3.29). Right panel—B. Associated DF, Eq. (3.30) — solid blue curve; and square of the DA,
Eq. (3.31) — dashed green curve. Curves in both panels computed with M = 0.4 GeV, δ ≃ 0.

An alternative is to use the covariant DSE framework, compute the hadron’s Poincaré-covariant Bethe–Salpeter wave
unction, χ , and then project this object onto the light front. Such an approach was used elsewhere [165] in analysing
local U(Nc) gauge theory in two dimensions, with Nc very large. This scheme was shown to be practicable for QCD in
ef. [166]. It delivers a LFWF expressed in the quasiparticle basis defined by the choice of renormalisation scale, ζ .
One of the strengths of an approach that draws connections with hadron LFWFs is made manifest by observing that the

istribution amplitudes (DAs) which feature in formulae describing hard exclusive processes and the distribution functions
DFs) that characterise hard inclusive reactions can both be written directly in terms of the LFWF [160], respectively:

ϕH (x; ζ ) ∝
∫ ζ

d2k⊥ ψH (x, k⃗⊥; P) , qH (x; ζ ) ∝
∫ ζ

d2k⊥ |ψH (x, k⃗⊥; P)|
2
, (3.28)

here ζ is the scale at which the hadron is being resolved. This ζ -dependence highlights that the perceived attributes of
hadron depend upon the scale at which it is observed. It does not affect measured cross-sections; instead, this energy
cale decides the optimal choice for the degrees of freedom required to solve the problem and express an insightful
nterpretation.

The discussion herein focuses chiefly on the properties of π and K mesons; consequently, two-body quasiparticle
FWFs are of primary importance. Thus, for future use, consider the following model:

ψH (x, k⊥; ζH ) =
nψ x(1− x)

[M2x(1− x)+M2 + k2
⊥
]1+δ

,

∫
dxd2k⊥
16π3 |ψH (x, k⊥; ζH )|2 = 1 , (3.29)

here M is a mass whose size is assumed to be set by EHM and nψ is the normalisation constant. For δ = 0, this LFWF
exhibits the large-k2

⊥
scaling behaviour of a leading-twist two-body wave function in QCD [167, Eq. (2.15)]. The result

obtained with M = 0.4 GeV and δ ≃ 0 is drawn in Fig. 3.8A.
Working with Eq. (3.29), the hadron’s DF is

qH (x; ζH ) =
∫

d2k⊥
16π3 |ψH (x, k⊥; ζH )|2 ; (3.30)

nd the result obtained with δ ≃ 0 is drawn as the solid blue curve in Fig. 3.8 B. For comparison, Fig. 3.8 B also depicts
˜
2
H (x; ζH ) as the dashed green curve, where ϕ̃H (x; ζH ) is the associated DA after normalisation adjustment:

ϕ̃H (x; ζH ) = nϕ2
∫

d2k⊥
16π3ψH (x, k⊥; ζH ) ,

∫ 1

0
dx ϕ̃2

H (x; ζH ) = 1 . (3.31)

he two curves in Fig. 3.8 B possess the same functional x-dependence at the endpoints and, using a L1 measure [168],
hey differ by just 4.1%. Using δ = 1, 2, the differences are, respectively, 4.4% and 4.7%.

The purpose of these comparisons is to illustrate an important fact. Namely, a factorised approximation to ψH (x, k⊥; ζH )
s reliable for integrated quantities when the wave function has fairly uniform support [169]. It is worth recalling here that
H is that scale at which the dressed quasiparticles obtained mathematically from the valence quark-parton and antiquark-
arton degrees of freedom embody all properties of a given hadron; in particular, they carry all its light-front momentum.
This understanding of ζH has long been a characteristic of well-founded models, e.g. Refs. [170–174].) Consequently, at
the hadronic scale, one can reliably exploit the approximation

2 ˜ 2
ψH (x, k⊥; ζH ) ≈ ϕ̃H (x; ζH )ψH (k⊥; ζH ) , (3.32)

13
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here the optimal choice for ψ̃H (k2⊥; ζH ) is influenced by the application, to arrive at the result

qH (x; ζH ) ≈ ϕ̃2
H (x; ζH ) , (3.33)

nd be certain that the level of accuracy exceeds the precision of foreseeable experiments.
Parton splitting effects entail that Eq. (3.33) is not valid on ζ > ζH . Nonetheless, since the evolution equations for

oth DFs and DAs are known [167,175–180], the changing connection is readily tracked. It follows that DAs and DFs are
omplementary; and in being accessed via different processes, they open different windows onto similar fields of view.
ence, the simultaneous analysis of both, yielding predictions for seemingly disparate observables, provides opportunities
or independent checks on the framework employed and insights drawn. For instance, any prediction of EHM-induced
roadening in the leading-twist DA of a NG boson must be matched by kindred manifestations in its DF.

.2. Pion distribution amplitude

After its introduction [167,179,180], interest in the pion’s leading-twist DA rapidly became intense. Summaries of the
tory may be found in several topical reviews [31,181] augmented by recent analyses [182,183]. Today, following these
orty years of effort, continuum phenomenology and theory agree that the pion’s DA at hadronic scales is a broad, concave
unction, possessing greater support in the neighbourhood of its endpoints and therefore flatter than the asymptotic
rofile [167,179,180]:

ϕas(x) = 6x(1− x) . (3.34)

uantitative differences in the pointwise expression of these features do remain; but those discrepancies are likely to
isappear when all computational frameworks are required to provide a sound, unified description of an equally diverse
rray of phenomena.
In order to explicate these observations, suppose that one has obtained the solution of the homogeneous BSE derived

rom the equation drawn in Fig. 2.6, i.e. χπ (k, P; ζH ) in Eq. (2.23), then the leading-twist DA for the u-quark in the π+
may be obtained as follows [166]:

fπ ϕu
π (x; ζH ) = NctrDZ2(ζH ,Λ)

∫ Λ

dk
δxn(kη)γ5γ · nχM (kηη̄, P; ζH ) . (3.35)

ere Nc = 3; the trace is over spinor indices;
∫ Λ
dk is a symmetry-preserving regularisation of the four-dimensional integral,

ith Λ the regularisation scale; δxn(kη) = δ(n · kη − xn · P), n is a light-like four-vector, n2
= 0, with n · P = −mπ in the

eson rest frame; kηη̄ = [kη + kη̄]/2, kη = k+ ηP , kη̄ = k− (1− η)P; and fπ is the pion’s leptonic decay constant, so∫ 1

0
dxϕu

π (x; ζH ) = 1 . (3.36)

he companion DA for the d-antiquark is

ϕd̄
π (x; ζH ) = ϕ

u
π (1− x; ζH ) . (3.37)

Naturally, the form of χπ (k, P; ζH ) is determined by the intimately connected kernels of the gap and Bethe–Salpeter
quations. Much has been learnt about their structure in QCD during the past twenty-five years, with key steps along
he road being marked by Refs. [60,135,184–189]. The kernel used to compute a spectrum of mesons in Ref. [186], which
xpresses crucial consequences of DCSB, was employed in Ref. [166] to predict the pion’s simplest two-body dressed-quark
A. Projection onto the light-front was achieved by exploiting perturbation theory integral representations (PTIRs) [153]
or the dressed-quark propagators and meson Bethe–Salpeter amplitude. The DA was subsequently reconstructed from
typically) fifty Mellin moments:

⟨f (x)m⟩ϕ =
∫ 1

0
dx f (x)m ϕ(x) , (3.38)

(x) = x, using a basis of Gegenbauer polynomials whose degree was included in the optimisation procedure so as to
inimise the number of basis vectors with a material contribution. This procedure yielded convergence using just two
olynomials in the series:

ϕαππ (x; ζH ) = 1.81[x(1− x)]απ
[
1+ aπ2 C

(απ+1/2)
2 (1− 2x)

]
, (3.39)

with degree απ + 1/2, απ = 0.31, and coefficient aπ2 = −0.12, which is drawn as the dot-dashed blue curve in Fig. 3.9A.
sing a L1 measure, this curve differs from ϕas(x) by 15%.
Having thus arrived at a pointwise-accurate approximation to ϕπ (x; ζH ), one can readily reexpress it using any other

asis. QCD predicts that this DAs endpoint behaviour should by linear, viz. the same as that of ϕ (x). Accounting for
as

14
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Fig. 3.9. Left panel—A. Dot-dashed blue curve — pion DA in Eq. (3.39); and solid green curve — DA in Eq. (3.40). Right panel—B. Again, solid green
urve is the DA in Eq. (3.40). Comparisons are drawn with: AdS/QCD model, ϕ(x) = (8/π )

√
x(1− x) — long-dashed gold curve; and QCD sum rules

esult, Eq. (3.42) — short-dashed cyan curve. In both panels, the thin black curve is ϕas(x) = 6x(1− x).

his, Refs. [103,104] used a functional form suggested by fits to distribution functions in order to obtain an improved
epresentation:

ϕπ (x; ζH ) = 18.2 x(1− x)
[
1− 2.33

√
x(1− x)+ 1.79x(1− x)

]
, (3.40)

hich is drawn as the solid green curve in Fig. 3.9A. Using a L1 measure, this curve differs from that in Eq. (3.39) by 3.3%.
urthermore, their low-order Mellin moments compare as follows:

⟨(1− 2x)2⟩ ⟨(1− 2x)4⟩
Eq. (3.39) 0.251 0.128
Eq. (3.40) 0.242 0.117

. (3.41)

Consequently, so far as foreseeable experiments are concerned, the curves are practically identical; and the reconstruction
in Eq. (3.40) is to be preferred because its endpoint behaviour is consistent with QCD.

It is worth comparing the prediction in Eq. (3.40) with several other determinations. To that end, the result obtained in
an AdS/QCD model [190], ϕ(x) = (8/π )

√
x(1− x), is drawn as the long-dashed gold curve in Fig. 3.9 B. This model omits

he physics of perturbative QCD; hence, the endpoint behaviour does not match that of ϕas(x). In this case, compared with
q. (3.40), the L1 difference is 2.3%.
QCD sum rules have also been used to estimate the pion DA via analyses of the neutral-pion electromagnetic transition

orm factor; and working within a Gegenbauer polynomial basis of degree 3/2, a broad band of results is possible [182].
onsidering this, one may begin with a favoured representation (Table I, line 1 in Ref. [182]), which yields these values
or the DA moments in Eq. (3.41): (0.269, 0.117); then implement the procedure that leads from Eq. (3.39) to Eq. (3.40),
thereby obtaining the following form:

ϕSR
π (x; ζH ) = 18.2 x(1− x)

[
1− 2.24

√
x(1− x)+ 1.59x(1− x)

]
, (3.42)

hich is depicted as the short-dashed cyan curve in Fig. 3.9 B. The moments of this function are (0.245, 0.119), well
ithin the uncertainty of the original estimate; and the L1 difference between ϕSR

π and Eq. (3.40) is just 1.2%. Evidently,
the two results, obtained using very different means, are practically indistinguishable. Moreover, the DA in Eq. (3.40)
is also associated with a sound description of the neutral-pion electromagnetic transition form factor [191], something
canvassed further below.

Complementing such conclusions, drawn from forty years of continuum analyses, the past three years have seen lattice-
regularised QCD (lQCD) deliver preliminary results for the pointwise behaviour of pion and kaon DAs [192,193]: the DAs
obtained also show the dilation evident in Fig. 3.9. Earlier and continuing studies of lQCD results for low-order Mellin
moments of pion and kaon DAs, e.g. Refs. [194–196], yield results that are indicative of such dilation, too. Additional
examination of these ongoing developments is provided in Section 8.4.

In order to learn something more about NG modes, it is useful to emphasise that the DAs in Fig. 3.9 are those for
pseudoscalar mesons constituted from light valence degrees-of-freedom, whose properties are chiefly determined by the
physics of EHM. It is natural to study the response of these DAs to increasing the strength of Higgs-boson couplings into
QCD. This exercise was undertaken in Ref. [197], which considered the current-quark mass dependence of S-wave qq̄
meson DAs and uncovered an important feature. As highlighted by Fig. 3.9, light-meson DAs are broad, concave functions.
At the other extreme, i.e. mesons constituted from a valence-quark and -antiquark with degenerate current-quark masses
that are far greater than ΛQCD, one has ϕQ Q̄ (x; ζ ) ≈ δ(x − 1/2). Since meson DAs are smooth functions with unit
normalisation, which must respond smoothly to increasing current-quark mass, it is reasonable to expect that there exists
a current-quark mass, m , for which ϕ (x; ζ ) ≈ ϕ (x). Ref. [197] verified this conjecture and found that m lies in
cr qmcr q̄mcr as cr
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Fig. 3.10. Left panel—A. Pseudoscalar meson DAs, ϕΠ (x; ζH ), computed for a range of current-quark masses. The results are drawn from
Refs. [103,104,197,198]. Legend. Dashed green (π0) curve: Eq. (3.40). Solid blue (Πss̄) curve: DA of a fictitious pseudoscalar meson built from a
alence-quark and -antiquark whose masses are chosen to match that of the s-quark, m̂s . Namely, the mass of the analogous ground-state vector
eson is approximately that of the φ-meson. (Reconstructed from Ref. [198, Table 1]: the associated light-blue band expresses the slightly asymmetric

heory uncertainty in the leading Mellin moments.) Dashed red curve: DA of the ηc meson, built from a c-quark and its antimatter partner. Right
anel—B. Comparison between continuum and lattice QCD results for the DA of the Πss̄ system. In both panels, the long-dashed black curve is
as(x) = 6x(1− x).

he neighbourhood of the s-quark current-mass, as may be seen in Fig. 3.10A. The results were confirmed in studies of
he elastic electromagnetic form factors of pseudoscalar mesons [198] and γ ∗γ → η, η′ transition form factors [199].

More recently, lQCD calculations using large-momentum effective theory have delivered results for pseudoscalar meson
DAs [193]. Of particular interest in the present context is the DA obtained when the current-quark mass is set in the
neighbourhood of the s-quark value, producing a bound-state mass mss̄ = 0.69 GeV. The DA for this system is drawn as the
grey curve within like colour bands in Fig. 3.10B. Also depicted is the continuum prediction for the DA of a pseudoscalar
meson bound-state with mss̄ = 0.69 GeV [198]. Plainly, continuum and lattice analyses in QCD agree upon the existence
and value of mcr. (Additional details are provided in connection with Fig. 8.36.)

The curves in Fig. 3.10A answer a question, viz. When does the Higgs mechanism begin to influence mass generation?
As already stated, the pointwise behaviour of the DAs for QCD’s NG modes is largely formed by the mechanism of EHM.
On the other hand, the ηc meson, built from a c-quark and its antimatter partner and with its DA being much narrower
than ϕas, feels the Higgs mechanism strongly. Built from valence constituents with mass m̂s, the Πss̄ system lies at the
boundary: with a DA very similar to ϕas, EHM and Higgs-boson couplings are playing a roughly equal role in forming the
wave function. It follows that comparisons between observables associated with truly light-quark bound-states and those
involving s quarks are ideally suited to exposing measurable signals of EHM in counterpoint to Higgs-driven effects, i.e.
revealing Higgs-boson modulation of emergent mass.

3.3. Kaon distribution amplitude

With this appreciation of the importance of such comparisons, it is natural to turn toward the kaon. Consider, therefore,
the K+, which is formed by one light valence u-quark and a heavier valence s̄-quark. The best available analyses indicate
hat m̂s/m̂ud ≈ 27, mud = (m̂u + m̂d)/2 [8]. On the other hand, regarding Fig. 2.5, Ms(0)/Mud(0) ≈ 1.3. Both these ratios
iffer from unity because of the Higgs mechanism for mass generation, but the ratio of current-quark masses is roughly
1-times larger than the ratio of constituent-like masses. So whilst Higgs couplings into QCD have an enormous impact
n partonic masses, they only appear to produce small modulations in the realm of EHM dominance, e.g. Ms(0)/Mud(0) ≈

fK/fπ , where fK ,π are the mesons’ leptonic decay constants. This being the case, how are Higgs couplings expressed in
kaon DAs?

Attempts to constrain the kaon DAs, ϕu,s̄
K (x), have a long history, reaching back almost forty years [200]. Several

qualitative features may be anticipated: (a) whilst isospin symmetry in QCD means ⟨(1 − 2x)⟩π = 0, the large disparity
between u- and s-quark current-masses entails ⟨(1 − 2x)⟩uK+ > 0; and (b) since the kaon is heavier than the pion, then
⟨(1 − 2x)2⟩uK+ ≤ ⟨(1 − 2x)2⟩π . There has been measurable progress since the early analyses, and a survey of continuum
and lattice results from the past decade [31,194,196,201–204] supports the following conclusions (ξ = 1− 2x):

⟨[ξ, ξ 2]⟩
uζH
π = [0, 0.25] , ⟨[ξ, ξ 2]⟩

uζH
K = [0.035(5), 0.24(1)] . (3.43)

Such skewing is also seen in the lQCD calculation of the pointwise behaviour of ϕK (x) reported in Ref. [205], but not within
the precision of a more recent study [193]. (Additional discussion is presented in connection with Fig. 8.35, which depicts
ϕ s̄
K (x).)
Following the procedures described in Refs. [104,194,202], the results in Eq. (3.43) can be used to obtain the following

pointwise form for the kaon’s DA:

ϕu (x; ζ ) = n x(1− x)
[
1+ ρx

a
2 (1− x)

b
2 + γ xa(1− x)b

]
, (3.44)
K H ϕK
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able 3.1
oefficients and powers that specify the kaon DA defined by Eq. (3.44). Upper, middle, lower refer to the values of ⟨ξ 2⟩

uζH
K produced by the identified

coefficients. The ‘‘upper’’ parameter values produce the curve in Fig. 3.11 with the smallest magnitude at x = 0.5, etc.
nϕK ρ γ a b

Upper 16.2 4.92 −6.00 0.0946 0.0731
Middle 18.2 5.00 −5.97 0.0638 0.0481
Lower 20.2 5.00 −5.90 0.0425 0.0308

Fig. 3.11. Kaon DA, ϕu
K (x; ζH ), described by Eq. (3.44) and the ‘‘middle’’ coefficients in Table 3.1 — solid blue curve. The embedding band marks the

omain bounded by the ‘‘upper’’ and ‘‘lower’’ coefficients in Table 3.1. Pion DA in Eq. (3.40) — dot-dashed green curve; and asymptotic profile —
ashed black curve. The vertical lines mark the peak position of the K+ and π DAs, viz. x = 0.4, 0.5, respectively.

here nϕK ensures unit normalisation. The interpolation coefficients are listed in Table 3.1: ‘‘upper’’ indicates the curve
hat produces the largest value of ⟨ξ 2⟩

uζH
K and lower, the smallest. ϕ s̄

K (x; ζH ) is obtained using Eq. (3.37).
The family of DAs described by Eq. (3.44) and the coefficients in Table 3.1 is drawn in Fig. 3.11: solid blue curve within

lue shading. It is slightly distorted when compared with the pion DA in Eq. (3.40), with a peak shifted to x = 0.4,
.e. 20% to the left. These features expose Higgs-boson modulation of EHM. (Recall fK/fπ ≈ 1.2 ≈ Ms(0)/Mud(0).) In
this connection, it is also worth remarking that the K and π DAs are unit-normalised; namely, in each case, an overall
multiplicative factor of fK ,π , respectively, has been factorised. What remains in the comparison between K and π DAs,
therefore, is an essentially local expression of EHM and Higgs-related interference effects.

It may be anticipated from the curves in Fig. 3.11 that with increasing current mass of the heavier quark the distortion
f this DA becomes more pronounced and its peak location, x̂ζH , moves toward x = 0 [206–208]. However, consistent with
otions of heavy-quark symmetry [209], there is a lower bound: limmP→∞ x̂ζH = x̂0ζH , x̂

0
ζH
≈ 0.05. This corresponds to a

ower bound on the light-front momentum fraction stored with the lighter quark [206]: ⟨x⟩ζH0 ≈ 0.12. Tracing from the
ion, one has ⟨x⟩ζHπ ≈ 0.5, ⟨x⟩ζHK+ ≈ 0.48, ⟨x⟩ζHD ≈ 0.32, ⟨x⟩ζH

B̄
≈ 0.19. Evidently, the D-meson lies roughly at the halfway

oint; and in this case, drawn as in Fig. 1.1, the mass budget is EHM+ HB ≈ 40%, half as much as in the kaon, and HB
urrent mass ≈ 60%.

. Empirical access to pseudoscalar meson distribution amplitudes

.1. Electromagnetic transition form factors

There are few rigorous QCD predictions for processes that involve strong dynamics, like hadron elastic and transition
orm factors. The cleanest are linked to γ ∗γ (∗)

→ Π transition form factors, GΠ (Q 2), where Π is a charge-neutral
seudoscalar meson and Q is the virtual photon momentum. With the second photon being real and isolating a given qq̄
omponent of Π , then there exists Q0 > ΛQCD such that [167]

Q 2Gq
Π (Q 2)

Q 2>Q 2
0
≈ 4π2 f qΠ e2q wq

Π (Q 2), (4.45)

here: f qΠ is the pseudovector projection of the qq̄ piece of the meson’s wave function onto the origin in configuration
pace, i.e. a decay constant; eq is the quark’s electric charge; and

wq
Π (Q 2) =

∫ 1

0
dx

1
x
ϕ
q
Π (x;Q ) , (4.46)

here ϕq
Π (x;Q =

√
Q 2) is the dressed-valence q-parton contribution to the meson’s DA. f qΠ is an order parameter for the

strength of chiral symmetry breaking, which is driven by EHM in the light-quark sector.
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Evidently, GΠ (Q 2) presents an almost ideal case of power-law scaling in QCD. Scaling violations are only expressed in
he meson DA’s evolution [167,179,180]; but since it is the ⟨1/x⟩ -moment which appears and evolution is logarithmic,
then such effects can be observable on a large domain above Q 2

≈ 10 GeV2. In this, one has indirect access to the DAs of
neutral pseudoscalar mesons. Notably, owing to isospin symmetry, the DAs of charged and neutral pions are the same;
similarly for kaons. It is worth remarking that when ϕq

Π (x;Q ) = ϕas(x), wq
Π = 3. On the other hand, the DAs drawn in

Fig. 3.9 yield wπ = 3.7(3). (In this case, the sum over electric charge states produces 1/3.)
For the γ ∗γ (∗)

→ η, η′ transitions, data are available on the domain Q 2
∈ [0, 112] GeV2 [210–212]. More recently, data

has become available for γ ∗(Q1)γ ∗(Q2)→ η′ on Q 2
1 ,Q

2
2 ∈ [2, 60] GeV

2 [213]. Contemporary analyses of these processes
can be found in Refs. [199,214–216]. They find that available data are consistent with the QCD prediction in Eq. (4.45)
and the non-Abelian anomaly has a noticeable impact on η′ physics, e.g. [199]: the topological charge content of the η′ is
more than twice as large as that of the η, which is itself also significant.

The γ ∗γ → π0 case is somewhat less clear. Data exists on the domain Q 2/GeV2
∈ [0.68, 35] [210,217–219]. All

data agree on Q 2 ≲ 10 GeV2 and are compatible with Eq. (4.45); but thereafter the two available sets [218,219] exhibit
conflicting trends in their evolution with photon virtuality [220]. This issue has attracted much attention, as may be seen
by following the trails identified in Refs. [182,191,221–223].

It is worth remarking here that the framework employed in Ref. [191] generates the broad, concave pion DA illustrated
in Fig. 3.9; expresses the QCD asymptotic limit, Eq. (4.45); and has also been applied successfully to unifying γ ∗γ →
η, η′, ηc, ηb transition form factors [199,224]. Hence, the following comparisons have some weight:

sources Refs. [210,217,218] Refs. [210,217,219] Refs. [210,217–219]
χ2/datum 2.97 1.78 2.34 . (4.47)

vidently, the BaBar Collaboration data [218] deviate significantly from the prediction, whereas the Belle Collaboration
ata [219] match well. In fact, focusing on data at Q 2 > 10 GeV2, one finds χ2/datum = 4.14 [218] and χ2/datum =
.64 [219]. Thus, it is premature to suggest that Eq. (4.45) is challenged by existing data; rather, the bulk of such data
oth tend toward its confirmation and support a picture of the pion DA as a broad, concave function at accessible probe
omenta.
Measurements of such transition form factors are difficult. They typically involve the study of e+e− collisions, with one

f the outgoing fermions detected, after a large-angle scattering, whereas the other is scattered through a small angle and,
o, undetected. The detected fermion is supposed to have emitted a highly-virtual photon and the undetected fermion, a
oft-photon. These photons are assumed to fuse and produce the final-state pseudoscalar meson. Numerous background
rocesses and loss mechanisms are possible in this passage of events, thus providing ample room for systematic error,
specially as Q 2 increases [225]. It is likely that a full accounting for such errors could reconcile the data from BaBar [218]
nd Belle [219]; and in any event, new data is anticipated from the Belle II experiment [226].
Matching Eq. (4.45) in rigour, QCD also delivers a prediction for the behaviour of the elastic electromagnetic form

factor of a Π = f ḡ charged pseudoscalar meson [167,179,180,227]: ∃Q ′0 > ΛQCD such that

Q 2FΠ (Q 2)
Q 2>Q ′20
≈ 16πα̂(Q 2)f 2Π w̃2

Π (Q 2), (4.48)

where

w̃2
Π = ef [w̃

f
Π (Q 2)]2 + eḡ [w̃

ḡ
Π (Q 2)]2 , w̃ f

Π =
1
3

∫ 1

0
dx gf (x)ϕ

f
Π (x;Q 2) , (4.49)

f (x) = 1/x, gḡ (x) = 1/(1 − x), and ef ,ḡ are the electric charges of the valence quarks. Plainly, as before, this hard elastic
rocess is sensitive to the inverse moment of the meson DA.
Compared with the case of neutral meson transition form factors, Eq. (4.45), QCD scaling violations are more

pronounced in Eq. (4.48): there is the manifest logarithmic suppression introduced by α̂(Q 2); and that is magnified by
QCD evolution, expressed in w̃2

Π . These features highlight that QCD is not found in scaling laws. Instead, it is revealed
in the presence and nature of scaling violations, which are a basic feature of quantum field theory in four spacetime
dimensions: while different models and theories may predict the same scaling power-law, scaling violations will decide
between them.

4.2. Elastic electromagnetic form factors

The status of π and K elastic form factor measurements is summarised elsewhere [31] and is discussed further
in Section 9.2. It is nevertheless worth remarking, as shown by Table 9.4, that precise pion data are available on
Q 2/GeV2

∈ [0, 2.45] [228–237]. The impetus for the new generation of measurements, made at the Thomas Jefferson
National Accelerator Facility (JLab), is a widely held view that information on the Q 2 dependence of Fπ (Q 2) offers the best
hope for charting the transition between the strong QCD domain, whereupon observables are determined by EHM and
its corollaries and must be calculated using newly developed and developing nonperturbative methods, and the domain
of perturbative QCD (pQCD), in which the familiar methods of perturbation theory can be used to obtain formulae such
as Eq. (4.48).
18
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Fig. 4.12. Fπ (Q 2). Solid black curve within grey band — continuum theory prediction, which bridges large and short distance scales, with
estimated uncertainty, calculated using the methods described in Ref. [198]. Left panel—A. Comparison with data analysed by the JLab Fπ
ollaborations [235,236]. The χ2/datum = 1.0. Right panel—B. Dot-dashed blue and dotted purple curves — results obtained with Eq. (4.48),
omparing, respectively, that produced by a modern EHM-hardened DA like that in Eq. (3.40) with that given by the asymptotic profile. Projected
Lab12 data, to be obtained using a Rosenbluth-separation technique — orange diamonds and green triangle. Black stars with error bars — data
rojections for a US electron ion collider (EIC) [40], as anticipated using extraction from a combination of electron–proton and electron–deuteron
cattering, each with an integrated luminosity of 20 fb−1 . Projections for the electron ion collider in China (EicC), currently under discussion, may
e found elsewhere [44, Sec. 4]. (N.B. The normalisation of all projected data is arbitrary.) The long-dashed green curve is a monopole form factor
hose scale is determined by the pion radius.

Twenty and more years ago, before the strong QCD phenomena described in Section 2 were widely known and
ppreciated, the transition to pQCD was expected to take place at Q 2

≈ m2
p . However, with data now available out to

2
≈ 2.5m2

p , the JLab Fπ Collaboration has concluded that extant empirical coverage [233,238] ‘‘. . . is still far from the
transition to the Q 2 region where the pion looks like a simple quark–antiquark pair . . . ’’, viz. far from the Q 2 domain upon
which Eq. (4.48) can be tested. With the challenge posed by Eq. (4.48) thus remaining, experiments aimed at reaching
Q 2
= 6 GeV2 were proposed for the 12GeV-upgraded JLab facility (JLab 12) [239]. Now the upgrade is completed, the

experiments [45,46] are running on schedule and the data are being analysed as soon as they are obtained.
Using the information provided in Section 2, it is possible to develop an estimate of Q ′0 in Eq. (4.48) following the

ideas in Ref. [240]. In an elastic scattering process, both valence degrees-of-freedom in the pion will most often share
the incoming probe momentum equally, i.e. each will receive Q/2. Comparing the chiral limit and u = d-quark mass
functions in Fig. 2.5, it is clear that the perturbative tail only becomes evident at k2 ≈ 2 GeV2, where the ratio of the
two curves begins to deviate significantly from unity. With each quark carrying Q/2, it follows that no results calculated
using perturbative quark propagators can be valid unless

(Q/2)2 > 2 GeV2
⇒ Q 2 > 8 GeV2

≈: Q ′20 . (4.50)

Within the past decade, the algorithms used for continuum calculations of Fπ (Q 2) have been comprehensively
improved. This progress capitalised on the new techniques that delivered the DA results in Figs. 3.9, 3.10, 3.11. It led
to a single calculation applicable on the entire domain of spacelike Q 2 [204,241], unifying that covered empirically with
the deep ultraviolet. The result is illustrated in Fig. 4.12 and the following features are noteworthy.

JLab pion data The solid black curve in Fig. 4.12A appeared after the JLab data were collected. Notwithstanding that, it
is a parameter-free prediction, which derives from and expresses the features of EHM detailed in Section 2. Hence,
the result χ2/datum = 1.0 provides meaningful support for the concepts described therein.

Scaling and scaling violations Fig. 4.12B shows that the continuum theory prediction tracks a monopole form factor
with scale determined by the pion radius until Q 2

≈ 6 GeV2. Thereafter, the two curves separate, growing further
apart with increasing Q 2 as QCD scaling violations become increasingly more important in understanding this hard
exclusive process.
If the JLab 12 measurement at Q 2

≈ 9 GeV2 achieves the anticipated precision, then it will be sufficient to validate
this prediction. If the prediction is correct, then the measurement will be the first to have uncovered QCD scaling
violations in a hard exclusive process.

pQCD Fig. 4.12B displays qualitative and semiquantitative agreement between the black solid and dot-dashed blue curves
on Q 2 ≳ 8 GeV2. This indicates that when used with a pion DA appropriate to the scale of the experiment, Eq. (4.48)
provides a qualitatively sound understanding of this hard exclusive process at such momentum transfers. The
location of this boundary matches the value predicted in Eq. (4.50).

large Q2 Comparison between the black stars and black solid curve in Fig. 4.12B suggests that EIC (or a similar high-
luminosity, high-energy facility) will be capable of delivering quantitative verification of the anomalous dimension
predicted by QCD for this hard exclusive process.
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Fig. 4.13. Continuum predictions for selected kaon form factors and related ratios drawn from Ref. [204] — solid black curve in each panel. All
panels present results obtained from Eq. (4.48) using empirical values for fK ,π and different estimates of K and π DAs: dashed green curve — DAs
stimated in Ref. [204], for which ⟨ξ 2⟩ζHK = 0.27(1), ⟨ξ 2⟩ζHπ = 0.28; dot-dashed blue curve — DAs from Sections 3.2, 3.3, which exhibit 35% less
ilation with respect to ϕas(x); and purple dashed curve, ϕas(x). (The asymptotic profile produces FK0 ≡ 0.) Legend notes. Upper left —A. Dotted olive
urve within like-coloured band — monopole based on kaon charge radius r+K = 0.56(3) fm [8]; crossed circles — data from Ref. [244], representing
nalyses of the 1H(e, e′K+)Λ reaction; and filled diamonds — data anticipated from a forthcoming experiment [47], where the two error estimates
iffer in their assumptions about the t- and model-dependence of the form factor extractions. (Normalisation of projected data is arbitrary.) Upper
ight —B. Strange-to-normal-matter charge distribution ratio. Lower right —C. Prediction from Ref. [204]: r2

K0 = −(0.21 fm)2 cf. experiment [245]:
2
K0 = −(0.24± 0.08 fm)2 . Datum from Ref. [246], with the error bar marking the 90% confidence interval. Lower left —D. Data from Ref. [247].

t is also worth remarking that the solid black curve in Fig. 4.12B, drawn from Ref. [198], is one of a set that aids in
nderstanding contemporary lQCD calculations of heavy-pion form factors at large Q 2 [242,243]. Such lQCD results are
iscussed further in connection with Fig. 8.31.
Eq. (4.48) applies equally to kaon elastic electromagnetic form factors; and in concert with Fig. 3.11, it suggests that

the u- and s-quark charge distributions in the K+ must differ. It follows that the neutral kaon has a nonzero charge form
factor. These features are seen in contemporary phenomenology and theory, e.g. Refs. [204,248,249]. Such characteristics,
too, are expressions of EHM modulation by the Higgs-boson. They are illustrated in Fig. 4.13; and the following aspects
are worth highlighting.

Forthcoming kaon data Fig. 4.13A illustrates that precise data do not yet exist for the charged-kaon form factor; but it
is anticipated that JLab 12 will remedy this situation, providing valuable information out to Q 2

≈ 6 GeV2. Referred
to the prediction in Ref. [204], which is the only QCD-connected result which covers the entire domain of spacelike
Q 2, it appears that the reach of the expected JLab12 data should enable scaling violations to be detected in FK+ (Q 2).

DA sensitivity The sensitivity of the results produced by Eq. (4.48) to the endpoint behaviour of K and π DAs, through
their ⟨1/x⟩ moments, is plain in every panel of Fig. 4.13. This does not diminish the potential for data to reveal
scaling violations, but may affect the ability for such data to be used in determining the anomalous dimensions
characterising FK (Q 2).

lavour separation Fig. 4.13B depicts the strange-to-normal-matter charge distribution ratio, s̄K/uK , in the K+, as
predicted in Ref. [204]. With the static electric charges factored out, the ratio is unity at Q 2

= 0, owing to
current conservation; and Eq. (4.48) predicts that it is also unity on Λ2

QCD/Q
2
≃ 0. Thus, the interesting features

are displayed between these limits. s̄K/uK rises to a peak value of roughly 1.5 at Q 2
≈ 6 GeV2. Recalling that

(fK/fπ )2 ≈ 1.4 ≈ (Ms(0)/Mud(0))2, then this value is evidently typical for Higgs-boson modulation of EHM. Owing
to the logarithmic nature of DA evolution, the deviation of s̄ /u from unity must remain significant on a very
K K
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Fig. 4.14. Left panel—A. Results for the charged kaon form factor: solid black curve — prediction in Ref. [204]; dashed turquoise curve within like
coloured band — lQCD result from Ref. [250]; dotted olive curve within band — monopole based on kaon charge radius; crossed circles — data from
Ref. [244], representing analyses of the 1H(e, e′K+)Λ reaction; and filled diamonds — data anticipated from a forthcoming experiment [47], where
the two error estimates differ in their assumptions about the t- and model-dependence of the form factor extractions. (Normalisation of projected
data is arbitrary.) Right panel—B. Neutral kaon form factor (N.B. multiplied by a factor of 10): solid black curve — prediction in Ref. [204]; dashed
turquoise curve within like coloured band — lQCD result from Ref. [250]; dotted olive curve within band — straight line drawn to indicate the
empirical constraint imposed by information on the neutral kaon’s charge radius. Evidently, evaluated at the peak of each function, the continuum
analysis predicts Q 2FK+ ≈ 10FK0 .

large part of the domain Q 2 ≳ 6 GeV2. The anticipated JLab data [47] should be capable of testing some of these
predictions, including the projected peak height. Other features, including the persistence of s̄K/uK > 1, will need
the energy and luminosity of EIC or EicC [40,44].

Timelike form factors On any domain within which Eq. (4.48) provides a reasonable approximation, spacelike and
timelike form factors are equal at leading order (LO) in α̂. Using this fact, one can obtain an estimate for FK0/FK+
at timelike momenta beyond the resonance region, i.e. on t = −Q 2 ≳ 8 GeV2. Such a projection is drawn in
Fig. 4.13C. Evidently, the prediction obtained in this way is consistent with the only existing measurement [246],
so long as one uses a kaon DA that is qualitatively consistent with that drawn in Fig. 3.11. The picture is less clear
for FK+/Fπ+ , depicted in Fig. 4.13D. The calculations all indicate that FK+/Fπ+ > 1, whereas existing data lie below
unity [247]. This is puzzling because: (i) charge conservation means FK+/Fπ+ = 1 at Q 2

= 0; (ii) the ordering of
charge radii ensures the ratio rises as |Q 2

| increases; and (iii) the absence of another set of mass-scales suggests
that the asymptotic limit (f 2K /f

2
π ≈ 1.42) should be approached monotonically from below. Notably, considering

the separate data for the π and K form factors at timelike momenta [247], one might review their normalisations
because, mapped straightforwardly to spacelike momenta and compared with the calculations in Ref. [204], the
π measurements are roughly twice as large and those for the K are ∼ 1.5-times greater. A mismatch of relative
normalisations would cancel in FK0/FK+ .

First lQCD results for the kaon elastic electromagnetic form factors have recently become available [250]. As discussed
further in Section 8.2, in completing a lQCD computation of meson form factors, one must meet competing demands,
e.g. large lattice volumes are required to represent light-quark systems, small lattice spacings are needed to reach large
Q 2, and high statistics are necessary to compensate for a decaying signal-to-noise ratio as form factors drop rapidly with
increasing Q 2. For reasons such as these, the results in Ref. [250] only reach to Q 2

≈ 3.8 GeV2. They are reproduced in
Fig. 4.14 in comparison with predictions from Ref. [204].

Fig. 4.14A reveals that the continuum and lattice results for the charged kaon form factor are almost identical on
Q 2 ≲ 4 GeV2. This adds further support to the suggestion made above, viz. the reach of the anticipated JLab12 data
should enable scaling violations to be detected in FK+ (Q 2); and they will certainly be seen in precision experiments at
EIC or EicC. Turning to Fig. 4.14B, the new lQCD result indicates a neutral kaon charge radius r2 lQCD

K0 ≈ −(0.16 fm)2,
a magnitude which lies at the lower extreme of the empirical range. Moreover, there is a clear qualitative likeness and
semiquantitative agreement between the lQCD result and the continuum prediction: the momentum dependence is similar
and the lQCD result is a roughly uniform two-thirds of the size of the continuum prediction. Combined with the accord
displayed in Fig. 4.14A, confidence in both results is increased; especially because the K 0 charge form factor is determined
by a destructive interference between two terms that are identical at Q 2

= 0 and similar in magnitude thereafter, so that
any loss of precision is magnified in the difference.

4.3. Diffractive dissociation

The exclusive reactions described in Sections 4.1, 4.2 provide access to an integrated property of pseudoscalar meson
DAs, viz. the ⟨1/x⟩ moment, which is particularly sensitive to a DA’s endpoint behaviour. It may be possible to obtain
information on the x-dependence of a meson’s DA using the diffractive dissociation process depicted in Fig. 4.15.
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Fig. 4.15. Hard diffractive dissociation of a pion in the gluon field of a heavy nucleus. The pion’s valence-quark–valence-antiquark wave function is
ψπ (x, k2⊥; ζ ), with ζ the energy scale of the interaction.
ource: Image courtesy of D. Binosi.

otionally, a high energy meson dissociates in the colour field of a heavy nucleus, transferring no energy to the target, A,
o that it remains intact. Meanwhile in this coherent process, the meson breaks up, with its valence-quark and -antiquark
onstituents seeding two jets. So long as the momentum of a given valence constituent is transferred (almost) completely
nto just one of the two separate jets, then measurement of the jet momenta provides access to the quark and antiquark
omenta:

x =
pjet1

pjet1 + pjet2
. (4.51)

ssuming factorisation is valid for the kinematics of a given experiment, then one may argue that the energy scale of the
nteraction is

ζ 2 =
k2
⊥

x(1− x)
, (4.52)

where k⊥ is the intrinsic light-front transverse momentum of the valence-quark.
Following the analysis in, e.g. Ref. [251], the differential cross-section for the process depicted in Fig. 4.15 takes the

following form:

dσ
dk2
⊥

∝
⏐⏐α̂(k2

⊥
)xNG(xN , k2⊥)

⏐⏐2 ⏐⏐⏐⏐ϕ̃P (x) ∂∂k2
⊥

ψ̃P (k2⊥)
⏐⏐⏐⏐2 , (4.53)

here xN is the momentum fraction (Bjorken x) of the interacting gluons, G(xN , k2⊥) is the gluon distribution in the target,
nd a product Ansatz has been employed for the meson’s light-front wave function, viz. ψP (x, k2⊥) ≈ ϕ̃P (x)ψ̃P (k2⊥), as
iscussed in Section 3.1.
An experiment (E791) to measure the process sketched in Fig. 4.15 is described in Ref. [252]. Two domains of k2

⊥

ere identified therein, separated by their perceived k2
⊥

dependence, and connected to ζ 2/GeV2
≈ 4, 10. The data are

resented in Fig. 4.16. If one chooses to interpret them using Eq. (4.53), as done in Ref. [252], then the number of events
is proportional to |ϕπ (x; ζ )|2. Two primary curves are drawn in each panel of Fig. 4.16: dashed black, derived from ϕas(x);
and solid blue, from Eq. (3.40).

Taken at face value, ϕas(x) provides a better description of the data’s x-dependence than the realistic DA discussed in
Section 3.2. Moreover, in switching from the ζ ≈ 2 GeV data to the ζ ≈ 3 GeV set, the ϕas(x) χ2/datum decreases by
a factor of two, with ϕas(x) unchanging under evolution. On the other hand, that associated with Eq. (3.40) is practically
unchanged, even though the DA evolves. Notably, as shown by Fig. 4.16B, evolution is practically nugatory in passing
from 2→ 3 GeV.

These remarks highlight the conundrum attendant upon any interpretation of the data in Ref. [252] as a measure of
|ϕπ (x; ζ )|2. There are two marked inconsistencies. Existing data on the neutral pion electromagnetic transition form factor
and new-generation pion elastic form factor data, depicted in Figs. 4.12, suggest very strongly that ϕas(x) does not provide
a valid description of pion structure at ζ ≈ 2 GeV; yet it matches the E791 diffractive dissociation data very well. QCD
evolution from 2 → 3 GeV does not have any measurable impact on ϕπ (x; ζ ); yet the data reported in Ref. [252] are
described therein as changing significantly under this small step. So, the connection with pion form factor predictions
does not become any closer, yet the description of E791 data is claimed to improve.

It is now plain that one cannot be certain whether the E791 division of data into the two sets displayed in the separate
panels of Fig. 4.16 is realistic. Furthermore, updated analyses of the process illustrated in Fig. 4.15 have demonstrated
that the simple dependence on the meson DA expressed in Eq. (4.53) becomes more complicated [253,254]. At best,
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Fig. 4.16. Left panel — A, ζ ≈ 2 GeV data from Ref. [252]. Dashed black curve: fit to data based on ϕas(x); and solid blue curve, fit using Eq. (3.40).
2/datum = 1.1, 2.6, respectively. right panel — B. ζ ≈ 3 GeV data from Ref. [252]. Dashed black curve: fit to data based on ϕas(x); and solid
lue curve, fit using Eq. (3.40), one-loop evolved to ζ = 3 GeV. χ2/datum = 0.54, 2.7, respectively. The solid blue curve is obtained via one-loop
volution of the dotted red curve, which is based on the solid curve in Panel A.

any representations of the pion DA are consistent with the E791 data [255]. Hence, one must conclude that whilst hard
iffractive dissociation of a meson does provide information on the x-dependence of the bound-state’s DA, experiments
ith better precision than E791 are necessary before that connection can profitably be exploited.

. Pion distribution functions

.1. Forward compton scattering amplitude

A description of the status of experiment and theory for pion and kaon distribution functions as it was ten years
go may be found in Ref. [52]. An update on experiment is presented in Section 9.3. Here it is worth recapitulating
few facts in order to establish the context for that update and recent developments in theory. Thus, the hadronic

ensor relevant to inclusive deep inelastic lepton+pseudoscalar-meson (ℓΠ) scattering can be expressed via two invariant
tructure functions [256]. With the incoming photon possessing momentum q and the target meson, momentum P , then
n the deep-inelastic (Bjorken) limit [257], viz.

q2 →∞ , P · q→−∞, but x := −q2/[2P · q] fixed , (5.54)

hat tensor is (tµν = δµν − qµqν/q2, P t
µ = tµνPν):

Wµν(q; P) = F1(x) tµν −
F2(x)
P · q

P t
µP

t
ν , F2(x) = 2xF1(x) . (5.55)

Bjorken-x measures the struck parton’s share of the meson’s light-front momentum. F1(x) is the meson structure function,
which provides access to the meson’s quark distribution functions:

F1(x) =
∑
q∈Π

e2q qΠ (x)⇒ F2(x) =
∑
q∈Π

e2q 2x qΠ (x) , (5.56)

where eq is the quark’s electric charge. The sum in Eq. (5.56) runs over all quark flavours; but, e.g. in the π+ it is
naturally dominated by uπ (x), d̄ π (x). Moreover, in the G-parity symmetric limit, which is a good approximation in Nature,
uπ (x) = d̄ π (x).

Using the optical theorem, the structure function is given by the imaginary part of the virtual-photon–meson forward
Compton scattering amplitude: γ ∗(q)+Π(P)→ γ ∗(q)+Π(P). This understanding provides one direct way to compute it.
Namely, within the framework of continuum Schwinger function methods and at leading-order in a systematic, symmetry
preserving truncation scheme, computation of the collection of diagrams in Fig. 5.17 is both necessary and sufficient to
obtain a sound result [258–260]. Notably, as first demonstrated in connection with ππ scattering [261,262] and amplified
in subsequent discussions of numerous other ‘‘box-diagram’’ processes, e.g. Refs. [263–266], if any one of the contributions
depicted in Fig. 5.17 is neglected in a given calculation of the Compton amplitude, then the result explicitly violates an
array of crucial symmetries. Typical consequences include the following: overestimation of the sea and gluon content
of a given bound-state; incorrect estimates for the relative size of valence-quark momentum fractions within different
but related bound-states; misidentification of ζH , if this scale is used as a parameter to fit some empirically-determined
distribution [267]; and because these errors are communicated into the evolved distributions, a lack of credibility in
the conclusions and interpretations drawn from the distributions. Furthermore, the symmetry violations and connected
errors are accentuated by including the H(P, k) resummation in Fig. 5.17(A) alone because this disrupts the balance of
interferences that a fully-consistent truncation is guaranteed to preserve. Consequently, less harm is done by working
solely with Fig. 5.17(C), as done in the earliest studies [52].
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Fig. 5.17. Collection of diagrams required to complete a symmetry-preserving leading-order (RL rainbow-ladder truncation) calculation of meson
Compton scattering. Amplitude-One (S1) = (A)+(B)-(C). The ‘‘dots’’ in (A) and (B) indicate summation of infinitely many ladder-like rungs, beginning
ith zero rungs. The other two amplitudes are obtained as follows: (S2) — switch vertices to which q and q′ are attached; and (S3) — switch vertex

nsertions associated with q′ and P ′ . In all panels: triangles (blue) — meson Bethe–Salpeter amplitudes, drawn here for the pion ΓΠ=π ; circles (red) —
mputated dressed-photon-quark vertices, Γ γ ; and interior lines — dressed-quark propagators. ∆ = q′ − q. Poincaré-covariance and electromagnetic
urrent conservation, inter alia, are guaranteed so long as each of these elements is computed in RL truncation.

Working with the virtual-photon–meson forward Compton scattering amplitude specified by the diagrams in Fig. 5.17
nd using the Ward–Green–Takahashi identity for the dressed-photon-quark vertex, Ref. [258] derived the following
xpression for the quark distribution function in a Π = f ḡ pseudoscalar meson:

f Π (x; ζH ) = Nctr
∫
dk
δxn(kη)n · ∂kη

[
ΓΠ (kη,−P)Sf (kη)

]
ΓΠ (kη̄, P) Sḡ (kη̄) , (5.57)

here the derivative acts only on the bracketed terms. One may prove algebraically that the result obtained using
q. (5.57) is: independent of η, i.e. the definition of the relative momentum within the bound state; ensures

ḡπ (x; ζH ) = f π (1− x; ζH ) ; (5.58)

nd satisfies the baryon number and momentum sum rules, viz.∫ 1

0
dx f Π (x; ζH ) = 1 =

∫ 1

0
dx ḡΠ (x; ζH ) = 1 ,

∫ 1

0
dx x

[
f Π (x; ζH )+ ḡΠ (x; ζH )

]
= 1 . (5.59)

Regarding Eq. (5.57), it is natural to explore whether anything can be stated a priori about the x dependence of the
istribution function it defines. To this end, consider that the integrand depends on the quark propagator and the bound-
tate amplitude. Independent of the theory and the number of spacetime dimensions, Dst, the large momentum scaling
behaviour of a fermion propagator is always S(k) ≈ 1/iγ · k. Thus, all information about bound-state formation and
properties is encoded in the meson’s Bethe–Salpeter amplitude.

Beginning with the homogeneous Bethe–Salpeter equation derived from Fig. 2.6, it is straightforward to show, using
ittle more than dimensional counting, that a Dst = 4 vector-boson exchange theory, characterised by boson exchange
ith large-momentum scaling behaviour 1/[k2]ν , produces a bound-state amplitude with the following feature:

ΓΠ (k,−P)
k2≫m2

0
≈ iγ5

1
[k2]ν

. (5.60)

This result is also valid in the symmetry-preserving treatment of a contact interaction, ν = 0. (These remarks extend
hose made following Eq. (2.21).) The analysis can be made more rigorous by adapting, e.g. what has been called the
igashijima–Miransky approximation [268,269] for treating the integrals that appear in quantum field theory bound-state
quations. In this way, one can readily reproduce the QCD prediction obtained in Ref. [124], which leads to Eq. (5.60) via
q. (2.25) and its corollaries.
The scaling patterns just described are expressed in the following equations:

S(k) = [−iγ · k+M]∆M (k2) , ∆M (s) = 1/[s+M2
] , (5.61a)

nΠΓΠ (kη̄/η;±P) = iγ5

∫ 1

−1
dz ρν(z) ∆̂νM (k2z ) , ρν(z) =

1
√
π

Γ (ν + 3/2)
Γ (ν + 1)

(1− z2)ν , (5.61b)

here M is a dressed-quark mass-scale, ∆̂M (s) = M2∆M (s), kz = kη̄/η + (z± 1)P/2, and nΠ is the canonical normalisation
onstant. To simplify the algebra, consider the chiral limit, so that P2

= 0. Then inserting Eqs. (5.61) into Eq. (3.35), one
obtains [166]

ϕΠ (x) =
Γ (2ν + 2)
[Γ (ν + 1)]2

[x(1− x)]ν . (5.62)

vidently, the scaling power of the bound-state’s DA is completely determined by that of the exchanged boson which
roduces the bound state.
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Fig. 5.18. Comparison: qΠ (x; ζH ) vs. [ϕ̃Π (x; ζH )]2 . This figure establishes the veracity of Eqs. (5.64c) and (5.66c), respectively: solid blue curve cf.
ashed green curve for 1/k2 interaction; and dot-dashed red curve cf. dotted orange for 1/k4 interaction.

Turning now to the DF, consider ν = 0 in Eqs. (5.61). In this case ϕΠ (x) = 1; and implementing a translationally
invariant regularisation of the integral in Eq. (5.57), one finds, in accordance with Eq. (3.33):

qΠν=0(x; ζH ) = 1 = [ϕν=0Π (x)]2 . (5.63)

his well-known result was first obtained in Ref. [270].
The steps can be repeated using ν = 1. Then [166,258]:

ϕν=1Π (x) = 6x(1− x) = ϕas(x) , (5.64a)

qΠν=1(x; ζH ) =
72
25

[
x3(x[2x− 5] + 15) ln x+

(
2x2 + x+ 12

)
(1− x)3 ln(1− x)

+2x(6− (1− x)x)(1− x)] (5.64b)

≈
5
6
[ϕν=1Π (x)]2 =: [ϕ̃ν=1Π (x)]2 . (5.64c)

he veracity of the last statement is established in Fig. 5.18: solid blue curve cf. dashed green curve, for which the L1
ifference is 4.1%. Notably, using Eq. (5.58), qΠν=1(x; ζH ) is symmetric under x↔ (1− x); and

qΠν=1(x; ζH )
x≃1
=

216
5

(1− x)2 + O((1− x)4) . (5.65)

Using ν = 2, one obtains

ϕν=2Π (x) = 30[x(1− x)]2 , (5.66a)

qΠν=2(x; ζH ) =
15
7

[
30x5(x[x(x[2x− 9] + 20)− 28] + 35) ln x

− 30(x[x(2x2 + x+ 5)+ 7] + 20)(x− 1)5 ln(1− x)

− 5x([x− 1]x([x− 1]x(12[x− 1]x+ 25)+ 378)+ 120)(x− 1)] (5.66b)

≈
7
10
[ϕν=2Π (x)]2 =: [ϕ̃ν=2Π (x)]2 . (5.66c)

Eq. (5.66c) is illustrated in Fig. 5.18: dot-dashed red curve cf. dotted orange curve, for which the L1 difference is 3.8%.
Naturally, in this case, too, qΠν=2(x; ζH ) is symmetric under x↔ (1− x); and

qΠν=2(x; ζH )
x≃1
= 1125(1− x)4 + O((1− x)6) . (5.67)

Explicit calculations for qΠν (x; ζH ) in Eq. (5.57) using Eqs. (5.61) are not available for ν ≥ 3. On the other hand, Eq. (5.62)
is valid for any ν; and using Eq. (3.33) and Fig. 5.18, the pattern is clear:

qΠν (x; ζH )
x≃1
∝ (1− x)2ν + O((1− x)2ν+2) . (5.68)

Such a connection between the k2-dependence of the exchange interaction and the x-dependence of the meson’s DA and
DF is found in all analyses of the continuum bound state problem. Recent examples may be found in Refs. [103,104,169,
259,260,271–273].
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Eq. (5.65) is an explicit illustration of a long known result in QCD. Namely, any calculation that capitalises on the
nown behaviour of pseudoscalar meson wave functions at large valence-quark relative momenta [123,124,167], predicts
he following large-x behaviour of the valence-quark DF (see, e.g. Refs. [274–278]):

qΠ (x; ζH )
x≃1
= c(ζH ) (1− x)βΠ (ζH ) , βΠ (ζH ) = 2 , (5.69)

(ζH ) is a constant, i.e. independent of x. The hadronic scale is not accessible in experiment because specific kinematic
onditions must be met before data can be interpreted in terms of qΠ (x, ζ ) [279]. Hence, any prediction of qΠ (x; ζH ) must
e evolved to ζE ≳ mp for comparison with experiment. Under such evolution, the exponent becomes 2 + γ , where the
nomalous dimension γ ≳ 0 and increases logarithmically with ζ .2 Eq. (5.69) means that any analysis of data that can
easonably be interpreted in terms of qΠ (x; ζE) must produce βΠ > 2. If it does not, then either: (a) strong interactions in
ature are not described by a 1/k2 vector-boson exchange theory; or (b) the analysis of the data is flawed in some way,
.g. by having neglected important contributions to the hard scattering kernel, which is a critical piece in any attempt to
onnect data with DFs [279].
It is worth noting here that what has come to be known as the Drell–Yan–West relation provides a connection between

he large-x behaviour of DFs and the large-Q 2 dependence of hadron elastic form factors [281,282]. In its original form, the
elation was discussed for J = 1/2 targets, in fact, the proton. It has long been known that this original form is not valid
hen the target is a pseudoscalar meson (J = 0) and the valence-parton scatterers are J = 1/2 objects [283,284]. The
eneralisation to spin-J targets constituted from J = 1/2 quarks may be found in Ref. [277], viz. for a hadron H defined
y n+ 1 valence J = 1/2 partons, so that its leading elastic electromagnetic form factor scales as (1/Q 2)n:

qH (x; ζH )
x≃1
∼ (1− x)βH , βH = 2n− 1+ 2∆Sz , (5.70)

here ∆Sz = |S
q
z − SH

z |. For a pseudoscalar meson, n = 1, SH=Π
z = 0, and consequently βH=Π = 2. Hence, one recovers

q. (5.69). For the proton, n = 2 and ∆Sz = 0 for a non-spin-flip transition; so, βH=p = 3 for the valence-quark DF. Within
itting uncertainties, this behaviour has been confirmed [285].

.2. Hadron scale pion distribution function

As explicated in Table 9.5, data that can be interpreted in terms of the pion’s valence-quark DF were obtained thirty
nd more years ago at CERN [286–290, WA39, NA3, NA10] and Fermilab [291, E615]. The E615 publication included a LO
QCD analysis of their data, which produced the result:

qπE615(x; ζ5 = 5.2 GeV)
x≃1
∼ (1− x)1 . (5.71)

s highlighted and discussed in Ref. [52], owing to the striking conflict between this result and Eq. (5.69), the E615 analysis
riggered a continuing controversy. Following that discussion, a new analysis was completed, working at next-to-leading
rder (NLO) in pQCD and including next-to-leading-logarithm (NLL — soft gluon) resummation [292]. It was known that
LO corrections to the hard-scattering kernel produce some softening of the DF [293]; but the inclusion of NLLs in the
ernel was new and their effect was striking. Indeed, the Ref. [292] analysis delivered

qπE615 [292](x; ζ4 = 4 GeV)
x≃1
∝ (1− x)2.4 , (5.72)

n agreement with Eq. (5.69).
One might have supposed that Ref. [292] would have resolved the controversy. However, this has not proved true.

nstead, all subsequent, published analyses of data relevant to the determination of qπ (x) [294–296] have ignored
LL resummation in constructing the hard-scattering kernel, despite its clearly established importance [292,297–300].
onsequently, the more recent analyses yield results like that in Eq. (5.71); hence, in conflict with the prediction in
qs. (5.69), (5.70). In this connection, it is notable that recent steps toward an updated analysis of qπ -relevant data are
xploring the inclusion of NLL resummation. They all yield softened large-x behaviour and typically lead to agreement
ith Eqs. (5.69), (5.70) [301,302].
Given the persistent concerns over the large-x behaviour of the pion’s valence-quark DF and the impact this has as a test

f QCD, the past decade has seen numerous continuum calculations of qπ (x), e.g. Refs. [173,174,271,303–307]. The problem
as tackled using Eq. (5.57) in Refs. [258,308], wherein algebraic models were employed for the required elements,

.e. propagators for the dressed valence-quarks, Bethe–Salpeter amplitudes for the mesons, and dressed-photon-quark
ertices. These calculations were improved in Refs. [259,260], with all elements determined by solving the continuum
ound-state equations defined by the QCD inputs and features described in Section 2. Whilst this makes the analysis a
ore challenging numerical problem, it delivers results with a tighter link to QCD.

2 This feature can be seen via Eqs. (5.61): an anomalous dimension on the meson’s wave function can be approximated by inclusion of a small
dditional power, ν = 1→ (1 + ϵ), with a controllable level of precision [280, Eq. (22)], so that the exponent in Eq. (5.65) becomes 2(1 + ϵ). For

QCD, referring to Eqs. (2.21), (2.25), ϵ > 0.
26
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Fig. 5.19. Left panel—A. qπ (x; ζH ) in Eq. (5.74) (solid navy curve) compared with the result in Eq. (5.75) (long-dashed green) obtained through
Eq. (3.33) with the pion DA computed using the same framework, Eq. (3.40). Dotted black curve, scale-free result qsf(x) = 30x2(1 − x)2 , connected
ith ϕas(x) in Eq. (3.34) via Eq. (5.64). Right panel—B. Reverse comparison; namely, [qπ (x; ζH )]1/2 (solid navy) compared with ϕ̃π (x) obtained from

Eq. (3.40) (long-dashed green). Dotted black curve, ϕas(x) in Eq. (3.34).

With numerical solutions in hand for the terms in the integrand of Eq. (5.57), Refs. [259,260] considered the DF’s Mellin
oments:

⟨xm⟩πζH =
∫ 1

0
dx xmqπ (x; ζH ) (5.73a)

=
Nc

n · P
tr
∫
dk

[
n · kη
n · P

]m
Γπ (kη̄, P) S(kη̄) n · ∂kη

[
Γπ (kη,−P)S(kη)

]
. (5.73b)

Owing to Eq. (5.58), the value of any particular odd moment, ⟨xmo⟩
π
ζH
, mo = 2m̄ + 1, m̄ ∈ Z, is known once all lower

even moments are computed. The identities are readily determined and can be used to validate the numerical methods
employed to compute the Mellin moments. In this way, Refs. [259,260] computed and checked results for them = 0, . . . , 5
Mellin moments in Eq. (5.73).

Although every moment defined by Eq. (5.73) is finite, direct calculation of m ≥ 6 moments using numerically
determined inputs for the propagators and Bethe–Salpeter amplitudes is difficult in practice because the [n · kη]m factor
introduces oscillations that are increasingly more difficult to track using brute force. In any perfect procedure, the
oscillations cancel; but that is hard to achieve numerically. This problem can be solved by using the Schlessinger point
method (SPM) [309–316] to construct an analytic function, MS(z), whose z = 0, 1, . . . , 5 values agree with the moments
computed directly and for which MS(7) is related to MS(0), MS(2), MS(4), MS(6) as prescribed by Eq. (5.58).

Based on the Padé approximant, the SPM is a powerful tool from numerical mathematics. It is able to reliably
reconstruct a function f in the complex plane within a radius of convergence which is specified by that one of the branch
points of f which lies nearest to the real domain containing the sample points. Furthermore, owing to the procedure’s
discrete nature, the reconstruction may also define a sound continuation on a larger domain. However, this cannot be
guaranteed. Hence, each case must be treated individually.

Working as just described, Refs. [259,260] reconstructed the following valence-quark DF for the pion using eleven
SPM-approximant Mellin moments of the pion DF:

qπ (x; ζH ) = 213.32 x2(1− x)2[1− 2.9342
√
x(1− x)+ 2.2911 x(1− x)] , (5.74)

hich is depicted in Fig. 5.19A. Also drawn in this panel is the DF obtained via Eq. (3.33) when the pion DA computed
sing precisely the same framework is inserted as the base, viz.

qπ
ϕ̃2
(x; ζH ) = 301.66x2(1− x)2[1− 2.3273

√
x(1− x)+ 1.7889 x(1− x)]2 . (5.75)

he L1 difference between the two curves is 5.2%, i.e. practically identical to that obtained in every example presented
bove. Fig. 5.19B displays the companion image; namely, the DA obtained from Eq. (5.74) using Eq. (3.33) in comparison
ith the directly computed DA in Eq. (3.40). Here the L1 difference between the two curves is 2.7%.
Following upon all previous examples, this outcome in the realistic case confirms the statement made above; to wit,

ith a level of pointwise discrepancy that will be imperceptible in any foreseeable experiment, one may write

qΠ (x; ζH ) = ϕ̃2
Π (x; ζH ) . (5.76)

iven the relative ease of calculating pseudoscalar meson DAs in comparison with using Eq. (5.57) to obtain the related
DF, the value of Eq. (5.76) is manifest. Accepting this, then it follows immediately that all expressions of EHM and Higgs
odulation thereof in pseudoscalar meson leading-twist DAs are embedded equivalently in the meson valence-quark DFs.
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.3. Pion distribution function at ζ2 = 2GeV

It is common to present results for DFs and their moments at ζ2 = 2 GeV; and usually, with a given DF specified at
some scale ζ0 < ζ2, the perturbatively defined DGLAP equations [175–178] are employed to obtain a new result at the
higher scale. A prescription must nevertheless be specified because the standard DGLAP equations involve QCD’s running
coupling. Practitioners typically take a purely pQCD perspective, implementing evolution with a DGLAP kernel calculated
at a given order in perturbation theory. If the scale at which evolution begins is large enough, then LO evolution kernels
may be adequate, at least in practice. If they fail, then NLO can be implemented, and so on, in principle.

An alternative scheme supposes that [71,107,108,317,318]: (i) in connection with a given process, a nonperturbative
effective charge (running coupling) exists; (ii) being matched to experiment, this coupling is free of a Landau pole; and
(iii) using this charge, the associated leading-order DGLAP equations are exact. Such effective charges are process
dependent (PD); and even though those obtained from distinct observables can in principle be connected through an
expansion of one coupling in terms of the other, the PD character is somewhat unsettling. Typically, knowledge of one
PD charge does not enable global predictions to be made for another process; and the relation between two such charges
at infrared momenta can only be determined after both are independently constructed.

The PD charge alternative was reinterpreted and refashioned in Refs. [63,103,104,259,260], wherein it is advocated
that evolution should be implemented by using the PI effective discussed in Section 2.2 to integrate the one-loop DGLAP
equations. Such a procedure leads, e.g. to the following relationship between the moments of a meson’s valence-quark
DF:

⟨xnqM⟩ζ :=

∫ 1

0
dx xnqM (x; ζ ) , (5.77)

x n
M (ζH , ζ ) :=

⟨xnqM⟩ζ
⟨xnqM⟩ζH

= exp

[
γ n
0

4π

∫ ln ζ2H

ln ζ2
dt α̂(t)

]
, (5.78)

here t = ln k2 and

γ n
0 = −

4
3

[
3+

2
(n+ 1)(n+ 2)

− 4
n+1∑
k=1

1
k

]
. (5.79)

ince γ 0
0 = 0, then baryon-number does not change with ζ ; and γ 1

0 = 32/9.
Numerous reasons were offered in support of this scheme. They included the qualities of α̂(k2) listed following

q. (2.18), for instance, as Fig. 2.3 shows, α̂(k2) decreases monotonically on k2 ≥ 0 and can serve to mark the
oundary between soft and hard physics. In addition, the fact that α̂(k2) is known to provide a foundation for the
nification of many observables, including: hadron static properties [142,319–321]; light- and heavy-meson distribution
mplitudes [197,202,203,206,322]; and related elastic and transition form factors [198,199,204,224,314].
Within the α̂ evolution scheme, an analysis of the large-n behaviour of Eqs. (5.77)–(5.79) yields [104, Appendix 1]:

βM (ζ ) = βM (ζH )+
3
2
ln x 1

M (ζ , ζH ) , c(ζ ) = c(ζH )
Γ (1+ βM (ζH ))
Γ (1+ βM (ζ ))

[
x 1
M (ζ , ζH )

] 3
2 [

3
4−γE ] , (5.80)

here γE = 0.5772 . . . is Euler’s constant. When expressed at one-loop order in pQCD, the first identity in Eq. (5.80),
s a textbook result, e.g. Ref. [279, Eq. (4.137)]; yet, it is often overlooked. Eqs. (5.80) connect the large-x exponent of a
meson’s valence-quark DF at scale ζ with the momentum fraction carried by valence-quarks at this scale. As might have
been anticipated, with decreasing valence-quark momentum fraction, the multiplicative coefficient also decreases and the
large-x exponent increases logarithmically.

Following Ref. [267], the initial scale for evolution, ζ0, came to be viewed as a free parameter, with a value chosen a
posteriori after securing agreement with the results obtained for some DF Mellin moments in phenomenological analyses
of data. The α̂ evolution scheme begins from a markedly different position. Namely, referring to the first point following
Eq. (2.18), the initial scale for DF evolution is the hadronic scale, whose value is fixed a priori at the position of the Landau
pole screening mass: ζH ≈ 1.4ΛQCD. At this scale, the bound state is defined solely in terms of the quasiparticle degrees-of-
freedom used to solve the continuum bound-state equations. Consequently, glue and sea distributions vanish identically
at ζH , being sublimated into the dressed-quark and dressed-antiquark quasiparticles, thus explaining the second identity
in Eq. (5.59).

Beginning with qπ (x; ζH ) defined by Eqs. (3.31), (3.40), (5.76) and a nf = 4 MS value of ΛQCD = 0.234 GeV, used in
omputing the result in Eq. (3.40), so that

ζH = 0.331(2) GeV, (5.81)

ef. [104] delivered the prediction for uπ (x; ζ2) in Fig. 5.20A — solid blue curve. In order to express a conservative estimate
f uncertainty arising from that in the value of α̂(0), which implicitly determines ζH , all predictions in Refs. [103,104] are
mbedded in bands determined by changing ζ → ζ (1±0.01). The prediction in Fig. 5.20A exhibits the large-x behaviour
H H
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Fig. 5.20. Left panel—A. Solid blue curve — valence-quark distribution defined by Eqs. (3.31), (3.40), (5.76) evolved to ζ = ζ2 , using the α̂ evolution
cheme explained in connection with Eq. (5.81); and short-dashed cyan curve — phenomenological result from Ref. [294]. Right panel—B. Drawn
rom Ref. [104]: solid green curve, p = g — prediction for the pion’s glue distribution; and dot-dashed red curve, p = S — predicted sea-quark
istribution. Phenomenological results from Ref. [294] are plotted for comparison: p = glue — long-dashed dark-green; and p = sea — dashed brown.
ormalisation convention: ⟨x[2uπ (x; ζ2) + gπ (x; ζ2) + Sπ (x; ζ2)]⟩ = 1. Notably, 2uπ (x; ζ2) > [gπ (x; ζ2) + Sπ (x; ζ2)] on x > 0.2, marking this as the
alence domain within the pion. (The uncertainty bands bracketing the theory predictions are explained following Eq. (5.81).)

rescribed by Eqs. (5.80). For practical purposes, a measurable large-x exponent, βeff
π (ζ ), can be determined by plotting

n uπ (x; ζ ) against ln(1− x) on x ∈ [0.9, 1.0] and extracting the slope, with the result

βeff
π (ζ2) = 2.63(8) . (5.82)

Since it remains common for lQCD computations to focus on low-order moments of meson DFs — Section 8.3, it is
orth comparing some obtained recently with those calculated from the prediction in Fig. 5.20A:

ζ = ζ2 ⟨x⟩πu ⟨x2⟩πu ⟨x3⟩πu
lQCD [323] 0.21(3) 0.082(13) 0.041(07)
lQCD [324] 0.254(03) 0.094(12) 0.057(04)
continuum [104] 0.24(2) 0.094(13) 0.047(08)

. (5.83)

Here, ⟨xn⟩πu = ⟨x
nuπ (x)⟩, with the scale specified separately. A larger array of comparisons, including model results, may

e found in Ref. [174, Table III].) An uncertainty-weighted average of results in Eq. (5.83) yields the following value of the
ight-front momentum fraction carried by valence-quarks in the pion at ζ = ζ2:

⟨2xuπ (x; ζ2)⟩ = 0.49(2) . (5.84)

Fig. 5.20A also shows a fit obtained by analysing data on π-nucleus DY and leading neutron electroproduction
ata [294] — short-dashed cyan curve. Although this fit produces a consistent momentum fraction, viz. ⟨2x⟩πq = 0.49(1),

its x-profile is markedly different from the continuum prediction: using a L1 measure, the two curves differ by 40%.
Furthermore, the phenomenological DF conflicts with the prediction in Eqs. (5.69), (5.70). As noted above, the analysis in
Ref. [294] ignored NLL resummation, which is known to be important at large-x [292,297–300]; and an overestimate of
the DF at large-x entails an underestimate at intermediate x.

These remarks highlight that low-order moments of a valence-quark DF contain practically no information about
its large-x behaviour. To expand upon this, consider that for a DF with the behaviour in Eq. (5.69), with βΠ undeter-
mined [104, Appendix 1]:

⟨xn⟩ n≫1
=

constant
n1+βΠ

× [1+ O(1/n)] , (5.85)

which entails [325]:

βΠ (n) = β∞(n)+ O(1/n) , β∞(n) = −1+
⟨xn−2⟩ − ⟨xn+2⟩

⟨xn⟩
. (5.86)

ig. 5.21A plots β∞(n) as obtained from both curves in Fig. 5.20A. Evidently, one must possess a reliable determination
of at least six DF Mellin moments in order to distinguish between these results. Moreover, moments with very high order
are required for extraction of the large-x exponent βΠ from a realistic DF, such as that calculated in Ref. [104], because
β∞(n) does not typically approach its n→∞ limit from above [325]. This remark refers to the fact that the analysis in
Ref. [294] employed a very simple DF model, viz. q(x) ∝ xαΠ (1− x)βΠ , which has long been known to be too inflexible to
describe real data [293,326]. Additional discussion of this and related issues can be found in Ref. [327].

One may also consider an effective x-dependent exponent; namely,

β1(x) =
(x− 1) dq(x)

. (5.87)

q(x) dx
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Fig. 5.21. Left panel—A. Effective large-x exponent defined via moments of the pion’s valence-quark DF, Eq. (5.86): blue stars — computed from the
olid blue curve in Fig. 5.20A; and cyan circles — obtained from the dashed cyan curve. Right panel—B. Effective local (x-dependent) DF exponent
efined in Eq. (5.87): solid blue curve — calculated from the analogous curve in Fig. 5.20A; and dashed cyan curve, computed likewise. In both
anels, the purple band marks the known large-x exponent in Eq. (5.82); and to guide comparisons, horizontal dotted lines are drawn at β∞,1 = 1, 2.
The uncertainty bands bracketing the theory predictions are explained following Eq. (5.81).)

or the simple DF parametrisation:

q(x) ∝ xαΠ (1− x)βΠ ⇒ β1(x) = αΠ −
αΠ

x
+ βΠ . (5.88)

t scales for which data may properly be interpreted in terms of DFs, one typically has αΠ < 0; hence, β1(x) → β1(1)
rom above when such a fitting form is used. This is not the case for realistic DFs, as shown in Fig. 5.21B, which depicts
1(x) as obtained from both curves in Fig. 5.20A. Panel B indicates that precise data on 0.5 ≲ x ≲ 0.7 should be sufficient
o qualitatively confirm the behaviour in Eqs. (5.69), (5.70). It also suggests that a quantitatively reliable extraction of the
arge-x exponent, which means exposing scaling violations, would require equally good data on 0.7 ≲ x ≲ 0.9.

In the α̂ evolution scheme, the pion’s glue and sea distributions are generated by evolution on ζ > ζH ; and
he predictions from Ref. [104] are drawn in Fig. 5.20B. It is worth recording that the glue and sea distributions in
efs. [103,104,259,260] are the first parameter-free predictions to become available. The associated momentum fractions
re (ζ = ζ2):

⟨x⟩πg = 0.41(2) , ⟨x⟩πsea = 0.11(2) . (5.89)

vidently, considering Eq. (5.92), the momentum sum rule is preserved. Adopting a similar procedure, the model in
ef. [174] yields momentum fractions at ζ2 that are consistent with these predictions, viz. [328]: ⟨x⟩πg = 0.40, ⟨x⟩πsea = 0.11,
espite the fact that the valence-quark DF therein conflicts with Eqs. (5.69), (5.70).
The glue distribution inferred via data fitting in Ref. [294] is also shown in Fig. 5.20B. It agrees semiquantitatively

ith the prediction on x ≳ 0.05; but is markedly different on the complementary domain. In gross terms, it produces a
easurably smaller gluon momentum fraction: ⟨x⟩πg = 0.35(3). Notably, both glue DFs in Fig. 5.20B disagree with those

nferred in earlier analyses [329,330]. These observations serve to stress the need for modern experiments that are directly
ensitive to the pion’s gluon content, e.g. prompt photon and J/Ψ production [51,331].
The sea DF extracted in Ref. [294] is drawn as the short-dashed brown curve in Fig. 5.20B. It produces a large sea

omentum fraction, ⟨x⟩πsea = 0.16(1), and differs from the Ref. [104] prediction on the entire x-domain. Plainly, empirical
nformation on the pion’s sea distribution is sorely needed. This can potentially be secured through the collection and
nalysis of DY data with π± beams on isoscalar targets [51,332].

.4. Pion distribution function at ζ5 = 5.2GeV

The E615 data are linked with the scale ζ5 = 5.2 GeV [291,293]; and working with qπ (x; ζH ) defined by Eqs. (3.31),
3.40), (5.76), evolution ζH → ζ5 in the α̂ scheme delivers the prediction drawn as the solid blue curve in Fig. 5.22A.
ere,

βeff
π (ζ5) = 2.81(8) , (5.90)

result consistent with Refs. [259,260]: βπ (ζ5) = 2.66(12) . Notably, despite significant advances in the implementation
nd understanding of continuum Schwinger function methods during the past twenty years, the calculated form of uπ (x; ζ )
s practically unchanged: compare the solid-blue and long-dashed black curves.

The data set plotted in Fig. 5.22 is that reported in Ref. [291] after rescaling according to the analysis in Ref. [292],
hich is NLO and includes NLL resummation. The rescaled data was first presented in Ref. [258] and is now commonly
rawn in such figures. The prediction in Ref. [104] agrees with the rescaled data (χ2/datum = 1.66); and it is worth
ighlighting that the EHM-induced broadening of the pion DF, described in Section 3.2, is crucial to this outcome.
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Fig. 5.22. Left panel — A. Solid blue curve — ζ = ζ5 = 5.2 GeV prediction for pion’s valence-quark DF drawn from Ref. [104]; and long-dashed
black curve, result from Ref. [326]. Dot–dot-dashed (olive-green) curve within like-coloured band — lQCD result [323]. Data (purple) from Ref. [291],
rescaled according to the analysis in Ref. [292]. Comparing the central prediction from Ref. [104] with the plotted data, one obtains χ2/datum = 1.66.
ight panel — B. Solid green curve, p = g — Ref. [104] prediction for the pion’s glue distribution; and dot-dashed red curve, p = S — kindred predicted
ea-quark distribution. Normalisation convention: ⟨x[2uπ (x; ζ5)+ gπ (x; ζ5)+ Sπ (x; ζ5)]⟩ = 1. (The uncertainty bands bracketing the theory predictions
re explained following Eq. (5.81).)

The lQCD result for the pointwise behaviour of uπ (x; ζ5) computed in Ref. [323] is also drawn in Fig. 5.22A. Within
uncertainties, it agrees with the continuum prediction: using a L1 measure, the difference between the two central curves
is 17%. Moreover, one finds β lQCD

π (ζ5) = 2.45(58), consistent with Eq. (5.90); and also agreement between low-order
moments:

ζ = ζ5 ⟨x⟩πu ⟨x2⟩πu ⟨x3⟩πu
lQCD [323] 0.18(3) 0.064(10) 0.030(5)
continuum [104] 0.20(2) 0.074(10) 0.035(6)

. (5.91)

n uncertainty weighted average of these results yields

⟨2xuπ (x; ζ5)⟩ = 0.40(2) , (5.92)

.e. only 40% of the pion’s momentum is carried by valence quarks at the E615 scale. (Taken alone, Ref. [104] predicts
2xuπ (x; ζ5)⟩ = 0.41(4).)

Predictions for the pion’s glue and sea DFs at ζ5 are displayed in Fig. 5.22B, from which one obtains the following
omentum fractions (ζ = ζ5):

⟨x⟩πg = 0.45(2) , ⟨x⟩πsea = 0.14(2) . (5.93)

lainly, the momentum sum rule continues to be preserved. In this context, another textbook result is worth recalling.
amely, on Λ2

QCD/ζ
2
≃ 0, for any hadron [333]: ⟨x⟩q = 0, ⟨x⟩g = 4/7 ≈ 0.57, ⟨x⟩S = 3/7 ≈ 0.43. Consequently, there is a

scale, ζI , beyond which DFs cannot provide information that distinguishes between different hadrons: for each one, the
valence distribution is a δ-function located at x = 0 [334–336]. Of course, since evolution is logarithmic, ζI is very large,
e.g. even at ζ = 106 GeV = 1 PeV, valence-quarks still carry roughly 20% of the pion’s light-front momentum.

In closing this section it is worth reviewing Fig. 5.22B. Plainly, the sea and especially the glue parton densities within
the pion become very large on x < 0.001. The results depicted were obtained using evolution equations based on
Refs. [175–178]. Missing, therefore, are considerations expressing the fact that when such parton densities become large,
new physical effects become crucial, e.g. parton+parton interactions, like rescattering and recombination, can act to limit
DF growth. Interactions like these lead to modified evolution equations [337–340], whose use in the determination of NG
mode sea and glue distributions is yet to be explored.

6. Kaon distribution functions

So far as kaon DFs are concerned, the only information available is a forty year old DY measurement of the
K−/π− structure function ratio [341], just eight points of data; and the past decade has seen a raft of model and theory
calculations compared with the data on uK (x; ζ5)/uπ (x; ζ5) inferred therefrom, e.g. Refs. [103,104,169,173,174,271,303,304,
308,342–344]. Mathematically, Eqs. (5.77)–(5.80) ensure that the large-x power-law exponents of uπ (x, ζ ) and uK(x, ζ )
evolve at the same rate. Hence, the ratio uK(x, ζ5)/uπ (x, ζ5) must be nonzero and finite on x ≃ 1. (A similar statement
holds for the d(x)/u(x) ratio on x ≃ 1 in the proton [44, Sec. 3.6].)

A picture of the current status of kaon DF studies can be sketched from Refs. [103,104,345], which alone provide
simultaneous predictions for the kaon’s valence, glue and sea distributions. Working from the kaon DA depicted in Fig. 3.11
and using Eq. (5.76), Refs. [103,104] determined

uK (x; ζH ) = 299.18 x2(1− x)2 [1+ 5.00x0.032(1− x)0.024 − 5.97 x0.064(1− x)0.048]2, (6.94)

with s̄K (x; ζ ) = uK (1− x; ζ ) and the glue and sea distributions vanishing at this scale.
H H

31



C.D. Roberts, D.G. Richards, T. Horn et al. Progress in Particle and Nuclear Physics 120 (2021) 103883

R
i

w
F
n
g

i

T
t

p

Fig. 6.23. Left panel—A. Solid blue curve — uK (x; ζ2); dot-dashed green curve — s̄K (x; ζ2); and long-dashed gold curve — uπ (x; ζ2) from Fig. 5.20A.
ight panel—B. Low-order Mellin moments of kaon valence-quark DFs compared with those in the pion. The dashed horizontal lines mark the central
n-π values. (The uncertainty bands bracketing the theory predictions are explained following Eq. (5.81).)

Fig. 6.24. Left panel—A. Continuum results [104]: solid green curve — s̄K (x; ζ5); and dot-dashed blue curve — uK (x; ζ2). LQCD result [344]: grey curve
— s̄K (x; ζ5). Right panel—B. Ratio uK (x; ζ5)/uπ (x; ζ5): solid blue curve — continuum prediction [104]; and dot-dashed grey curve — lQCD result [344].
Data (orange) as represented in Ref. [341]. (The uncertainty bands bracketing the continuum theory predictions are explained following Eq. (5.81).
The uncertainty is negligible in the ratio.)

For comparison with the analogous π DF at ζ2 in Fig. 5.20A, the K DF in Eq. (6.94) must be evolved. In this connection,
Refs. [103,104] observed that any symmetry-preserving study which begins at ζH with a bound-state built wholly from
dressed quasiparticles and enforces physical constraints on meson wave functions will generate kaon glue and sea
distributions that are practically the same as those in the pion. Physically, however, the s̄ quark is heavier than the u quark.
Consequently, [346,347]: valence s̄ quarks should generate less gluons than valence u quarks; and gluon splitting should
generate less s̄s pairs than light-quark pairs. Such Higgs-generated flavour-symmetry breaking effects can be realised in
the splitting functions that define the evolution kernels.

The effect of mass-dependent evolution can be estimated by modifying s→ s and g → s splitting functions [103,104]:

Ps←s(z)→ Pq←q(z)−∆s←s(z, ζ ) , ∆s←s(z, ζ ) =
√
3(1− 2z)σ (ζ ) , (6.95a)

Ps←g (z)→ Ps←g (z)+∆s←g (z, ζ ) , ∆s←g (z, ζ ) =
√
5(1− 6z + 6z2)σ (ζ ) , (6.95b)

ith σ (ζ ) = δ2/[δ2 + (ζ − ζH )2], δ = 0.1 GeV ≈ Ms(0) − Mu(0), where Mf (k2) is the running mass of a f -quark. (See
ig. 2.5.) All physical constraints are preserved by Eqs. (6.95); and their effects are clear: Eq. (6.95a) acts to limit the
umber of gluons emitted by s̄-quarks and Eq. (6.95b) reduces the density of ss̄ pairs produced by gluons. Both effects
row with quark quasiparticle mass difference, δ, and diminish as δ2/ζ 2 with increasing resolving scale.
With splitting functions modified according to Eqs. (6.95), the α̂ evolution scheme produces uK (x; ζ2), s̄K (x; ζ2) depicted

n Fig. 6.23A. These DFs yield the following low-order moments in comparison with those in the π :

ζ = ζ2 ⟨x⟩Πq ⟨x2⟩Πq ⟨x3⟩Πq
s̄K 0.27(2) 0.108(14) 0.055(09)
uK 0.23(2) 0.085(12) 0.041(07)
uπ 0.24(2) 0.094(13) 0.047(08)

. (6.96)

his comparison is drawn in Fig. 6.23B, which highlights the shifts induced by Higgs modulation of kaon properties relative
o those of the pion, an effect introduced in Fig. 1.1.

Evolution of Eq. (6.94) to ζ = ζ5 is necessary for comparison with results inferred from the data in Ref. [341], a
rocess which yields the kaon distributions drawn in Fig. 6.24A. This panel also depicts the first lQCD computation of
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able 6.2
hen used in Eq. (6.99), the coefficients and powers listed here provide interpolations for the π and K valence-quark DFs evolved from Eqs. (5.74),

6.94) to the scale ζ3 = 3.1GeV [345], appropriate for analyses of J/Ψ production. In each case, the central curve is identified by the ζ3 row label
and is bracketed by the parameters that specify the limits of the uncertainty bands.

uπ nuπ απ βπ α1 β1 ρ γ

137 0.119 3.09 0.145 0.903 −1.95 0.971
ζ3 118 0.0443 3.21 0.129 0.906 −1.93 0.950

96.9 −0.0450 3.35 0.109 0.911 −1.90 0.925

uK nuK αuK βuK α1 β1 ρ γ

65.8 0.179 3.09 0.358 1.39 −2.08 1.16
ζ3 57.1 0.119 3.21 0.375 1.46 −2.11 1.20

47.4 0.0421 3.35 0.374 1.52 −2.11 1.21

s̄K ns̄K αs̄K βs̄K α1 β1 ρ γ

79.7 0.259 3.03 0.235 1.39 −1.92 0.975
ζ3 69.0 0.199 3.14 0.228 1.39 −1.90 0.960

58.8 0.132 3.27 0.222 1.39 −1.89 0.956

sK (x; ζ5) [344]. Evidently, it is significantly harder (more pointlike) than the continuum result. In fact, the lQCD DF behaves
as (1− x)βs̄K , βs̄K = 1.13(16), incompatible with Eqs. (5.69), (5.70).

The kaon DFs just described produce the following low-order moments:

q(ζ5) ⟨xqK ⟩ ⟨x2qK ⟩ ⟨x3qK ⟩
continuum [104] u 0.19(2) 0.067(09) 0.030(5)

s̄ 0.23(2) 0.085(11) 0.040(7)
lattice [344] u 0.19(1) 0.080(07) 0.042(6)

s̄ 0.27(1) 0.123(07) 0.070(6)

. (6.97)

orking with the continuum results, accounting for ζH → ζH (1.0± 0.1),

⟨x[uK (x; ζ5)+ s̄K (x; ζ5)]⟩ = 0.42(3) ; (6.98)

o in comparison with the pion, valence quarks carry 5% more of the kaon’s light-front momentum.
Notably, the lQCD results in Eq. (6.97) are systematically larger than the continuum predictions, especially for the s̄,

iz. the excesses are: u — 0.6(4.8)%, 21(6)%, 40(4)%; and s̄ — 24(7)%, 53(13)%, 84(16)%. Again, this is because the lQCD
Fs are much harder than the continuum DFs. Furthermore, using the lQCD results, one finds ⟨xs̄⟩K/⟨xu⟩K = 1.38(7),
hich may be compared with the natural scale for Higgs-modulation of EHM, i.e. fK/fπ = 1.19, and the continuum result
xs̄⟩K/⟨xu⟩K = 1.18(1). Given these observations, it may reasonably be anticipated that future refinements of lQCD setups,
lgorithms and analyses will move the lattice and continuum DFs closer together.
The ratio uK (x; ζ5)/uπ (x; ζ5) is depicted in Fig. 6.24, displaying both the continuum prediction from Ref. [104] and

he lQCD result from Ref. [344]. Evidently, the relative difference between the central lQCD result and the continuum
rediction is ≈ 5%, in spite of the fact that the individual lQCD DFs are pointwise markedly different from the continuum
Fs, as illustrated by Eq. (6.97) and Fig. 6.24A. This outcome highlights a long known feature, i.e. uK (x)/uπ (x) is forgiving of

even large differences between the individual DFs used to produce the ratio. Higher precision data is crucial if uK (x)/uπ (x)
is to be used effectively to inform and test the modern understanding of SM NG modes; and greater discriminating power
is provided by separate results for uπ (x), uK (x) [49–51].

Refs. [103,104] also delivered predictions for the kaon’s glue and sea distributions at ζ = ζ5. However, given that
J/Ψ production may best provide access to gluon DFs in NG modes [51,331], it would be better to have all DFs at
ζ ≈ mJ/Ψ ≈ ζ3 = 3.1 GeV. This information is reported elsewhere [345] and is readily summarised here. Namely,
using the following interpolating function,

qM (x) = nqM xαM (1− x)βM [1+ ρ xα1/4(1− x)β1/4 + γ xα1/2(1− x)β1/2] , (6.99)

the pion and kaon DFs are obtained by inserting the coefficients and powers listed in Table 6.2. These predictions express
the x ≃ 1 behaviour prescribed by Eqs. (5.69), (5.70). At ζ3, the pion’s valence degrees-of-freedom carry 45(3)% of its
light-front momentum, whereas the analogous result is 46(3)% in the K .

Using the valence DFs already presented and the α̂ evolution scheme, the ζ = 3.1 GeV π glue and sea-quark DFs can
be calculated. Depicted in Fig. 6.25A, the predictions are effectively interpolated using [329]:

xp(x) = A xαp (1− x)βp [1+ ρ x1/2 + γ x] , (6.100)

p = g, S, with the coefficients in Table 6.3. The related momentum fractions are (ζ = ζ3):

⟨x⟩π = 0.43(2) , ⟨x⟩π = 0.12(2) . (6.101)
g sea
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Fig. 6.25. Left panel—A. Solid green curve, p = g — prediction for the pion’s glue distribution; and dot-dashed red curve, p = S — predicted
sea-quark distribution. Right panel—B. K/π DF ratios: p = g — solid green curve; p = S — dot-dashed red curve; and p = u — long-dashed blue
curve. Normalisation convention: ⟨x[2uπ (x; ζ3) + gπ (x; ζ3) + Sπ (x; ζ3)]⟩ = 1. (The uncertainty bands bracketing the results in Panel A are explained
following Eq. (5.81). This uncertainty effectively cancels in the ratios depicted in Panel B. Results at ζ = ζ3 = 3.1 GeV.)
Source: All curves drawn from Ref. [345].

Table 6.3
Coefficients and powers that reproduce the computed pion glue and sea-quark distribution functions depicted in Fig. 6.25A when used in Eq. (6.100).

ζ3 A αp βp ρ γ

0.462 −0.539 4.09 −0.296 0.229
g 0.735 −0.494 4.21 −1.54 1.36

0.295 −0.638 4.35 2.23 −5.08

0.144 −0.488 5.09 0.956 −2.36
S 0.127 −0.538 5.21 2.20 −4.82

0.108 −0.595 5.35 3.54 −7.50

Kaon glue and sea-quark distributions at ζ3 glue can likewise be obtained. The predictions may usefully be described via
comparison with the analogous π-meson results in Fig. 6.25A. Therefore, Fig. 6.25B plots the ratios pK (x)/pπ (x), p = g, S,
hich are described by the following functions:

RKπ
g =

1.00 − 0.842x
1− 0.786x

, RKπ
S =

1.00 − 0.462x
1− 0.197x

. (6.102)

The K and π glue and sea-quark DFs are quite similar on x ≲ 0.2; but differences are notable on x ≳ 0.2, i.e. the domain of
alence-quark/antiquark dominance. These features were to be expected given that mass-dependent splitting functions
ct primarily to modify the valence DF of the heavier quark; such DFs are small at low-x, where glue and sea-quark DFs
re large, and vice versa; so, the predominant impact of a change in the valence DFs must lie at large-x. Generated by
iggs-boson couplings into QCD, the observed differences are on the order of ≈ 33% at x = 1 cf.: 1 − f 2π /f

2
K ≈ 0.3; and

− [Mu(0)/Ms(0)]2 ≈ 0.3, where Mq(k) is the dressed-quark mass function in Fig. 2.5. Evidently, they express the natural
cale for Higgs-boson modulation of EHM.

. Three dimensional structure of Nambu–Goldstone modes

.1. Generalised transverse-momentum dependent parton distribution functions

As highlighted already, experiment, phenomenology and theory have long focused on drawing one dimensional (1D)
mages of hadrons. This effort continues because many puzzles and controversies are unresolved, e.g. the large-x behaviour
f meson structure functions and the glue and sea content of NG modes. Yet, notwithstanding the need for new, precise
ata on 1D distributions and related predictions with a traceable connection to QCD, the attraction of generalised parton
istributions (GPDs) and transverse momentum dependent parton distributions (TMDs) is great. Such functions offer the
ossibility of drawing three-dimensional (3D) images of hadrons and may therefore enable entirely new facets of hadron
tructure to be revealed. They probe the multidimensional structure of hadron LFWFs and thereby provide access to, inter
lia: mass, pressure and spin distributions within a hadron, both in longitudinal and transverse directions; the sharing of
hese properties amongst the various bound-state constituents, which distributions are frame and scale dependent; and
o the volume of spacetime occupied by these constituents, measuring their potentially different ‘‘confinement’’ radii.

In order to fully profit from 3D imaging data collected at modern and anticipated facilities, using them to understand
he nature and corollaries of SM mass generation, sound QCD-linked tools must be developed for the calculation of
PDs and TMDs. Within the past decade or so, numerous models and theory tools have been deployed in this effort,
.g. Refs. [322,348–363]. One unifying approach is provided by generalised parton correlation functions (GPCFs) [364],
34
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Fig. 7.26. Momentum-space conventions used when defining the in-pion quark–quark correlator in Eq. (7.103).

hich link GPDs and TMDs to a single source amplitude; and the potential of this approach was recently explored [273].
hilst the entire field of 3D structure is too wide to be canvassed herein, it is worth drawing some important connections
ith EHM. This is readily achieved by highlighting features of the pion’s mass, pressure and transverse spin distributions,
hose calculation capitalises upon the analyses in Refs. [273,322,349–351,360].
One may begin with the following in-pion quark–quark correlator [364]:

Wij(P, k,∆, N̄; η) =
∫

d4z
(2π )4

eik·z⟨π (p′)| ψ̄j(− 1
2 z)W (− 1

2 z,
1
2 z; n̄)ψi( 12 z) |π (p)⟩ , (7.103)

where: W (− 1
2 z,

1
2 z; n̄) is a Wilson line, with n̄ a light-like four-vector, conjugate to n in Eq. (3.35), n · n̄ = −1, n̄2

= 0,
¯ · P =: P−; N̄ = n̄/n̄ · P̂ , P̂2

= 1;

P = (p′ + p)/2 , ∆ = p′ − p , P ·∆ = 0 ; (7.104)

k is the relative quark–antiquark momentum; and the ‘‘skewness’’ ξ = [−n · ∆]/[2n · P], |ξ | ≤ 1. These kinematic
conventions are illustrated in Fig. 7.26.

A generalised transverse-momentum dependent parton distribution function (GTMD) is obtained from Eq. (7.103) by
first considering the following partially integrated quantity:

Wij(P, x, k⃗⊥,∆, N̄; η) =
∫

d4z
(2π )4

eik·z δ(n · z)⟨π (p′)| ψ̄j(− 1
2 z)W (− 1

2 z,
1
2 z; n̄)ψi( 12 z) |π (p)⟩ . (7.105)

his is a Dirac-matrix valued function, from which contributions at various orders in a twist expansion are obtained by
ppropriate projection operations. That is, with H being some aptly chosen combination of Dirac matrices, the scalar

functions of interest – GTMDs – are obtained via

W [H ](P, x, k⃗⊥,∆, N̄; η) =
1
2
Wij(P, x, k⃗⊥,∆, N̄; η)Hji

=

∫
d4z

2(2π )4
eik·x δ(n · z)⟨π (p′)| ψ̄j(− 1

2 z)HjiW (− 1
2 z,

1
2 z; n̄)ψi( 12 z) |π (p)⟩ . (7.106)

his operation corresponds to the insertion of H as a link between the open quark and antiquark lines in Fig. 7.26:
(k∓∆/2), respectively. The GTMDs defined by Eq. (7.106) are complex-valued functions. Their real part is even under

he time-reversal operation (T -even) and the imaginary part is T -odd. Beginning with Eq. (7.106), integration over k⃗⊥
ields the GPDs; and TMDs are obtained by setting ∆ = 0, which entails ξ = 0.
There are three twist-two pion GTMDs, obtained from Eq. (7.106) through the following insertion choices:

H → {H1 = in · γ , H2 = in · γ γ5 , H3 = iσjµnµ}. (7.107)

he simplest is that derived from H1, which delivers, e.g. the pion’s valence-quark distribution function and electromag-
etic and gravitational form factors. The GTMD obtained with H3 is also of keen interest because it provides access to
he pion’s quark transversity distributions, i.e. the dependence of the in-pion quark distributions on their polarisation
erpendicular to the pion’s direction of motion [365].
It is worth writing an explicit form for the GTMD obtained from H1 in Ref. [273]:

F1(x, k2⊥, ξ , t) = 2NctrD

∫
dk3dk4
(2π )4

δxn(k)Γπ (−p
′) S(k+∆) n · Γ γ (∆) S(k−∆)Γπ (p) S(k− P) , (7.108)

where k±∆ = k±∆/2, t = −∆2, p·∆ = −∆2/2 = −p′ ·∆. This formula is particularly simple because Ref. [273] employed
a symmetry-preserving treatment of a vector× vector contact interaction; so that, e.g. the pion Bethe–Salpeter amplitude,
Γπ , and photon–quark vertex, Γ γ , do not here depend on the quark+antiquark relative momentum. Nevertheless, it
illustrates a qualitatively robust point, viz. both the size and shape of every one of the pion’s GTMDs are largely determined
by the character of EHM. This is plain because the integrand in Eq. (7.108) involves a product of two pion Bethe–Salpeter
amplitudes and Eq. (2.25) entails that these amplitudes are a direct measure of EHM. It follows, in addition, that studies
f kaon GTMDs can reveal novel expressions of Higgs-boson induced modulations of EHM.
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Fig. 7.27. Left panel — A. Pressure distribution in the pion, Eq. (7.111a); and right panel — B shear force distribution, Eq. (7.111b). The embedding
bands express the uncertainty owing to limitations on the knowledge of θπ1 (∆2), as detailed in Ref. [273].

7.2. Twist-two generalised parton distribution functions

GPDs are obtained by integrating GTMDs over k⃗⊥; and at leading twist, the pion has two GPDs:

Hπ (x, ξ , t) =
∫

d2k⃗⊥F1(x, k2⊥, ξ , t) , ET
π (x, ξ , t) =

∫
d2k⃗⊥H∆1 (x, k2

⊥
, ξ , t) , (7.109)

here H∆1 (x, k2
⊥
, ξ , t) is an H3-generated analogue of F∆1 (x, k2

⊥
, ξ , t) in Eq. (7.108), and Hπ , ET

π are typically called the
ector (no spin-flip) and tensor (spin-flip) GPDs.
Working with Hπ (x, ξ , t), one can compute an array of physically important pion elastic form factors. For instance,∫ 1

−1
dxHπ (x, ξ ,−∆2) = Fπ (∆2) ,

∫ 1

−1
dx 2xHπ (x, ξ ,−∆2) = θπ2 (∆2)− ξ 2 θπ1 (∆2) , (7.110)

where Fπ is the elastic electromagnetic form factor and θπ1,2 are gravitational form factors: θπ1 relates to pressure
distributions within the pion and θ2 is linked to the distribution of mass. In the neighbourhood of the chiral limit,
θπ1 (0) − θπ2 (0) = O(m2

π ) [356,366]. It was found in Ref. [273] that the pion’s mass distribution form factor is harder
(more pointlike) than its electromagnetic form factor, which is harder than the gravitational pressure distribution form
factor. Such ordering is consistent with available lQCD results [349,350].

With the gravitational form factor θπ1 (∆2) in hand, one can compute the following Breit-frame distributions [365,367]:

pπ (r) =
1
3

∫
d3∆⃗
(2π )3

1
2E(∆)

ei∆⃗·r⃗ [∆2θπ1 (∆2)] =
1

6π2r

∫
∞

0
d∆

∆

2E(∆)
sin(∆r)[∆2θπ1 (∆2)] , (7.111a)

sπ (r) = −
3
4

∫
d3∆⃗
(2π )3

ei∆⃗·r⃗

2E(∆)
P2(∆̂ · r̂)[∆2θπ1 (∆2)] =

3
8π2

∫
∞

0
d∆

∆2

2E(∆)
j2(∆r) [∆2θπ1 (∆2)] , (7.111b)

here 2E(∆) =
√
4m2

π +∆
2, P2 is the degree-two Legendre polynomial, and j2(z) is a spherical Bessel function. Here, pπ (r)

is the pressure and sπ (r) is the shear force. (One could alternatively compute distributions in the light-front transverse
plane, but such two-dimensional Fourier-transform analogues deliver results of similar magnitude.)

The distributions in Eqs. (7.111) were estimated in Ref. [273] using contact-interaction form factors that were corrected
through comparison with lQCD analyses and improved by imposition of physical constraints. The results are drawn in
Fig. 7.27 and the profiles accord with an intuitive physical interpretation. For instance, considering Fig. 7.27A, the pressure
is positive and large on r ≃ 0, indicating that the dressed-quark and dressed-antiquark strongly repel each other at small
separation; but pπ (r) changes sign when the quark–antiquark separation exceeds roughly 1/[2ΛQCD], marking a transition
into the domain of quark–antiquark attraction produced by confinement forces. Naturally, since the system is bound:∫

∞

0
dr r2pπ (r) = 0 ; (7.112)

and at ζH , this is a statement about the quark quasiparticle pressure distributions.
An analogue of Eq. (7.111) was used in Ref. [368] to infer the proton’s quark pressure distribution from extant data

on deeply virtual Compton scattering. Comparing that result with those in Fig. 7.27A, one notes that: (a) the pressure
within the pion on r ≃ 0 is around five-times larger than that in the proton; and (b) the two pressure profiles have
similar radial extents. (The results in Fig. 7.27 are not affected by issues concerning the analysis in Ref. [368] which are
anvassed in Refs. [369,370].) Perhaps more striking, profiles like Fig. 7.27A for neutron stars indicate r ≃ 0 pressures
herein of roughly 0.1GeV/fm [371]; hence, the core pressures in pions and neutron stars are commensurate.

Turning to Fig. 7.27B, the results can be interpreted after recognising that r2sπ (r) measures the strength of QCD forces
ithin the pion that work to deform it. These forces peak at the zero of r2p (r), whereat attractive confinement pressure
π
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Fig. 7.28. Light-front transverse-spin distribution of dressed valence quarks in the pion ρ1(b⊥, s⊥ ∝ x̂), Eq. (7.116). Left panel—A. Full three-
imensional image. Right panel—B. Slices at constant bx/fm: solid blue — bx = 0.01; dot-dashed green — bx = 0.025; dashed dark-red — bx = 0.05;
nd short-dashed orange — bx = 0.1. In both panels, the scale is ζH , Eq. (5.81).

egins to win over the forces driving the quark and antiquark away from the core. Using the results in Fig. 7.27, this point
s located at

rpc = 0.52+0.19
−0.11 fm. (7.113)

ualitatively and semi-quantitatively equivalent results are obtained when working with a more sophisticated expression
or the pion’s LFWF than that provided by a contact interaction [372].

Turning to the tensor GPD in Eq. (7.109), it is worth highlighting the physical significance of the two leading Mellin
oments:

Bπ10(−∆
2) =

∫ 1

−1
dx ET

π (x, ξ ,−∆
2) , Bπ20(−∆

2) =
∫ 1

−1
dx x ET

π (x, 0,−∆
2) . (7.114)

hese quantities are subject to QCD evolution; and using the α̂ scheme, Ref. [273] reports the following values at ζ = ζ2:

mπ Bπ10(0) = 0.053 , mπ Bπ20(0) = 0.012 , Bπ10(0)/B
π
20(0) = 4.57 . (7.115)

This is the scale used in the lQCD study described in Ref. [349], discussed in connection with Fig. 8.37B, which reports
the following values for these ∆2

= 0 quantities after an extrapolation to the physical pion mass: 0.22(3), 0.039(10),
5.66(60), in qualitative agreement with the contact interaction results. Similar conclusions are drawn elsewhere, e.g.
Refs. [352,354,360].

The renormalised form factors Bπi0(−∆
2)/Bπi0(0), i = 1, 2, are independent of the renormalisation scale [360]. Here,

therefore, comparison with the lQCD results in Ref. [349] is meaningful; albeit, quantitative agreement cannot be expected
because the ∆2-dependent lQCD form factors are only available at m2

π ≈ 20m2 empirical
π (see Fig. 8.37B). Notwithstanding

his, there is semiquantitative agreement between the lQCD study and Ref. [273], e.g.: the radii have the same ordering,
Bπ10
/rBπ20 = 1.48(17) (lQCD) vs. 1.14; and B10(t) is softer than B20(t).
Combining the leading Mellin-moments of the pion’s vector and tensor GPDs and transforming to impact parameter

pace, one arrives at the light-front transverse-spin (s⊥) distribution of dressed-quarks within the pion [349]:

ρ1(b⊥, s⊥) = 1
2 q̃π (|b⊥|)−

1
2ε

ijsi
⊥
bj
⊥
B′π10(|b⊥|) , (7.116)

with

q̃π (|b⊥|) =
∫
∞

0

d|∆|
2π

∆ J0(|b⊥||∆|) Fπ (−∆2) , (7.117a)

B′π10(|b⊥|) = −
1

4π |b⊥|

∫
∞

0
d|∆|∆2 J1(|b⊥||∆|)Bπ10(−∆

2) , (7.117b)

here J0,1 are cylindrical Bessel functions. For a dressed-quark polarised in the +x direction and ŝ⊥ · b̂⊥ = cosφ⊥,
ijsi
⊥
bj
⊥
= |b⊥| sinφ⊥. Using similar contact-interaction form factors, improved through comparison with lQCD analyses

nd implementation of physical constraints, as employed to draw Figs. 7.27, Ref. [273] delivered the estimate for the
ion’s light-front dressed-quark transverse-spin distribution illustrated in Fig. 7.28.
It is evident from Fig. 7.28 that the transverse-spin density associated with a dressed valence-quark polarised in the

ight-front-transverse +x direction is not symmetric around b⃗⊥ = (bx = 0, by = 0). Rather, strength is transferred from
< 0 to b > 0 and the peak shifted to (b = 0, b > 0). The b profile remains symmetric around the line b = 0; and
y y x y y x
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sing the formula in Ref. [349], the result in Fig. 7.28 describes an average transverse shift

⟨by⟩ =
1
2
B10(0)/mπ = 0.049 fm ≈ 0.1 rpc . (7.118)

This distortion vanishes logarithmically with Bπ10(0)→ 0 under QCD evolution; but as noted in connection with Eq. (5.93),
that process is very slow.

Given the information about the SM’s two mass generating mechanisms and the interference between them that is
accessible via pion and kaon 1D distributions, it is certain that a wide range of additional, novel insights could be drawn
from comparisons between the 3D distributions for which those 1D distributions are, effectively or literally, boundary
values. Thus, extensions of kaon studies such as those in Refs. [353,357,363] are to likely attract much attention.

7.3. Meson fragmentation functions

In closing this section it is worth stressing that many new challenges are faced in drawing 3D images from new-
generation experiments. Sound calculations and models of a wide variety of parton distribution functions will be crucial.
They can inform estimates of the size of the cross-sections involved and indicate the best means by which to analyse
them [373]. Notwithstanding that, experiences with meson structure functions have shown that full capitalisation on
such experiments requires the use of calculational tools which can reliably connect experiments with qualities of QCD.
In this, too, continuum calculations can provide valuable insights [169,322,356,359].

An additional complication arises in connection with TMD extractions: every cross-section that can yield hadronic
TMDs involves related parton fragmentation functions (FFs) [374], the structure of which must be known in detail. The
future of momentum imaging therefore depends critically on making real progress with the measurement and calculation
of FFs. It is a serious issue, therefore, that no realistic computations of FFs currently exist. Even a formulation of the
problem remains uncertain.

These issues are greatly amplified by the connection between FFs and confinement because an elucidation of
confinement is central to solving QCD. With light quarks in the mix, confinement is a dynamical process. A scattering
event produces a gluon or quark that begins to propagate in spacetime. After a short interval, an interaction occurs. In
this way, the parton loses its identity, sharing it with others. Finally, after a cascade of such events, a cloud of partons
is produced, which fuses into colour-singlet final states. (Additional discussion may be found, e.g. in Refs. [31, Sec. 3]
and [375, Sec. 2.2].) These are the processes captured in FFs, which chart how QCD partons, nearly massless when produced
in a high-energy event, convert into a shower of massive hadrons. Namely, they describe how hadrons with mass emerge
from massless partons.

Such qualities indicate that FFs may be the cleanest expression of dynamical confinement in QCD. In addition, owing to
Gribov–Lipatov reciprocity [376], DFs and FFs are linked by crossing symmetry, one being the analytic continuation of the
other at their common boundary of support. Hence, like DFs, FFs provide basic insights into the origin of mass: they serve
as timelike analogues, providing a basic counterpoint to the DFs. Thus, modern facilities that can supply precise data on
quark fragmentation into a pion or kaon may provide the means to directly test those facets of QCD calculations which
embody and express the SM’s most fundamental emergent phenomena: confinement, DCSB, and bound-state formation.

8. Developments in lattice QCD

8.1. Formulation

Discretising QCD on a Euclidean lattice, originally proposed more than forty years ago [377], provides a first-principles
means of solving QCD in the strong-coupling regime. The starting point for a lattice computation is the discretised,
Euclidean path integral, wherein physical ‘‘observables" O are computed as

⟨O⟩ =
1
Z

∏
n,µ

dUµ(n)
∏
n

dψ(n)
∏
n

dψ̄(n)O(U, ψ, ψ̄)e−(SG[U]+SF [U,ψ,ψ̄]), (8.119)

here Uµ(n) are 3 × 3 unitary matrices representing the gauge fields, ψ, ψ̄ are Grassmann variables representing
he fermion and antifermion fields respectively, SG and SF are the gauge and fermion discretisations of the action,
= (n1, n2, n3, n4) represent the sites on a discrete Euclidean lattice, and Z ensures the result is unity when O is an

dentity operator. The Grassmann variables can then be integrated to yield

⟨O⟩ =
1
Z

∏
n,µ

dUµ(n)O(U,G[U]) detM[U]e−SG[U] , (8.120)

where G are the quark propagators

G(U,m, n)ijαβ ≡ ⟨ψ
i
α(m)ψ̄ j

β (n)⟩

and M is the fermion determinant. A lattice calculation proceeds as follows:
38
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Fig. 8.29. Three-point function defining the pion form factor in lQCD analyses: ti, tf and t denote the time slices of the initial pion, final pion and
urrent insertion, computed to obtain the vector-current matrix element of Eq. (8.121).

1. Generate an ensemble of Ncfg equilibrated, statistically independent, gauge configurations with probability

P[U] ∝ detM[U]e−SG[U].

2. Calculate the expectation of a physical observable on those configurations as

⟨O⟩ =
1

Ncfg

Ncfg∑
s=1

O(U s,G[U s
]).

By formulating the theory in Euclidean space, the integrand is rendered real, thereby enabling P[U] to be interpreted
s a probability distribution amenable to importance sampling. The first step above proceeds through a Markov process,
hereby each gauge configuration U s is generated from its previous gauge configuration; this is a capability computing
ask, requiring the largest-available leadership-class computers. The second step in calculating observables can be
erformed independently on each gauge configuration, and therefore is a capacity computing task, albeit one for which the
otal computational demand might exceed that of the capability stage. As will be seen below, the formulation in Euclidean
pace and in finite volume imposes challenges.
It is beyond the scope of this article to describe the theoretical formalism and computational implementation of lattice

auge theory in general, and the reader is referred to several pedagogical textbooks [378–381]. In addition to the statistical
ncertainties outlined above, lattice computations are subject to a variety of systematic uncertainties: the lattice cutoff
xpressed through the lattice spacing a; the finite physical volume V ; the quark masses, and in particular those of the
ight u, d, s quarks employed in the calculation; and delineating the properties of the lowest-lying stable pion, kaon and
ucleon, from those of their excitations. A review of the calculation of key quantities of low-energy hadronic physics in
ontained in Ref. [382]. As described below, for the most widely studied quantities discussed herein, such as the moments
f the quark distribution amplitudes, an important effort has aimed at gaining control of these systematic uncertainties.
or some more recently studied quantities, computations are often performed at unphysically large light-quark masses,
nd at a single physical spatial volume or lattice spacing, in anticipation of full control over systematic uncertainties in
he years ahead.

.2. Pion form factor

The study of the structure of hadrons, and in particular the nucleon and pion, has been an essential component of lQCD
alculations since its inception. The nucleon and pion are the only QCD states composed of the light u and d quarks that
re stable under strong interactions; and properties such as the electromagnetic form factors, which can be expressed as
atrix elements of a local external current, are the most straightforwardly accessible to lattice computations. Indeed the
ion and kaon can be directly studied as single, isolated states in contrast to the experimental situation. The form factor,
or the case of the charged pion, is expressed as

⟨π (p⃗f ) | Vµ(0) | π (p⃗i)⟩ = Fπ (Q 2)(pi + pf )µ. (8.121)

or the case of spacelike Q 2, the matrix element is straightforward to evaluate in lQCD through the three-point function
epicted in Fig. 8.29.
The low-Q 2 slope of the form factor is related to the pion’s charge radius, while its behaviour at large Q 2 is a measure

of the evolution from hadronic to partonic degrees of freedom. The pion form factor has been extensively studied in a
progression of increasingly precise calculations, see e.g. Refs. [242,243,383–391]. Computations of the form factor in the
two regimes of small and large Q 2 demonstrate the conflicting demands on high-precision lattice calculations.

The π+ charge radius is defined via

⟨r2π ⟩ = −6
dFπ (Q 2)

2

⏐⏐⏐⏐ . (8.122)

dQ
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Fig. 8.30. Pion form factor Fπ (Q 2) at the physical pion mass in a theory with 2 degenerate flavours of light quarks, together with experimental
data [231].
Source: Figure adapted from Ref. [390].

On a discretised lattice, momentum is also discrete; hence, ⟨r2π ⟩ is obtained through a fit to data away from Q 2
= 0.

n important development has been the adoption of model-independent fits to the data through the use of a z-
expansion [392,393], rather than performing a simple dipole fit to the data. Nevertheless, the ability to reach the
low momentum range needed to reliably determine the charge radius is constrained by the spatial volume of the
lattice, in an analogous manner to which the charge radius in electron scattering is limited by the smallest energy
transfer in experiment. In lQCD, this can be ameliorated through the use of non-periodic, or twisted, spatial boundary
conditions [390]. The resulting form factor, with two degenerate u, d quark flavours and extrapolated to the physical pion
mass, is shown in Fig. 8.30. However, there are alternative, coordinate-space approaches that enable the charge radius to
be computed directly [394–397]; applied to the pion charge radius, a recent analysis finds [397] ⟨r2π ⟩ = (0.69(8)(6) fm)2,
consistent with experiment ⟨r2π ⟩ = (0.659(4) fm)2 [8].

At high momenta, in contrast, the constraints are two-fold, one statistical and the other systematic. While at low
momentum, the degradation with temporal separations of the signal-to-noise ratio for pion and kaon correlation functions
is less severe than for the case of the nucleon; indeed, at zero momentum the signal-to-noise ratio remains constant with
the temporal separation, the situation is reversed at high momenta. Thus the most precise computation of the high-Q 2

pseudoscalar form factor has been performed not at the physical pion mass, but rather for the Πss̄, containing a strange
quark and antiquark, attaining Q 2

≃ 6 GeV2 [243], covering some of the domain that will be explored by forthcoming
JLab12 experiments, as highlighted in Fig. 4.12. (Additional discussion of this result, including comparisons with other
lattice and continuum studies may be found in Ref. [198].) The resulting form factor is shown in Fig. 8.31. Evidently,
Q 2FΠss̄ (Q

2) exhibits the approach to a plateau, breaking away from expectations based on single-pole vector meson
dominance and thereby indicating a transition to a description based on partonic degrees of freedom in the manner
described in Section 4.2. Likewise, with connections to the hard-scattering formula in Eq. (4.48), where expectations
based on a broad, concave DA are most realistic: PQCD1 is obtained with ϕas(x), whereas PQCD2 is based on a modern
understanding of the NG mode DAs — Refs. [195,201] and Section 3.2.

The discussion above relates only to the spacelike pion form factor. The formulation in Euclidean space might seem
to preclude calculations in the timelike region; but a method was proposed for the domain

√
s < 4mπ [398], and there

have since been several calculations [399–401]. These calculations are restricted to low values of Q 2, but are important
for an ab initio understanding of the hadronic contributions to the muon g − 2 [402].

8.3. Parton distribution functions

Some of the key measures of hadron structure, such as DAs, DFs, GPDs and TMDs, are characterised by matrix elements
of operators that are separated along the light cone. Thus, for the case of the pion valence-quark DF, qπ , one writes

qπ (x) =
∫

dη−

4π
eixp
+η−
⟨π (p⃗) | ψ̄(η−/2)γ+W (ξ−/2,−η−/2)ψ(−η−/2) | π (p⃗)⟩, (8.123)

here W is a line along the light cone that ensures gauge invariance. The computation of such light-cone-separated, and
hereby time-dependent, operator matrix elements is precluded in Euclidean-space lQCD. A solution is to appeal to the
perator-product expansion, whereby the Mellin moments can be expressed as matrix elements of local operators that
re computable within Euclidean-space lQCD. Specifically, for the case of the pion DF, one introduces

⟨xn⟩ =
∫ 1

dx xn(qπ (x)− (−1)n q̄π (x)), (8.124)

0
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Fig. 8.31. Elastic electromagnetic form factor of the fictitious Πss̄ meson. Lattice QCD results compared with expectations based on Eq. (4.48): PQCD1
uses ϕas(x), whereas PQCD2 is based on a realistic EHM-broadened pion DA — Refs. [195,201] and Section 3.2.
Source: Figure adapted from Ref. [243].

and writes

⟨π (p⃗) | Oµ1,...,µn+1
q | π (p⃗)⟩ = pµ1 . . . pµn+1⟨xn⟩, (8.125)

here, for the flavour-non-singlet case, the Oµ1,...,µn
q are twist-two operators given by

Oµ1,...,µn
q = in−1ψ̄γ {µ1Dµ2 . . .Dµn}ψ. (8.126)

uch matrix elements of quasi-local operators can be computed on a Euclidean lattice, in the manner of the vector current
n Eq. (8.121).

As described elsewhere [52], there have been several studies of the lowest moments ⟨x⟩ and ⟨x2⟩ of the pion valence
F. However, a limited number of moments is insufficient to constrain the x-dependent DF, even under the strong
onstraints imposed by a selected parametrisation [403], e.g. as observed in Ref. [404] and in connection with Fig. 5.21,
recise results for at least the first six Mellin moments are necessary before one begins to gain sensitivity to the large-x
xponent, βΠ , in Eq. (5.69). The ability to compute higher moments using lQCD is limited both by statistical precision, and
ore fundamentally by the breaking of O(4) symmetry introduced by the lattice discretisation. This introduces power-
ivergences, in the lattice spacing a, mixing with lower-dimensional operators, restricting the accessible moments to ⟨xn⟩,
≤ 3.
A major advance with the ability to study the internal structure of hadrons using lQCD was a realisation that parton

Fs, and the other quantities represented as matrix elements of operators separated along the light cone, could be related
o quantities computable in lQCD within the framework of large-momentum effective theory (LaMET) [405,406]. Since
hen, two additional frameworks have been proposed; namely, parton pseudo-distributions (pseudo-PDFs) [407] and good
attice cross sections (GLCS) [408].

Both the LaMET and pseudo-PDF frameworks start with the same lattice building blocks h(z, pz), namely the matrix
lements of operators separated along a spatial axis, taken here to be the z direction:

h(z, pz) =
1

2pα
⟨π (pz) | ψ̄(z)γαW (z, 0)ψ(0) | π (pz)⟩. (8.127)

Both the LaMET and pseudo-PDF frameworks require the renormalisation of the Wilson-line operator W (z, 0), where a
variety of different approaches have been proposed and adopted [409–415]. The difference between the approaches in
essence lies in the relationship between the matrix element computed on the lattice and the parton DF [416]. Specifically,
within LaMET, one introduces a parton quasi-distribution function (quasi-PDF) [405]

q̃(x,Λ, pz) =
∫

dz
2π

pzh(z, pz), (8.128)

here Λ is an ultraviolet scale. The DF is then related through

q̃(x,Λ, pz) =
∫ 1

−1

dy
| y |

Z
(
x
y
,
ζ

pz
,
Λ

pz

)
q(y,Q 2)+ O

(
Λ2

QCD

p2z
,
M2

p2z

)
. (8.129)

he coefficient Z is perturbatively calculable [406]. The remaining terms are analogous to higher-twist or mass corrections;
nd for mesons, attempts to understand their magnitude using QCD-inspired models may be found in Refs. [169,417].
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Fig. 8.32. Matrix element whose lQCD computation yields the pion’s valence-quark DF. For the LaMET and pseudo-PDF approaches, the currents
J1 and J2 correspond to the quark and anti-quark fields, respectively, connected by a Wilson line; whereas in the GLCS approach, J1 and J2 are
auge-invariant currents, with the thin, vertical green line corresponding to a quark propagator.

The pseudo-PDF approach expresses the matrix element of Eq. (8.127) in terms of Lorentz invariant (pseudo-)Ioffe
time ν = p · z [418,419], and a short distance scale z2. A reduced matrix element M(ν, z2), constructed to control the
ultraviolet divergences, can then be constructed such that

M(ν, z2) =
∫ 1

0
du K (u, z2ζ 2, α)Q(uν, z2) , (8.130)

where, once again, K is a perturbatively calculable kernel. The Ioffe-time distribution Q is then the Fourier transform of
the DF

Q(ν) =
∫ 1

−1
dx q(x)eiνx. (8.131)

The final approach is that of so-called good lattice cross-sections [408], where the matrix element of a short-distance
operator is computed

σj1j2 (ν, z
2, p2) ≡ ⟨π (p) | TOj1j2 (z) | π (p)⟩ , (8.132)

where T is a time ordering operation, and z the largest distance scale, which can then be written as a factorisable
expression

σj1j2 (ν, z
2, p2) =

∫ 1

−1

dx
x

q(x, ζ 2)Kj1j2 (xν, z
2, x2p2, ζ 2)+ O(z2Λ2

QCD) , (8.133)

here Kj1j2 is a perturbatively calculable coefficient. The operator Oj1j2 encompasses the Wilson-line operator employed
n the LaMET and pseudo-PDF frameworks; but it is more general and, in particular, can include two gauge-invariant
urrents separated by the short-distance scale z, or gluon field operators.
There have been studies of the pion DF within each of these approaches, beginning with the earliest studies using the

aMET approach [420–422]; and more recently extended to the DF of the kaon [344], as discussed in Section 6. In each
pproach, computation of the three-point function in Fig. 8.32 is required.
The valence-quark DF of the pion was discussed within the pseudo-PDF framework in Ref. [324], producing the

oments listed in Eq. (5.83); and recently in a high-precision calculation using both the RI-mom renormalisation scheme
haracteristic of the LaMET approach and the ratio renormalisation scheme adopted for the pseudo-PDF approach [325].
he GLCS framework is computationally more demanding. In fact, the only computations performed so far have been for
he pion, rather than for the nucleon; but the use of short-distance-separated gauge-invariant operators requires that the
nly lattice renormalisation is that of the lattice-discretised currents. The first computation, using a vector/axial-vector
ombination of currents, contained only a tree-level determination of the kernel in Eq. (8.133), precluding the association
f a scale with the resulting DF [323]. Low-order moments and the pointwise behaviour of uπ (x) as determined in this
tudy were discussed in Sections 5.3, 5.4. The analysis has since been extended to include the short-distance kernel
omputed at one loop, as well as control over the systematic uncertainties arising from unphysical quark masses, finite
olume, and discretisation [423]. The GLCS matrix element for the antisymmetric VA current computation is shown in
ig. 8.33A.
The journey from the Ioffe-time distributions shown in Fig. 8.33 to the parton DFs requires more than the computation

of the perturbative kernel. Each of these frameworks involves a quantity computed on the lattice, the left-hand sides of
Eqs. (8.129), (8.131) and (8.133), that is expressed as a convolution over the desired DF and that kernel, together with
corrections. However, the lattice points that give rise to the left-hand sides are incomplete and, moreover, quite sparse.
The situation mirrors that encountered in the extraction of DFs from experimental cross sections, as are the methods
adopted; and there have been recent studies providing a comparison of the different methods aimed at the most ‘‘model-
independent" extraction [424,425]. The most straightforward, and widely adopted, means of providing that additional
42



C.D. Roberts, D.G. Richards, T. Horn et al. Progress in Particle and Nuclear Physics 120 (2021) 103883

a

w
G
p
t
E
o

o

o
d
v

v
e
q
s

8

s
t
c

Fig. 8.33. Left panel—A. Matrix element results obtained from an antisymmetric combination of V and A currents on four different lattice ensembles
s a function of the Ioffe time ν = pzξ , where ξ is the separation between the currents along a spatial axis [423]. The filled area denotes a fit to the

results based on Eq. (8.133) and using the three-parameter fitting form in Eq. (8.134). Right panel—B. Two- and three-parameter fits to the results
in PanelA using the fitting form in Eq. (8.134).
Source: Figures adapted from Ref. [423].

information is through the use of an assumed parametrisation, such as

q(x) =
xαΠ (1− x)βΠ (1+ γ x)

B(αΠ + 1, βΠ + 1)+ γ B(αΠ + 2, βΠ + 1)
, (8.134)

here the denominator ensures the correct normalisation of the DF. Two- and three-parameter fits for the current–current
LCS results in Fig. 8.33A are shown in Fig. 8.33B, matched to a scale ζ2 = 2 GeV. The inflexibility of the simple two-
arameter fit, highlighted in Section 5.3, is evident here: the additional freedom provided by γ readily enables a softer DF
o be extracted. However, an important feature of the GLCS calculation is that the position-space NLO kernel entering into
q. (8.133) is well-controlled, with no large threshold logarithms, thereby offering the prospect for a better determination
f the exponent βΠ with the availability of data over a larger range of Ioffe time.
A method that obviates the need to address the inverse problem is provided by computation of the higher moments

f the DF directly from the reduced matrix element in Eq. (8.130) [426]. Specifically, one can write

M(ν, z2) =
∞∑
n=0

in
ν2

n
bn(z2) , bn(z2) =

∫ 1

0
dx xnP(x, z2) , (8.135)

where bn(z2) is the nth moment of the pseudo-PDF P(x, z2). The Mellin moments an(ζ 2) of the DF are then given by

bn(z2) = Kn(ζ 2z2)an(ζ 2), (8.136)

where the Kn(ζ 2z2) are the calculable Wilson coefficients. With the quite limited range of Ioffe time available in current
calculations, the ability to precisely constrain the large-x exponent is limited, reflected both in the difference between
the exponents for the two- and three-parameter fits in Fig. 8.33B, and in the relatively large errors on those exponents.

As discussed in Section 5.3, particularly in connection with Fig. 5.21, calculation of the moments affords a means of
btaining a model-independent value for an effective βΠ from the behaviour of large-n moments through Eq. (5.86),
enoted βeff in [325]. The original analysis is depicted in Fig. 8.34, which also includes results obtained using the pion
alence-quark DF extracted in Ref. [292].
In concluding this subsection, it is worth noting an important feature of the lattice gauge formalism, i.e. the ability to

ary the underlying theory and its parameters as a means of revealing the emergence of the important physics. A recent
xample is a study of the pion’s valence quark DF in 2 + 1-dimensional two-colour QCD, where varying the number of
uark flavours, N , allows an investigation of how meson structure evolves as the theory changes from being one with
trongly broken scale invariance at N = 0 to a conformal theory as N is increased [427].

.4. Quark distribution amplitude

The quark DA is likewise described by the matrix elements of operators separated along the light cone and therefore
ubject to computational restrictions analogous to those which arise in the case of the DFs. They are, however, computa-
ionally less demanding, requiring only the computation of a two-point correlation function, in contrast to the three-point
orrelation functions needed to extract a DF. For the case of a positively charged pion, the leading-twist DA is defined via

⟨0 | d̄(z2n) ̸nW (z2n, z1n)γ5u(z1n) | π+(p)⟩ = ifπ (p · n)
∫ 1

dx e−i(z1x+z2(1−x))p·nϕπ (x; ζ ), (8.137)

0
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Fig. 8.34. Effective exponent characterising the large-x behaviour of the pion valence-quark DF computed at two lattice spacings in Ref. [325] using
Eq. (5.86). Comparisons were provided therein with the phenomenological fits in Ref. [294] (NLLs omitted) and Ref. [292] (NLLs included).
Source: Figure adapted from Ref. [325].

where p is the four-momentum of the on-shell pion and W is a Wilson line introduced to ensure gauge invariance. The
overall renormalisation of the wave function is simply given by the matrix element of a local operator

⟨0 | d̄γ0γ5u | π+(p)⟩ = ifπp0 ; (8.138)

nd the determination of the pion decay constant is a benchmark computation in lQCD [27].
In analogy with the Mellin moments of the DFs, one can define the moments of the DA through

⟨(ξ = 2x− 1)n⟩ =
∫ 1

0
(2x− 1)nϕ(x; ζ ) , (8.139)

here ξ can be interpreted as the difference in the momentum fractions carried by the quark x and antiquark 1− x. For
he case of the pion, only the even moments are non-zero, through charge-conjugation symmetry. It is these moments
hat can be related to the pion-to-vacuum matrix elements of the local, twist-two operators

Oµ1,...,µn
5 = in−1d̄γ5γ {µ1 . . . γ µn}u. (8.140)

The computation of these matrix elements presents the same challenges as that of DF moments; notably, the breaking
f O(4) rotational symmetry on the lattice restricts computations to only the lowest few moments. In the pion case,
or which all odd ξ -moments vanish, this means that practical computations are limited to only a single moment, viz.
= 2. The computation of this second moment constituted one of the first lattice calculations of hadronic matrix

lements [428,429], and there has since been a progression of increasingly precise computations [196,430,431]. A recent
alculation of the second moment using an auxiliary heavy quark field offers a prospect for the calculation of higher
oments [432].
The distribution amplitude can also be expressed as

ϕ(x; ζ ) = ϕas(x)
[
1+

∞∑
n=1

an(ζ )C3/2
n (2x− 1)

]
, (8.141)

here ϕas is the asymptotic profile, introduced in Eq. (3.34), C3/2
n are Gegenbauer polynomials of degree 3/2, and the

oefficients {an} are the DA’s Gegenbauer moments:

an(ζ ) =
2(2n+ 3)

3(n+ 1)(n+ 2)

∫ 1

0
dx C3/2

n (2x− 1)ϕ(x; ζ ) , (8.142)

which are straightforwardly related to the moments in Eq. (8.139).
The values of ⟨ξ 2⟩, and of the lowest-two Gegenbauer moments, a1 and a2, are a measure of the degree of dissimilarity

between the DA, and its asymptotic profile ϕas(x). However, as seen with DFs, the finite-scale DA, ϕ(x, ζ ), contains
additional physical information, which can be expressed through either a simple truncation of the expansion in Eq. (8.141)
or a parametrisation [166,194]. Such approaches have been adopted in Ref. [196], which used

ϕGeg(x) = 6x(1− x)(1+ a C3/2(ξ )+ a C3/2(ξ )) (8.143a)
1 1 2 2
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Fig. 8.35. Lattice QCD results for DAs of pion, left panel—A, and kaon, right panel—B inferred using the functional forms in Eqs. (8.143). For
omparison, ϕas is drawn as the dot-dashed grey curve in each panel.
ource: Figures adapted from Ref. [196].

Fig. 8.36. Left panel—A. Pion DA obtained in the LaMET approach for pion momentum Pz = 1.73 GeV as the pion mass is decreased, using a fit to
he form in Eq. (8.143b) [193] (Figure adapted from Ref. [193]). As described in connection with Fig. 3.10B, these results agree quantitatively with
ontinuum calculations. Right panel—B. x-dependent pion DA computed using the two-current-correlator approach, with the turquoise (bimodal)
and yellow (concave) bands denoting fits to the forms of Eq. (8.143a) and (8.143b), respectively [434]. The dashed red curve is the LaMET result
from Ref. [205]. (Figure adapted from Ref. [434].)

ϕpow(x) =
Γ (2+ α+ + α−)

Γ (1+ α+)Γ (1+ α−)
xα
+

(1− x)α
−

. (8.143b)

For the pion, a1 vanishes and α+ = α−. Fig. 8.35 shows the pion and kaon DAs computed using this approach in Ref. [196].
The results agree quantitatively with those presented in Figs. 3.9, 3.11.

The direct calculation of the x dependence of the pion and kaon DAs follows the methods described for the DFs. One of
the principal challenges in these computations, namely the renormalisation of the operators, is precisely that described for
the DFs. There have been several calculations within the LaMET framework [192,193], as well as a computation wherein
the vacuum-to-pion matrix element of two-current correlators is computed [433,434]. As before, progress from the matrix
elements computed on the lattice, in the case of the two-current approach expressed as functions of Ioffe-time, to the
DA requires additional input, such as an imposed parametrisation of the functional form; and, in the case of Ref. [193],
through the adoption of machine-learning methods. The resulting form for the pion DA using the LaMET and two-current
approaches are shown in Fig. 8.36. In general, in contemporary lattice computations, the limited range of accessible Ioffe
times means that strong constraints can only be placed on the second DA moment in the case of the pion, or the lowest
two moments of the kaon DA.

8.5. Three-dimensional imaging of mesons

Returning to the themes of Section 7, the single leading-twist unpolarised GPD of a pseudoscalar meson can be
expressed in the following form, amenable to lQCD analysis:

H(x, ξ , t, ζ ) =
∫

dη− P+

2π
e−ixη

−P+
⟨π (P +∆/2) | q̄(

η−

2
)γ+W (

η−

2
,−
η−

2
)q(η−/2) | π (P −∆/2)⟩ , (8.144)

here, as usual, W is a Wilson line introduced to ensure gauge invariance. As can be seen by inspection, this is a
eneralisation of Eq. (8.123) to the off-forward (∆ ̸= 0) case, and its lQCD computation encounters the same challenges
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Fig. 8.37. Left panel—A. Pion’s lowest two unpolarised GFFs A10 , A20 , normalised to unity at t = 0, obtained at a pion mass mπ ≃ 1.09 GeV in a
heory with two dynamical quark flavours. (Adapted from Ref. [435].) Right panel—B. Lowest two moments of the pion’s tensor GPD, Eq. (7.114),
btained at a pion mass mπ ≃ 0.6 GeV in a theory with two dynamical quark flavours. (Adapted from Ref. [349].)

oted earlier. Consequently, the first lattice studies focused on the Bjorken-x moments of the GPDs, yielding generalised
orm factors (GFFs), which can be computed as the off-forward matrix elements of the leading-twist operators in
q. (8.126).
Specialising to the insertion of the u quark, one obtains [435]

⟨π+(P +∆/2) | ū(0)γ {µiDµ1 iDµ2 . . . iDµn}u(0) | π + (P −∆/2)⟩

= 2P {µPµ1 . . . Pµn}An+1,0(∆2)+ 2
n∑

i=1,odd

∆{µ∆µ1 . . .∆µiPµi+1 . . . PµnAn+1,i+1(∆2) , (8.145)

hich for n = 0 simply corresponds to the form factor A1,0(t) = Fπ (t). In contrast to the case of the nucleon, there has
nly been a single lQCD computation of pion flavour-non-singlet unpolarised GFFs [350,435], with the results depicted in
ig. 8.37A. This study was used to inform the analysis described in Section 7.2.
As discussed in Section 7.2, whilst there is no GPD associated with quarks polarised parallel to the pion’s direction of

motion, the tensor GPD in Eq. (7.109) provides access to information on transversely polarised quarks. A lQCD study of
this GPD is described in Ref. [349], which focused on the following matrix elements:

⟨π+(P +∆/2) |ū(0)iσµν iDµ1 iDµ2 . . . iDµn−1u(0) | π+(P −∆/2)⟩

=
Pµ∆ν − Pν∆µ

mπ

n−1∑
i=1,even

∆µ1 . . .∆µiPµi+1 . . . Pµn−1Bπni(∆
2). (8.146)

(Symmetrisation is suppressed.) This analysis produced the form factors shown in Fig. 8.37B, which were used to inform
the analysis described in connection with Fig. 7.28.

The matching of the Generalised quasi-Parton Distributions to the GPDs has been derived in detail [436,437], but the
only published computation of the pion GPD within the LaMET framework [438], shown in Fig. 8.38, is restricted to zero
skewness at a single lattice spacing and a pion mass of 310MeV. The matching coefficients have recently been computed in
the pseudo-PDF framework [439], and the GLCS approach likewise encompasses the calculation of the GPDs. Importantly,
as the calculations mature, each of these approaches will enable the GPD to be charted both as a function of x, and for a
set of discrete skewness values, ξ , and momentum transfers, t . Finally, in concluding this subsection, it is worth noting
that three-dimensional momentum-space imaging encoded within the TMDs has also been studied for the pion [358], in
particular for the T -odd Boer-Mulders effect that, experimentally, is a manifestation of long-range initial- or final-state
interactions in DY and semi-inclusive deep-inelastic scattering processes, respectively.

8.6. Gluon and flavour-singlet computations

The computations sketched above can be extended to the flavour-singlet sector; in particular, the gluonic contributions
to hadron structure. Beginning with the DFs, one begins by generalising Eq. (8.123) to the gluonic case:

gπ (x) =
∫

dη−

πx
e−ixη

−P+
⟨π (p⃗) | Ga

µ+(η
−)W (η−/2,−η−/2)abGb

µ+(−η
−/2) | π (p⃗)⟩ , (8.147)

here Ga
µν is the field-strength tensor in Eq. (1.1b). The theoretical challenges of, and solution to, evaluating this on a

uclidean lattice follow the discussion of the valence distributions discussed above; specifically, the moments of the pion’s
npolarised glue distribution can be expressed in terms of matrix elements of local, traceless interpolating operators:

Oµ1...µn = G{µ1Dµ2 . . .Dµn−1Gµn}α . (8.148)
g aα a
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Fig. 8.38. Zero-skewness pion GPD H(x, 0, t × (2π/L), ζ = 4 GeV), obtained on a lattice with spatial extent L = 24 and spacing a ≃ 0.12 fm [438].
he curve marked ‘‘PDF’’ denotes the result obtained in Ref. [420].
ource: Adapted from Ref. [438].

Fig. 8.39. Lattice QCD results for pion’s glue GFFs defined in Eq. (8.150), calculated at a pion mass of roughly 450MeV and matched to a scale
= 2 GeV. Blue and green bands show z-expansion and dipole fits to the data.
ource: Figure adapted from Ref. [443], which contains additional details.

he lowest-order operator corresponds to the gluonic elements of the energy–momentum tensor

Tµν =
1
4
ψ̄γ {µDν} + GµαGνα −

1
4
G2, (8.149)

nd the symmetric, traceless component gives rise to the momentum sum rule∑
q

⟨x⟩q + ⟨x⟩g = 1.

The computation of gluonic matrix elements, and of the disconnected quark contributions with which they mix, are far
ore computationally demanding than those corresponding to flavour-non-singlet quantities: the former are subject to
onsiderable statistical noise, whilst the latter require the calculation of all-to-all propagators. To overcome the statistical
oise in such calculations, one must: exploit the freedom afforded by different discretisations of the field-strength tensor;
mooth short-distance fluctuations by, e.g. employing HYP- or Stout-smeared links [440,441]; and use complete sampling
f the lattice.
The first effort at exploring gluonic contributions to pion structure was a computation of the momentum fraction

arried by glue [442], performed in quenched QCD at a pion mass of between 600 and 1100MeV. Whilst there have
een numerous computations of the flavour-singlet contribution to the nucleon momentum fractions, there is only one
valuation for the pion in full QCD [443] at a pion mass of 450 MeV. It reports a value commensurate with the quenched
esults at the lightest 600 MeV pion mass — see A(π )

g (0) in Fig. 8.39A, which is discussed further below. A study of the
ass decomposition of mesons, using the overlap formalism for the fermion action, computed the quark contributions to

he pion mass, and then used the mass sum rule to infer the gluonic contributions, including that arising from the trace
nomaly [32].
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The off-forward components of the lowest-order gluon operator ⟨π (P+∆)|G
{µ
aαG

να}
a |π (P−∆)⟩, P±∆ = P ± ∆/2, give rise

to the in-pion gluon gravitational form factors through an expansion analogous to that in Eq. (8.145):

⟨π (P +∆/2)|G{µaαG
να}
a |π (P −∆/2)⟩ = 2PµPνAg (∆2)+

1
2
∆µ∆νDg (∆2) . (8.150)

he first form factor, Ag (∆2), drawn in Fig. 8.39A, relates to the momentum fraction carried by the gluons, discussed
bove; and the second, Dg (∆2), is drawn in Fig. 8.39B [443]. There is currently no lQCD calculation of the in-pion quark
FFs on the same ensembles. Hence, the only comparison can be with the quark calculation described in Ref. [349], which
as performed at a different pion mass and neglected disconnected contributions. One observation is that the momentum

raction carried by the gluons is similar in the pion and in the nucleon at these heavy pion masses [443].

.7. Era of exascale computing

A raft of key measures of meson structure, most notably the pion form factor and charge radius, and low-order
oments of the DAs, are now available with controlled systematic errors and high statistical precision, including results
ith light-quark masses at their physical values. Novel algorithmic developments, such as the use of so-called momentum
mearing [444], which enables states to be studied at high spatial momentum, and distillation [445], enabling the efficient
pplication of the variational method that is essential at high momenta, allow increasingly refined computations of
he form factors, DFs and GPDs. The advent of leadership-class exascale computing [446] promises to enable these
evelopments to be fully exploited through a programme of computations at a variety of lattice spacings and volumes, and
ith sufficient statistical precision to resolve not only flavour-non-singlet structure but also the contribution of gluons
nd sea quarks [447].
The inclusion of lattice results in global DF fits [448], either on the same footing as experimental data, as has been

one for the case of the nucleon [449], or as a Bayesian prior in the fit to experimental data, as was accomplished for
he nucleon tensor charge [450], is an opportunity that will develop as the precision of lattice calculations increases.
urthermore, the calculation of the perturbative kernel at next-to-next-to-leading-order (NNLO) [451] within the position-
pace formulation of Eq. (8.133) affords the prospects of a lattice determination of the key measures of hadron structure
t NNLO comparable to that attainable from global fitting. The aim is to use both experiment and lattice results to
rovide more information about such measures of hadron structure than either can alone. In connection with pion and
aon measurements via the Sullivan process, discussed in connection with Fig. 9.40, lQCD computations may provide
ome additional support for the experimental analysis, potentially providing novel benchmarks to quantify the effects of
ff-shellness and/or kinematical extrapolations in t .
The discussion in this section has focused on the properties of the pion and kaon, particles stable under the

trong interactions. An exciting prospect for the future is found in recent developments that promise to provide a
ramework for the rigorous study of resonances and multi-hadron states; specifically, providing access to their internal
tructure [452,453].

. Experiments completed or in train

.1. Sullivan process

In specific kinematic regions, the observation of recoil nucleons (N) or hyperons (Y) in the semi-inclusive measurement
p→ e′(N or Y )X can reveal features associated with correlated quark–antiquark pairs in the nucleon, referred to as the
‘meson cloud’’ or ‘‘five-quark component’’ of the nucleon. At low values of t , the four-momentum transfer from the initial
roton to the final nucleon or hyperon, the cross-section displays behaviour characteristic of meson pole dominance.
llustrated in Fig. 9.40, the process in which the electron scatters off the meson cloud of a nucleon target is called the
Sullivan process [454]. For elastic scattering, this process carries information on the meson (pion or kaon) form factor, as
discussed in Section 9.2. For deep inelastic scattering, the typical interpretation is that the nucleon parton distributions
contain a mesonic parton content. To access the pion or kaon partonic content via such a structure function measurement
requires scattering from a meson target.

The Sullivan process can provide reliable access to a meson target in the space-like t region, if the pole associated
with the ground-state meson remains the dominant feature of the process and the structure of the related correlation
evolves slowly and smoothly with virtuality. To check whether these conditions are satisfied empirically, one can take
data covering a range in t , particularly low |t|, and compare with phenomenological and theoretical expectations. A recent
calculation [455] explored the circumstances under which these conditions should be satisfied. For the pion (kaon) Sullivan
process, low −t equates to −t < 0.6 (0.9) GeV2 to be able to cleanly extract pion (kaon) structure, and data over a range
of −t down to the lowest practically accessible are needed to verify pion (kaon) structure extraction.
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Fig. 9.40. Sullivan processes. These examples indicate how a nucleon’s pion cloud may be used to provide access to the pion’s (A) elastic form factor
and (B) distribution functions. The intermediate pion, π∗(P), is off-shell, with P2

= −t . Estimates suggest [455] that such processes provide reliable
access to a pion target on −t ≲ 0.6 GeV2; and for the kaon, on −t ≲ 0.9 GeV2 .

Fig. 9.41. Kinematic considerations for electroproduction, here for the pion.

9.2. Pion and kaon form factors

At low values of Q 2, Fπ has been determined directly up to photon energies of Q 2
= 0.253 GeV2 at Fermilab [228,229]

and at the CERN Super Proton Synchrotron (SPS) [230,231] from the scattering of high-energy, charged pions by atomic
electrons. These data were used to constrain the charge radius of the pion, with the result rπ = 0.657± 0.012 fm [230].
Owing to kinematic limitation in the energy of the pion beam and unfavourable momentum transfer, one must use other
experimental methods to reach the higher Q 2 regime. At higher values of Q 2, Fπ can be determined through the Sullivan
rocess; specifically, the electroproduction reaction.
Electroproduction reactions are of general interest because they allow for measuring photoproduction amplitudes as

unctions of the photon mass. The weakness of the electromagnetic interaction allows one to treat these reactions in
he one-photon exchange approximation as virtual photoproduction by spacelike photons, Q 2 >0, whose mass, energy,
direction, and polarisation density are tagged by the scattered electron [456]. The electroproduction reaction can be
described in terms of form factors, which are generalisations of the form factors observed in elastic electron–hadron
scattering or in terms of cross-sections that are extensions of the photoproduction cross-sections.

For a coincidence experiment in which the scattered electron and the electroproduced charged pion are detected the
differential cross-section can be expressed in terms of a known electrodynamic factor and a virtual photoproduction
cross-section. The latter can be expressed in terms of the linear combinations of the products of virtual-photoproduction
helicity amplitudes, which are the unpolarised transverse production, the purely scalar (longitudinal) production, and the
interference terms between the transverse and transverse-scalar states. This reduced cross-section can be written as a
sum of four separate cross-sections or structure functions, which depend on W , Q 2, t ,

2π
d2σ
dtdφπ

=
dσT
dt
+ ϵ

dσL
dt
+

√
2ϵ(1+ ϵ)

dσLT
dt

cosφπ + ϵ
dσTT
dt

cos2φπ . (9.151)

Here, ϵ =
(
1+ 2|q|2

Q 2 tan2 θe
2

)−1
is the polarisation of the virtual photon, where (see Fig. 9.41): q denotes the three-

omentum of the transferred virtual photon; θe is the electron scattering angle; and φπ is the angle between the scattering
plane defined by the incoming and scattered electrons and the reaction plane defined by the transferred virtual photon
and the scattered meson. To separate the different structure functions one has to determine the cross-section for at least
two sufficiently different values of ϵ as a function of the angle φπ for fixed values of the invariant mass of the virtual
photon–nucleon system, W , Q 2, and t .
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able 9.4
ast and current pion and kaon form factor measurements using elastic scattering or meson electroproduction reactions. (‘‘xsec’’ denotes cross-section.)
Measurement Nominal Q 2 (GeV2) Facility Experiment First/most recent publication References

Pion FF 0.0368–0.094 Fermilab E456 1981/1982 [228,229]
charge radius

Pion FF 0.014–0.26 CERN NA7 1984/1986 [230,231]
charge radius

Pion xsec, FF, 0.18–1.19 CEA or 1973 [460]
charge radius 0.62-2.01, Cornell 1974 [461]

1.20-3.99, 1976 [462]
1.18–9.77 1977 [463]

Pion L/T xsec, 0.35 DESY 1977/2008 [236,464]
Pion FF

Pion L/T xsec, 0.70 DESY 1979/2008 [236,465]
Pion FF

Pion L/T xsec, 0.60, 0.75, 1.0, 1.60 JLab 6 GeV E93–021 2000/2008 [232,234,236]
Pion FF (Fpi1)

Pion L/T xsec, 1.60, 2.45 JLab 6 GeV E01–004 2006/2008 [233,236,237]
Pion FF (Fpi2)

Pion L/T xsec, 2.15, 3.91 JLab 6 GeV E01–107 2008 [235]
Pion FF (pionCT)

Pion L/T xsec, 0.375, 0.425, 0.3, 0.5, JLab 12 GeV E12-19-006, data taking/under analysis [466]
Pion FF 1.6, 2.115, 2.45, 3, (PionLT)

3.85, 5, 6, 8.5 E12-09–011

Kaon FF 0.037–0.119 Fermilab E456 1980 [467]
charge radius

Kaon FF 0.015–0.10 CERN NA7 1986 [468]
charge radius

Kaon FF 1.0, 1.36, 1.9, 2.07, 2.35 JLab 6 GeV E93-018, 2018 [244]
E98-008,
E01–004

Kaon L/T xsec, 0.5, 2.115, 3.0, 4.4, 5.5 JLab 12 GeV E12-09–001 under analysis [47]
Kaon FF (KaonLT)

The determination of the pion form factor from pion electroproduction requires that one-meson exchange (the pion
pole) dominates the longitudinal cross-section at small values of t . The pion pole includes a factor [−t/(t −m2

π )
2], which

is zero at t = 0 and reaches a maximum at t = −m2
π . The first value is unphysical since forward scattering occurs at

tmin = −4m2
pξ

2/(1− ξ 2), where ξ = x/(2− x) is the skewness, with x being Bjorken-x throughout this section, while the
second can be reached in experiments for ξ ∼ mπ/2mp. The dominance of the pion pole in the longitudinal cross-section
and its characteristic t dependence allows for extractions of the electromagnetic pion form factor from these data.

Cross-section data suggest a dominant pion pole in the longitudinal π+ cross-section at values of −t < 0.3 (GeV/c)2
[457]. The strength of the pion pole falls off rapidly with increasing values of t . However, the observation of a dominant
pion pole alone is not sufficient to make a precise extraction of Fπ from the data. To minimise background contributions,
the longitudinal cross-section, σL, should be isolated via a Rosenbluth L/T(/LT/TT) separation. Without an explicit L/T
separation it is not clear what fraction of the cross-section arises from longitudinal photons and what the contribution of
the pole to the cross-section is in these kinematics. Data from survey experiments, like those from Refs. [458,459], though
interesting in their own right, are thus not used in precision form factor extractions. Past, current, and planned pion and
kaon form factor precision measurements are listed in Table 9.4.

Data on Fπ obtained using pion electroproduction have been obtained for values of Q 2 up to 10 GeV2 at the Cambridge
electron accelerator (CEA) and Cornell University [460–463]. However, those data suffer from relatively large statistical
and systematic uncertainties. More precise data were obtained at the Deutsches Elektronen-Synchrotron (DESY) [464,465].
With the availability of high-intensity electron beams, combined with accurate magnetic spectrometers at JLab, it has
been possible to determine longitudinal-transverse (L/T) separated cross-sections with high precision. The measurement
of these cross-sections in the regime of Q 2

= 0.60–1.60 GeV2 (Experiment Fpi1) and Q 2
= 1.60–2.45 GeV2 (Experiments

Fpi2 and pionCT) are described in detail elsewhere [232–237]. Referring to Eq. (9.151), a minimum of two cross-section
measurements, σ1,2, at fixed (Q 2, W ) and different values of the virtual photon polarisation, ϵ1,2, |qϵ1 | > |qϵ2 |, are
needed to determine the longitudinal cross-section, σL, which allows for the extraction of the pion form factor. Using
the approximation that σL ∼ F 2

π , the experimental error in Fπ is

∆Fπ
=

1 1
√
(
∆σ1 )2(r + ϵ1)2 + (

∆σ2 )2(r + ϵ2)2 , (9.152)

Fπ 2 ϵ1 − ϵ2 σ1 σ2
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here∆σ1,2 are the uncorrelated errors on the two cross-sections σ1,2, respectively. The correlated error is a normalisation
ncertainty and is added in quadrature to the uncorrelated uncertainty. The relevant quantities for the extraction of the
/T-separated cross-sections and the form factor are ∆ϵ = ϵ1− ϵ2 between the two kinematic settings and the fixed-(Q 2,
) value of r = σT/σL. To estimate the uncertainty in Fπ , one has to take into account both the variation of counts

cross the spectrometer acceptance at both low and high values of ϵ and the variation in the theoretical model across
he acceptance. Magnetic spectrometers with well understood acceptance can provide the facilities for high precision
easurements of Fπ .
Pion electroproduction experiments are performed at the smallest possible value of (−t), which is still a distance away

rom the pion pole. The extraction of Fπ from the data therefore requires that the t dependence of σL be compared to a
heoretical model. In this method, consistency between data and model is essential. A detailed discussion of the systematic
ncertainty in the extraction of Fπ can be found in Ref. [31, Sec. 2].
The next simplest meson available for experimental studies is the kaon. The kaon contains strangeness; hence, as

ighlighted above, studies of kaon structure are essential for understanding the origin and character of mass. The kaon
orm factor has been determined directly up to Q 2

≈ 0.10 GeV2 at Fermilab and at the CERN SPS from the scattering
f high-energy charged kaons by atomic electrons [467,468]. These data were used to constrain the mean square charge
adius of the charged kaon, with the result ⟨r2K ⟩ = (0.58± 0.04 fm)2.

At higher energies, the kaon form factor can, in principle, be extracted from kaon electroproduction data; but there
re experimental challenges that need to be addressed. The extraction of FK from σL relies on dominance of the kaon
xchange term. The kaon pole is farther from the physical region than the pion, which may raise doubts about the ability
o extract FK from electroproduction data. To lend confidence to the method, we note two aspects. First, the pion form
actor was extracted from pion electroproduction data at small (−t) by carefully studying the model dependence of the
nalysis, not by direct extrapolation. Second, comparative extractions of the pion form factor from low-(−t) to large-(−t)
ata suggest only a modest model dependence. Furthermore, recent calculations suggest that the kaon pole is dominant
or −t < 0.9 (GeV/c)2 [455].

A recent electroproduction determination of the kaon form factor at Q 2
= 1.00, 1.36, 1.90, 2.07, 2.35GeV2 is

iscussed in Ref. [244], with the results drawn in Figs. 4.13A and 4.14A. The L/T-separated kaon electroproduction cross-
ections were extracted at different values of (−t) using data from JLab [233,469,470] and the successful method from
efs. [233,237] was applied to infer the kaon form factor. Note that the largest (−t) pion data discussed above lie at
imilar distances from the pole as the kaon data discussed in Ref. [244]. These data range from −t = 0.4–0.7 (GeV/c)2,
nd so fall into the regime where the kaon pole is expected to contribute. The kaon form factor was extracted at (−tmin)
or each Q 2 point. The model dependence was estimated using a comparative study at different values of (−t) and was
ound to be on the order of about 0.1 on the form factor value. The data sets are internally consistent, lending confidence
o the method used for extracting the kaon form factor from longitudinal cross-section data.

The high quality, continuous electron beam at the 12GeV JLab, combined with the high momentum spectrometer
HMS) and superconducting super high momentum spectrometer (SHMS), makes JLab 12 the only facility currently able
o pursue a programme of precision pion and kaon form factor measurements. At the time of writing, the running E12-19-
06 (PionLT) experiment [466] enables measurements of the pion form factor at low (−tmin) up to Q 2 = 6 GeV2, allows for
easurements of the separated π+ cross-sections as a function of Q 2 at three fixed x values (0.2, 0.3, 0.4), and enables the
easurement of the pion form factor to the largest Q 2 accessible at JLab12, viz. 8.5 GeV2. Three data points at Q 2

= 0.38
eV2 and centre of mass energy W = 2.20 GeV were acquired during the first phase of the experiment in 2019. The data
re under analysis.
The E12-09-011 (KaonLT) experiment [47] is an exclusive measurement of the L/T-separated kaon electroproduction

ross-section important for understanding the role of strangeness in hadron imaging studies and the kaon form factor.
he KaonLT experiment collected data in 2018/19 and the data are presently under analysis. Data were acquired for five
2 points, 0.5, 2.115, 3.0, 4.4, and 5.5 GeV2, with centre of mass energies W = 2.40, 2.95, 3.14, 2.74, 3.02 GeV. The data
ere taken at five beam energies (3.8, 4.9, 6.2, 8.2, 10.2 GeV), which will enable the first precision measurements of the
/T-separated kaon electroproduction cross-sections as a function of Q 2 above the resonance region. A direct comparison
f the scaling properties of the π+ and K+ separated cross-sections would provide an important tool for the study of
he onset of factorisation in the transition from the hadronic to the partonic regime [471] and provide a possibility
o study effects related to SU(3)-flavour symmetry breaking, viz. Higgs-induced modulation of EHM. The L/T-separated
ross-sections of pion data simultaneously collected at Q 2

= 0.5, 2.115, and 3.0 GeV2 can provide further constraints on
he pion form factor.

.3. Empirical information on parton distribution functions

Experimental knowledge of the partonic structure of the pion is very limited owing to the lack of a stable pion target;
nd the situation is far worse for the kaon, with data limited to less than 10 points of data worldwide. Most of the current
nowledge about the pion structure function in the valence region was obtained primarily from pionic DY scattering (0.2
x ≤ 0.99), and in the pion sea region at low Bjorken-x, from hard diffractive processes measured in e−p collisions at the
adron–Elektron-Ringanlage (HERA) H1 and ZEUS experiments (3× 10−4 ≤ x ≤ 0.01). These processes are complementary
ethods to probe the partonic structure of pions (and kaons). However, at present there is no overlap between the data

ets obtained with the two different techniques. Past and anticipated measurements are listed in Table 9.5.
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able 9.5
ion and kaon structure function measurements that are either completed or whose completion is anticipated. Notably, the NA3 publication did not
eport the measured cross-sections; consequently, this work is not included in global fits aimed at determining the pion valence-quark DF.
Measurement xΠ Facility Experiments First/most recent publication References

Pion SF 0.21–0.99 Fermilab E615 1989/2005 [291,293]
Pion SF 0.25–0.75 CERN WA39 1980 [286]
Pion SF 0.17–0.97 CERN NA3 1983/2005 [287,293]
Pion SF 0.16–0.99 CERN NA10 1985/2005 [288,293]
Pion SF 7× 10−4–0.5 DESY ZEUS 1996 [472]
Pion SF 1× 10−3–0.22 DESY H1 1999 [473]
Pion SF 0.45–0.9 JLab 12 C12-15–006 conditionally approved [49]
Kaon SF 0.45–0.9 JLab 12 C12-15-006A conditionally approved [50]
Pion SF 0.16–0.99 CERN COMPASS II data collected 2015/2018 [474]

Pionic DY scattering data were collected by the NA3 [287], NA10 [288], and WA39 [286] collaborations at the CERN
Super Proton Synchrotron (SPS) and by the E615 [291] collaboration at Fermilab. In these experiments one measures
a lepton pair produced from hadron–hadron inelastic collisions in the region s → ∞, Q 2/s finite, where Q 2 (s) is the
invariant mass-squared of the lepton pair (the initial hadrons). In the CERN SPS experiments, muon pairs were produced
by charged meson beams of energies 200 GeV/c (π+) and 150–280 GeV/c (π−) incident on a heavy target (platinum,
tungsten). DY scattering data using π− beams were acquired by NA10, while data with both π+ and π− beams were
cquired by NA3 and WA39. The muon events were analysed in a magnetic spectrometer. Charged hadrons from the
olliding beams were identified with differential (negative charge) or threshold (positive charge) Cherenkov counters.
vents were selected by the muon pair mass and angle to distinguish from the resonance region, secondary interactions
n the target, and misidentified J/Ψ events produced by asymmetrical di-muons.

The LO DY cross-section for a pion interacting with a nucleon can be written,

d2σ
dxπdxN

=
4πα2

em

9M2
γ

∑
q

e2q[qπ (xπ )q̄N (xN )+ q̄π (xπ )qN (xN )] (9.153)

where αem is the QED fine-structure constant, the sum is over quark flavour, qπ (qN ) is the DF for quark flavour q in the
pion (nucleon), eq is the charge of the quark (in units of the positron charge), Mγ is the mass of the virtual photon, and
xπ (xN ) is the momentum fraction (Bjorken x) of the interacting quark in the pion (nucleon). Using symmetry arguments,
the cross-section can be expressed in terms of the pion and proton DFs. The pion valence distribution was extracted
from global analyses at LO and NLO using available DY data. In the global analyses, using the better known proton DFs as
input, the pion’s sea content was derived from momentum conservation, while the gluon contribution was constrained by
prompt photon measurements by the CERN Collaborations WA70 [475] and NA24 [476]. The authors of Ref. [330] provide
their own parametrisation of the sea, assuming that the sea contribution amounts to 10%, 15%, and 20%, which leads to
three different results for the gluon contribution.

Pion structure was measured at DESY using HERA in deep-inelastic scattering tagged via a leading neutron, ep→ e′n.
Four kinematic variables are needed to describe this interaction. They are defined in terms of the four-momenta of the
incoming and outgoing particles. Two variables are chosen from the Lorentz invariants used in inclusive measurements:
Q 2; x, the Bjorken scaling variable; y = Q 2/(sx), the inelasticity; and W 2, the squared mass of the produced hadronic
system. Here,

√
s is the energy of the ep centre-of-momentum-system. Two additional variables are required to describe

the leading neutron. They were chosen as the laboratory production angle of the neutron, θn, and the energy fraction
carried by the produced neutron, xL ∼ Ep/En, where Ep and En are the proton and neutron energy, respectively. The
ransverse momentum of the neutron is given by pT ∼ xLEpθn. The squared momentum transfer from the target proton

s t ∼ p2T
xL
− t0, where t0 =

1−xL
xL

(m2
n − xLm2

p) is the minimum kinematically allowed value of |t| for a given xL.
Events containing a leading baryon were measured with the H1 and ZEUS detectors, featuring a forward neutron

calorimeter (FNC) at forward rapidity. The ZEUS central detector featured a 1.43 T solenoidal field with a typical vertex
resolution of 0.4 cm (0.1 cm transverse). The hadronic calorimeter was a uranium-scintillator device with energy
resolution σ (E)/E = 0.35/

√
E for hadrons. The FNC was a lead-scintillator (compensating) calorimeter located 106m

rom the ZEUS central detector, had seven interaction lengths in the front section and three in the rear section, and
chieved a resolution of 0.65/

√
E. For 500 GeV neutrons, this results in a 3% energy resolution. The FNC acceptance for

neutrons was about 20% of 2π up to about 0.8mr, limited by beam line elements. This resulted in a mean transverse
momentum acceptance of p2T < 0.05 GeV2. A forward neutron ‘‘tracker’’ with 1.5 cm wide scintillating fingers was
nstalled to measure t (Pt ). The H1 detector featured a 1.16 T solenoidal field and a tracking system with a resolution
f σ (pT )/pT = 0.005pT + 0.015 for charged particles. (Here and following, all mass-dimensioned quantities in GeV.) The
adronic calorimeter was a liquid argon sampling calorimeter with steel absorber. The total depth of the calorimeter
anged from 4.5 to 8 interaction lengths and achieved a resolution of 0.50/

√
E + 0.02 for charged pions. The FNC was

located 106m from the H1 central detector, consisted of a 1.6 interaction lengths lead-scintillator sandwich preshower
and an 8.9 interaction lengths sandwich type main calorimeter, and achieved a resolution of σ (E)/E = 0.63/

√
E + 0.03
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nd σ (x, y) = 10 cm/
√
E + 0.6 cm for hadrons. The electromagnetic energy resolution of the preshower was σ (E)/E =

0.20/
√
E.

The four-fold differential cross-section for leading neutron production, denoted LN(4), can be written as

d4σ ep→e′Xn

dxdQ 2dxLdpT
= KLN F LN(4)

2 (x,Q 2, xL, pT ) , (9.154)

where KLN is a combination of kinematic factors — see, e.g. Ref. [473, Eq. (3)]. Integrating this equation up to the maximum
experimentally accessible neutron angle, corresponding to a maximum transverse neutron momentum that varies with
xL, results in

d3σ ep→e′Xn

dxdQ 2dxL
= KLN F LN(3)

2 (x,Q 2, xL) , (9.155)

where

F LN(3)
2 (x,Q 2, xL) =

∫ pmax
T

0
dpT F

LN(4)
2 (x,Q 2, xL, pT ) (9.156)

is the neutron-tagged proton structure function integrated over the measured range in θn. The pion structure function Fπ2
can then be extracted from F LN(3)

2 using models, such as the Regge model of baryon production [473, Sec. 6]. In the Regge
model the contribution of a specific exchange i is defined by the product of its flux fi(y, t) and its structure function F i

2
evaluated at (xi,Q 2).

For the HERA data, the pion flux was determined from the description of the available data [477–486] on charge-
exchange processes (p → n) in hadron–hadron interactions obtained using the exchange of virtual particles. In such
processes, the pion dominates the p→ n transition amplitude, with its relative contribution increasing as |t| decreases.
In the one-pion approximation, the cross-section for charged hadron production can be written

dσhp→Xn

dxLdt
= fπ/p(xL, t)σ hπ

tot (s
′), (9.157)

where s′ = s(1−xL), the square of the hp centre-of-mass energy, and fπ/p(xL, t) is the flux factor that describes the splitting
f a proton into a πn system.
Charge exchange processes at the CERN intersecting storage rings (ISR) and Fermilab were found to be well described

sing

fπ/p(xL, t) =
1
4π

2g2
πpp

4π
−t

(t −m2
π )2

(1− xL)1−2α
R
π (t)(F (xL, t))2 , (9.158)

where
g2πpp
4π = 14.5, αR

π (t) = α
′t , and α′ = 1 GeV−2. The form factor F (xL, t) parametrises the distribution of the pion cloud

in the proton and accounts for final-state rescattering of the neutron. For the HERA data, a good description of hadronic
charge-exchange experiments was found using the Bishari flux [487], which sets F (xL, t) = 1. The resulting flux factor
as interpreted as an effective pion flux, which takes into account processes that occur in hadronic charge-exchange
rocesses, absorption, non-pion exchange, and off-mass-shell effects.
At HERA, the leading neutron data were dominated by pion exchange in the range 0.64 < xL < 0.82, and the one-pion

xchange model was used to determine the structure function of the pion, Fπ2 , whose t dependence is absorbed into the
flux factor that describes the hadronic charge exchange data [477–486]. The structure function of the real pion is then
given by

Fπ2 (xπ ,Q 2) = Γ (Q 2, xL)F
LN(3)
2 (x,Q 2, xL) , (9.159)

where Γ = 1/[(1 − δabs(xL,Q 2))
∫ tmax
tmin

dt fπ/p(xL, t)] is the inverse of the pion flux factor integrated over the measured t
egion and corrected for t-averaged absorptive effects: theory estimates δabs(xL,Q 2) < 10% for Q 2 > 10 GeV2 [488].

The HERA data show that, in the region of 0.64< xL < 0.82, the extracted Fπ2 has the same shape as the proton structure
function, F p

2 , scaled by 0.361, and approximately the same x and Q 2 dependences. The data do not match expectations
based on DY studies [330]. This discrepancy may owe to the fact that the major portion of the HERA data are at xπ < 10−2,
whereas the DY data are at xπ > 0.2. From this perspective, the HERA data provide constraints on the shape of the pion
structure function in the low xπ region.

The extraction of the pion structure function has to be corrected for non-pion pole contributions, ∆ and N∗ resonances,
absorptive effects, and uncertainties in the pion flux. These corrections can be minimised by measuring at the lowest
(−t) or tagged nucleon momentum possible. At these lower momenta, the absorptive correction is reduced because the
pion cloud is further from the bare nucleon. In addition, higher meson mass exchanges are suppressed, the charged pion
exchange process has reduced background from Pomeron and Reggeon processes [489], and the charged pion cloud is
expected to be roughly double the neutral pion cloud in the proton. Having data from both protons and deuterons would
provide essential cross checks for the models used in the extraction of the pion structure function.
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The largest uncertainty in extracting the pion structure function, however, likely owes to uncertainty in the pion flux
n the framework of the pion cloud model. One of the main issues is whether to use the πNN form factor or the Reggeised
orm factor. The difference between these two methods can be as much as 20% [490]. From the NN data, the πNN coupling
onstant is known to 5% [491,492]. The uncertainties on the corrections are somewhat difficult to constrain; but if one
ssumes them to be ≲ 50% and assumes a 20% uncertainty on the pion flux factor, then the overall theoretical systematic
ncertainty could reach 25%. An alternative approach is direct measurement of the pion flux factor by comparing to pionic
Y data.

.4. L/T-separated meson cross-sections: Toward flavour separation with GPDs

In recent years, hard exclusive processes, like deeply virtual photon (DVCS) and meson (DVMP) leptoproduction,
ave attracted much interest. It has been shown that in the generalised Bjorken regime of large Q 2 and large W in the
irtual-photon–proton centre-of-mass frame, but fixed Bjorken-x, these processes factorise into products of hard partonic
ubprocesses and soft hadronic matrix elements, parametrised through GPDs. As in DIS, the asymptotically dominant
ontributions come from longitudinally polarised photons while those arising from transversely polarised photons are
uppressed by 1/Q 2 [471]. It is not clear that there is such factorisation for transversely polarised photons [457]. The
elative contribution of longitudinal and transverse terms to the meson cross-section and their t and Q 2 dependences
re thus of interest in evaluating the potential of meson production for probing the nucleon’s GPDs. In general, only if
xperimental evidence for leading-twist behaviour is shown can one begin to be confident about a handbag formalism.
ne of the most stringent experimental tests is the Q 2 dependence of the longitudinal meson cross-section.
The cross-sections for ρ0, ω, φ, J/Ψ , Ψ (2S), and Υ production have been measured over a wide range of energies, from

hreshold up to W ∼ 200 GeV for light vector mesons and, taking recent LHC data into account, up to about 1 TeV for
eavy vector mesons. For light vector mesons, Q 2 ranges from 0–100 GeV2 in the high W domain, where there are data
rom HERA — H1 [493–495], ZEUS [496–500], HERMES [501,502]; and Fermilab — E665 [503]. At W ≲ 5 GeV, experiments
t Cornell University [504] and with the CLAS detector [505–509] have measured the ρ0, ω, φ electroproduction channels
p to Q 2

= 5 GeV2. For the heavy mesons, there are electroproduction data only for the J/Ψ from HERA [510,511]. In
ddition, there are heavy-meson photoproduction data from the H1 [512], ZEUS [513], LHCb [514–517], and ALICE [518]
xperiments, and some fixed target experiments, e.g. at JLab, with W ≲ 5 GeV.
For the ρ and ω channels, two regimes are clearly apparent, in both lepto- and photoproduction. Starting from

hreshold, after a rapid rise owing to the opening of the phase space, the cross-sections decrease from W ∼ 2 GeV
own to W ∼ 7 GeV. The cross-sections then rise slowly with energy. For the other vector meson channels, above the
hreshold effect, there is only one behaviour of the cross-section: a steady rise with W from threshold up to the highest
nergies measured. One can clearly see that the slope of the W -dependence at large W increases with Q 2 for the ρ
lectroproduction channel and with the mass of the vector mesons for the photoproduction data. This indicates that the
ass of the heavy mesons acts, like Q 2, as a hard scale.
In order to determine the contribution of longitudinal and transverse terms to the vector meson cross-section, one

an analyse the decay angular distribution giving access to the polarisation states. Assuming that the helicity between
he final-state vector meson and the initial virtual photon is conserved, one can deduce the polarisation of the virtual
hoton and, therefrom, the longitudinal and transverse cross-sections. This property is referred to as s-channel helicity
onservation (SCHC). It can be checked experimentally by looking at specific vector-meson decay matrix elements that
re sensitive to γ ∗L → VT , γT → VL or γ ∗T → V−T transitions. In ρ0 and φ production, SCHC has been found to hold well
nough to enable the L/T separation of the cross-sections.
The H1 data for the ρ0 cross-section at fixed x ∼ 0.002 span more than an order of magnitude in Q 2. The cross-section

alls approximately as 1/Q 4, i.e. the Q 2 slope is milder than that predicted by the naïve leading-twist handbag formalism.
iven the behaviour of the L/T cross-section ratio and with the transverse contribution being more important as Q 2

→ 0,
he experimental Q 2-dependence of the longitudinal cross-section is even flatter than 1/Q 4.

Recent results on helicity amplitudes and spin density matrix elements are available from COMPASS [519–521,521]
nd HERMES [522–525]. The ρ0 helicity amplitude ratios with nucleon-helicity flip were found to be small and consistent
ith zero, while the non-flip amplitudes were found to be non-zero [522]. New spin-dependent matrix elements were

ound to be in partial agreement with the Goloskokov–Kroll model. Existing DVMP data are consistent with the QCD
actorisation prediction over a limited Q 2 range.

Confirming the possibility of accessing GPDs through pseudoscalar meson production requires a full separation of the
ross-section. One-meson exchange plays an important role in leptoproduction of pseudoscalar mesons. Its dominance in
he longitudinal cross-section is required for extraction of the electromagnetic meson form factor from electroproduction
ata and is also part of the GPD Ẽ. Separated cross-sections for π+, K+, and π0 production have been measured at
Lab [47,244,526–528]. Unseparated data have been measured at several facilities, including HERMES, COMPASS, and
Lab [458,459,529,530]

The leading-twist, lowest-order calculation of the π+ longitudinal cross-section underpredicts the data obtained with
B = 0.31, 0.45,−t = 0.15, 0.41 GeV2, Q 2/GeV2

= 1.45−2.45, 2.45−3.9 by an order of magnitude [235,457]. This implies
hat the data are not in the region where the leading-twist result applies. That current experimental data are not in the
egion where the leading-twist result applies can also be seen in the Q 2 and t dependence of the separated longitudinal
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nd transverse π+ cross-sections. The 1/Q 6 scaling-law prediction is reasonably consistent with the longitudinal data.
owever, the transverse cross-section does not follow the scaling expectation; and when compared with the longitudinal
ross-section, it is too large for consistency with QCD factorisation. Regarding the (−t) dependence, the longitudinal
ontribution is greater than the transverse in the π+ cross-section for values of −t < 0.3 GeV2. This is consistent with a
dominant meson pole in this region; but the transverse contribution is greater than the longitudinal for values of−t > 0.3
GeV2, providing further evidence that the leading-twist does not apply in the currently available experimental kinematics.

Similar trends were found in the analysis of the separated K+ cross-sections [244]. The first L/T-separated π0 cross-
sections were measured in Hall A and cover a Q 2 range between 1.5 and 2 GeV2 with x ∼ 0.36 [526,527]. The results
suggested that in this limited kinematic region transversely polarised photons dominate the total cross-section and also
hinted at possible dependences on Q 2, −t , and x. A more recent experiment at JLab12 extended these measurements to
higher Q 2 and x [531].

The recent L/T-separated cross-section data suggest that transversely polarised photons play an important role in
charged pion and kaon and in neutral pion electroproduction. Further experimental evidence for strong transverse
virtual-photon transitions comes from the unseparated JLab CLAS π+ cross-section data [459] and from the sinφs
harmonics measured with a transversely polarised target by HERMES [532]. Moreover, the JLab CLAS [529] and Hall
A measurements [533] of the unseparated π0 cross-sections reveal a transverse–transverse interference cross-section
that amounts to a substantial fraction of the unseparated cross-section. Evidence for significant L-T interference in π0

production also comes from JLab CLAS beam spin asymmetry measurements [534].
This review of the data on hard exclusive meson lepto- and photoproduction reveals clear evidence for a common dy-

namical mechanism underlying such processes, for which a handbag-diagram approach is a viable explanation candidate.
However, most of the currently available data do not lie in a region for which the simple leading-twist result applies.
Future measurements of DVMP cross-sections should make it possible to confirm the estimates of transverse photon
contributions, establish the potential for access to GPDs in meson production, and understand the remaining puzzles.

10. Measurements on the horizon

The broad international science programme aimed at understanding pion and kaon structure and the SM mechanisms
behind the emergence of hadron masses requires a strong, constructive interplay between experiment, phenomenology
and theory. Experimental prospects must be matched and guided by new theoretical insights, assisted by rapid advances
in computing and high-level QCD phenomenology. The identification and conduct of those experiments which can best
lead to novel theory insights and understanding, and the interpretation of the new experimental results, both require a
coherent worldwide effort.

At its 5 GeV centre-of-mass energy, JLab 12 will provide tantalising, precision data relating to the pion (kaon) form
factor up to Q 2

∼ 10(5) GeV2 and measurements of the pion (kaon) structure function at x > 0.5 through the
Sullivan process. It will thereby deliver the first new-generation information that is capable of addressing numerous key
issues highlighted herein, e.g. discovering scaling violations in pseudoscalar meson elastic form factors, revealing Higgs
modulation of EHM, and charting the x-dependence of pion and kaon valence-quark DFs.

With recent CERN approval of their Phase-1 plans [535], one can expect the AMBER Collaboration to play a crucial
role because they are uniquely capable of delivering pion (kaon) DY measurements in the centre-of-mass energy region
∼ 10–20 GeV. This new programme is an essential part of the global effort to measure and understand the pion structure
function. Importantly, the effort will deliver DY cross-sections with both π− and π+ beams, enabling the separation of
valence and sea quarks in the pion. It will also place a handle on a determination of the so-called ‘‘pion flux’’ factor needed
for related EIC Sullivan process measurements; and it is sine qua non for any map of the kaon structure function. One may
reasonably expect that AMBER data in themselves will already enable fundamental insights to be drawn into EHM.

An electron–ion collider is under discussion in China (EicC). With a similar centre-of-mass energy range as AMBER,
EicC could both develop a powerful synergy with that Collaboration’s plans and neatly fill a gap between JLab and the
EIC at Brookhaven National Laboratory. On its own, and even better in concert with AMBER, EicC could provide access to
pion and kaon structure functions on x ≳ 0.01 and expose impacts of EHM and Higgs-induced modulations on NG-mode
valence-quark and gluon structure. Furthermore, EicC could extend the Rosenbluth L/T-separated cross-section technique,
and may therefore be able to extend the kinematic reach of pion and kaon elastic form factor measurements beyond that
achievable at JLab12.

It is anticipated that EIC will be unique in having the capacity to provide information on pion and kaon structure over
a large and tunable centre-of-mass energy range within the domain ∼ 20–140 GeV. With such coverage and reach, EIC
will vastly extend the (x,Q 2) range of pion and kaon structure charts and may very well write the final words on many
of the issues discussed herein, e.g. what is the gluon content of NG modes, how does it compare with that in the proton,
and, indeed, what makes NG modes different in the SM.
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1. Epilogue

Existence of the pion was predicted eighty-five years ago [536]; yet, even now, very little is known about its structure.
he pion’s mass is measured with precision — to one-part in a million; but its radius is only constrained to within 1% and
ven this is debatable, given the uncertainties now attendant upon radius measurements made using electron+hadron
cattering experiments [537]. Regarding the kaon, discovered over seventy years ago [117] and the first known particle
o possess strangeness [538,539], the mass is known to three-parts in one-hundred-thousand, but its radius is at least
en-times more uncertain than that of the pion and precise information on even its low-Q 2 electromagnetic form factor
s practically nonexistent. This is a very poor state of affairs, given that pions and kaons are Nature’s most fundamental
ambu–Goldstone modes, whose existence and properties are vital to the formation of everything from baryons, to nuclei,
nd on to neutron stars. The coming decades promise to eliminate much of this ignorance as technology reaches the point
here achievable terrestrial experiments can use energy and luminosity to overcome the absence of stable pion and kaon
argets.

Advances in experimental capabilities place great pressure on phenomenology and theory to keep pace. Perhaps
ost promising here are predictions for pion and kaon form factors. The past decade has seen both continuum and

attice methods agree that pion and kaon distribution amplitudes (DAs) are broadened as a consequence of emergent
adronic mass (EHM). Hence, attention has shifted away from looking for experimental results to produce agreement
ith predictions of hard-scattering formulae made using the asymptotic DA profile. Now it has turned toward identifying
he breakaway from simple power-law scaling in recognition both that QCD is found in scaling violations and hard-
cattering formulae should be evaluated using broadened distributions if comparisons with experiment are to be realistic.
ew results from pion and kaon form factor experiments are therefore eagerly awaited. Notwithstanding these advances,
he hard scattering formulae that provide a strong motivation for this programme are only sensitive to a single inverse
oment of the meson DAs. Experiments able to provide information on their pointwise behaviour would be valuable. In

his connection, hard diffractive dissociation of mesons in the field of a heavy nucleus still appears to offer best promise.
Regarding distribution functions (DFs), the patient is less healthy. There are many continuum predictions for the pion’s

alence-quark DF, uπ (x). All agree that the large-x dependence of uπ (x) is sensitive to the behaviour of the pion’s light-
ront wave function at large relative momenta; and those connected with the QCD-predicted momentum dependence
roduce uπ (x) ∼ (1− x)β , with β > 2 at any scale for which a rigorous connection may be drawn between experimental
ross-sections and DFs. However, phenomenology is still grappling with many challenges, including the task of building
complete hard-scattering kernel — hence, studies return conflicting results for β; and lattice-QCD (lQCD) is only now

beginning to contribute information on the pointwise behaviour of DFs and results that can be used to determine the
large-x exponent. Crucially, new empirical data is coming; and this provides impetus for improvements in all areas of
theory.

Turning to the kaon’s valence-quark distribution functions, there are again many continuum calculations; the status
of which matches the pion case. On the other hand, lQCD is only beginning to tackle the kaon. Moreover, since less than
ten points of empirical data exist, there is no phenomenology. Here, new-era data are crucial.

Glue and sea distributions in the pion have long been a subject of phenomenological analyses; but given the issues
with such studies of its valence-quark DF, the inferred glue and sea distributions are of uncertain accuracy. Contemporary
continuum theory has begun to make predictions for these DFs, which promise to serve as benchmarks for new-generation
experiments and analyses. Lattice QCD results for the pion’s glue and sea distributions lie in the future. The state of kaon
studies is similar. Here there is the additional opportunity for exploring the modulation of EHM by Higgs-boson couplings
into QCD; and first results indicate that the kaon’s glue and sea distributions are noticeably softer than those in the pion.
Such predictions present an opportunity for future facilities.

Notwithstanding the puzzles that remain with predictions and measurements relating to such studies of the one-
dimensional structure of Nature’s Nambu–Goldstone modes, the allure of three-dimensional imaging is great and the
challenges are greater still. For pions and kaons, little has yet been accomplished in this area. So, there are no controversies
and many opportunities; and first results indicate some fascinating possibilities, e.g. that the mechanical pressure at the
pion’s core is greater than that in the proton and, in fact, commensurate with that at the core of a neutron star. This field
is wide open for input from new era facilities, high-level phenomenology, and novel theory.

Understanding the origin of more than 98% of visible mass in the Universe, charting its distribution throughout the
objects within which it is lodged, and identifying those measurements which can be used to validate the answers, are key
remaining challenges within SM. As argued herein, although many observables carry signals of these things, pion and kaon
observables provide some of the cleanest signatures. Now, with a confluence of developments in experiment and theory
promising heretofore unparallelled synergies, there is room for optimism in anticipation of uncovering the solutions.
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A
bbreviations

The following abbreviations are used in this manuscript:

2PI two particle irreducible
BS (BSE) Bethe–Salpeter (equation)
CEA Cambridge (Massachusetts) electron accelerator
CERN European Laboratory for Particle Physics
CLAS detector in Hall-B at JLab
DA distribution amplitude
DCSB dynamical chiral symmetry breaking
DESY Deutsches Elektronen-Synchrotron (accelerator in Hamburg)
DF distribution function
DSE Dyson–Schwinger equation
DVCS deeply virtual Compton scattering
DVMP deeply virtual meson production
DY Drell–Yan (process)
EHM emergent hadronic mass
EIC electron ion collider in the USA
EicC electron ion collider in China
Fermilab (FNAL) Fermi National Accelerator Facility
FF fragmentation function
FNC forward neutron calorimeter
GFF generalised form factor (related to a given GPD)
GLCS good lattice cross-section(s)
GPD generalised parton distribution
H1 detector at HERA
HB Higgs boson
HERA particle accelerator in Hamburg (Hadron–Elektron-Ringanlage

or Hadron–Electron Ring Accelerator)
HERMES detector and associated collaboration at HERA
HMS high momentum spectrometer (detector at JLab)
ISR Intersecting Storage Rings (accelerator at CERN)
JLab Thomas Jefferson National Accelerator Facility
JLab 12 Thomas Jefferson National Accelerator Facility with 12GeV e− beams
LaMET large-momentum effective theory
LFWF light-front wave function
LHC large hadron collider
LHCb LHC beauty experiment
LO leading order (in a controlled expansion or truncation)
lQCD (LQCD) lattice-regularised quantum chromodynamics
NG (boson/mode) Nambu–Goldstone (boson/mode)
NLL next-to-leading logarithms
NLO next-to-leading order (in a controlled expansion or truncation)
PD process dependent (effective charge or running coupling)
PDF parton distribution function
PI process independent (effective charge or running coupling)
pQCD perturbative QCD
PTIR perturbation theory integral representation
QED quantum electrodynamics
QCD quantum chromodynamics
RGI renormalisation group invariant
RL (truncation) rainbow-ladder (truncation)
SCHC s-channel helicity conservation
SHMS superconducting super high momentum spectrometer (detector at JLab)
SM Standard Model of Particle Physics
SPS super proton synchrotron
STI Slavnov–Taylor identity
TMD transverse momentum dependent parton distribution
ZEUS detector at HERA
57



C.D. Roberts, D.G. Richards, T. Horn et al. Progress in Particle and Nuclear Physics 120 (2021) 103883

A

R
Q
T
P
P

R

cknowledgements

We are grateful for assistance and insightful comments from D. Binosi, S. J. Brodsky, K.-L. Cai, Z.-F. Cui, O. Denisov,
. Ent, T. Frederico, J. Friedrich, J. Karpie, N. Karthik, C. Mezrag, W.-D. Nowak, S. Platchkov, J. Qiu, C. Quintans, J. Rodríguez-
uintero, G. Salmè, J. Segovia, R. Sufian, S.-S. Xu, J.-L. Zhang. CDR is supported in part by the Jiangsu Province Hundred
alents Plan for Professionals, China; TH and DGR by the U.S. Department of Energy, Office of Science, Office of Nuclear
hysics, under contract DE-AC05-06OR23177; TH by the US National Science Foundation under grants PHY-1714133 and
HY-2012430; LC by the Chinese Government’s Thousand Talents Plan for Young Professionals.

eferences

[1] P.W. Higgs, Phys. Lett. 12 (1964) 132.
[2] F. Englert, R. Brout, Phys. Rev. Lett. 13 (1964) 321.
[3] P.W. Higgs, Phys. Rev. Lett. 13 (1964) 508.
[4] G. Aad, et al., Phys. Lett. B 716 (2012) 1.
[5] S. Chatrchyan, et al., Phys. Lett. B 716 (2012) 30.
[6] F. Englert, Rev. Modern Phys. 86 (2014) 843.
[7] P.W. Higgs, Rev. Modern Phys. 86 (2014) 851.
[8] P. Zyla, et al., Prog. Theor. Exp. Phys. 2020 (2020) 083C01.
[9] W. Busza, K. Rajagopal, W. van der Schee, Ann. Rev. Nucl. Part. Sci. 68 (2018) 339.

[10] A. Bazavov, F. Karsch, S. Mukherjee, P. Petreczky, Eur. Phys. J. A 55 (2019) 194.
[11] A. Bzdak, et al., Phys. Rep. 853 (2020) 1.
[12] C. Itzykson, J.-B. Zuber, Quantum Field Theory, McGraw-Hill Inc., New York, 1980.
[13] P.E.L. Rakow, Nuclear Phys. B 356 (1991) 27.
[14] M. Göckeler, et al., Nucl. Phys. B Proc. Suppl. 42 (1995) 660.
[15] M. Reenders, Phys. Rev. D 62 (2000) 025001.
[16] A. Kızılersü, T. Sizer, M.R. Pennington, A.G. Williams, R. Williams, Phys. Rev. D 91 (2015) 065015.
[17] H.D. Politzer, Proc. Natl. Acad. Sci. 102 (2005) 7789.
[18] F. Wilczek, Proc. Natl. Acad. Sci. 102 (2005) 8403.
[19] D.J. Gross, Proc. Natl. Acad. Sci. 102 (2005) 9099.
[20] P. Pascual, R. Tarrach, QCD: Renormalization for the Practitioner, in: Lecture Notes in Physics, vol. 194, Springer-Verlag, Berlin, 1984.
[21] R. Tarrach, Nuclear Phys. B 196 (1982) 45.
[22] J.R. Finger, J.E. Mandula, Nuclear Phys. B 199 (1982) 168.
[23] S.L. Adler, A.C. Davis, Nuclear Phys. B 244 (1984) 469.
[24] A.P. Szczepaniak, E.S. Swanson, Phys. Rev. D 65 (2002) 025012.
[25] V. Flambaum, A. Holl, P. Jaikumar, C. Roberts, S. Wright, Few Body Syst. 38 (2006) 31.
[26] J. Ruiz de Elvira, M. Hoferichter, B. Kubis, U.-G. Meißner, J. Phys. G 45 (2018) 024001.
[27] S. Aoki, et al., Eur. Phys. J. C 80 (2020) 113.
[28] Y. Nambu, Phys. Rev. 117 (1960) 648.
[29] J. Goldstone, Nuovo Cim. 19 (1961) 154.
[30] M. Gell-Mann, R.J. Oakes, B. Renner, Phys. Rev. 175 (1968) 2195.
[31] T. Horn, C.D. Roberts, J. Phys. G. 43 (2016) 073001.
[32] Y.-B. Yang, et al., Phys. Rev. D 91 (2015) 074516.
[33] S.J. Brodsky, C.D. Roberts, R. Shrock, P.C. Tandy, Phys. Rev. C 82 (2010) 022201(R).
[34] L. Chang, C.D. Roberts, P.C. Tandy, Phys. Rev. C 85 (2012) 012201(R).
[35] S.J. Brodsky, C.D. Roberts, R. Shrock, P.C. Tandy, Phys. Rev. C 85 (2012) 065202.
[36] V.D. Burkert, C.D. Roberts, Rev. Modern Phys. 91 (2019) 011003.
[37] S.J. Brodsky, et al., Int. J. Mod. Phys. E 124 (2020) 2030006.
[38] D. Carman, K. Joo, V. Mokeev, Few Body Syst. 61 (2020) 29.
[39] M.Y. Barabanov, et al., Prog. Part. Nucl. Phys. 116 (2021) 103835.
[40] A.C. Aguilar, et al., Phys. J. A 55 (2019) 190, [1907.08218].
[41] T. Horn, A. Metz, C. Weiss, Exploring hadron structure with GPDs at EIC: New topics in theory, experiment, interpretation, in: Probing Nucleons

and Nuclei in High Energy Collisions: Dedicated to the Physics of the Electron Ion Collider, 2020, pp. 1–11.
[42] C.D. Roberts, S.M. Schmidt, Eur. Phys. J. ST 229 (2020) 3319.
[43] C.D. Roberts, Symmetry 12 (2020) 1468.
[44] X. Chen, F.-K. Guo, C.D. Roberts, R. Wang, Few Body Syst. 61 (2020) 43.
[45] G.M. Huber, D. Gaskell, et al., Measurement of the pion form factor to high Q 2 , Approved Jefferson Lab 12 GeV Experiment E12-06-101, 2006.
[46] T. Horn, G.M. Huber, et al., Scaling study of the L-T separated pion electroproduction cross section at 11 GeV, Approved Jefferson Lab 12 GeV

Experiment E12-07-105, 2007.
[47] T. Horn, G.M. Huber, P. Markowitz, et al., Studies of the L-T separated kaon electroproduction cross section from 5-11 GeV, Approved Jefferson

Lab 12 GeV Experiment E12-09-011, 2009.
[48] V.A. Petrov, R.A. Ryutin, A.E. Sobol, M.J. Murray, Eur. Phys. J. C 72 (2012) 1886.
[49] C. Keppel, B. Wojtsekhowski, P. King, D. Dutta, J. Annand, J. Zhang, et al., Measurement of tagged deep inelastic scattering (TDIS), approved

Jefferson Lab experiment E12-15-006, 2015.
[50] K. Park, R. Montgomery, T. Horn, et al., Measurement of Kaon structure function through tagged deep inelastic scattering (TDIS), approved

Jefferson Lab experiment C12-15-006A, 2015.
[51] O. Denisov, et al., Letter of intent (draft 2.0): A new QCD facility at the M2 beam line of the CERN SPS, 2018, arXiv:1808.00848 [hep-ex].
[52] R.J. Holt, C.D. Roberts, Rev. Modern Phys. 82 (2010) 2991.
[53] J.C. Taylor, Nuclear Phys. B 33 (1971) 436.
[54] A.A. Slavnov, Theoret. Math. Phys. 10 (1972) 99.
[55] J.S. Schwinger, Phys. Rev. 128 (1962) 2425.
[56] A. Bashir, A. Raya, I. Cloet, C. Roberts, Phys. Rev. C 78 (2008) 055201.
[57] A. Bashir, A. Raya, S. Sanchez-Madrigal, C. Roberts, Few Body Syst. 46 (2009) 229.
58

http://refhub.elsevier.com/S0146-6410(21)00037-5/sb1
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb2
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb3
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb4
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb5
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb6
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb7
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb8
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb9
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb10
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb11
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb12
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb13
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb14
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb15
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb16
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb17
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb18
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb19
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb20
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb21
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb22
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb23
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb24
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb25
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb26
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb27
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb28
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb29
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb30
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb31
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb32
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb33
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb34
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb35
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb36
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb37
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb38
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb39
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb40
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb42
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb43
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb44
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb48
http://arxiv.org/abs/1808.00848
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb52
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb53
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb54
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb55
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb56
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb57


C.D. Roberts, D.G. Richards, T. Horn et al. Progress in Particle and Nuclear Physics 120 (2021) 103883
[58] J. Braun, H. Gies, L. Janssen, D. Roscher, Phys. Rev. D 90 (2014) 036002.
[59] J.M. Cornwall, Phys. Rev. D 26 (1982) 1453.
[60] D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, Phys. Lett. B 742 (2015) 183.
[61] A.C. Aguilar, D. Binosi, J. Papavassiliou, Front. Phys. China 11 (2016) 111203.
[62] M.Q. Huber, Phys. Rep. 879 (2020) 1.
[63] Z.-F. Cui, et al., Chin. Phys. C 44 (2020) 083102.
[64] T. Blum, et al., Phys. Rev. D 93 (2016) 074505.
[65] P.A. Boyle, et al., Phys. Rev. D 93 (2016) 054502.
[66] P.A. Boyle, et al., J. High Energy Phys. 12 (2017) 008.
[67] S. Zafeiropoulos, P. Boucaud, F. De Soto, J. Rodríguez-Quintero, J. Segovia, Phys. Rev. Lett. 122 (2019) 162002.
[68] A. Aguilar, et al., Eur. Phys. J. C 80 (2020) 154.
[69] J.C. Ward, Phys. Rev. 78 (1950) 182.
[70] M. Gell-Mann, F.E. Low, Phys. Rev. 95 (1954) 1300.
[71] A. Deur, S.J. Brodsky, G.F. de Teramond, Prog. Part. Nucl. Phys. 90 (2016) 1.
[72] J.M. Cornwall, J. Papavassiliou, Phys. Rev. D 40 (1989) 3474.
[73] A. Pilaftsis, Nuclear Phys. B 487 (1997) 467.
[74] D. Binosi, J. Papavassiliou, Phys. Rep. 479 (2009) 1.
[75] L.F. Abbott, Nuclear Phys. B 185 (1981) 189.
[76] D. Binosi, C. Mezrag, J. Papavassiliou, C.D. Roberts, J. Rodríguez-Quintero, Phys. Rev. D 96 (2017) 054026.
[77] A. Deur, V. Burkert, J.-P. Chen, W. Korsch, Phys. Lett. B 650 (2007) 244.
[78] A. Deur, V. Burkert, J.-P. Chen, W. Korsch, Phys. Lett. B 665 (2008) 349.
[79] A. Deur, et al., Phys. Rev. D 90 (2014) 012009.
[80] K. Ackerstaff, et al., Phys. Lett. B 404 (1997) 383.
[81] K. Ackerstaff, et al., Phys. Lett. B 444 (1998) 531.
[82] A. Airapetian, et al., Phys. Lett. B 442 (1998) 484.
[83] A. Airapetian, et al., Phys. Rev. Lett. 90 (2003) 092002.
[84] A. Airapetian, et al., Phys. Rev. D 75 (2007) 012007.
[85] J.H. Kim, et al., Phys. Rev. Lett. 81 (1998) 3595.
[86] V. Yu. Alexakhin, et al., Phys. Lett. B 647 (2007) 8.
[87] M.G. Alekseev, et al., Phys. Lett. B 690 (2010) 466.
[88] C. Adolph, et al., Phys. Lett. B 753 (2016) 18.
[89] P.L. Anthony, et al., Phys. Rev. Lett. 71 (1993) 959.
[90] K. Abe, et al., Phys. Rev. Lett. 74 (1995) 346.
[91] K. Abe, et al., Phys. Rev. Lett. 75 (1995) 25.
[92] K. Abe, et al., Phys. Rev. Lett. 76 (1996) 587.
[93] K. Abe, et al., Phys. Lett. B 364 (1995) 61.
[94] P.L. Anthony, et al., Phys. Rev. D 54 (1996) 6620.
[95] K. Abe, et al., Phys. Rev. Lett. 79 (1997) 26.
[96] K. Abe, et al., Phys. Lett. B 404 (1997) 377.
[97] K. Abe, et al., Phys. Lett. B 405 (1997) 180.
[98] K. Abe, et al., Phys. Rev. D 58 (1998) 112003.
[99] P.L. Anthony, et al., Lett. B 458 (1999) 529.

[100] P.L. Anthony, et al., Phys. Lett. B 463 (1999) 339.
[101] P.L. Anthony, et al., Phys. Lett. B 493 (2000) 19.
[102] P.L. Anthony, et al., Phys. Lett. B 553 (2003) 18.
[103] Z.-F. Cui, et al., Eur. Phys. J. A (Lett.) 57 (2021) 5.
[104] Z.-F. Cui, et al., Eur. Phys. J. C 80 (2020) 1064.
[105] J.D. Bjorken, Phys. Rev. 148 (1966) 1467.
[106] J.D. Bjorken, Phys. Rev. D 1 (1970) 1376.
[107] G. Grunberg, Phys. Rev. D 29 (1984) 2315.
[108] Y.L. Dokshitzer, Perturbative QCD theory (includes our knowledge of α(s)) - hep-ph/9812252, in: High-energy Physics. Proceedings, 29th

International Conference, ICHEP’98, Vancouver, Canada, July 23-29, 1998, Vol. 1, 2, 1998, pp. 305–324.
[109] G. Prosperi, M. Raciti, C. Simolo, Prog. Part. Nucl. Phys. 58 (2007) 387.
[110] S.J. Brodsky, G.F. de Teramond, H.G. Dosch, Light-front holography and supersymmetric conformal algebra: A novel approach to hadron

spectroscopy, structure, and dynamics, 2020, arXiv:2004.07756 [hep-ph].
[111] E. Rutherford, Phil. Mag. xxxvii (1919) 537.
[112] E. Rutherford, Phil. Mag. xxxvii (1919) 562.
[113] E. Rutherford, Phil. Mag. xxxvii (1919) 571.
[114] E. Rutherford, Phil. Mag. xxxvii (1919) 581.
[115] J. Chadwick, Nature 129 (1932) 312.
[116] C.M.G. Lattes, H. Muirhead, G.P.S. Occhialini, C.F. Powell, Nature 159 (1947) 694.
[117] G.D. Rochester, C.C. Butler, Nature 160 (1947) 855.
[118] M. Gell-Mann, Phys. Lett. 8 (1964) 214.
[119] G. Zweig, An SU(3) Model for Strong Interaction Symmetry and Its Breaking. Parts 1 and 2, CERN Reports No. 8182/TH. 401 and No. 8419/TH.

412, 1964.
[120] M.M. Giannini, E. Santopinto, Chin. J. Phys. 53 (2015) 020301.
[121] W. Plessas, Internat. J. Modern Phys. A 30 (2015) 1530013.
[122] G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, C.S. Fischer, Prog. Part. Nucl. Phys. 91 (2016) 1.
[123] K.D. Lane, Phys. Rev. D 10 (1974) 2605.
[124] H.D. Politzer, Nuclear Phys. B 117 (1976) 397.
[125] C.S. Fischer, Prog. Part. Nucl. Phys. 105 (2019) 1.
[126] S.-X. Qin, C.D. Roberts, Chin. Phys. Lett. 37 (2020) 121201.
[127] J.I. Skullerud, A.G. Williams, Phys. Rev. D 63 (2001) 054508.
[128] J. Zhang, P.J. Moran, P.O. Bowman, D.B. Leinweber, A.G. Williams, Phys. Rev. D 80 (2009) 074503.

[129] A. Aguilar, J. Cardona, M. Ferreira, J. Papavassiliou, Phys. Rev. D 98 (2018) 014002.

59

http://refhub.elsevier.com/S0146-6410(21)00037-5/sb58
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb59
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb60
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb61
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb62
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb63
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb64
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb65
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb66
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb67
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb68
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb69
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb70
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb71
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb72
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb73
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb74
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb75
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb76
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb77
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb78
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb79
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb80
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb81
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb82
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb83
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb84
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb85
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb86
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb87
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb88
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb89
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb90
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb91
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb92
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb93
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb94
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb95
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb96
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb97
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb98
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb99
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb100
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb101
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb102
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb103
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb104
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb105
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb106
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb107
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb109
http://arxiv.org/abs/2004.07756
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb111
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb112
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb113
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb114
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb115
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb116
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb117
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb118
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb119
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb119
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb119
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb120
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb121
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb122
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb123
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb124
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb125
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb126
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb127
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb128
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb129


C.D. Roberts, D.G. Richards, T. Horn et al. Progress in Particle and Nuclear Physics 120 (2021) 103883
[130] O. Oliveira, P.J. Silva, J.-I. Skullerud, A. Sternbeck, Phys. Rev. D 99 (2019) 094506.
[131] F. Gao, J.M. Pawlowski, Phys. Rev. D 102 (2020) 034027.
[132] Y.-B. Yang, J. Liang, Z. Liu, P. Sun, PoS LATTICE2019, 2020, 001.
[133] Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122 (1961) 345.
[134] Y. Nambu, AIP Conf. Proc. 1388 (2011) 86.
[135] D. Binosi, L. Chang, J. Papavassiliou, S.-X. Qin, C.D. Roberts, Phys. Rev. D 95 (2017) 031501(R).
[136] C.D. Roberts, J. Phys. Conf. Ser. 630 (2015) 012051.
[137] P. Jain, H.J. Munczek, Phys. Rev. D 48 (1993) 5403.
[138] M.A. Ivanov, Yu.L. Kalinovsky, C.D. Roberts, Phys. Rev. D 60 (1999) 034018.
[139] R. Williams, C. Fischer, M. Pennington, Phys. Lett. B 645 (2007) 167.
[140] F.E. Serna, C. Chen, B. El-Bennich, Phys. Rev. D 99 (2019) 094027.
[141] L.X. Gutiérrez-Guerrero, A. Bashir, I.C. Cloet, C.D. Roberts, Phys. Rev. C 81 (2010) 065202.
[142] S.-X. Qin, C.D. Roberts, S.M. Schmidt, Few Body Syst. 60 (2019) 26.
[143] P.-L. Yin, et al., Phys. Rev. D 100 (2019) 034008.
[144] L. Gutiérrez-Guerrero, A. Bashir, M.A. Bedolla, E. Santopinto, Phys. Rev. D 100 (2019) 114032.
[145] G.A. Christos, Phys. Rep. 116 (1984) 251.
[146] M.S. Bhagwat, L. Chang, Y.-X. Liu, C.D. Roberts, P.C. Tandy, Phys. Rev. C 76 (2007) 045203.
[147] P. Maris, C.D. Roberts, Phys. Rev. C 56 (1997) 3369.
[148] S.-X. Qin, C.D. Roberts, S.M. Schmidt, Phys. Lett. B 733 (2014) 202.
[149] A. Höll, A. Krassnigg, C. Roberts, Phys. Rev. C 70 (2004) 042203.
[150] A. Höll, A. Krassnigg, P. Maris, C. Roberts, S. Wright, Phys. Rev. C 71 (2005) 065204.
[151] A. Ballon-Bayona, G.a. Krein, C. Miller, Phys. Rev. D 91 (2015) 065024.
[152] E.E. Salpeter, H.A. Bethe, Phys. Rev. 84 (1951) 1232.
[153] N. Nakanishi, Progr. Theoret. Phys. Suppl. 43 (1969) 1.
[154] R. Delbourgo, M.D. Scadron, J. Phys. G 5 (1979) 1621.
[155] C.D. Roberts, Few Body Syst. 58 (2017) 5.
[156] H.J. Munczek, Phys. Rev. D 52 (1995) 4736.
[157] A. Bender, C.D. Roberts, L. von Smekal, Phys. Lett. B 380 (1996) 7.
[158] F. Coester, Prog. Part. Nucl. Phys. 29 (1992) 1.
[159] S.J. Brodsky, H.-C. Pauli, S.S. Pinsky, Phys. Rep. 301 (1998) 299.
[160] S.J. Brodsky, G.P. Lepage, Adv. Ser. Direct. High Energy Phys. 5 (1989) 93.
[161] V.F. Weisskopf, Phys. Today 13 (1960) 24.
[162] S. Drell, T.-M. Yan, Phys. Rev. Lett. 25 (1970) 316; Phys. Rev. Lett. 25 (1970) 902 (erratum).
[163] T. Heinzl, Lecture Notes in Phys. 572 (2001) 55.
[164] J. Hiller, Prog. Part. Nucl. Phys. 90 (2016) 75.
[165] G. ’t Hooft, Nuclear Phys. B 75 (1974) 461.
[166] L. Chang, et al., Phys. Rev. Lett. 110 (2013) 132001.
[167] G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22 (1980) 2157.
[168] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1987.
[169] S.-S. Xu, L. Chang, C.D. Roberts, H.-S. Zong, Phys. Rev. D 97 (2018) 094014.
[170] W. Bentz, T. Hama, T. Matsuki, K. Yazaki, Nuclear Phys. A 651 (1999) 143.
[171] A.E. Dorokhov, L. Tomio, Phys. Rev. D 62 (2000) 014016.
[172] R. Davidson, E. Ruiz Arriola, Acta Phys. Polon. B 33 (2002) 1791.
[173] S. i. Nam, Phys. Rev. D 86 (2012) 074005.
[174] J. Lan, C. Mondal, S. Jia, X. Zhao, J.P. Vary, Phys. Rev. D 101 (2020) 034024.
[175] Y.L. Dokshitzer, Sov. Phys.—JETP 46 (1977) 641.
[176] V. Gribov, L. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438.
[177] L.N. Lipatov, Sov. J. Nucl. Phys. 20 (1975) 94.
[178] G. Altarelli, G. Parisi, Nuclear Phys. B 126 (1977) 298.
[179] G.P. Lepage, S.J. Brodsky, Phys. Lett. B 87 (1979) 359.
[180] A.V. Efremov, A.V. Radyushkin, Phys. Lett. B 94 (1980) 245.
[181] V.L. Chernyak, S.I. Eidelman, Prog. Part. Nucl. Phys. 80 (2015) 1.
[182] N. Stefanis, Phys. Rev. D 102 (2020) 034022.
[183] W. Qian, S. Jia, Y. Li, J.P. Vary, Phys. Rev. C 102 (2020) 055207.
[184] L. Chang, C.D. Roberts, Phys. Rev. Lett. 103 (2009) 081601.
[185] C.S. Fischer, R. Williams, Phys. Rev. Lett. 103 (2009) 122001.
[186] L. Chang, C.D. Roberts, Phys. Rev. C 85 (2012) 052201(R).
[187] R. Williams, C.S. Fischer, W. Heupel, Phys. Rev. D 93 (2016) 034026.
[188] D. Binosi, L. Chang, J. Papavassiliou, S.-X. Qin, C.D. Roberts, Phys. Rev. D 93 (2016) 096010.
[189] S.-X. Qin, C.D. Roberts, Chin. Phys. Lett. Express 38 (2021) 071201.
[190] S.J. Brodsky, G.F. de Teramond, Phys. Rev. Lett. 96 (2006) 201601.
[191] K. Raya, et al., Phys. Rev. D 93 (2016) 074017.
[192] J.-H. Zhang, J.-W. Chen, X. Ji, L. Jin, H.-W. Lin, Phys. Rev. D 95 (2017) 094514.
[193] R. Zhang, C. Honkala, H.-W. Lin, J.-W. Chen, Phys. Rev. D 102 (2020) 094519.
[194] J. Segovia, et al., Phys. Lett. B 731 (2014) 13.
[195] V.M. Braun, et al., Phys. Rev. D 92 (2015) 014504.
[196] G.S. Bali, et al., J. High Energy Phys. 08 (2019) 065; J. High Energy Phys. 11 (2020) 037 (addendum).
[197] M. Ding, F. Gao, L. Chang, Y.-X. Liu, C.D. Roberts, Phys. Lett. B 753 (2016) 330.
[198] M. Chen, M. Ding, L. Chang, C.D. Roberts, Phys. Rev. D 98 (2018) 091505(R).
[199] M. Ding, et al., Phys. Rev. D 99 (2019) 014014.
[200] V. Chernyak, A. Zhitnitsky, I. Zhitnitsky, Sov. J. Nucl. Phys. 38 (1983) 775.
[201] R. Arthur, et al., Phys. Rev. D 83 (2011) 074505.
[202] C. Shi, et al., Phys. Lett. B 738 (2014) 512.
[203] C. Shi, et al., Phys. Rev. D 92 (2015) 014035.
[204] F. Gao, L. Chang, Y.-X. Liu, C.D. Roberts, P.C. Tandy, Phys. Rev. D 96 (2017) 034024.
60

http://refhub.elsevier.com/S0146-6410(21)00037-5/sb130
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb131
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb133
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb134
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb135
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb136
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb137
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb138
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb139
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb140
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb141
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb142
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb143
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb144
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb145
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb146
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb147
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb148
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb149
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb150
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb151
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb152
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb153
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb154
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb155
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb156
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb157
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb158
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb159
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb160
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb161
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb162
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb162
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb163
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb164
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb165
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb166
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb167
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb168
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb169
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb170
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb171
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb172
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb173
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb174
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb175
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb176
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb177
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb178
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb179
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb180
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb181
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb182
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb183
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb184
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb185
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb186
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb187
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb188
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb189
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb190
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb191
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb192
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb193
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb194
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb195
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb196
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb196
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb197
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb198
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb199
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb200
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb201
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb202
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb203
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb204


C.D. Roberts, D.G. Richards, T. Horn et al. Progress in Particle and Nuclear Physics 120 (2021) 103883
[205] J.-H. Zhang, et al., Nuclear Phys. B 939 (2019) 429.
[206] D. Binosi, et al., Phys. Lett. B 790 (2019) 257.
[207] S. Tang, Y. Li, P. Maris, J.P. Vary, Eur. Phys. J. C 80 (2020) 522.
[208] F.E. Serna, R.C. da Silveira, J. Cobos-Martínez, B. El-Bennich, E. Rojas, Eur. Phys. J. C 80 (2020) 955.
[209] M. Neubert, Phys. Rep. 245 (1994) 259.
[210] J. Gronberg, et al., Phys. Rev. D 57 (1998) 33 [hep-ex/9707031].
[211] B. Aubert, et al., Phys. Rev. D 74 (2006) 012002.
[212] P. del Amo Sanchez, et al., Phys. Rev. D 84 (2011) 052001.
[213] J. Lees, et al., Phys. Rev. D 98 (2018) 112002.
[214] S.S. Agaev, V.M. Braun, N. Offen, F.A. Porkert, A. Schäfer, Phys. Rev. D 90 (2014) 074019.
[215] M. Ahmady, C. Mondal, R. Sandapen, Phys. Rev. D 98 (2018) 034010.
[216] Y. Ji, A. Vladimirov, Eur. Phys. J. C 79 (2019) 319.
[217] H.J. Behrend, et al., Z. Phys. C 49 (1991) 401.
[218] B. Aubert, et al., Phys. Rev. D 80 (2009) 052002.
[219] S. Uehara, et al., Phys. Rev. D 86 (2012) 092007.
[220] N.G. Stefanis, A.P. Bakulev, S.V. Mikhailov, A.V. Pimikov, Phys. Rev. D 87 (2013) 094025.
[221] S.N. Nedelko, V.E. Voronin, Phys. Rev. D 95 (2017) 074038.
[222] G. Eichmann, C.S. Fischer, E. Weil, R. Williams, Phys. Lett. B 774 (2017) 425.
[223] H.-M. Choi, C.-R. Ji, Phys. Rev. D 102 (2020) 036005.
[224] K. Raya, M. Ding, A. Bashir, L. Chang, C.D. Roberts, Phys. Rev. D 95 (2017) 074014.
[225] A.J. Bevan, et al., Eur. Phys. J. C 74 (2014) 3026.
[226] W. Altmannshofer, et al., Prog. Theor. Exp. Phys. 2019 (2019) 123C01; Prog. Theor. Exp. Phys. 2020 (2020) 029201 (erratum).
[227] G.R. Farrar, D.R. Jackson, Phys. Rev. Lett. 43 (1979) 246.
[228] E.B. Dally, et al., Phys. Rev. D 24 (1981) 1718.
[229] E.B. Dally, et al., Phys. Rev. Lett. 48 (1982) 375.
[230] S.R. Amendolia, et al., Phys. Lett. B 146 (1984) 116.
[231] S.R. Amendolia, et al., Nuclear Phys. B 277 (1986) 168.
[232] J. Volmer, et al., Phys. Rev. Lett. 86 (2001) 1713.
[233] T. Horn, et al., Phys. Rev. Lett. 97 (2006) 192001.
[234] V. Tadevosyan, et al., Phys. Rev. C 75 (2007) 055205.
[235] T. Horn, et al., Phys. Rev. C 78 (2008) 058201.
[236] G.M. Huber, et al., Phys. Rev. C 78 (2008) 045203.
[237] H.P. Blok, et al., Phys. Rev. C 78 (2008) 045202.
[238] Jefferson Lab: Pion Form Factor, https://www.jlab.org/research/pion_form. (Accessed 25 March 2021).
[239] J. Dudek, et al., Eur. Phys. J. A 48 (2012) 187.
[240] P. Maris, C.D. Roberts, Phys. Rev. C 58 (1998) 3659.
[241] L. Chang, I.C. Cloet, C.D. Roberts, S.M. Schmidt, P.C. Tandy, Phys. Rev. Lett. 111 (2013) 141802.
[242] A.J. Chambers, et al., Phys. Rev. D 96 (2017) 114509.
[243] J. Koponen, A.C. Zimermmane-Santos, C.T.H. Davies, G.P. Lepage, A.T. Lytle, Phys. Rev. D 96 (2017) 054501.
[244] M. Carmignotto, et al., Phys. Rev. C 97 (2018) 025204.
[245] W. Molzon, et al., Phys. Rev. Lett. 41 (1978) 1213.
[246] K.K. Seth, S. Dobbs, A. Tomaradze, T. Xiao, G. Bonvicini, Phys. Lett. B 730 (2014) 332.
[247] K.K. Seth, et al., Rev. Lett. 110 (2013) 022002 [1210.1596].
[248] C. Chen, et al., Phys. Rev. C 87 (2013) 045207.
[249] N. Mecholsky, et al., Phys. Rev. C 96 (2017) 065207; Phys. Rev. C 99 (2019) 039901 (addendum).
[250] C. Davies, J. Koponen, P.G. Lepage, A.T. Lytle, A.C. Zimermmane-Santos, PoS LATTICE2018, 2018, p. 298.
[251] L. Frankfurt, G. Miller, M. Strikman, Phys. Lett. B 304 (1993) 1.
[252] E. Aitala, et al., Phys. Rev. Lett. 86 (2001) 4768.
[253] V.M. Braun, D. Ivanov, A. Schafer, L. Szymanowski, Phys. Lett. B 509 (2001) 43.
[254] V. Chernyak, Phys. Lett. B 516 (2001) 116.
[255] A.P. Bakulev, S. Mikhailov, N. Stefanis, Phys. Lett. B 578 (2004) 91.
[256] R.L. Jaffe, Deep inelastic scattering with application to nuclear targets, 1985, preprint no. MIT-CTP-1261.
[257] J.D. Bjorken, Phys. Rev. 179 (1969) 1547.
[258] L. Chang, et al., Phys. Lett. B 737 (2014) 23.
[259] M. Ding, et al., Chin. Phys. C 44 (2020) 031002.
[260] M. Ding, et al., Phys. Rev. D 101 (2020) 054014.
[261] P. Bicudo, Phys. Rev. C 67 (2003) 035201.
[262] P. Bicudo, et al., Phys. Rev. D 65 (2002) 076008.
[263] S.R. Cotanch, P. Maris, Phys. Rev. D 66 (2002) 116010.
[264] S.R. Cotanch, P. Maris, Phys. Rev. D 68 (2003) 036006.
[265] G. Eichmann, C.S. Fischer, Phys. Rev. D 87 (2013) 036006.
[266] G. Eichmann, C.S. Fischer, W. Heupel, Phys. Rev. D 92 (2015) 056006.
[267] R.L. Jaffe, G.G. Ross, Phys. Lett. B 93 (1980) 313.
[268] K. Higashijima, Phys. Rev. D 29 (1984) 1228.
[269] V. Miransky, Sov. J. Nucl. Phys. 38 (1983) 280.
[270] R.M. Davidson, E. Ruiz Arriola, Phys. Lett. B 348 (1995) 163.
[271] A. Kock, Y. Liu, I. Zahed, Phys. Rev. D 102 (2020) 014039.
[272] W. Broniowski, E. Ruiz Arriola, Phys. Lett. B 810 (2020) 135803.
[273] J.-L. Zhang, Z.-F. Cui, J. Ping, C.D. Roberts, Eur. Phys. J. C 81 (2021) 6.
[274] Z.F. Ezawa, Nuovo Cimento A 23 (1974) 271.
[275] G.R. Farrar, D.R. Jackson, Phys. Rev. Lett. 35 (1975) 1416.
[276] E.L. Berger, S.J. Brodsky, Phys. Rev. Lett. 42 (1979) 940.
[277] S.J. Brodsky, M. Burkardt, I. Schmidt, Nuclear Phys. B 441 (1995) 197.
[278] F. Yuan, Phys. Rev. D 69 (2004) 051501.
[279] R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and Collider Physics, Cambridge University Press, Cambridge, UK, 2011.
61

http://refhub.elsevier.com/S0146-6410(21)00037-5/sb205
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb206
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb207
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb208
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb209
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb210
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb211
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb212
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb213
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb214
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb215
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb216
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb217
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb218
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb219
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb220
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb221
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb222
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb223
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb224
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb225
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb226
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb226
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb227
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb228
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb229
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb230
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb231
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb232
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb233
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb234
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb235
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb236
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb237
https://www.jlab.org/research/pion_form
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb239
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb240
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb241
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb242
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb243
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb244
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb245
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb246
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb247
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb248
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb249
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb249
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb251
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb252
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb253
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb254
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb255
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb256
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb257
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb258
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb259
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb260
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb261
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb262
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb263
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb264
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb265
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb266
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb267
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb268
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb269
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb270
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb271
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb272
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb273
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb274
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb275
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb276
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb277
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb278
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb279


C.D. Roberts, D.G. Richards, T. Horn et al. Progress in Particle and Nuclear Physics 120 (2021) 103883
[280] L. Chang, C.D. Roberts, S.M. Schmidt, Phys. Lett. B 727 (2013) 255.
[281] S. Drell, T.-M. Yan, Phys. Rev. Lett. 24 (1970) 181.
[282] G.B. West, Phys. Rev. Lett. 24 (1970) 1206.
[283] Z. Ezawa, Nuclear Phys. B 58 (1973) 295.
[284] P. Landshoff, J. Polkinghorne, Nuclear Phys. B 53 (1973) 473.
[285] R.D. Ball, E.R. Nocera, J. Rojo, Eur. Phys. J. C 76 (2016) 383.
[286] M. Corden, et al., Phys. Lett. B 96 (1980) 417.
[287] J. Badier, et al., Z. Phys. C 18 (1983) 281.
[288] B. Betev, et al., Z. Phys. C 28 (1985) 15.
[289] S. Falciano, et al., Z. Phys. C 31 (1986) 513.
[290] M. Guanziroli, et al., Z. Phys. C 37 (1988) 545.
[291] J. Conway, et al., Phys. Rev. D 39 (1989) 92.
[292] M. Aicher, A. Schäfer, W. Vogelsang, Phys. Rev. Lett. 105 (2010) 252003.
[293] K. Wijesooriya, P.E. Reimer, R.J. Holt, Phys. Rev. C 72 (2005) 065203.
[294] P. Barry, N. Sato, W. Melnitchouk, C.-R. Ji, Phys. Rev. Lett. 121 (2018) 152001.
[295] I. Novikov, et al., Phys. Rev. D 102 (2020) 014040.
[296] C. Han, G. Xie, R. Wang, X. Chen, An analysis of parton distribution functions of the Pion and the Kaon with the maximum entropy input,

2020, arXiv:2010.14284 [hep-ph].
[297] M. Aicher, A. Schafer, W. Vogelsang, Phys. Rev. D 83 (2011) 114023.
[298] M. Bonvini, et al., J. High Energy Phys. 09 (2015) 191.
[299] D. Westmark, J.F. Owens, Phys. Rev. D 95 (2017) 056024.
[300] W. Vogelsang, Soft-gluon resummation and the pion parton distribution function, 06.02-05, CFNS Workshop Series: Pion and Kaon Structure

Functions at the EIC, 2020.
[301] P. Barry, JAM pion PDF analysis including resummation, 06.02-05, CFNS Workshop Series: Pion and Kaon Structure Functions at the EIC, 2020.
[302] N. Sato, Lattice parton distributions and global QCD analysis, 11.30-12.04, Workshop Series: Perceiving the Emergence of Hadron Mass through

AMBER@CERN - IV, 2020.
[303] T. Nguyen, A. Bashir, C.D. Roberts, P.C. Tandy, Phys. Rev. C 83 (2011) 062201.
[304] S. i. Nam, C.-W. Kao, Phys. Rev. D 85 (2012) 094023.
[305] T. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, J. Phys. G 42 (2015) 095005.
[306] G.F. de Teramond, et al., Phys. Rev. Lett. 120 (2018) 182001.
[307] L. Chang, K. Raya, X. Wang, Chin. Phys. C 44 (2020) 114105.
[308] C. Chen, L. Chang, C.D. Roberts, S. Wan, H.-S. Zong, Phys. Rev. D 93 (2016) 074021.
[309] L. Schlessinger, C. Schwartz, Phys. Rev. Lett. 16 (1966) 1173.
[310] L. Schlessinger, Phys. Rev. 167 (1968) 1411.
[311] R.A. Tripolt, I. Haritan, J. Wambach, N. Moiseyev, Phys. Lett. B 774 (2017) 411.
[312] C. Chen, et al., Phys. Rev. D 99 (2019) 034013.
[313] D. Binosi, R.-A. Tripolt, Phys. Lett. B 801 (2020) 135171.
[314] Y.-Z. Xu, et al., Phys. Rev. D 100 (2019) 114038.
[315] Z.-Q. Yao, et al., Phys. Rev. D 102 (2020) 014007.
[316] M.Q. Huber, C.S. Fischer, H. Sanchis-Alepuz, Eur. Phys. J. C 80 (2020) 1077.
[317] Y.L. Dokshitzer, D.E. Kharzeev, Ann. Rev. Nucl. Part. Sci. 54 (2004) 487.
[318] P. Hoyer, Bound states and QCD, 2018, arXiv:1807.05598 [hep-ph].
[319] Q.-W. Wang, S.-X. Qin, C.D. Roberts, S.M. Schmidt, Phys. Rev. D 98 (2018) 054019.
[320] S.-S. Xu, et al., Eur. Phys. J. A (Lett.) 55 (2019) 113.
[321] E.V. Souza, et al., Eur. Phys. J. A (Lett.) 56 (2020) 25.
[322] N. Chouika, C. Mezrag, H. Moutarde, J. Rodríguez-Quintero, Phys. Lett. B 780 (2018) 287.
[323] R.S. Sufian, et al., Phys. Rev. D 99 (2019) 074507.
[324] B. Joó, et al., Phys. Rev. D 100 (2019) 114512.
[325] X. Gao, et al., Phys. Rev. D 102 (2020) 094513.
[326] M. Hecht, C.D. Roberts, S. Schmidt, Phys. Rev. C 63 (2001) 025213.
[327] A. Courtoy, P.M. Nadolsky, Phys. Rev. D 103 (2021) 054029.
[328] J. Lan, et al., Hadron Spectroscopy and Structure, 2000, pp. 581–585, arXiv:2003.12249 [hep-ph].
[329] M. Glück, E. Reya, I. Schienbein, Eur. Phys. J. C 10 (1999) 313.
[330] P. Sutton, A.D. Martin, R. Roberts, W. Stirling, Phys. Rev. D 45 (1992) 2349.
[331] W.-C. Chang, J.-C. Peng, S. Platchkov, T. Sawada, Phys. Rev. D 102 (2020) 054024.
[332] J. Londergan, G. Liu, E. Rodionov, A.W. Thomas, Phys. Lett. B 361 (1995) 110.
[333] G. Altarelli, Phys. Rep. 81 (1982) 1.
[334] H. Georgi, H. Politzer, Phys. Rev. D 9 (1974) 416.
[335] D. Gross, F. Wilczek, Phys. Rev. D 9 (1974) 980.
[336] H. Politzer, Phys. Rep. 14 (1974) 129.
[337] L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rep. 100 (1983) 1.
[338] A.H. Mueller, J. w. Qiu, Nuclear Phys. B 268 (1986) 427.
[339] Y.V. Kovchegov, Phys. Rev. D 60 (1999) 034008.
[340] W. Zhu, Z. Shen, J. Ruan, Nuclear Phys. B 911 (2016) 1.
[341] J. Badier, et al., Phys. Lett. B 93 (1980) 354.
[342] M. Alberg, J. Tibbals, Phys. Lett. B 709 (2012) 370.
[343] J.-C. Peng, W.-C. Chang, S. Platchkov, T. Sawada, Valence quark and gluon distributions of kaon from J/Ψ production, 2017, arXiv:1711.

00839 [hep-ph].
[344] H.-W. Lin, J.-W. Chen, Z. Fan, J.-H. Zhang, R. Zhang, Phys. Rev. D 103 (2021) 014516.
[345] C.D. Roberts, AAPPS Bulletin 31 (2021) 6.
[346] L.D. Landau, I. Pomeranchuk, Dokl. Akad. Nauk Ser. Fiz. 92 (1953) 535.
[347] A.B. Migdal, Phys. Rev. 103 (1956) 1811.
[348] L. Theussl, S. Noguera, V. Vento, Eur. Phys. J. A 20 (2004) 483.
[349] D. Brömmel, et al., Phys. Rev. Lett. 101 (2008) 122001.
[350] D. Brömmel, Pion Structure from the Lattice (Ph.d. thesis), Regensburg U., 2007.
62

http://refhub.elsevier.com/S0146-6410(21)00037-5/sb280
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb281
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb282
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb283
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb284
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb285
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb286
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb287
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb288
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb289
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb290
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb291
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb292
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb293
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb294
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb295
http://arxiv.org/abs/2010.14284
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb297
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb298
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb299
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb303
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb304
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb305
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb306
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb307
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb308
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb309
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb310
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb311
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb312
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb313
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb314
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb315
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb316
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb317
http://arxiv.org/abs/1807.05598
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb319
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb320
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb321
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb322
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb323
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb324
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb325
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb326
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb327
http://arxiv.org/abs/2003.12249
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb329
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb330
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb331
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb332
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb333
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb334
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb335
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb336
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb337
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb338
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb339
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb340
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb341
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb342
http://arxiv.org/abs/1711.00839
http://arxiv.org/abs/1711.00839
http://arxiv.org/abs/1711.00839
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb344
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb345
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb346
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb347
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb348
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb349
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb350


C.D. Roberts, D.G. Richards, T. Horn et al. Progress in Particle and Nuclear Physics 120 (2021) 103883
[351] W. Broniowski, E. Ruiz Arriola, K. Golec-Biernat, Phys. Rev. D 77 (2008) 034023.
[352] S. i. Nam, H.-C. Kim, Phys. Lett. B 700 (2011) 305.
[353] S. i. Nam, H.-C. Kim, Phys. Lett. B 707 (2012) 546.
[354] A.E. Dorokhov, W. Broniowski, E. Ruiz Arriola, Phys. Rev. D 84 (2011) 074015.
[355] M. Carmignotto, T. Horn, G.A. Miller, Phys. Rev. C 90 (2014) 025211.
[356] C. Mezrag, et al., Phys. Lett. B 741 (2015) 190.
[357] H.-D. Son, S. i. Nam, H.-C. Kim, Phys. Lett. B 747 (2015) 460.
[358] M. Engelhardt, P. Hägler, B. Musch, J. Negele, A. Schäfer, Phys. Rev. D 93 (2016) 054501.
[359] C. Mezrag, H. Moutarde, J. Rodriguez-Quintero, Few Body Syst. 57 (2016) 729.
[360] C. Fanelli, E. Pace, G. Romanelli, G. Salmè, M. Salmistraro, Eur. Phys. J. C 76 (2016) 253.
[361] C. Lorcé, B. Pasquini, P. Schweitzer, Eur. Phys. J. C 76 (2016) 415.
[362] M. Ahmady, C. Mondal, R. Sandapen, Phys. Rev. D 100 (2019) 054005.
[363] S. Kaur, N. Kumar, J. Lan, C. Mondal, H. Dahiya, Phys. Rev. D 102 (2020) 014021.
[364] S. Meissner, A. Metz, M. Schlegel, K. Goeke, J. High Energy Phys. 08 (2008) 038.
[365] M.V. Polyakov, P. Schweitzer, Internat. J. Modern Phys. A 33 (2018) 1830025.
[366] M.V. Polyakov, C. Weiss, Phys. Rev. D 60 (1999) 114017.
[367] M. Polyakov, Phys. Lett. B 555 (2003) 57.
[368] V. Burkert, L. Elouadrhiri, F. Girod, Nature 557 (2018) 396.
[369] K. Kumerički, Nature 570 (2019) E1.
[370] H. Moutarde, P. Sznajder, J. Wagner, Eur. Phys. J. C 79 (2019) 614.
[371] F. Özel, P. Freire, Ann. Rev. Astron. Astrophys. 54 (2016) 401.
[372] J.-L. Zhang, et al., Phys. Lett. B 815 (2021) 136158.
[373] B. Berthou, et al., Eur. Phys. J. C 78 (2018) 478.
[374] R.D. Field, R.P. Feynman, Nuclear Phys. B 136 (1978) 1.
[375] I.C. Cloet, C.D. Roberts, Prog. Part. Nucl. Phys. 77 (2014) 1.
[376] V.N. Gribov, L.N. Lipatov, Phys. Lett. B 37 (1971) 78.
[377] K.G. Wilson, Phys. Rev. D 10 (1974) 2445.
[378] H.J. Rothe, Lattice Gauge Theories: An Introduction, World Scientific, 1992.
[379] I. Montvay, G. Munster, Quantum Fields on a Lattice, Cambridge University Press, 1997.
[380] T. DeGrand, C.E. Detar, Lattice Methods for Quantum Chromodynamics, World Scientific, 2006.
[381] C. Gattringer, C.B. Lang, Lecture Notes in Phys. 788 (2010) 1.
[382] S. Aoki, et al., Eur. Phys. J. C 77 (2017) 112.
[383] G. Martinelli, C.T. Sachrajda, Nuclear Phys. B 306 (1988) 865.
[384] T. Draper, R. Woloshyn, W. Wilcox, K.-F. Liu, Nuclear Phys. B 318 (1989) 319.
[385] F.D. Bonnet, R.G. Edwards, G.T. Fleming, R. Lewis, D.G. Richards, Phys. Rev. D 72 (2005) 054506.
[386] D. Brömmel, et al., Eur. Phys. J. C 51 (2007) 335.
[387] R. Frezzotti, V. Lubicz, S. Simula, Phys. Rev. D 79 (2009) 074506.
[388] S. Aoki, et al., Phys. Rev. D 80 (2009) 034508.
[389] O.H. Nguyen, K.-I. Ishikawa, A. Ukawa, N. Ukita, J. High Energy Phys. 04 (2011) 122.
[390] C. Alexandrou, et al., Phys. Rev. D 97 (2018) 014508.
[391] G. Wang, J. Liang, T. Draper, K.-F. Liu, Y.-B. Yang, Lattice calculation of pion form factor with overlap Fermions, 2020, arXiv:2006.05431 [hep-ph].
[392] R.J. Hill, G. Paz, Phys. Rev. D 82 (2010) 113005.
[393] Z. Epstein, G. Paz, J. Roy, Phys. Rev. D 90 (2014) 074027.
[394] L. Lellouch, et al., Nuclear Phys. B 444 (1995) 401.
[395] U. Aglietti, G. Martinelli, C.T. Sachrajda, Phys. Lett. B 324 (1994) 85.
[396] C. Bouchard, C.C. Chang, K. Orginos, D. Richards, PoS LATTICE2016, 2016, 170.
[397] X. Feng, Y. Fu, L.-C. Jin, Phys. Rev. D 101 (2020) 051502.
[398] H.B. Meyer, Phys. Rev. Lett. 107 (2011) 072002.
[399] X. Feng, S. Aoki, S. Hashimoto, T. Kaneko, Phys. Rev. D 91 (2015) 054504.
[400] C. Andersen, J. Bulava, B. Hörz, C. Morningstar, Nuclear Phys. B 939 (2019) 145.
[401] F. Erben, J.R. Green, D. Mohler, H. Wittig, Phys. Rev. D 101 (2020) 054504.
[402] T. Aoyama, et al., Phys. Rep. 887 (2020) 1.
[403] W. Detmold, W. Melnitchouk, A.W. Thomas, Modern Phys. Lett. A 18 (2003) 2681.
[404] M. Hecht, C.D. Roberts, S. Schmidt, Workshop on Lepton Scattering, Hadrons and QCD, World Scientific, 2001, pp. 219–227.
[405] X. Ji, Phys. Rev. Lett. 110 (2013) 262002.
[406] X. Ji, Sci. China Phys. Mech. Astron. 57 (2014) 1407.
[407] A. Radyushkin, Phys. Rev. D 96 (2017) 034025.
[408] Y.-Q. Ma, J.-W. Qiu, Phys. Rev. Lett. 120 (2018) 022003.
[409] X. Ji, J.-H. Zhang, Phys. Rev. D 92 (2015) 034006.
[410] I.W. Stewart, Y. Zhao, Phys. Rev. D 97 (2018) 054512.
[411] K. Orginos, A. Radyushkin, J. Karpie, S. Zafeiropoulos, Phys. Rev. D 96 (2017) 094503 [1706.05373].
[412] M. Constantinou, H. Panagopoulos, Phys. Rev. D 96 (2017) 054506.
[413] J. Green, K. Jansen, F. Steffens, Phys. Rev. Lett. 121 (2018) 022004.
[414] C. Monahan, Phys. Rev. D 97 (2018) 054507.
[415] T. Izubuchi, X. Ji, L. Jin, I.W. Stewart, Y. Zhao, Phys. Rev. D 98 (2018) 056004.
[416] H.-W. Lin, et al., Prog. Part. Nucl. Phys. 100 (2018) 107.
[417] T. Hobbs, Phys. Rev. D 97 (2018) 054028.
[418] B. Ioffe, Phys. Lett. B 30 (1969) 123.
[419] V. Braun, P. Gornicki, L. Mankiewicz, Phys. Rev. D 51 (1995) 6036.
[420] J.-H. Zhang, et al., Phys. Rev. D 100 (2019) 034505.
[421] J.-W. Chen, et al., Lattice calculation of parton distribution function from lamet at physical pion mass with large nucleon momentum, 2018,

arXiv:1803.04393 [hep-lat].
[422] T. Izubuchi, et al., Phys. Rev. D 100 (2019) 034516.
[423] R.S. Sufian, et al., Phys. Rev. D 102 (2020) 054508.
[424] J. Karpie, K. Orginos, A. Rothkopf, S. Zafeiropoulos, J. High Energy Phys. 04 (2019) 057.
63

http://refhub.elsevier.com/S0146-6410(21)00037-5/sb351
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb352
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb353
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb354
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb355
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb356
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb357
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb358
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb359
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb360
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb361
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb362
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb363
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb364
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb365
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb366
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb367
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb368
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb369
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb370
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb371
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb372
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb373
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb374
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb375
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb376
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb377
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb378
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb379
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb380
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb381
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb382
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb383
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb384
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb385
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb386
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb387
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb388
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb389
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb390
http://arxiv.org/abs/2006.05431
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb392
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb393
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb394
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb395
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb397
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb398
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb399
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb400
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb401
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb402
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb403
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb404
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb405
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb406
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb407
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb408
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb409
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb410
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb411
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb412
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb413
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb414
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb415
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb416
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb417
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb418
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb419
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb420
http://arxiv.org/abs/1803.04393
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb422
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb423
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb424


C.D. Roberts, D.G. Richards, T. Horn et al. Progress in Particle and Nuclear Physics 120 (2021) 103883
[425] L. Del Debbio, et al., Neural-network analysis of parton distribution functions from Ioffe-time pseudodistributions, 2020, arXiv:2010.
03996 [hep-ph].

[426] J. Karpie, K. Orginos, S. Zafeiropoulos, J. High Energy Phys. 11 (2018) 178.
[427] N. Karthik, Quark distribution inside a pion in many-flavor 2+1 dimensional QCD using lattice: UV listens to IR, 2021, arXiv:2101.

02224 [hep-lat].
[428] A.S. Kronfeld, D.M. Photiadis, Phys. Rev. D 31 (1985) 2939.
[429] S.A. Gottlieb, A.S. Kronfeld, Phys. Rev. D 33 (1986) 227.
[430] G. Martinelli, C.T. Sachrajda, Phys. Lett. B 190 (1987) 151.
[431] D. Daniel, R. Gupta, D. Richards, Phys. Rev. D 43 (1991) 3715.
[432] W. Detmold, et al., A preliminary determination of the second mellin moment of the Pion’s distribution amplitude using the heavy quark

operator product expansion, in: Asia-Pacific Symposium for Lattice Field Theory, 2020.
[433] G.S. Bali, et al., Eur. Phys. J. C 78 (2018) 217.
[434] G.S. Bali, et al., Phys. Rev. D 98 (2018) 094507.
[435] D. Brommel, et al., PoS LAT2005, 2006, p. 360.
[436] X. Xiong, J.-H. Zhang, Phys. Rev. D 92 (2015) 054037.
[437] Y.-S. Liu, et al., Phys. Rev. D 100 (2019) 034006.
[438] J.-W. Chen, H.-W. Lin, J.-H. Zhang, Nuclear Phys. B 952 (2020) 114940 [1904.12376].
[439] A.V. Radyushkin, Phys. Rev. D 100 (2019) 116011.
[440] A. Hasenfratz, F. Knechtli, Phys. Rev. D 64 (2001) 034504.
[441] C. Morningstar, M.J. Peardon, Phys. Rev. D 69 (2004) 054501.
[442] H.B. Meyer, J.W. Negele, Phys. Rev. D 77 (2008) 037501.
[443] P. Shanahan, W. Detmold, Phys. Rev. D 99 (2019) 014511.
[444] G.S. Bali, B. Lang, B.U. Musch, A. Schäfer, Phys. Rev. D 93 (2016) 094515.
[445] M. Peardon, et al., Phys. Rev. D 80 (2009) 054506.
[446] B. Joó, et al., Eur. Phys. J. A 55 (2019) 199.
[447] W. Detmold, et al., Eur. Phys. J. A 55 (2019) 193.
[448] M. Constantinou, et al., Parton distributions and lattice QCD calculations: toward 3D structure, 2020, arXiv:2006.08636 [hep-ph].
[449] J. Bringewatt, et al., Phys. Rev. D 103 (2021) 016003.
[450] H.-W. Lin, W. Melnitchouk, A. Prokudin, N. Sato, H. Shows, Phys. Rev. Lett. 120 (2018) 152502.
[451] Z.-Y. Li, Y.-Q. Ma, J.-W. Qiu, Extraction of next-to-next-to-leading-order PDFs from lattice QCD calculations, 2006, arXiv:2006.12370 [hep-ph].
[452] R.A. Briceño, M.T. Hansen, Phys. Rev. D 94 (2016) 013008.
[453] A. Baroni, R.A. Briceño, M.T. Hansen, F.G. Ortega-Gama, Phys. Rev. D 100 (2019) 034511.
[454] J. Sullivan, Phys. Rev. D 5 (1972) 1732.
[455] S.-X. Qin, C. Chen, C. Mezrag, C.D. Roberts, Phys. Rev. C 97 (2018) 015203.
[456] L.N. Hand, Phys. Rev. 129 (1963) 1834.
[457] L. Favart, M. Guidal, T. Horn, P. Kroll, Eur. Phys. J. A 52 (2016) 158.
[458] A. Airapetian, et al., Phys. Lett. B 659 (2008) 486.
[459] K. Park, et al., Eur. Phys. J. A 49 (2013) 16.
[460] C.N. Brown, et al., Phys. Rev. D 8 (1973) 92.
[461] C. Bebek, et al., Phys. Rev. D 9 (1974) 1229.
[462] C.J. Bebek, et al., Phys. Rev. D 13 (1976) 25.
[463] C.J. Bebek, et al., Phys. Rev. D 17 (1978) 1693.
[464] H. Ackermann, et al., Nuclear Phys. B 137 (1978) 294.
[465] P. Brauel, et al., Z. Phys. C 3 (1979) 101.
[466] H.T. Gaskell D. et al, Study of the L–T separated pion electroproduction cross section at 11 GeV and measurement of the charged pion form

factor to high Q2, Approved Jefferson Lab 12 GeV Experiment E12-19-006, 2019.
[467] E.B. Dally, et al., Phys. Rev. Lett. 45 (1980) 232.
[468] S.R. Amendolia, et al., Phys. Lett. B 178 (1986) 435.
[469] R.M. Mohring, et al., Phys. Rev. C 67 (2003) 055205.
[470] M. Coman, et al., Phys. Rev. C 81 (2010) 052201.
[471] J.C. Collins, L. Frankfurt, M. Strikman, Phys. Rev. D 56 (1997) 2982.
[472] M. Derrick, et al., Phys. Lett. B 384 (1996) 388.
[473] C. Adloff, et al., Eur. Phys. J. C 6 (1999) 587.
[474] F. Gautheron, et al., COMPASS-II Proposal, COMPASS Collaboration, 2010.
[475] M. Bonesini, et al., Z. Phys. C 37 (1988) 535.
[476] C. De Marzo, et al., Phys. Rev. D 36 (1987) 8.
[477] A. Erwin, R. March, W. Walker, E. West, Phys. Rev. Lett. 6 (1961) 628.
[478] E. Pickup, D. Robinson, E. Salant, Phys. Rev. Lett. 7 (1961) 192.
[479] B. Robinson, et al., Phys. Rev. Lett. 34 (1975) 1475.
[480] J. Engler, et al., Nuclear Phys. B 84 (1975) 70.
[481] W. Flauger, F. Monnig, Nuclear Phys. B 109 (1976) 347.
[482] J. Hanlon, et al., Phys. Rev. Lett. 37 (1976) 967.
[483] J. Hanlon, et al., Phys. Rev. D 20 (1979) 2135.
[484] Y. Eisenberg, et al., Nuclear Phys. B 135 (1978) 189.
[485] V. Blobel, et al., Nuclear Phys. B 135 (1978) 379.
[486] H. Abramowicz, et al., Nuclear Phys. B 166 (1980) 62.
[487] M. Bishari, Nuclear Phys. B 48 (1972) 325.
[488] B. Kopeliovich, B. Povh, I. Potashnikova, Z. Phys. C 73 (1996) 125.
[489] N.N. Nikolaev, W. Schafer, A. Szczurek, J. Speth, Phys. Rev. D 60 (1999) 014004.
[490] U. D’Alesio, H. Pirner, Eur. Phys. J. A 7 (2000) 109.
[491] V. Stoks, Nuclear Phys. A 629 (1998) 205C.
[492] V. Stoks, T. Rijken, Phys. Rev. C 59 (1999) 3009.
[493] S. Aid, et al., Nuclear Phys. B 463 (1996) 3.
[494] C. Adloff, et al., Eur. Phys. J. C 13 (2000) 415.
[495] F. Aaron, et al., J. High Energy Phys. 05 (2010) 032.
64

http://arxiv.org/abs/2010.03996
http://arxiv.org/abs/2010.03996
http://arxiv.org/abs/2010.03996
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb426
http://arxiv.org/abs/2101.02224
http://arxiv.org/abs/2101.02224
http://arxiv.org/abs/2101.02224
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb428
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb429
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb430
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb431
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb433
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb434
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb436
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb437
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb438
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb439
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb440
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb441
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb442
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb443
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb444
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb445
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb446
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb447
http://arxiv.org/abs/2006.08636
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb449
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb450
http://arxiv.org/abs/2006.12370
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb452
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb453
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb454
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb455
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb456
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb457
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb458
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb459
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb460
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb461
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb462
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb463
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb464
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb465
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb467
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb468
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb469
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb470
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb471
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb472
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb473
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb475
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb476
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb477
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb478
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb479
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb480
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb481
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb482
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb483
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb484
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb485
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb486
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb487
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb488
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb489
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb490
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb491
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb492
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb493
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb494
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb495


C.D. Roberts, D.G. Richards, T. Horn et al. Progress in Particle and Nuclear Physics 120 (2021) 103883
[496] J. Breitweg, et al., Eur. Phys. J. C 2 (1998) 247.
[497] J. Breitweg, et al., Eur. Phys. J. C 6 (1999) 603.
[498] S. Chekanov, et al., PMC Phys. A 1 (2007) 6.
[499] M. Derrick, et al., Phys. Lett. B 377 (1996) 259.
[500] S. Chekanov, et al., Nuclear Phys. B 718 (2005) 3.
[501] A. Airapetian, et al., Eur. Phys. J. C 17 (2000) 389.
[502] A. Airapetian, et al., Phys. Lett. B 679 (2009) 100.
[503] M. Adams, et al., Z. Phys. C 74 (1997) 237.
[504] D. Cassel, et al., Phys. Rev. D 24 (1981) 2787.
[505] K. Lukashin, et al., Phys. Rev. C 64 (2001) 059901.
[506] C. Hadjidakis, et al., Phys. Lett. B 605 (2005) 256.
[507] L. Morand, et al., Eur. Phys. J. A 24 (2005) 445.
[508] S. Morrow, et al., Eur. Phys. J. A 39 (2009) 5.
[509] J. Santoro, et al., Phys. Rev. C 78 (2008) 025210.
[510] S. Chekanov, et al., Nuclear Phys. B 695 (2004) 3.
[511] A. Aktas, et al., Eur. Phys. J. C 46 (2006) 585.
[512] C. Alexa, et al., Eur. Phys. J. C 73 (2013) 2466.
[513] S. Chekanov, et al., Eur. Phys. J. C 24 (2002) 345.
[514] R. Aaij, et al., J. Phys. G 40 (2013) 045001.
[515] R. Aaij, et al., J. Phys. G 41 (2014) 115002.
[516] R. Aaij, et al., J. High Energy Phys. 09 (2015) 084.
[517] R. McNulty, Acta Phys. Polon. Supp. 8 (2015) 861.
[518] B.B. Abelev, et al., Phys. Rev. Lett. 113 (2014) 232504.
[519] G.D. Alexeev, et al., Spin density matrix elements in exclusive ω meson muoproduction, 2020, arXiv:2009.03271 [hep-ex].
[520] C. Adolph, et al., Nuclear Phys. B 865 (2012) 1.
[521] C. Adolph, et al., Nuclear Phys. B 915 (2017) 454.
[522] A. Airapetian, et al., Eur. Phys. J. C 77 (2017) 378.
[523] A. Airapetian, et al., Eur. Phys. J. C 71 (2011) 1609.
[524] A. Airapetian, et al., Eur. Phys. J. C 62 (2009) 659.
[525] A. Airapetian, et al., Phys. J. C 74 (2014) 3110; Eur. Phys. J. C 76 (2016) 162 (erratum).
[526] M. Mazouz, et al., Phys. Rev. Lett. 118 (2017) 222002.
[527] M. Defurne, et al., Phys. Rev. Lett. 117 (2016) 262001.
[528] A. Camsonne, C. Hyde, C. Muñoz Camacho, J. Roche, et al., Measurements of electron-helicity dependent cross sections of deeply virtual

compton scattering with CEBAF at 12 GeV, Approved Jefferson Lab 12 GeV Experiment E12-06-114, 2006.
[529] I. Bedlinskiy, et al., Phys. Rev. Lett. 109 (2012) 112001.
[530] M.G. Alexeev, et al., Phys. Lett. B 805 (2020) 135454.
[531] M. Dlamini, et al., Deep exclusive electroproduction of π0 at high Q 2 in the quark valence regime, 2020, arXiv:2011.11125 [hep-ex].
[532] A. Airapetian, et al., Phys. Lett. B 682 (2010) 345.
[533] E. Fuchey, et al., Phys. Rev. C 83 (2011) 025201.
[534] R. De Masi, et al., Phys. Rev. C 77 (2008) 042201.
[535] B. Adams, et al., CERN Report No. CERN-SPSC-2019-022. SPSC-P-360, 2019 (unpublished), The collaboration has not yet constituted itself, thus

instead of a Spokesperson currently the nominated Contact Person (Jan Friedrich) is acting in place.
[536] H. Yukawa, Proc. Phys. Math. Soc. Jpn. 17 (1935) 48.
[537] J.-P. Karr, D. Marchand, Nature 575 (2019) 61.
[538] J. Oppenheimer, et al., Strange particles and weak interactions, in: 7th Annual Rochester Conference on High Energy Nuclear Physics, 1957,

pp. IX.1–52.
[539] T. Yamanaka, Nature 575 (2019) 36.
65

http://refhub.elsevier.com/S0146-6410(21)00037-5/sb496
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb497
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb498
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb499
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb500
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb501
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb502
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb503
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb504
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb505
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb506
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb507
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb508
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb509
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb510
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb511
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb512
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb513
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb514
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb515
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb516
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb517
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb518
http://arxiv.org/abs/2009.03271
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb520
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb521
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb522
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb523
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb524
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb525
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb525
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb526
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb527
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb529
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb530
http://arxiv.org/abs/2011.11125
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb532
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb533
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb534
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb536
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb537
http://refhub.elsevier.com/S0146-6410(21)00037-5/sb539

	Insights into the emergence of mass from studies of pion and kaon structure
	Emergence of mass
	Masses, coupling, and the emergence of Nambu–Goldstone modes
	Gluon mass scale
	Process-independent effective charge
	Dynamical chiral symmetry breaking
	Nambu–Goldstone bosons

	Pion and kaon distribution amplitudes
	Essentials of light-front wave functions
	Pion distribution amplitude
	Kaon distribution amplitude

	Empirical access to pseudoscalar meson distribution amplitudes
	Electromagnetic transition form factors
	Elastic electromagnetic form factors
	Diffractive dissociation

	Pion distribution functions
	Forward compton scattering amplitude
	Hadron scale pion distribution function
	Pion distribution function at 2= 2GeV
	Pion distribution function at 5= 5.2GeV

	Kaon distribution functions
	Three dimensional structure of Nambu–Goldstone modes
	Generalised transverse-momentum dependent parton distribution functions
	Twist-two generalised parton distribution functions
	Meson fragmentation functions

	Developments in lattice QCD
	Formulation
	Pion form factor
	Parton distribution functions
	Quark distribution amplitude
	Three-dimensional imaging of mesons
	Gluon and flavour-singlet computations
	Era of exascale computing

	Experiments completed or in train
	Sullivan process
	Pion and kaon form factors
	Empirical information on parton distribution functions
	L/T-separated meson cross-sections: Toward flavour separation with GPDs

	Measurements on the horizon
	Epilogue
	Abbreviations
	Acknowledgements
	References


