
SoK: Computer-Aided Cryptography
Manuel Barbosa∗, Gilles Barthe†‡, Karthik Bhargavan§, Bruno Blanchet§, Cas Cremers¶, Kevin Liao†∥, Bryan Parno∗∗

∗University of Porto (FCUP) and INESC TEC, †Max Planck Institute for Security & Privacy, ‡IMDEA Software Institute,
§INRIA Paris, ¶CISPA Helmholtz Center for Information Security, ∥MIT, ∗∗Carnegie Mellon University

Abstract—Computer-aided cryptography is an active area of
research that develops and applies formal, machine-checkable
approaches to the design, analysis, and implementation of
cryptography. We present a cross-cutting systematization of
the computer-aided cryptography literature, focusing on three
main areas: (i) design-level security (both symbolic security and
computational security), (ii) functional correctness and efficiency,
and (iii) implementation-level security (with a focus on digital
side-channel resistance). In each area, we first clarify the role
of computer-aided cryptography—how it can help and what the
caveats are—in addressing current challenges. We next present
a taxonomy of state-of-the-art tools, comparing their accuracy,
scope, trustworthiness, and usability. Then, we highlight their
main achievements, trade-offs, and research challenges. After
covering the three main areas, we present two case studies.
First, we study efforts in combining tools focused on different
areas to consolidate the guarantees they can provide. Second, we
distill the lessons learned from the computer-aided cryptography
community’s involvement in the TLS 1.3 standardization effort.
Finally, we conclude with recommendations to paper authors,
tool developers, and standardization bodies moving forward.

I. INTRODUCTION

Designing, implementing, and deploying cryptographic
mechanisms is notoriously hard to get right, with high-
profile design flaws, devastating implementation bugs, and
side-channel vulnerabilities being regularly found even in
widely deployed mechanisms. Each step is highly involved
and fraught with pitfalls. At the design level, cryptographic
mechanisms must achieve specific security goals against some
well-defined class of attackers. Typically, this requires com-
posing a series of sophisticated building blocks—abstract con-
structions make up primitives, primitives make up protocols,
and protocols make up systems. At the implementation level,
high-level designs are then fleshed out with concrete functional
details, such as data formats, session state, and programming
interfaces. Moreover, implementations must be optimized for
interoperability and performance. At the deployment level,
implementations must also account for low-level threats that
are absent at the design level, such as side-channel attacks.

Attackers are thus presented with a vast attack surface: They
can break high-level designs, exploit implementation bugs,
recover secret material via side-channels, or any combination
of the above. Preventing such varied attacks on complex
cryptographic mechanisms is a challenging task, and existing
methods are hard-pressed to do so. Pen-and-paper security
proofs often consider pared-down “cores” of cryptographic
mechanisms to simplify analysis, yet remain highly complex
and error-prone; demands for aggressively optimized imple-
mentations greatly increase the risks of introducing bugs,

which are difficult to catch by code testing or auditing; ad-
hoc constant-time coding recipes for mitigating side-channel
attacks are tricky to implement, and yet may not cover the
whole gamut of leakage channels exposed in deployment.
Unfortunately, the current modus operandi—relying on a select
few cryptography experts armed with rudimentary tooling to
vouch for security and correctness—simply cannot keep pace
with the rate of innovation and development in the field.

Computer-aided cryptography, or CAC for short, is an active
area of research that aims to address these challenges. It en-
compasses formal, machine-checkable approaches to design-
ing, analyzing, and implementing cryptography; the variety of
tools available address different parts of the problem space.
At the design level, tools can help manage the complexity of
security proofs, even revealing subtle flaws or as-yet-unknown
attacks in the process. At the implementation level, tools
can guarantee that highly optimized implementations behave
according to their design specifications on all possible inputs.
At the deployment level, tools can check that implementations
correctly protect against classes of side-channel attacks. Al-
though individual tools may only address part of the problem,
when combined, they can provide a high degree of assurance.

Computer-aided cryptography has already fulfilled some of
these promises in focused but impactful settings. For instance,
computer-aided security analyses were influential in the recent
standardization of TLS 1.3 [1]–[4]. Formally verified code
is also being deployed at Internet-scale—components of the
HACL∗ library [5] are being integrated into Mozilla Firefox’s
NSS security engine, elliptic curve code generated using the
Fiat Cryptography framework [6] has populated Google’s
BoringSSL library, and EverCrypt [7] routines are used in
the Zinc crypto library for the Linux kernel. In light of these
successes, there is growing enthusiasm for computer-aided
cryptography. This is reflected in the rapid emergence of
a dynamic community comprised of theoretical and applied
cryptographers, cryptography engineers, and formal methods
practitioners. Together, the community aims to achieve broader
adoption of computer-aided cryptography, blending ideas from
many fields, and more generally, to contribute to the future
development of cryptography.

At the same time, computer-aided cryptography risks be-
coming a victim of its own success. Trust in the field can be
undermined by difficulties in understanding the guarantees and
fine-print caveats of computer-aided cryptography artifacts.
The field is also increasingly broad, complex, and rapidly
evolving, so no one has a complete understanding of every
facet. This can make it difficult for the field to develop and

address pressing challenges, such as the expected transition
to post-quantum cryptography and scaling from lower-level
primitives and protocols to whole cryptographic systems.

Given these concerns, the purpose of this SoK is three-fold:
1) We clarify the current capabilities and limitations of

computer-aided cryptography.
2) We present a taxonomy of computer-aided cryptography

tools, highlighting their main achievements and important
trade-offs between them.

3) We outline promising new directions for computer-aided
cryptography and related areas.

We hope this will help non-experts better understand the field,
point experts to opportunities for improvement, and showcase
to stakeholders (e.g., standardization bodies and open source
projects) the many benefits of computer-aided cryptography.

A. Structure of the Paper

The subsequent three sections expand on the role of
computer-aided cryptography in three main areas: Section II
covers how to establish design-level security guarantees,
using both symbolic and computational approaches; Sec-
tion III covers how to develop functionally correct and ef-
ficient implementations; Section IV covers how to establish
implementation-level security guarantees, with a particular
focus on protecting against digital side-channel attacks.

We begin each section with a critical review of the area,
explaining why the considered guarantees are important, how
current tools and techniques outside CAC may fail to meet
these guarantees, how CAC can help, the fine-print caveats
of using CAC, and necessary technical background. We then
taxonomize state-of-the-art tools based on criteria along four
main categories: accuracy (A), scope (S), trust (T), and usabil-
ity (U). For each criterion, we label them with one or more
categories, explain their importance, and provide some light
discussion about tool support for them. The ensuing discussion
highlights broader points, such as main achievements, impor-
tant takeaways, and research challenges. Finally, we end each
section with references for further reading. Given the amount
of material we cover, we are unable to be exhaustive in each
area, but we still point to other relevant lines of work.

Sections V and VI describe two case studies. Our first case
study (Section V) examines how to combine tools that address
different parts of the problem space and consolidate their guar-
antees. Our second case study (Section VI) distills the lessons
learned from the computer-aided cryptography community’s
involvement in the TLS 1.3 standardization effort.

Finally, in Section VII, we offer recommendations to paper
authors, tool developers, and standardization bodies on how to
best move the field of computer-aided cryptography forward.

II. DESIGN-LEVEL SECURITY

In this section, we focus on the role of computer-aided
cryptography in establishing design-level security guarantees.
Over the years, two flavors of design-level security have been
developed in two largely separate communities: symbolic se-
curity (in the formal methods community) and computational

security (in the cryptography community). This has led to two
complementary strands of work, so we cover them both.

A. Critical Review

Why is design-level security important? Validating cryp-
tographic designs through mathematical arguments is perhaps
the only way to convincingly demonstrate their security against
entire classes of attacks. This has become standard practice in
cryptography, and security proofs are necessary for any new
standard. This holds true at all levels: primitives, protocols,
and systems. When using a lower-level component in a larger
system, it is crucial to understand what security notion and ad-
versarial model the proof is relative to. Similar considerations
apply when evaluating the security of a cryptographic system
relative to its intended deployment environment.

How can design-level security fail? The current modus
operandi for validating the security of cryptographic designs
using pen-and-paper arguments is alarmingly fragile. This is
for two main reasons:
• Erroneous arguments. Writing security arguments is tedious

and error-prone, even for experts. Because they are primarily
done on pen-and-paper, errors are difficult to catch and can
go unnoticed for years.

• Inappropriate modeling. Even when security arguments are
correct, attacks can lie outside the model in which they are
established. This is a known and common pitfall: To make
(pen-and-paper) security analysis tractable, models are often
heavily simplified into a cryptographic core that elides many
details about cryptographic designs and attacker capabilities.
Unfortunately, attacks are often found outside of this core.
How are these failures being addressed outside CAC?

To minimize erroneous arguments, cryptographers have de-
vised a number of methodological frameworks for security
analysis (e.g., the code-based game playing [8] and universal
composability [9] frameworks). The high-level goal of these
frameworks is to decompose security arguments into simpler
arguments that are easier to get right and then smoothly
combine the results. Still, pen-and-paper proofs based on these
methodologies remain complex and error-prone, which has led
to suggestions of using computer-aided tools [10].

To reduce the risks of inappropriate modeling, real-world
provable security [11]–[13] advocates making security ar-
guments in more accurate models of cryptographic designs
and adversarial capabilities. Unfortunately, the added realism
comes with greater complexity, complicating security analysis.

How can computer-aided cryptography help? Computer-
aided cryptography tools are effective for detecting flaws
in cryptographic designs and for managing the complexity
of security proofs. They crystallize the benefits of on-paper
methodologies and of real-world provable security. They also
deliver trustworthy analyses for complex designs that are
beyond reach of pen-and-paper analysis.

What are the fine-print caveats? Computer-aided security
proofs are only as good as the statements being proven.
However, understanding these statements can be challenging.
Most security proofs rely on implicit assumptions; without

proper guidance, reconstructing top-level statements can be
challenging, even for experts. (As an analogy, it is hard even
for a talented mathematician to track all dependencies in a
textbook.) Finally, as with any software, tools may have bugs.

What background do I need to know about symbolic secu-
rity? The symbolic model is an abstract model for representing
and analyzing cryptographic protocols. Messages (e.g., keys,
nonces) are represented symbolically as terms (in the parlance
of formal logic). Typically, terms are atomic data, meaning
that they cannot be split into, say, component bitstrings.
Cryptographic primitives are modeled as black-box functions
over terms related by a set of mathematical identities called
an equational theory. For example, symmetric encryption can
be modeled by the black-box functions Enc and Dec related
by the following equational theory: Dec(Enc(m, k), k) = m.
This says that decrypting the ciphertext Enc(m, k) using the
key k recovers the original plaintext m.

An adversary is restricted to compute (i.e., derive new terms
contributing to its knowledge set) using only the specified
primitives and equational theory. Equational theories are thus
important for broadening the scope of analysis—ignoring
valid equations implicitly weakens the class of adversaries
considered. In the example above, m and k are atomic terms,
and so equipped with only the given identity, an adversary
can decrypt a ciphertext only if it has knowledge of the entire
secret key. Such simplifications enable modeling and verifying
protocols using symbolic logic. Symbolic tools are thus well-
suited to automatically searching for and unveiling logical
flaws in complex cryptographic protocols and systems.

Symbolic security properties come in two main flavors:
trace properties and equivalence properties. Trace properties
state that a bad event never occurs on any execution trace.
For example, a protocol preserves trace-based secrecy if, for
any execution trace, secret data is not in the adversarial
knowledge set. On the other hand, equivalence properties
state that an adversary is unable to distinguish between two
protocols, often with one being the security specification.
Equivalence properties typically cannot be (naturally or pre-
cisely) expressed as trace properties. For example, a protocol
preserves indistinguishability-based secrecy if the adversary
cannot differentiate between a trace with the real secret and a
trace with the real secret replaced by a random value.

What background do I need to know about computational
security? In the computational model, messages are bitstrings,
cryptographic primitives are probabilistic algorithms on bit-
strings, and adversaries are probabilistic Turing machines.
For example, symmetric encryption can be modeled by a
triple of algorithms (Gen,Enc,Dec). The probabilistic key
generation algorithm Gen outputs a bitstring k. The encryption
(decryption) algorithm Enc (Dec) takes as input a key k and a
plaintext m (ciphertext c), and outputs a ciphertext c (plaintext
m). The basic correctness property that must hold for every
key k output by Gen and every message m in the message
space is Dec(Enc(m, k), k) = m. Because keys are bitstrings
in this model, knowing bits of an encryption key reduces the
computational resources required to decrypt a ciphertext.

Computational security properties are also probabilistic
and can be characterized along two axes: game-based or
simulation-based, and concrete or asymptotic.

Game-based properties specify a probabilistic experiment
called a “game” between a challenger and an adversary, and
an explicit goal condition that the adversary must achieve to
break a scheme. Informally, security statements say: For all
adversaries, the probability of achieving the goal condition
does not exceed some threshold. The specific details, e.g., the
adversary’s computational resources and the threshold, depend
on the choice of concrete or asymptotic security.

A core proof methodology for game-based security is game
hopping. In the originally specified game, the adversary’s
success probability may be unknown. Thus, we proceed by
step-wise transforming the game until reaching one in which
the success probability can be computed. We also bound the
increases in the success probability from the game transforma-
tions, often by reducing to an assumed hard problem (e.g., the
discrete log or RSA problems). We can then deduce a bound
on the adversary’s success probability in the original game.
The interested reader can see the tutorials on game hopping
by Shoup [14] and Bellare and Rogaway [8].

Simulation-based properties specify two probabilistic ex-
periments: The “real” game runs the scheme under analysis.
The “ideal” game runs an idealized scheme that does not
involve any cryptography, but instead runs a trusted third-
party called an ideal functionality, which serves as the se-
curity specification. Informally, security statements say: For
all adversaries in the real game, there exists a simulator in the
ideal game that can translate any attack on the real scheme
into an attack on the ideal functionality. Because the ideal
functionality is secure by definition, the real scheme must also
be secure. In general, simulation-based proofs tend to be more
complicated than game-based proofs, but importantly they
support composition theorems that allow analyzing complex
constructions in a modular way from simpler building blocks.
The interested reader can see the tutorial on simulation-based
proofs by Lindell [15].

Concrete security quantifies the security of a scheme by
bounding the maximum success probability of an adversary
given some upper bound on running time. A scheme is (t, ϵ)-
secure if every adversary running for time at most t succeeds
in breaking the scheme with probability at most ϵ. In contrast,
asymptotic security views the running time of the adversary
and its success probability as functions of some security
parameter (e.g., key length), rather than as concrete numbers.
A scheme is secure if every probabilistic polynomial time
adversary succeeds in breaking the scheme with negligible
probability (i.e., with probability asymptotically less than all
inverse polynomials in the security parameter).

Of these different security properties, we note that
computer-aided security proofs have primarily focused
on game-based, concrete security. Work on mechanizing
simulation-based proofs is relatively nascent; asymptotic secu-
rity is the prevailing paradigm in cryptography, but by proving
concrete security, asymptotic security follows a fortiori.

Tool Unbound Trace Equiv Eq-thy State Link
CPSA▷ [16]
F7⋄ [17]↰

F5⋄ [18]
Maude-NPA▷ [19] d

ProVerif⋆† [20] d

↰

fs2pv⋄† [21]↰

GSVerif⋆† [22]↰

ProVerif-ATP⋆† [23]↰

StatVerif⋆† [24] d

Scyther▷ [25]
scyther-proof▷‡§ [26]
Tamarin∗‡ [27] d

↰

SAPIC⋆ [28]
CI-AtSe▷ [29]
OFMC▷† [30]
SATMC▷ [31]
AKISS⋆ [32] t

APTE⋆ [33] t

DEEPSEC⋆ [34] t

SAT-Equiv⋆ [35] t

SPEC⋆,§ [36] o

Specification language Miscellaneous symbols
▷ – security protocol notation

↰

– previous tool extension
⋆ – process calculus † – abstractions
∗ – multiset rewriting ‡ – interactive mode
⋄ – general programming language § – independent verifiability

Equational theories (Eq-thy) Equivalence properties (Equiv)
– with AC axioms t – trace equivalence
– without AC axioms o – open bisimilarity
– fixed d – diff equivalence

TABLE I
OVERVIEW OF TOOLS FOR SYMBOLIC SECURITY ANALYSIS. SEE
SECTION II-B FOR MORE DETAILS ON COMPARISON CRITERIA.

B. Symbolic Tools: State of the Art

Table I presents a taxonomy of modern, general-purpose
symbolic tools. Tools are listed in three groups (demarcated
by dashed lines): unbounded trace-based tools, bounded trace-
based tools, and equivalence-based tools; within each group,
top-level tools are listed alphabetically. Tools are categorized
as follows, annotated with the relevant criteria (A,S, T, U)
described in the introduction. Note that the capabilities of
symbolic tools are more nuanced than what is reflected in the
table—the set of examples that tools can handle varies even
if they support the same features according to the table.

Unbounded number of sessions (A). Can the tool analyze
an unbounded number of protocol sessions? There exist proto-
cols that are secure when at most N sessions are considered,
but become insecure with more than N sessions [37]. Bounded
tools () explicitly limit the analyzed number of sessions and
do not consider attacks beyond the cut-off. Unbounded tools
() can prove the absence of attacks within the model, but at
the cost of undecidability [38].

In practice, modern unbounded tools typically substantially
outperform bounded tools even for a small number of sessions,
and therefore enable the analysis of more complex models.
This is because bounded tools are a bit naive in their ex-
ploration of the state space, basically enumerating options
(but exploiting some symmetry). They therefore typically grow
exponentially in the number of sessions. The unbounded tools
inherently need to be “more clever” to even achieve unbounded
analysis. While their algorithms are more complex, when

they work (i.e., terminate), the analysis is independent of the
number of sessions.

Trace properties (S). Does the tool support verification of
trace properties?

Equivalence properties (S). Does the tool support verifi-
cation of equivalence properties? There are several different
equivalence notions used in current tools. Here, we provide
some high-level intuition, but for a more formal treatment,
see the survey by Delaune and Hirschi [39].

Trace equivalence (t) means that, for each trace of one
protocol, there exists a corresponding trace of the other
protocol, such that the messages exchanged in these two
traces are indistinguishable. This is the weakest equivalence
notion, roughly meaning that it can express the most security
properties. (The other stronger notions are often intermediate
steps towards proving trace equivalence.) It is also arguably
the most natural for formalizing privacy properties.

Open bisimilarity (o) is a strictly stronger notion that
captures the knowledge of the adversary by pairs of symbolic
traces, called bi-traces. A bi-trace is consistent when the
messages in the two symbolic traces are indistinguishable by
the adversary. Informally, two protocols are open bisimilar
when each action in one protocol can be simulated in the
other using a consistent bi-trace.

Diff-equivalence (d) is another strictly stronger notion that
is defined for protocols that have the same structure and differ
only by the messages they exchange. It means that, during
execution, all communications and tests, including those that
the adversary can make, either succeed for both protocols
or fail for both protocols. This property implies that both
protocols still have the same structure during execution.

Equational theories (S). What is the support for equational
theories? At a high-level, extra support for certain axioms
enables detecting a larger class of attacks (see, e.g., [40], [41]).
We provide a coarse classification as follows: tools that support
a fixed set of equational theories or no equational theories at
all (); tools that support user-defined equational theories, but
without associative-commutative (AC) axioms (); tools that
support user-defined equational theories with AC axioms ().
Supporting associative and commutative properties enables
detecting a much larger class of attacks, since they allow the
most detailed modeling of, e.g., xor operations, abelian groups,
and Diffie-Hellman constructions. One caveat is that the finer
details between these coarse classifications often make them
incomparable, and even where they overlap, they are not all
equally effective for analyzing concrete protocols.

Global mutable state (S). Does the tool support verification
of protocols with global mutable state? Many real-world
protocols involve shared databases (e.g., key servers) or shared
memory, so reasoning support for analyzing complex, stateful
attacks scenarios extends the reach of such tools [28].

Link to implementation (T). Can the tool extract/generate
executable code from specifications in order to link symbolic
security guarantees to implementations?

† Abstractions (U). Does the tool use abstraction? Algo-
rithms may use abstraction to overestimate attack possibilities,

e.g., by computing a superset of the adversary’s knowledge.
This can yield more efficient and fully automatic analysis
systems and can be a workaround to undecidability, but comes
at the cost of incompleteness, i.e., false attacks may be found
or the tool may terminate with an indefinite answer.

‡ Interactive mode (U). Does the tool support an inter-
active analysis mode? Interactive modes generally trade off
automation for control. While push-button tools are certainly
desirable, they may fail opaquely (perhaps due to undecid-
ability barriers), leaving it unclear or impossible to proceed.
Interactive modes can allow users to analyze failed automated
analysis attempts, inspect partial proofs, and to provide hints
and guide analyses to overcome any barriers.

§ Independent verifiability (T). Are the analysis results
independently machine-checkable? Symbolic tools implement
complex verification algorithms and decision procedures,
which may be buggy and return incorrect results. This places
them in the trusted computing base. Exceptions include
scyther-proof [26], which generates proof scripts that can be
machine-checked in the Isabelle theorem prover [42], and
SPEC [36], which can produce explicit evidence of security
claims that can be checked for correctness.

Specification language (U). How are protocols specified?
The categorizations are domain-specific security protocol lan-
guages (▷), process calculus (⋆), multiset rewriting (∗), and
general programming language (⋄). General programming
languages are arguably the most familiar to non-experts,
while security protocol languages (i.e., notations for describing
message flows between parties) are commonplace in cryptog-
raphy. Process calculi and multiset rewriting may be familiar
to formal methods practitioners. Process calculi are formal
languages for describing concurrent processes and their inter-
actions (e.g., [43]–[45]). Multiset rewriting is a more general
and lower-level formalism that allows for various encodings of
processes, but has no built-in notion of a process. It provides
a natural formalism for complex state machines.

C. Symbolic Security: Discussion

Achievements: Symbolic proofs for real-world case studies.
Of the considered symbolic tools, ProVerif and Tamarin stand
out as having been used to analyze large, real-world protocols.
They offer unprecedented combinations of scalability and
expressivity, which enables them to deal with complex systems
and properties. Moreover, they provide extensive documenta-
tion, a library of case studies, and practical usability features
(e.g., packaging, a graphical user interface for Tamarin, attack
reconstruction in HTML for Proverif).

Next, we provide a rough sense of their scalability on real-
world case studies; more precise numbers can be found in
the respective papers. It is important to keep in mind that
comparisons between tools are difficult (even on similar case
studies), so these numbers should be taken with a grain of salt.

ProVerif has been used to analyze TLS 1.0 [46] (seconds
to several hours depending on the security property) and
1.3 [3] (around one hour), Signal [47] (a few minutes to more
than a day depending on the security property), and Noise

Tool RF Auto Comp CS Link TCB
AutoG&P⋄ [55] self, SMT
CertiCrypt▷⋄ [56] Coq
CryptHOL⋄ [57] Isabelle
CryptoVerif⋆⋄ [58] self
EasyCrypt▷⋄ [59] self, SMT
F7⋄ [17] self, SMT
F∗⋄ [60] self, SMT
FCF⋄ [61] Coq
ZooCrypt⋄ [62] self, SMT

Reasoning Focus (RF) Concrete security (CS) Specification language
– automation focus – security + efficiency ⋆ – process calculus
– expressiveness focus – security only ▷ – imperative

– no support ⋄ – functional

TABLE II
OVERVIEW OF TOOLS FOR COMPUTATIONAL SECURITY ANALYSIS. SEE

SECTION II-D FOR MORE DETAILS ON COMPARISON CRITERIA.

protocols [48] (seconds to days depending on the protocol). In
general, more Diffie-Hellman key agreements (e.g., in Signal
and Noise) increase analysis times.

Tamarin has been used to analyze the 5G authentication
key exchange protocol [49] (around five hours), TLS 1.3 [2],
[4] (around one week, requiring 100GB RAM), the DNP3
SAv5 power grid protocol [50] (several minutes), and Noise
protocols [51] (seconds to hours depending on the protocol).

Challenge: Verifying equivalence properties. Many se-
curity properties can be modeled accurately by equivalence
properties, but they are inherently more difficult to verify
than trace properties. This is because they involve relations
between traces instead of single traces. As such, tool support
for reasoning about equivalence properties is thus substantially
less mature. For full automation, either one bounds the number
of sessions or one has to use the very strong notion of diff-
equivalence, which cannot handle many desired properties,
e.g., vote privacy in e-voting and unlinkability.

For the bounded setting, recent developments include
support for more equational theories (AKISS [32],
DEEPSEC [34]), for protocols with else branches (APTE [33],
AKISS, DEEPSEC) and for protocols whose actions are
not entirely determined by their inputs (APTE, DEEPSEC).
There have also been performance improvements based
on partial order reduction (APTE, AKISS, DEEPSEC) or
graph planning (SAT-Equiv). For the unbounded setting, diff-
equivalence, first introduced in ProVerif [52] and later adopted
by Maude-NPA [53] and Tamarin [54], remains the only
fully automated approach for proving equivalences. Because
trace equivalence is the most natural for formalizing privacy
properties, verifying more general equivalence properties for
an unbounded number of sessions remains a challenge.

D. Computational Tools: State of the Art

Table II presents a taxonomy of general-purpose computa-
tional tools. Tools are listed alphabetically and are categorized
as follows.

Reasoning focus (U). Is the tool’s reasoning focus on au-
tomation () or on expressivity ()? Automation focus means
being able to produce automatically or with light interaction
a security proof (at the cost of some expressiveness). Dually,

expressivity focus means being able to express arbitrary argu-
ments (at the cost of some automation).

Automated proof-finding (U). Can the tool automatically
find security proofs? A subset of the automation-focused tools
can automatically (non-interactively) find security proofs in
restricted settings (e.g., proofs of pairing-based schemes for
AutoG&P, proofs of key exchange protocols using a catalog
of built-in game transformations for CryptoVerif, proofs of
padding-based public key encryption schemes for ZooCrypt).

Composition (U). Does the tool support compositional
reasoning? Support for decomposing security arguments of
cryptographic systems into security arguments for their core
components is essential for scalable analysis.

Concrete security (A). Can the tool be used to prove
concrete bounds on the adversary’s success probability and
execution time? We consider tools with no support (), support
for success probability only (), and support for both ().

Link to implementation (T). Can the tool extract/generate
executable code from specifications in order to link computa-
tional security guarantees to implementations?

Trusted computing base (T). What lies in the trusted com-
puting base (TCB)? An established general-purpose theorem
prover such as Coq [63] or Isabelle [64] is usually held as the
minimum TCB for proof checking. Most tools, however, rely
on an implementation of the tool’s logics in a general purpose
language that must be trusted (self). Automation often relies
on SMT solvers [65], such as Z3 [66].

Specification language (U). What kind of specification
language is used? All tools support some functional language
core for expressing the semantics of operations (⋄). Some tools
support an imperative language (▷) in which to write security
games, while others rely on a process calculus (⋆).

E. Computational Security: Discussion

Achievements: Machine-checked security for real-world
cryptographic designs. Computational tools have been used to
develop machine-checked security proofs for a range of real-
world cryptographic mechanisms. CryptoVerif has been used
for a number of protocols, including TLS 1.3 [3], Signal [47],
and WireGuard [67]. EasyCrypt has been used for the Amazon
Web Service (AWS) key management system [68] and the
SHA-3 standard [69]. F7 was used to build miTLS, a refer-
ence implementation of TLS 1.2 with verified computational
security at the code-level [70], [71]. F∗ was used to implement
and verify the security of the TLS 1.3 record layer [1].

Takeaway: CryptoVerif is good for highly automated
computational analysis of protocols and systems. CryptoVerif
is both a proof-finding and proof-checking tool. It works
particularly well for protocols (e.g., key exchange), as it can
produce automatically or with a light guidance a sequence
of proof steps that establish security. One distinctive strength
of CryptoVerif is its input language based on the applied π-
calculus [45], which is well-suited to describing protocols that
exchange messages in sequence. Another strength of Cryp-
toVerif is a carefully crafted modeling of security assumptions
that help the automated discovery of proof steps. In turn,

automation is instrumental to deal with large cryptographic
games and games that contain many different cases, as is often
the case in proofs of protocols.

Takeaway: F∗ is good for analysis of full protocols and
systems. F∗ is a general-purpose verification-oriented program-
ming language. It works particularly well for analyzing cryp-
tographic protocols and systems beyond their cryptographic
core. Computational proofs in F∗ rely on transforming a
detailed protocol description into a final (ideal) program by
relying on ideal functionalities for cryptographic primitives.
Formal validation of this transformation is carried out man-
ually, with some help from the F∗ verification infrastructure.
Formal verification of the final program is done within F∗. This
approach is driven by the insight that critical security issues,
and therefore also potential attacks, often arise only in detailed
descriptions of full protocols and systems (compared to when
reasoning about cryptographic cores). The depth of this insight
is reflected by the success of F∗-based verification both in
helping discovering new attacks on real-world protocols like
TLS [72], [73] as well as in verifying their concrete design
and implementation [1], [70].

Takeaway: EasyCrypt is the closest to pen-and-paper
cryptographic proofs. EasyCrypt supports a general-purpose
relational program logic (i.e., a formalism for specifying
and verifying properties about two programs or two runs
of the same program) that captures many of the common
game hopping techniques. This is complemented by libraries
that support other common techniques, e.g., the PRF/PRP
switching lemma, hybrid arguments, and lazy sampling [8].
In addition, EasyCrypt features a union bound logic for upper
bounding the probability of some event E in an experiment
(game) G (e.g., bounding the probability of collisions in exper-
iments that involve hash functions). Overall, EasyCrypt proofs
closely follow the structure of pen-and-paper arguments. A
consequence is that EasyCrypt is amenable to proving the
security of primitives, as well as protocols and systems.

Challenge: Scaling security proofs for cryptographic sys-
tems. Analyzing large cryptographic systems is best done
in a modular way by composing simpler building blocks.
However, cryptographers have long recognized the difficulties
of preserving security under composition [74]. Most game-
based security definitions do not provide out-of-the-box com-
position guarantees, so simulation-based definitions are the
preferred choice for analyzing large cryptographic systems,
with universal composability (UC) being the gold-standard—
UC definitions guarantee secure composition in arbitrary con-
texts [9]. Work on developing machine-checked UC proofs is
relatively nascent [75]–[77], but is an important and natural
next step for computational tools.

F. Further Reading

Another class of tools leverages the benefits of automated
verification to support automated synthesis of secure crypto-
graphic designs, mainly in the computational world [62], [78]–
[81]. Cryptographic compilers provide high-level abstractions
(e.g., a domain-specific language) for describing cryptographic

tasks, which are then compiled into custom protocol imple-
mentations. These have been proposed for verifiable compu-
tation [82]–[85], zero-knowledge [86]–[89], and secure mul-
tiparty computation [90] protocols, which are parameterized
by a proof-goal or a functionality to compute. Some are
supported by proofs that guarantee the output protocols are
correct and/or secure for every input specification [91]–[94].
We recommend readers to also consult other related surveys.
Blanchet [95] surveys design-level security until 2012 (with
a focus on ProVerif). Cortier et al. [96] survey computational
soundness results, which transfer security properties from the
symbolic world to the computational world.

III. FUNCTIONAL CORRECTNESS AND EFFICIENCY

In this section, we focus on the role of computer-aided
cryptography in developing functionally correct and efficient
implementations.

A. Critical Review

Why are functional correctness and efficiency important?
To reap the benefits of design-level security guarantees, im-
plementations must be an accurate translation of the design
proven secure. That is, they must be functionally correct (i.e.,
have equivalent input/output behavior) with respect to the de-
sign specification. Moreover, to meet practical deployment re-
quirements, implementations must be efficient. Cryptographic
routines are often on the critical path for security applications
(e.g., for reading and writing TLS packets or files in an
encrypted file system), and so even a few additional clock-
cycles can have a detrimental impact on overall performance.

How can functional correctness and efficiency fail?
If performance is not an important goal, then achieving
functional correctness is relatively easy—just use a refer-
ence implementation that does not deviate too far from the
specification, so that correctness is straightforward to argue.
However, performance demands drive cryptographic code into
extreme contortions that make functional correctness difficult
to achieve, let alone prove. For example, OpenSSL is one of
the fastest open source cryptographic libraries; they achieve
this speed in part through the use of Perl code to generate
strings of text that additional Perl scripts interpret to produce
input to the C preprocessor, which ultimately produces highly
tuned, platform-specific assembly code [103]. Many more
examples of high-speed crypto code written at assembly and
pre-assembly levels can be found in SUPERCOP [107], a
benchmarking framework for cryptography implementations.

More broadly, efficiency considerations typically rule out
exclusively using high-level languages. Instead, C and as-
sembly are the de facto tools of the trade, adding memory
safety to the list of important requirements. Indeed, memory
errors can compromise secrets held in memory, e.g., in the
Heartbleed attack [108]. Fortunately, as we discuss below,
proving memory safety is table stakes for most of the tools we
discuss. Additionally, achieving best-in-class performance de-
mands aggressive, platform-specific optimizations, far beyond
what is achievable by modern optimizing compilers (which are

problematic in their own ways, as we will see in Section IV).
Currently, these painstaking efforts are manually repeated for
each target architecture.

How are these failures being addressed outside CAC?
Given its difficulty, the task of developing high-speed cryp-
tography is currently entrusted to a handful of experts. Even
so, experts make mistakes (e.g., a performance optimization to
OpenSSL’s AES-GCM implementation nearly reached deploy-
ment even though it enabled arbitrary message forgeries [109];
an arithmetic bug in OpenSSL led to a full key recovery
attack [110]). Current solutions for preventing more mistakes
are (1) auditing, which is costly in both time and expertise,
and (2) testing, which cannot be complete for the size of inputs
used in cryptographic algorithms. These solutions are also
clearly inadequate: Despite widespread usage and scrutiny,
OpenSSL’s libcrypto library reported 24 vulnerabilities
between January 1, 2016 and May 1, 2019 [7].

How can computer-aided cryptography help? Crypto-
graphic code is an ideal target for program verification. Such
code is both critically important and difficult to get right. The
use of heavyweight formal methods is perhaps the only way
to attain the high-assurance guarantees expected of them. At
the same time, because the volume of code in cryptographic
libraries is relatively small (compared to, say, an operating
system), verifying complex, optimized code is well within
reach of existing tools and reasonable human effort, without
compromising efficiency.

What are the fine-print caveats? Functional correctness
makes implicit assumptions, e.g., correct modeling of hard-
ware functional behavior. Another source of implicit assump-
tions is the gap between code and verified artifacts, e.g.,
verification may be carried out on a verification-friendly
representation of the source code, rather than on the source
code itself. Moreover, proofs may presuppose correctness of
libraries, e.g., for efficient arithmetic. Finally, as with any
software, verification tools may have bugs.

What background do I need to know? Functional cor-
rectness is the central focus of program verification. An
implementation can be proved functionally correct in two
different ways: equivalence to a reference implementation, or
satisfying a functional specification, typically expressed as pre-
conditions (what the program requires on inputs) and post-
conditions (what the program guarantees on outputs). Both
forms of verification are supported by a broad range of tools.
A unique aspect of cryptographic implementations is that
their correctness proofs often rest on non-trivial mathematics.
Mechanizing them thus requires striking a good balance be-
tween automation and user control. Nevertheless, SMT-based
automation remains instrumental for minimizing verification
effort, and almost all tools offer an SMT-based backend.

Typically, functional correctness proofs are carried out at
source level. A long-standing challenge is how to carry guar-
antees to machine code. This can be addressed using verified
compilers, which are supported by formal correctness proofs.
CompCert [111] is a prime example of moderately optimizing
verified compiler for a large fragment of C. However, the

Tool Memory
safety Automation Parametric

verification Input language Target(s) TCB

Cryptol + SAW [97] C, Java C, Java SAT, SMT
CryptoLine [98] CryptoLine C Boolector, MathSAT, Singular
Dafny [99] Dafny C#, Java, JavaScript, Go Boogie, Z3
F∗ [60] F∗ OCaml, F#, C, Asm, Wasm Z3, typechecker
Fiat Crypto [6] Gallina C Coq, C compiler
Frama-C [100] C C Coq, Alt-Ergo, Why3
gfverif [101] C C g++, Sage
Jasmin [102] Jasmin Asm Coq, Dafny, Z3
Vale [103], [104] Vale Asm Dafny or F*, Z3
VST [105] Gallina C Coq
Why3 [106] WhyML OCaml SMT, Coq

Automation
– automated – automated + interactive – interactive

TABLE III
OVERVIEW OF TOOLS FOR FUNCTIONAL CORRECTNESS. SEE SECTION III-B FOR MORE DETAILS ON COMPARISON CRITERIA.

trade-off is that verified compilers typically come with fewer
optimizations than mainstream compilers and target fewer
platforms.

B. Program Verification Tools: State of the Art

Table III presents a taxonomy of program verification tools
that have been used for cryptographic implementation. Tools
are listed alphabetically and are categorized as follows.

Memory-safety (S). Can the tool verify that programs are
memory safe? Memory safety ensures that all runs of a
program are free from memory errors (e.g., buffer overflow,
null pointer dereferences, use after free).

Automation (U). Tools provide varying levels of automa-
tion. We give a coarse classification: automatic tools (), tools
that combine automated and interactive theorem proving (),
and tools that allow only interactive theorem proving ().

Parametric verification (U). Can the tool verify parame-
terized implementations? This enables writing and verifying
generic code that can be used to produce different implemen-
tations depending on the supplied parameters. For example,
Fiat Crypto [6] can generate verified elliptic curves implemen-
tations parameterized by a prime modulus, limb representation
of field elements, and hardware platform; Vale [103], [104]
implementations are parameterized by the operating system,
assembler, and hardware platform.

Input language (U). What is the input language? Many
toolchains use custom verification-oriented languages. Dafny
is a high-level imperative language, whereas F∗, Gallina
(used in Coq), and WhyML (used in Why3) are functional
languages. CryptoLine, Jasmin, and Vale are assembly-like
languages; Jasmin and Vale provide high-level control-flow
structures such as procedures, conditionals, and loops. Other
tools take code written in existing languages (e.g., C, Java).

Target(s) (A,S). At what level is the analysis carried out
(e.g., source-level or assembly-level)? Note that tools target-
ing source-level analysis must use verified compilers (e.g.,
CompCert [111]) to carry guarantees to machine-level, which
comes with a performance penalty. Tools targeting assembly-
level analysis sidestep this dilemma, but generally verification
becomes more difficult.

Trusted computing base (T). What lies in the trusted com-
puting base? Many verification frameworks rely on building-

Implementation FC CT Tool(s) Target % faster
evercrypt [7] F∗, Vale 64-bit C, Intel ADX asm 25.92
precomp [112] − Intel ADX asm 25.77
sandy2x [113] − Intel AVX asm 11.15
hacl [7] F∗ 64-bit C 8.69
jasmin [102] Jasmin Intel x86 64 asm 7.88
amd64 [114] Coq, SMT Intel x86 64 asm 6.11
fiat [6] Fiat Crypto 64-bit C 5.39
donna64 [115] − 64-bit C 0.00

Functional correctness (FC), Constant-time (CT)
– verified – partially verified – not verified

TABLE IV
COMPARISON OF CURVE25519 IMPLEMENTATIONS. % FASTER

CALCULATED USING DONNA64 AS THE BASELINE.

block verification tools, such as SMT solvers (e.g., Z3) and
interactive theorem provers (e.g., Coq). While these are ac-
knowledged to be important trust assumptions of verification
tools, verified artifacts tend to rely on additional trust assump-
tions, e.g., unverified interoperability between tools or only
verifying small routines in a larger primitive.

C. Discussion

Achievements: Verified primitives are being deployed at
Internet-scale. A recent milestone achievement of computer-
aided cryptography is that verified primitives are being de-
ployed at scale. Verified primitives in the HACL∗ [5] library
are used in Mozilla Firefox’s NSS security engine, and ver-
ified elliptic curve implementations in the Fiat Cryptography
library [6] are used in Google’s BoringSSL library.

There are several common insights to these successes. First,
verified code needs to be as fast or faster than the code being
replaced. Second, verified code needs to fit the APIs that are
actually in use. Third, it helps if team members work with or
take internships with the companies that use the code. In the
case of HACL∗, it additionally helped that they replaced an
entire ciphersuite, and that they were willing to undertake a
significant amount of non-research work, such as packaging
and testing, that many academic projects stop short of.

Takeaway: Verified implementations are now as fast or
faster than their unverified counterparts. Through decades
of research in formal verification, it was commonly accepted
that the proof burden in verifying complex, optimized code
was exorbitant; verified code would be hard-pressed to com-

pete with unverified code in terms of performance. However,
various projects in the cryptography domain have challenged
this position. We are seeing verified implementations that meet
the performance of the fastest unverified implementations. We
conclude that there is currently no conceptual or technological
barrier that prevents verifying the fastest implementations
available, although more effort is expected.

As a small case study, we look at Curve25519 [116],
a widely used elliptic curve that has received considerable
interest from the applied cryptography community (in setting
new speed records) and the formal methods community (in
verifying that high-speed implementations are correct and se-
cure). We compare a number of Curve25519 implementations
in Table IV. These comprise some of the fastest available
verified and unverified implementations; they are written in
C, assembly, or a combination of both.

To compare their performance, we measure the number of
CPU cycles (median over 5K executions) it takes to perform
scalar multiplication. We report the performance increase (%
faster) over donna64 [115], one of the fastest known (unver-
ified) C implementations. All measurements are collected on
a 1.8 GHz Intel i7-8565U CPU with 16 GB of RAM; hyper-
threading and dynamic-processor scaling (e.g., Turbo Boost)
are disabled. Implementations written in C are compiled using
GCC 9.2 with optimization flag -O3. To summarize, several
verified C implementations (hacl and fiat) beat donna64; the
fastest verified assembly implementation (evercrypt) meets the
fastest unverified assembly implementation (precomp).

Takeaway: Higher performance entails larger verifica-
tion effort. Verifying generic, high-level code is typically
easier, but comes with a performance cost. Hand-written
assembly can achieve best in class performance by taking
advantage of hardware-specific optimizations, but verifying
such implementations is quite difficult due to complex side-
effects, unstructured control-flow, and flat structure. Moreover,
this effort must be repeated for each platform. C code is
less efficient, as hardware-specific features are not a part of
standard portable C, but implementations need only be verified
once and can then be run on any platform. Code written in
higher-level languages is even less efficient, but verification
becomes much easier (e.g., memory safety can be obtained
for free). These aspects are discussed further in the Vale and
Jasmin papers [102], [103], [117].

Challenge: Automating equivalence proofs. Significant
progress could be made if functional correctness proofs could
be solved by providing a sequence of simple transformations
that connect specifications to targets and relying on an auto-
matic tool to check these simple transformations. Promising
recent work in this direction [118] demonstrates the feasibility
of the approach. However, the current approaches are not
automatic: neither in finding the transformations nor in proving
them. The latter seems achievable for many useful control-
flow-preserving transformations, whereas the former could be
feasible at least for common control-flow transformations.

Challenge: Functional correctness of common arithmetic
routines. Verifying cryptographic code often involves tricky

mathematical reasoning that SMT-based tools can struggle
with. Examples range from proving the correctness of the
Montgomery representations [119] used to accelerate big-
integer computations, to the nuts-and-bolts of converting be-
tween, say, 64-bit words and the underlying bytes. At present,
most verification efforts build this infrastructure from scratch
and customize it for their own particular needs, which leads
to significant duplication of effort across projects. Hence, an
open challenge is to devise a common core of such routines
(e.g., a verified version of the GMP library [120]) that can be
shared across all (or most) verification projects, despite their
reliance on different tools and methodologies.

D. Further Reading

While our principal focus is on cryptographic code, verify-
ing systems code is an important and active area of research.
For example, there has been significant work in verifying op-
erating systems code [121]–[127], distributed systems [128]–
[130], and even entire software stacks [131]. We expect that
these two strands of work will cross paths in the future.

IV. IMPLEMENTATION-LEVEL SECURITY

In this section, we focus on the role of computer-aided
cryptography in establishing implementation-level security
guarantees, with a particular focus on software protections
against digital side-channel attacks. Hardware protections are
beyond the scope of this paper and are left as further reading.
By digital side-channel attacks, we mean those that can be
launched by observing intentionally exposed interfaces by the
computing platform, including all execution time variations
and observable side-effects in shared resources such as the
cache. This excludes physical side channels such as power
consumption, electromagnetic radiation, etc.

A. Critical Review

Why is implementation-level security important? Although
design-level security can rule out large classes of attacks,
guarantees are proven in a model that idealizes an attacker’s
interface with the underlying algorithms: They can choose
inputs and observe outputs. However, in practice, attackers
can observe much more than just the functional behavior of
cryptographic algorithms. For example, side-channels are in-
terfaces available at the implementation-level (but unaccounted
for at the design-level) from which information can leak as
side-effects of the computation process (e.g., timing behavior,
memory access patterns). And indeed, these sources of leakage
are devastating—key-recovery attacks have been demonstrated
on real implementations, e.g., on RSA [142] and AES [143].

How can implementation-level security fail? The prevailing
technique for protecting against digital side-channel attacks is
to follow constant-time coding guidelines [144]. We stress that
the term is a bit of a misnomer: The idea of constant-time is
that an implementation’s logical execution time (not wall-clock
execution time) should be independent of the values of secret
data; it may, however, depend on public data, such as input
length. To achieve this, constant-time implementations must

Tool Target Method Synthesis Sound Complete Public
inputs

Public
outputs

Control
flow

Memory
access

Variable-
time op.

ABPV13 [132] C DV
CacheAudit [133] Binary Q
ct-verif [134] LLVM DV
CT-Wasm [135] Wasm TC
FaCT [136] LLVM TC
FlowTracker [137] LLVM DF
Jasmin [102] asm DV
KMO12 [138] Binary Q
Low∗ [139] C TC
SC Eliminator [140] LLVM DF
Vale [103] asm DF
VirtualCert [141] x86 DF

Method
TC – type-checking DF – data-flow analysis DV – deductive verification Q – Quantitative

TABLE V
OVERVIEW OF TOOLS FOR SIDE-CHANNEL RESISTANCE. SEE SECTION IV-B FOR MORE DETAILS ON TOOL FEATURES.

follow a number of strict guidelines, e.g., they must avoid
variable-time operations, control flow, and memory access
patterns that depend on secret data. Unfortunately, complying
with constant-time coding guidelines forces implementors to
avoid natural but potentially insecure programming patterns,
making enforcement error-prone.

Even worse, the observable properties of a program’s exe-
cution are generally not evident from source code alone. Thus,
software-invisible optimizations, e.g., compiler optimizations
or data-dependent instruction set architecture (ISA) optimiza-
tions, can remove source-level countermeasures. Programmers
also assume that the computing machine provides memory
isolation, which is a strong and often unrealistic assumption
in general-purpose hardware (e.g., due to isolation breaches
allowed by speculative execution mechanisms).

How are these failures being addressed outside CAC?
To check that implementations correctly adhere to constant-
time coding guidelines, current solutions are (1) auditing,
which is costly in both time and expertise, and (2) testing,
which commits the fallacy of interpreting constant-time to be
constant wall-clock time. These solutions are inadequate: A
botched patch for a timing vulnerability in TLS [145] led to the
Lucky 13 timing vulnerability in OpenSSL [146]; in turn, the
Lucky 13 patch led to yet another timing vulnerability [147]!

To prevent compiler optimizations from interfering with
constant-time recipes applied at the source-code level, imple-
mentors simply avoid using compilers at all, instead choosing
to implement cryptographic routines and constant-time recipes
directly in assembly. Again, checking that countermeasures are
implemented correctly is done through auditing and testing,
but in a much more difficult, low-level setting.

Dealing with micro-architectural attacks that breach mem-
ory isolation, such as Spectre and Meltdown [148], [149], is
still an open problem and seems to be out of reach of purely
software-based countermeasures if there is to be any hope of
achieving decent performance.

How can computer-aided cryptography help? Program
analysis and verification tools can automatically (or semi-
automatically) check whether a given implementation meets
constant-time coding guidelines, thereby providing a formal
foundation supporting heretofore informal best practices. Even

further, some tools can automatically repair code that violates
constant-time into compliant code. These approaches neces-
sarily abstract the leakage interface available to real-world
attackers, but being precisely defined, they help clarify the
gap between formal leakage models and real-world leakage.

What are the fine-print caveats? Implementation-level
proofs are only as good as their models, e.g., of physically
observable effects of hardware. Furthermore, new attacks may
challenge these models. Implicit assumptions arise from gaps
between code and verified artifacts.

What background do I need to know? Formal reasoning
about side-channels is based on a leakage model. This model
is defined over the semantics of the target language, abstractly
representing what an attacker can observe during the computa-
tion process. For example, the leakage model for a branching
operation may leak all program values associated with the
branching condition. After having defined the appropriate
leakage models, proving that an implementation is secure
(with respect to the leakage models) amounts to showing
that the leakage accumulated over the course of execution
is independent of the values of secret data. This property is
an instance of observational non-interference, an information
flow property requiring that variations in secret data cause no
differences in observable outputs [150].

The simplest leakage model is the program counter pol-
icy, where the program control-flow is leaked during ex-
ecution [151]. The most common leakage model, namely
the constant-time policy, additionally assumes that memory
accesses are leaked during execution. This leakage model is
usually taken as the best practice to remove exploitable exe-
cution time variations and a best-effort against cache-attacks
launched by co-located processes. A more precise leakage
model called the size-respecting policy also assumes that
operand sizes are leaked for specific variable-time operations.
For more information on leakage models, see the paper by
Barthe et al. [150, Section IV.D].

B. Digital Side-Channel Tools: State of the Art

Table V presents a taxonomy of tools for verifying digital
side-channel resistance. Tools are listed alphabetically and are
categorized as follows.

Target (A,S). At what level is the analysis performed
(e.g., source, assembly, binary)? To achieve the most reliable
guarantees, analysis should be performed as close as possible
to the executed machine code.

Method (A). The tools we consider all provide a means
to verify absence of timing leaks in a well-defined leakage
model, but using different techniques:

• Static analysis techniques use type systems or data-flow
analysis to keep track of data dependencies from secret
inputs to problematic operations.

• Quantitative analysis techniques construct a rich model of a
hardware feature, e.g, the cache, and derive an upper-bound
on the leaked information.

• Deductive verification techniques prove that the leakage
traces of two executions of the program coincide if the pub-
lic parts of the inputs match. These techniques are closely
related to the techniques used for functional correctness.

Type-checking and data-flow analysis are more amenable to
automation, and they guarantee non-interference by excluding
all programs that could pass secret information to an operation
that appears in the trace. The emphasis on automation, how-
ever, limits the precision of the techniques, which means that
secure programs may be rejected by the tools (i.e., they are not
complete). Tools based on deductive verification are usually
complete, but require more user interaction. In some cases,
users interact with the tool by annotating code, and in others
the users use an interactive proof assistant to complete the
proof. It is hard to conciliate a quantitative bound on leakage
with standard cryptographic security notions, but such tools
can also be used to prove a zero-leakage upper bound, which
implies non-interference in the corresponding leakage model.

Synthesis (U). Can the tool take an insecure program and
automatically generate a secure program? Tools that support
synthesis (e.g., FaCT [136] and SC Eliminator [140]) can
automatically generate secure implementations from insecure
implementations. This allows developers to write code natu-
rally with constant-time coding recipes applied automatically.

Soundness (A, T). Is the analysis sound, i.e., it only deems
secure programs as secure? Note that this is our baseline
filter for consideration, but we make this explicit in the table.
Still, it bears mentioning that some unsound tools are used
in practice. One example is ctgrind [152], an extension of
Valgrind that takes in a binary with taint annotations and
checks for constant-address security via dynamic analysis. It
supports public inputs but not public outputs, and is neither
sound nor complete.

Completeness (A, S). Is the analysis complete, i.e., it only
deems insecure programs as insecure?

Public input (S). Does the tool support public inputs? Sup-
port for public inputs allows differentiating between public and
secret inputs. Implementations can benignly violate constant-
time policies without introducing side-channel vulnerabilities
by leaking no more information than public inputs of compu-
tations. Unfortunately, tools without such support would reject
these implementations as insecure; forcing execution behaviors

to be fully input independent may lead to large performance
overheads.

Public output (S). Does the tool support public outputs?
Similarly, support for public outputs allows differentiating be-
tween public and secret outputs. The advantages to supporting
public outputs is the same as those for supporting public
inputs: for example, branching on a bit that is revealed to
the attacker explicitly is fine.

Control flow leakage (S). Does the tool consider control-
flow leakage? The leakage model includes values associated
with conditional branching (e.g., if, switch, while, for state-
ments) during program execution.

Memory access leakage (S). Does the tool consider memory
access pattern leakage? The leakage model includes memory
addresses accessed during program execution.

Variable-time operation leakage (S). Does the tool consider
variable-time operation leakage? The leakage model includes
inputs to variable-time operations (e.g., floating point opera-
tions [153]–[155], division and modulus operations on some
architectures) classified according to timing-equivalent ranges.

C. Discussion

Achievements: Automatic verification of constant-time
real-world code. There are several tools that can perform
verification of constant-time code automatically, both for high-
level code and low-level code. These tools have been applied
to real-world libraries. For example, portions of the assembly
code in OpenSSL have been verified using Vale [103], high-
speed implementations of SHA-3 and TLS 1.3 ciphersuites
have been verified using Jasmin [102], and various off-the-
shelf libraries have been analyzed with FlowTracker [137].

Takeaway: Lowering the target provides better guarantees.
Of the surveyed tools, several operate at the level of C code;
others operate at the level of LLVM assembly; still others
operate at the level of assembly or binary. The choice of target
is important. To obtain a faithful correspondence with the ex-
ecutable program under an attacker’s scrutiny, analysis should
be performed as close as possible to the executed machine
code. Given that mainstream compilers (e.g., GCC and Clang)
are known to optimize away defensive code and even introduce
new side-channels [156], compiler optimizations can interfere
with countermeasures deployed and verified at source-level.

Challenge: Secure, constant-time preserving compilation.
Given that mainstream compilers can interfere with side-
channel countermeasures, many cryptography engineers avoid
using compilers at all, instead choosing to implement crypto-
graphic routines directly in assembly, which means giving up
the benefits of high-level languages.

An alternative solution is to use secure compilers that carry
source-level countermeasures along the compilation chain
down to machine code. This way, side-channel resistant code
can be written using portable C, and the secure compiler takes
care of preserving side-channel resistance to specific architec-
tures. Barthe et al. [150] laid the theoretical foundations of
constant-time preserving compilation. These ideas were sub-
sequently realized in the verified CompCert C compiler [157].

Unfortunately, CompCert-generated assembly code is not as
efficient as that generated by GCC and Clang, which in turn
lags the performance of hand-optimized assembly.

Challenge: Protecting against micro-architectural attacks.
The constant-time policy is designed to capture logical timing
side channels in a simple model of hardware. Unfortunately,
this simple model is inappropriate for modern hardware, as
microarchitectural features, e.g., speculative or out-of-order
execution, can be used for launching devastating side-channel
attacks. Over the last year, the security world has been
shaken by a series of attacks, including Spectre [148] and
Meltdown [149]. A pressing challenge is to develop notions
of constant-time security and associated verification methods
that account for microarchitectural features.

Challenge: Rethinking the hardware-software contract
from secure, formal foundations. An ISA describes (usually
informally) what one needs to know to write a functionally
correct program [158], [159]. However, current ISAs are an
insufficient specification of the hardware-software contract
when it comes to writing secure programs [160]. They do not
capture hardware features that affect the temporal behavior
of programs, which makes carrying side-channel countermea-
sures at the software-level to the hardware-level difficult.

To rectify this, researchers have called on new ISA designs
that expose, for example, the temporal behaviors of hardware,
which can lend to reasoning about them in software [160].
This, of course, poses challenging and competing requirements
for hardware architects, but we believe developing formal
foundations for verification and reasoning about security at
the hardware-software interface can help. This line of work
seems also to be the only path that can lead to a sound, formal
treatment of micro-architectural attacks.

D. Further Reading
For lack of space, we had to omit several threads of

relevant work, e.g., on verifying side-channel resistance in
hardware [161]–[165], and on verifying masked implemen-
tations aimed at protecting against differential power analysis
attacks [166]–[171].

V. CASE STUDY I: CONSOLIDATING GUARANTEES

Previous sections focus on specific guarantees: design-level
security, functional correctness, efficiency, and side-channel
resistance. This case study focuses on unifying approaches that
can combine these guarantees. This is a natural and important
step towards the Holy Grail of computer-aided cryptography:
to deliver guarantees on executable code that match the
strength and elegance of guarantees on cryptographic designs.

Table VI collects implementations that verifiably meet more
than one guarantee. Implementations are grouped by year
(demarcated by dashed lines), starting from 2014 and ending
in 2019; within each year, implementations are listed alpha-
betically by author. We report on the primitives included, the
languages targeted, the tools used, and the guarantees met.

Computational security. We categorize computational se-
curity guarantees as follows: verified (), partially veri-
fied (), not verified (), and not applicable (−). The

HACL∗-related implementations are partially verified, as only
AEAD primitives have computational proofs, which are semi-
mechanized [1]. Security guarantees do not apply to, e.g.,
elliptic curve implementations or bignum code.

Functional correctness. We categorize functional correct-
ness guarantees as follows: target-level (), source-level (),
and not verified (). Target-level guarantees can be achieved
in two ways: Either guarantees are established directly on
assembly code, or guarantees are established at source level
and a verified compiler is used.

Efficiency. We categorize efficiency as follows: comparable
to assembly reference implementations (), comparable to
portable C reference implementations (), and slower than
portable C reference implementations ().

Side-channel resistance. We categorize side-channel resis-
tance guarantees as follows: target-level (), source-level (),
and not verified ().

Takeaway: Existing tools can be used to achieve the
“grand slam” of guarantees for complex cryptographic
primitives. Ideally, we would like computational security
guarantees, (target-level) functional correctness, efficiency, and
(target-level) side-channel guarantees to be connected in a
formal, machine-checkable way (the “grand slam” of guar-
antees). Many implementations come close, but so far, only
one meets all four. Almeida et al. [69] formally verify an
efficient implementation of the sponge construction from the
SHA-3 standard. It connects proofs of random oracle (RO)
indifferentiability for a pseudo-code description of the sponge
construction, and proofs of functional correctness and side-
channel resistance for an efficient, vectorized, implementation.
The proofs are constructed using EasyCrypt and Jasmin.
Other works focus on either provable security or efficiency,
plus functional correctness and side-channel resistance. This
disconnect is somewhat expected. Provable security guarantees
are established for pseudo-code descriptions of constructions,
whereas efficiency considerations demand non-trivial opti-
mizations at the level of C or assembly.

Takeaway: Integration can deliver strong and intuitive
guarantees. Interpreting verification results that cover multiple
requirements can be very challenging, especially because they
may involve (all at once) designs, reference implementations,
and optimized assembly implementations. To simplify their in-
terpretation, Almeida et al. [174] provide a modular methodol-
ogy to connect the different verification efforts, in the form of
an informal meta-theorem, which concludes that an optimized
assembly implementation is secure against implementation-
level adversaries with side-channel capabilities. The meta-
theorem states four conditions: (i) the design must be prov-
ably black-box secure in the (standard) computational model;
(ii) the design is correctly implemented by a reference imple-
mentation; (iii) the reference implementation is functionally
equivalent to the optimized implementation; (iv) the optimized
implementation is protected against side-channels. These con-
ditions yield a clear separation of concerns, which reflects the
division of the previous sections.

Takeaway: Achieving broad scope and efficiency. Many

Implementation(s) Target(s) Tool(s) used Computational
security

Functional
correctness Efficiency Side-channel

resistance
RSA-OEAP [172] C EasyCrypt, Frama-C, CompCert
Curve25519 scalar mult. loop [114] asm Coq, SMT −
SHA-1, SHA-2, HMAC, RSA [131] asm Dafny, BoogieX86 −
HMAC-SHA-2 [173] C FCF, VST, CompCert
MEE-CBC [174] C EasyCrypt, Frama-C, CompCert
Salsa20, AES, ZUC, FFS, ECDSA, SHA-3 [175] Java, C Cryptol, SAW
Curve25519 [176] OCaml F∗, Sage −
Salsa20, Curve25519, Ed25519 [102] asm Jasmin
SHA-2, Poly1305, AES-CBC [103] asm Vale
HMAC-DRBG [177] C FCF, VST, CompCert
HACL∗1 [5] C F∗

HACL∗1 [5] C F∗, CompCert
HMAC-DRBG [178] C Cryptol, SAW
SHA-3 [69] asm EasyCrypt, Jasmin
ChaCha20, Poly1305 [117] asm EasyCrypt, Jasmin
BGW multi-party computation protocol [179] OCaml EasyCrypt, Why3
Curve25519, P-256 [6] C Fiat Crypto −
Poly1305, AES-GCM [104] asm F∗, Vale
Bignum code4 [98] C CryptoLine −
WHACL∗1, LibSignal∗ [180] Wasm F∗

EverCrypt2 [7] C F∗

EverCrypt3 [7] asm F∗, Vale

Computational security Functional correctness Efficiency Side-channel resistance
– verified – target-level – comparable to asm ref – target-level
– partially verified – source-level – comparable to C ref – source-level
– not verified – not verified – slower than C ref – not verified

− – not applicable
1(ChaCha20, Salsa20, Poly1305, SHA-2, HMAC, Curve25519, Ed25519) 2(MD5, SHA-1, SHA-2, HMAC, Poly1305, HKDF, Curve25519, ChaCha20)
3(AES-GCM, ChaCha20, Poly1305, SHA-2, HMAC, HKDF, Curve25519, Ed25519, P-256) 4(In NaCl, wolfSSL, OpenSSL, BoringSSL, Bitcoin)

TABLE VI
VERIFIED CRYPTOGRAPHIC IMPLEMENTATIONS AND THEIR FORMAL GUARANTEES.

implementations target either C or assembly. This involves
trade-offs between the portability and lighter verification-effort
of C code, and the efficiency that can be gained via hand-
tuned assembly. EverCrypt [7] is one of the first systems
to target both. This garners the advantages of both, and it
helps explain, in part, the broad scope of algorithms EverCrypt
covers. Generic functionality and outer loops can be efficiently
written and verified in C, whereas performance-critical cores
can be verified in assembly. Soundly mixing C and assembly
requires careful modeling of interoperation between the two,
including platform and compiler-specific calling conventions,
and differences in the “natural” memory and leakage models
used to verify C versus assembly [7], [104].

VI. CASE STUDY II: LESSONS LEARNED FROM TLS

The Transport Layer Security (TLS) protocol is widely used
to establish secure channels on the Internet, and is arguably
the most important real-world deployment of cryptography to
date. Before TLS version 1.3, the protocol’s design phases did
not involve substantial academic analysis, and the process was
highly reactive: When an attack was found, interim patches
would be released for the mainstream TLS libraries or a
longer-term fix would be incorporated in the next version
of the standard. This resulted in an endless cycle of attacks
and patches. Given the complexity of the protocol, early
academic analyses considered only highly simplified crypto-
graphic cores. However, once the academic community started
considering more detailed aspects of the protocol, many new
attacks were discovered, e.g., [181], [182].

The situation changed substantially during the proactive
design process of TLS version 1.3: The academic community
was actively consulted and encouraged to provide analysis
during the process of developing multiple drafts. (See [183]
for a more detailed account of TLS’s standardization history.)

On the computer-aided cryptography side of things, there
were substantial efforts in verifying implementations of TLS
1.3 [1], [3] and using tools to analyze symbolic [2]–[4] and
computational [3] models of TLS. Below we collect the most
important lessons learned from TLS throughout the years.

Lesson: The process of formally specifying and verifying
a protocol can reveal flaws. The work surrounding TLS has
shown that the process of formally verifying TLS, and perhaps
even just formally specifying it, can reveal flaws. The imple-
mentation of TLS 1.2 with verified cryptographic security by
Bhargavan et al. [70] discovered new alert fragmentation and
fingerprinting attacks and led to the discovery of the Triple
Handshake attacks [72]. The symbolic analysis of TLS 1.3
draft 10 using Tamarin by Cremers et al. [2] uncovered a
potential attack allowing an adversary to impersonate a client
during a PSK-resumption handshake, which was fixed in
draft 11. The symbolic analysis of TLS 1.3 using ProVerif
by Bhargavan et al. [3] uncovered a new attack on 0-RTT
client authentication that was fixed in draft 13. The symbolic
analysis of draft 21 using Tamarin by Cremers et al. [4]
revealed unexpected behavior that inhibited certain strong
authentication guarantees. In nearly all cases, these discoveries
led to improvements to the protocol, and otherwise clarified
documentation of security guarantees.

Lesson: Cryptographic protocol designs are moving tar-
gets; machine-checked proofs can be more easily updated.
The TLS 1.3 specification was a rapidly moving target, with
significant changes being effected on a fairly regular basis.
As changes were made between a total of 28 drafts, previous
analyses were often rendered stale within the space of a few
months, requiring new analyses and proofs. An important ben-
efit of machine-checked analyses and proofs over their manual
counterparts is that they can be more easily and reliably
updated from draft to draft as the protocol evolves [2]–[4].
Moreover, machine-checked analyses and proofs can ensure
that new flaws are not introduced as components are changed.

Lesson: Standardization processes can facilitate analysis
by embracing minor changes that simplify security argu-
ments and help modular reasoning. In contrast to other
protocol standards, the TLS 1.3 design incorporates many
suggestions from the academic community. In addition to secu-
rity fixes, these include changes purposed to simplify security
proofs and automated analysis. For example, this includes
changes to the key schedule that help with key separation,
thus simplifying modular proofs; a consistent tagging scheme;
and including more transcript information in exchanges, which
simplifies consistency proofs. These changes have negligible
impact on the performance of the protocol, and have helped
make analyzing such a complex protocol feasible.

VII. CONCLUDING REMARKS

A. Recommendations to Authors

Our first recommendation concerns the clarity of trust
assumptions. We observe that, in some papers, the distinction
between what parts of an artifact are trusted/untrusted is
not always clear, which runs the risk of hazy/exaggerated
claims. On one hand, crisply delineating between what is
trusted/untrusted may be difficult, especially when multiple
tools are used, and authors may be reluctant to spell out an
artifact’s weaknesses. On the other hand, transparency and
clarity of trust assumptions are vital for progress. We point
to the paper by Beringer et al. [173] as an exemplar for how
to clearly delineate between what is trusted/untrusted. At the
same time, critics should understand that trust assumptions are
often necessary to make progress at all.

Our second recommendation concerns the use of metrics.
Metrics are useful for tracking progress over time when used
appropriately. The HACL∗ [5] study uses metrics effectively:
To quantify verification effort, the authors report proof-to-code
ratios and person efforts for various primitives. While these are
crude proxies, because the comparison is vertical (same tool,
same developers), the numbers sensibly demonstrate that, e.g.,
code involving bignums requires more work to verify in F∗.
Despite their limitations, we argue that even crude metrics
(when used appropriately) are better than none for advancing
the field. When used inappropriately, however, metrics become
dangerous and misleading. Horizontal comparisons across
disparate tools tend to be problematic and must be done with
care if they are to be used. For example, lines of proof or

analysis times across disparate tools are often incomparable,
since modeling a problem in the exact same way is non-trivial.

B. Recommendations to Tool Developers

Although we are still in the early days of seeing verified
cryptography deployed in the wild, one major pending chal-
lenge is how to make computer-aided cryptography artifacts
maintainable. Because computer-aided cryptography tools sit
at the bleeding-edge of how cryptography is done, they are
constantly evolving, often in non-backwards-compatible ways.
When this happens, we must either allow the artifacts (e.g.,
machine-checked proofs) to become stale, or else muster
significant human effort to keep them up to date. Moreover,
because cryptography is a moving target, we should expect that
even verified implementations (and their proofs) will require
updates. This could be to add functionality, or in the worst
case, to swiftly patch new vulnerabilities beyond what was
verifiably accounted for. To this end, we hope to see more
interplay between proof engineering research [184], [185] and
computer-aided cryptography research in the coming years.

C. Recommendations to Standardization Bodies

Given its benefits in the TLS 1.3 standardization effort, we
believe computer-aided cryptography should play an important
role in standardization processes [186]. Traditionally, cryp-
tographic standards are written in a combination of prose,
formulas, and pseudocode, and can change drastically be-
tween drafts. On top of getting the cryptography right in
the first place, standards must also focus on clarity, ease of
implementation, and interoperability. Unsurprisingly, standard-
ization processes can be long and arduous. And even when
they are successful, the substantial gap between standards and
implementations leaves plenty of room for error.

Security proofs can also become a double-edged sword
in standardization processes. Proposals supported by hand-
written security arguments often cannot be reasonably audited.
A plausible claim with a proof that cannot be audited should
not be taken as higher assurance than simply stating the
claim—we believe the latter is a lesser evil, as it does not
create a false sense of security. For example, Hales [187]
discusses ill-intentioned security arguments in the context of
the Dual EC pseudo-random generator [188]. Another example
is the recent discovery of attacks against the AES-OCB2 ISO
standard, which was previously believed to be secure [189].

To address these challenges, we advocate the use of
computer-aided cryptography, not only to formally certify
compliance to standards, but also to facilitate the role of
auditors and evaluators in standardization processes, allowing
the discussion to focus on the security claims, rather than on
whether the supporting security arguments are convincing. We
see the current NIST post-quantum standardization effort [190]
as an excellent opportunity to put our recommendations into
practice, and we encourage the computer-aided cryptography
community to engage in the process.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their useful sugges-
tions; Jason Gross, Boris Köpf, Stever Kremer, Peter Schwabe,
and Alwen Tiu for feedback on earlier drafts of the paper; and
Tiago Oliveira for help setting up Jasmin and benchmarks.

Work by Manuel Barbosa was supported by National Funds
through the Portuguese Foundation for Science and Technol-
ogy (FCT) under project PTDC/CCI-INF/31698/2017. Work
by Gilles Barthe was supported by the Office of Naval
Research (ONR) under project N00014-15-1-2750. Work by
Karthik Bhargavan was supported by the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement no.
683032 - CIRCUS). Work by Bruno Blanchet was sup-
ported by the French National Research Agency (ANR) under
project TECAP (decision no. ANR-17-CE39-0004-03). Work
by Kevin Liao was supported by the National Science Founda-
tion (NSF) through a Graduate Research Fellowship. Work by
Bryan Parno was supported by a gift from Bosch, a fellowship
from the Alfred P. Sloan Foundation, the NSF under Grant No.
1801369, and the Department of the Navy, Office of Naval
Research under Grant No. N00014-18-1-2892.

REFERENCES

[1] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Protzenko, A. Ras-
togi, N. Swamy, S. Z. Béguelin, K. Bhargavan, J. Pan, and J. K.
Zinzindohoue, “Implementing and proving the TLS 1.3 record layer,”
in IEEE Symposium on Security and Privacy (S&P). IEEE Computer
Society, 2017, pp. 463–482.

[2] C. Cremers, M. Horvat, S. Scott, and T. van der Merwe, “Automated
analysis and verification of TLS 1.3: 0-rtt, resumption and delayed
authentication,” in IEEE Symposium on Security and Privacy (S&P).
IEEE Computer Society, 2016, pp. 470–485.

[3] K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified models and
reference implementations for the TLS 1.3 standard candidate,” in IEEE
Symposium on Security and Privacy (S&P). IEEE Computer Society,
2017, pp. 483–502.

[4] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe,
“A comprehensive symbolic analysis of TLS 1.3,” in ACM Conference
on Computer and Communications Security (CCS). ACM, 2017, pp.
1773–1788.

[5] J. K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,
“HACL*: A verified modern cryptographic library,” in ACM Confer-
ence on Computer and Communications Security (CCS). ACM, 2017,
pp. 1789–1806.

[6] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala, “Simple
high-level code for cryptographic arithmetic - with proofs, without
compromises,” in IEEE Symposium on Security and Privacy (S&P).
IEEE, 2019, pp. 1202–1219.

[7] J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel, M. Polubelova,
K. Bhargavan, B. Beurdouche, J. Choi, A. Delignat-Lavaud, C. Fournet,
N. Kulatova, T. Ramananandro, A. Rastogi, N. Swamy, C. Winter-
steiger, and S. Zanella-Beguelin, “EverCrypt: A fast, verified, cross-
platform cryptographic provider,” in IEEE Symposium on Security and
Privacy (S&P). IEEE, 2020.

[8] M. Bellare and P. Rogaway, “The security of triple encryption and a
framework for code-based game-playing proofs,” in Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), ser. LNCS, vol. 4004. Springer, 2006,
pp. 409–426.

[9] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in IEEE Annual Symposium on Foundations
of Computer Science (FOCS). IEEE Computer Society, 2001, pp.
136–145.

[10] S. Halevi, “A plausible approach to computer-aided cryptographic
proofs,” IACR Cryptology ePrint Archive, vol. 2005, p. 181, 2005.

[11] K. G. Paterson and G. J. Watson, “Plaintext-dependent decryption: A
formal security treatment of SSH-CTR,” in Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), ser. LNCS, vol. 6110. Springer, 2010, pp. 345–361.

[12] A. Boldyreva, J. P. Degabriele, K. G. Paterson, and M. Stam, “Security
of symmetric encryption in the presence of ciphertext fragmentation,”
in Annual International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT), ser. LNCS, vol. 7237.
Springer, 2012, pp. 682–699.

[13] J. P. Degabriele, K. G. Paterson, and G. J. Watson, “Provable security
in the real world,” IEEE Security & Privacy, vol. 9, no. 3, pp. 33–41,
2011.

[14] V. Shoup, “Sequences of games: a tool for taming complexity in
security proofs,” IACR Cryptology ePrint Archive, vol. 2004, p. 332,
2004. [Online]. Available: http://eprint.iacr.org/2004/332

[15] Y. Lindell, “How to simulate it - A tutorial on the simulation proof
technique,” in Tutorials on the Foundations of Cryptography. Springer
International Publishing, 2017, pp. 277–346.

[16] S. F. Doghmi, J. D. Guttman, and F. J. Thayer, “Searching for shapes
in cryptographic protocols,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), ser.
LNCS, vol. 4424. Springer, 2007, pp. 523–537.

[17] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis,
“Refinement types for secure implementations,” ACM Trans. Program.
Lang. Syst., vol. 33, no. 2, pp. 8:1–8:45, 2011.

[18] M. Backes, C. Hriţcu, and M. Maffei, “Union, intersection and refine-
ment types and reasoning about type disjointness for secure protocol
implementations,” J. Comput. Secur., vol. 22, no. 2, pp. 301–353, Mar.
2014.

[19] S. Escobar, C. A. Meadows, and J. Meseguer, “Maude-npa: Crypto-
graphic protocol analysis modulo equational properties,” in Founda-
tions of Security Analysis and Design (FOSAD), ser. LNCS, vol. 5705.
Springer, 2007, pp. 1–50.

[20] B. Blanchet, “Modeling and verifying security protocols with the
applied pi calculus and ProVerif,” Foundations and Trends in Privacy
and Security, vol. 1, no. 1–2, pp. 1–135, Oct. 2016.

[21] K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse, “Verified inter-
operable implementations of security protocols,” ACM Transactions on
Programming Languages and Systems, vol. 31, no. 1, 2008.

[22] V. Cheval, V. Cortier, and M. Turuani, “A little more conversation,
a little less action, a lot more satisfaction: Global states in proverif,”
in IEEE Computer Security Foundations Symposium (CSF). IEEE
Computer Society, 2018, pp. 344–358.

[23] D. L. Li and A. Tiu, “Combining proverif and automated theorem
provers for security protocol verification,” in International Conference
on Automated Deduction (CADE), ser. LNCS, vol. 11716. Springer,
2019, pp. 354–365.

[24] M. Arapinis, E. Ritter, and M. D. Ryan, “Statverif: Verification of
stateful processes,” in IEEE Computer Security Foundations Sympo-
sium (CSF). IEEE Computer Society, 2011, pp. 33–47.

[25] C. J. F. Cremers, “The scyther tool: Verification, falsification, and anal-
ysis of security protocols,” in International Conference on Computer-
Aided Verification (CAV), ser. LNCS, vol. 5123. Springer, 2008, pp.
414–418.

[26] S. Meier, C. J. F. Cremers, and D. A. Basin, “Strong invariants for
the efficient construction of machine-checked protocol security proofs,”
in IEEE Computer Security Foundations Symposium (CSF). IEEE
Computer Society, 2010, pp. 231–245.

[27] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin, “The TAMARIN
prover for the symbolic analysis of security protocols,” in International
Conference on Computer-Aided Verification (CAV), ser. LNCS, vol.
8044. Springer, 2013, pp. 696–701.

[28] S. Kremer and R. Künnemann, “Automated analysis of security proto-
cols with global state,” in IEEE Symposium on Security and Privacy
(S&P). IEEE Computer Society, 2014, pp. 163–178.

[29] M. Turuani, “The cl-atse protocol analyser,” in International Confer-
ence on Term Rewriting and Applications (RTA), ser. LNCS, vol. 4098.
Springer, 2006, pp. 277–286.

[30] D. A. Basin, S. Mödersheim, and L. Viganò, “OFMC: A symbolic
model checker for security protocols,” Int. J. Inf. Sec., vol. 4, no. 3,
pp. 181–208, 2005.

[31] A. Armando and L. Compagna, “SATMC: A sat-based model checker
for security protocols,” in European Conference on Logics in Artificial

http://eprint.iacr.org/2004/332

Intelligence (JELIA), ser. LNCS, vol. 3229. Springer, 2004, pp. 730–
733.

[32] R. Chadha, V. Cheval, Ştefan Ciobâcă, and S. Kremer, “Automated
verification of equivalence properties of cryptographic protocols,” ACM
Trans. Comput. Log., vol. 17, no. 4, pp. 23:1–23:32, 2016.

[33] V. Cheval, “APTE: an algorithm for proving trace equivalence,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), ser. LNCS, vol. 8413. Springer,
2014, pp. 587–592.

[34] V. Cheval, S. Kremer, and I. Rakotonirina, “DEEPSEC: deciding
equivalence properties in security protocols theory and practice,” in
IEEE Symposium on Security and Privacy (S&P). IEEE Computer
Society, 2018, pp. 529–546.

[35] V. Cortier, A. Dallon, and S. Delaune, “Sat-equiv: An efficient tool
for equivalence properties,” in IEEE Computer Security Foundations
Symposium (CSF). IEEE Computer Society, 2017, pp. 481–494.

[36] A. Tiu and J. E. Dawson, “Automating open bisimulation checking for
the spi calculus,” in IEEE Computer Security Foundations Symposium
(CSF). IEEE Computer Society, 2010, pp. 307–321.

[37] J. K. Millen, “A necessarily parallel attack,” in In Workshop on Formal
Methods and Security Protocols, 1999.

[38] N. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov, “Multiset
rewriting and the complexity of bounded security protocols,” Journal
of Computer Security, vol. 12, no. 2, pp. 247–311, 2004.

[39] S. Delaune and L. Hirschi, “A survey of symbolic methods for
establishing equivalence-based properties in cryptographic protocols,”
J. Log. Algebr. Meth. Program., vol. 87, pp. 127–144, 2017.

[40] J. Dreier, C. Duménil, S. Kremer, and R. Sasse, “Beyond subterm-
convergent equational theories in automated verification of stateful
protocols,” in International Conference on Principles of Security and
Trust (POST). Springer-Verlag, 2017.

[41] C. Cremers and D. Jackson, “Prime, order please! revisiting small
subgroup and invalid curve attacks on protocols using Diffie-Hellman,”
in IEEE Computer Security Foundations Symposium (CSF). IEEE,
2019, pp. 78–93.

[42] L. C. Paulson, Isabelle - A Generic Theorem Prover (with a contribu-
tion by T. Nipkow), ser. LNCS. Springer, 1994, vol. 828.

[43] R. Milner, Communicating and mobile systems - the Pi-calculus.
Cambridge University Press, 1999.

[44] M. Abadi and A. D. Gordon, “A calculus for cryptographic protocols:
The spi calculus,” in ACM Conference on Computer and Communica-
tions Security (CCS). ACM, 1997, pp. 36–47.

[45] M. Abadi and C. Fournet, “Mobile values, new names, and secure com-
munication,” in Symposium on Principles of Programming Languages
(POPL). ACM, 2001, pp. 104–115.

[46] K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu, “Verified
cryptographic implementations for TLS,” ACM Trans. Inf. Syst. Secur.,
vol. 15, no. 1, pp. 3:1–3:32, 2012.

[47] N. Kobeissi, K. Bhargavan, and B. Blanchet, “Automated verification
for secure messaging protocols and their implementations: A symbolic
and computational approach,” in IEEE European Symposium on Secu-
rity and Privacy (EuroS&P). IEEE, 2017, pp. 435–450.

[48] N. Kobeissi, G. Nicolas, and K. Bhargavan, “Noise explorer: Fully
automated modeling and verification for arbitrary noise protocols,”
in IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2019, pp. 356–370.

[49] D. A. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and
V. Stettler, “A formal analysis of 5g authentication,” in ACM Con-
ference on Computer and Communications Security (CCS). ACM,
2018, pp. 1383–1396.

[50] C. Cremers, M. Dehnel-Wild, and K. Milner, “Secure authentication
in the grid: A formal analysis of DNP3 SAv5,” Journal of Computer
Security, vol. 27, no. 2, pp. 203–232, 2019.

[51] G. Girol, L. Hirschi, R. Sasse, D. Jackson, C. Cremers, and D. Basin,
“A Spectral Analysis of Noise: A Comprehensive, Automated, Formal
Analysis of Diffie-Hellman Protocols,” in Proc. of USENIX Security,
2020.

[52] B. Blanchet, M. Abadi, and C. Fournet, “Automated verification of
selected equivalences for security protocols,” Journal of Logic and
Algebraic Programming, vol. 75, no. 1, pp. 3–51, Feb.–Mar. 2008.

[53] S. Santiago, S. Escobar, C. Meadows, and J. Meseguer, “A formal
definition of protocol indistinguishability and its verification using
Maude-NPA,” in Security and Trust Management (STM), ser. LNCS,
vol. 8743. Berlin, Heidelberg: Springer, Sep. 2014, pp. 162–177.

[54] D. Basin, J. Dreier, and R. Casse, “Automated symbolic proofs of
observational equivalence,” in ACM Conference on Computer and
Communications Security (CCS). New York, NY: ACM Press, Oct.
2015, pp. 1144–1155.

[55] G. Barthe, B. Grégoire, and B. Schmidt, “Automated proofs of pairing-
based cryptography,” in ACM Conference on Computer and Commu-
nications Security (CCS). ACM, 2015, pp. 1156–1168.

[56] G. Barthe, B. Grégoire, and S. Z. Béguelin, “Formal certification
of code-based cryptographic proofs,” in Symposium on Principles of
Programming Languages (POPL). ACM, 2009, pp. 90–101.

[57] D. A. Basin, A. Lochbihler, and S. R. Sefidgar, “CryptHOL: Game-
based proofs in higher-order logic,” IACR Cryptology ePrint Archive,
vol. 2017, p. 753, 2017.

[58] B. Blanchet, “A computationally sound mechanized prover for security
protocols,” IEEE Transactions on Dependable and Secure Computing,
vol. 5, no. 4, pp. 193–207, Oct.–Dec. 2008.

[59] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin, “Computer-
aided security proofs for the working cryptographer,” in International
Cryptology Conference (CRYPTO), ser. LNCS, vol. 6841. Springer,
2011, pp. 71–90.

[60] N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud,
S. Forest, K. Bhargavan, C. Fournet, P. Strub, M. Kohlweiss, J. K.
Zinzindohoue, and S. Z. Béguelin, “Dependent types and multi-
monadic effects in F,” in Symposium on Principles of Programming
Languages (POPL). ACM, 2016, pp. 256–270.

[61] A. Petcher and G. Morrisett, “The foundational cryptography frame-
work,” in International Conference on Principles of Security and Trust
(POST), ser. LNCS, vol. 9036. Springer, 2015, pp. 53–72.

[62] G. Barthe, J. M. Crespo, B. Grégoire, C. Kunz, Y. Lakhnech,
B. Schmidt, and S. Z. Béguelin, “Fully automated analysis of padding-
based encryption in the computational model,” in ACM Conference
on Computer and Communications Security (CCS). ACM, 2013, pp.
1247–1260.

[63] “The coq proof assistant.” [Online]. Available: https://coq.inria.fr/
[64] “Isabelle.” [Online]. Available: https://isabelle.in.tum.de/
[65] C. W. Barrett and C. Tinelli, “Satisfiability modulo theories,” in

Handbook of Model Checking. Springer, 2018, pp. 305–343.
[66] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in

International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), ser. LNCS, vol. 4963. Springer,
2008, pp. 337–340.

[67] B. Lipp, B. Blanchet, and K. Bhargavan, “A mechanised cryptographic
proof of the wireguard virtual private network protocol,” in IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE,
2019, pp. 231–246.

[68] J. B. Almeida, M. Barbosa, G. Barthe, M. Campagna, E. Cohen,
B. Grégoire, V. Pereira, B. Portela, P. Strub, and S. Tasiran, “A
machine-checked proof of security for AWS key management service,”
in ACM Conference on Computer and Communications Security (CCS).
ACM, 2019, pp. 63–78.

[69] J. B. Almeida, C. Baritel-Ruet, M. Barbosa, G. Barthe, F. Dupressoir,
B. Grégoire, V. Laporte, T. Oliveira, A. Stoughton, and P. Strub,
“Machine-checked proofs for cryptographic standards: Indifferentiabil-
ity of sponge and secure high-assurance implementations of SHA-3,” in
ACM Conference on Computer and Communications Security (CCS).
ACM, 2019, pp. 1607–1622.

[70] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P. Strub,
“Implementing TLS with verified cryptographic security,” in IEEE
Symposium on Security and Privacy (S&P). IEEE Computer Society,
2013, pp. 445–459.

[71] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, and
S. Zanella-Béguelin, “Proving the TLS handshake secure (as it is),” in
International Cryptology Conference (CRYPTO), 2014.

[72] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti, and P. Strub,
“Triple handshakes and cookie cutters: Breaking and fixing authenti-
cation over TLS,” in IEEE Symposium on Security and Privacy (S&P).
IEEE Computer Society, 2014, pp. 98–113.

[73] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P. Strub, and J. K. Zinzindohoue, “A messy
state of the union: Taming the composite state machines of TLS,” in
IEEE Symposium on Security and Privacy (S&P). IEEE Computer
Society, 2015, pp. 535–552.

[74] C. E. Landwehr, D. Boneh, J. C. Mitchell, S. M. Bellovin, S. Landau,

https://coq.inria.fr/
https://isabelle.in.tum.de/

and M. E. Lesk, “Privacy and cybersecurity: The next 100 years,” Proc.
of the IEEE, vol. 100, no. Centennial-Issue, pp. 1659–1673, 2012.

[75] K. Liao, M. A. Hammer, and A. Miller, “ILC: a calculus for compos-
able, computational cryptography,” in ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). ACM,
2019, pp. 640–654.

[76] R. Canetti, A. Stoughton, and M. Varia, “EasyUC: Using EasyCrypt
to mechanize proofs of universally composable security,” in IEEE
Computer Security Foundations Symposium (CSF). IEEE, 2019, pp.
167–183.

[77] A. Lochbihler, S. R. Sefidgar, D. A. Basin, and U. Maurer, “Formal-
izing constructive cryptography using CryptHOL,” in IEEE Computer
Security Foundations Symposium (CSF). IEEE, 2019, pp. 152–166.

[78] J. A. Akinyele, M. Green, and S. Hohenberger, “Using SMT solvers to
automate design tasks for encryption and signature schemes,” in 2013
ACM SIGSAC Conference on Computer and Communications Security,
CCS’13, Berlin, Germany, November 4-8, 2013. ACM, 2013, pp. 399–
410.

[79] A. J. Malozemoff, J. Katz, and M. D. Green, “Automated analysis
and synthesis of block-cipher modes of operation,” in IEEE Computer
Security Foundations Symposium (CSF). IEEE Computer Society,
2014, pp. 140–152.

[80] V. T. Hoang, J. Katz, and A. J. Malozemoff, “Automated analysis and
synthesis of authenticated encryption schemes,” in ACM Conference
on Computer and Communications Security (CCS). ACM, 2015, pp.
84–95.

[81] G. Barthe, E. Fagerholm, D. Fiore, A. Scedrov, B. Schmidt, and
M. Tibouchi, “Strongly-optimal structure preserving signatures from
type II pairings: synthesis and lower bounds,” IET Information Security,
vol. 10, no. 6, pp. 358–371, 2016.

[82] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: nearly
practical verifiable computation,” Commun. ACM, vol. 59, no. 2, pp.
103–112, 2016.

[83] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter,
M. Naehrig, B. Parno, and S. Zahur, “Geppetto: Versatile verifiable
computation,” in IEEE Symposium on Security and Privacy (S&P),
2015, pp. 253–270.

[84] S. T. V. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and
M. Walfish, “Taking proof-based verified computation a few steps
closer to practicality,” in USENIX Security Symposium (USENIX).
USENIX Association, 2012, pp. 253–268.

[85] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza,
“SNARKs for C: verifying program executions succinctly and in zero
knowledge,” in International Cryptology Conference (CRYPTO), ser.
LNCS, vol. 8043. Springer, 2013, pp. 90–108.

[86] J. B. Almeida, E. Bangerter, M. Barbosa, S. Krenn, A. Sadeghi, and
T. Schneider, “A certifying compiler for zero-knowledge proofs of
knowledge based on sigma-protocols,” in European Symposium on
Research in Computer Security (ESORICS), 2010, pp. 151–167.

[87] M. Fredrikson and B. Livshits, “Zø: An optimizing distributing zero-
knowledge compiler,” in USENIX Security Symposium (USENIX),
2014, pp. 909–924.

[88] S. Meiklejohn, C. C. Erway, A. Küpçü, T. Hinkle, and A. Lysyan-
skaya, “ZKPDL: A language-based system for efficient zero-knowledge
proofs and electronic cash,” in USENIX Security Symposium (USENIX).
USENIX Association, 2010, pp. 193–206.

[89] M. Backes, M. Maffei, and K. Pecina, “Automated synthesis of secure
distributed applications,” in Symposium on Network and Distributed
System Security (NDSS). The Internet Society, 2012.

[90] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic, “Sok:
General purpose compilers for secure multi-party computation,” in
IEEE Symposium on Security and Privacy (S&P), 2019, pp. 1220–
1237.

[91] J. B. Almeida, M. Barbosa, E. Bangerter, G. Barthe, S. Krenn, and
S. Z. Béguelin, “Full proof cryptography: verifiable compilation of
efficient zero-knowledge protocols,” in ACM Conference on Computer
and Communications Security (CCS). ACM, 2012, pp. 488–500.

[92] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, B. Grégoire,
V. Laporte, and V. Pereira, “A fast and verified software stack for
secure function evaluation,” in ACM Conference on Computer and
Communications Security (CCS). ACM, 2017, pp. 1989–2006.

[93] C. Fournet, C. Keller, and V. Laporte, “A certified compiler for verifi-
able computing,” in IEEE Computer Security Foundations Symposium
(CSF), 2016, pp. 268–280.

[94] A. Rastogi, N. Swamy, and M. Hicks, “Wys*: A DSL for verified secure
multi-party computations,” in International Conference on Principles
of Security and Trust (POST), 2019, pp. 99–122.

[95] B. Blanchet, “Security protocol verification: Symbolic and computa-
tional models,” in International Conference on Principles of Security
and Trust (POST), ser. LNCS, vol. 7215. Springer, 2012, pp. 3–29.

[96] V. Cortier, S. Kremer, and B. Warinschi, “A survey of symbolic
methods in computational analysis of cryptographic systems,” J. Autom.
Reasoning, vol. 46, no. 3-4, pp. 225–259, 2011.

[97] R. Dockins, A. Foltzer, J. Hendrix, B. Huffman, D. McNamee, and
A. Tomb, “Constructing semantic models of programs with the software
analysis workbench,” in International Conference on Verified Software.
Theories, Tools, and Experiments (VSTTE), ser. LNCS, vol. 9971, 2016,
pp. 56–72.

[98] Y. Fu, J. Liu, X. Shi, M. Tsai, B. Wang, and B. Yang, “Signed
cryptographic program verification with typed cryptoline,” in ACM
Conference on Computer and Communications Security (CCS). ACM,
2019, pp. 1591–1606.

[99] K. R. M. Leino, “Dafny: An automatic program verifier for functional
correctness,” in International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR), ser. LNCS, vol. 6355.
Springer, 2010, pp. 348–370.

[100] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski, “Frama-c - A software analysis perspective,” in In-
ternational Conference on Software Engineering and Formal Methods
(SEFM), ser. LNCS, vol. 7504. Springer, 2012, pp. 233–247.

[101] D. J. Bernstein and P. Schwabe, “gfverif: Fast and easy verification
of finite-field arithmetic,” 2016. [Online]. Available: http://gfverif.
cryptojedi.org

[102] J. B. Almeida, M. Barbosa, G. Barthe, A. Blot, B. Grégoire, V. La-
porte, T. Oliveira, H. Pacheco, B. Schmidt, and P. Strub, “Jasmin:
High-assurance and high-speed cryptography,” in ACM Conference on
Computer and Communications Security (CCS). ACM, 2017, pp.
1807–1823.

[103] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch,
B. Parno, A. Rane, S. T. V. Setty, and L. Thompson, “Vale: Verifying
high-performance cryptographic assembly code,” in USENIX Security
Symposium (USENIX). USENIX Association, 2017, pp. 917–934.

[104] A. Fromherz, N. Giannarakis, C. Hawblitzel, B. Parno, A. Rastogi, and
N. Swamy, “A verified, efficient embedding of a verifiable assembly
language,” PACMPL, vol. 3, no. POPL, pp. 63:1–63:30, 2019.

[105] A. W. Appel, “Verified software toolchain - (invited talk),” in European
Symposium on Programming (ESOP), ser. LNCS, vol. 6602. Springer,
2011, pp. 1–17.

[106] J. Filliâtre and A. Paskevich, “Why3 - where programs meet provers,”
in European Symposium on Programming (ESOP), ser. LNCS, vol.
7792. Springer, 2013, pp. 125–128.

[107] D. J. Bernstein and T. Lange, “ebacs: Ecrypt benchmarking of
cryptographic systems,” 2009. [Online]. Available: https://bench.cr.yp.
to

[108] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey,
F. Li, N. Weaver, J. Amann, J. Beekman, M. Payer, and V. Paxson,
“The matter of heartbleed,” in Internet Measurement Conference (IMC).
ACM, 2014, pp. 475–488.

[109] S. Gueron and V. Krasnov, “The fragility of AES-GCM authentication
algorithm,” in Proc. of the Conference on Information Technology: New
Generations, Apr. 2014.

[110] B. B. Brumley, M. Barbosa, D. Page, and F. Vercauteren, “Practical
realisation and elimination of an ecc-related software bug attack,” in
Cryptographers’ Track at the RSA Conference (CT-RSA), ser. LNCS,
vol. 7178. Springer, 2012, pp. 171–186.

[111] X. Leroy, “Formal verification of a realistic compiler,” Commun. ACM,
vol. 52, no. 7, pp. 107–115, 2009.

[112] T. Oliveira, J. L. Hernandez, H. Hisil, A. Faz-Hernández, and
F. Rodrı́guez-Henrı́quez, “How to (pre-)compute a ladder - improving
the performance of X25519 and X448,” in International Conference
on Selected Areas in Cryptography (SAC), ser. LNCS, vol. 10719.
Springer, 2017, pp. 172–191.

[113] T. Chou, “Sandy2x: New curve25519 speed records,” in International
Conference on Selected Areas in Cryptography (SAC), ser. LNCS, vol.
9566. Springer, 2015, pp. 145–160.

[114] Y. Chen, C. Hsu, H. Lin, P. Schwabe, M. Tsai, B. Wang, B. Yang,
and S. Yang, “Verifying curve25519 software,” in ACM Conference

http://gfverif. cryptojedi. org
http://gfverif. cryptojedi. org
https://bench.cr.yp.to
https://bench.cr.yp.to

on Computer and Communications Security (CCS). ACM, 2014, pp.
299–309.

[115] “curve25519-donna: Implementations of a fast elliptic-curve Diffie-
Hellman primitive,” https://github.com/agl/curve25519-donna.

[116] D. J. Bernstein, “Curve25519: New Diffie-Hellman speed records,” in
IACR International Conference on Practice and Theory of Public-Key
Cryptography (PKC), ser. LNCS, vol. 3958. Springer, 2006, pp. 207–
228.

[117] J. B. Almeida, M. Barbosa, G. Barthe, B. Grégoire, A. Kout-
sos, V. Laporte, T. Oliveira, and P. Strub, “The last mile: High-
assurance and high-speed cryptographic implementations,” CoRR, vol.
abs/1904.04606, 2019.

[118] J. P. Lim and S. Nagarakatte, “Automatic equivalence checking for
assembly implementations of cryptography libraries,” in Proc. of the
IEEE/ACM International Symposium on Code Generation and Opti-
mization, (CGO). IEEE, 2019, pp. 37–49.

[119] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of computation, vol. 44, no. 170, pp. 519–521, 1985.

[120] “The GNU Multiple Precision Arithmetic Library.” [Online]. Available:
https://gmplib.org/

[121] G. Klein, J. Andronick, K. Elphinstone, T. C. Murray, T. Sewell,
R. Kolanski, and G. Heiser, “Comprehensive formal verification of
an OS microkernel,” ACM Trans. Comput. Syst., vol. 32, no. 1, pp.
2:1–2:70, 2014.

[122] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. N. Wu, S. Weng,
H. Zhang, and Y. Guo, “Deep specifications and certified abstrac-
tion layers,” in Symposium on Principles of Programming Languages
(POPL). ACM, 2015, pp. 595–608.

[123] H. Mai, E. Pek, H. Xue, S. T. King, and P. Madhusudan, “Verifying
security invariants in ExpressOS,” in International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS). ACM, 2013, pp. 293–304.

[124] G. Morrisett, G. Tan, J. Tassarotti, J. Tristan, and E. Gan, “Rocksalt:
better, faster, stronger SFI for the x86,” in ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI).
ACM, 2012, pp. 395–404.

[125] X. Wang, D. Lazar, N. Zeldovich, A. Chlipala, and Z. Tatlock, “Jitk: A
trustworthy in-kernel interpreter infrastructure,” in USENIX Conference
on Operating Systems Design and Implementation (OSDI). USENIX
Association, 2014, pp. 33–47.

[126] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek, and
N. Zeldovich, “Using crash hoare logic for certifying the FSCQ file
system,” in ACM Symposium on Operating Systems Principles (SOSP).
ACM, 2015, pp. 18–37.

[127] A. Vasudevan, S. Chaki, L. Jia, J. M. McCune, J. Newsome, and
A. Datta, “Design, implementation and verification of an extensible
and modular hypervisor framework,” in IEEE Symposium on Security
and Privacy (S&P). IEEE Computer Society, 2013, pp. 430–444.

[128] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst,
and T. E. Anderson, “Verdi: a framework for implementing and for-
mally verifying distributed systems,” in ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). ACM,
2015, pp. 357–368.

[129] O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and S. Shoham, “Ivy:
safety verification by interactive generalization,” in ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI). ACM, 2016, pp. 614–630.

[130] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.
Roberts, S. T. V. Setty, and B. Zill, “Ironfleet: proving practical
distributed systems correct,” in ACM Symposium on Operating Systems
Principles (SOSP). ACM, 2015, pp. 1–17.

[131] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang,
and B. Zill, “Ironclad apps: End-to-end security via automated full-
system verification,” in USENIX Conference on Operating Systems
Design and Implementation (OSDI). USENIX Association, 2014, pp.
165–181.

[132] J. B. Almeida, M. Barbosa, J. S. Pinto, and B. Vieira, “Formal
verification of side-channel countermeasures using self-composition,”
Sci. Comput. Program., vol. 78, no. 7, pp. 796–812, 2013.

[133] G. Doychev, D. Feld, B. Köpf, L. Mauborgne, and J. Reineke,
“Cacheaudit: A tool for the static analysis of cache side channels,”
in USENIX Security Symposium (USENIX). USENIX Association,
2013, pp. 431–446.

[134] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying constant-time implementations,” in USENIX Security Sym-
posium (USENIX). USENIX Association, 2016, pp. 53–70.

[135] C. Watt, J. Renner, N. Popescu, S. Cauligi, and D. Stefan, “Ct-wasm:
type-driven secure cryptography for the web ecosystem,” PACMPL,
vol. 3, no. POPL, pp. 77:1–77:29, 2019.

[136] S. Cauligi, G. Soeller, B. Johannesmeyer, F. Brown, R. S. Wahby,
J. Renner, B. Grégoire, G. Barthe, R. Jhala, and D. Stefan, “Fact: a DSL
for timing-sensitive computation,” in ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). ACM,
2019, pp. 174–189.

[137] B. Rodrigues, F. M. Q. Pereira, and D. F. Aranha, “Sparse represen-
tation of implicit flows with applications to side-channel detection,”
in International Conference on Compiler Construction (CC). ACM,
2016, pp. 110–120.

[138] B. Köpf, L. Mauborgne, and M. Ochoa, “Automatic quantification of
cache side-channels,” in International Conference on Computer-Aided
Verification (CAV), ser. LNCS, vol. 7358. Springer, 2012, pp. 564–580.

[139] J. Protzenko, J. K. Zinzindohoué, A. Rastogi, T. Ramananandro,
P. Wang, S. Z. Béguelin, A. Delignat-Lavaud, C. Hritcu, K. Bhargavan,
C. Fournet, and N. Swamy, “Verified low-level programming embedded
in F,” PACMPL, vol. 1, no. ICFP, pp. 17:1–17:29, 2017.

[140] M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating timing side-
channel leaks using program repair,” in International Symposium on
Software Testing and Analysis (ISSTA). ACM, 2018, pp. 15–26.

[141] G. Barthe, G. Betarte, J. D. Campo, C. D. Luna, and D. Pichardie,
“System-level non-interference for constant-time cryptography,” in
ACM Conference on Computer and Communications Security (CCS).
ACM, 2014, pp. 1267–1279.

[142] D. Brumley and D. Boneh, “Remote timing attacks are practical,” in
USENIX Security Symposium (USENIX). USENIX Association, 2003.

[143] D. J. Bernstein, “Cache-timing attacks on AES,” 2005.
[144] J.-P. Aumasson, “Guidelines for Low-Level Cryptography Software,”

https://github.com/veorq/cryptocoding.
[145] B. Moller, “Security of CBC ciphersuites in SSL/TLS: Problems and

countermeasures,” 2004. [Online]. Available: http://www.openssl.org/
∼bodo/tls-cbc.txt

[146] N. J. AlFardan and K. G. Paterson, “Lucky thirteen: Breaking the
TLS and DTLS record protocols,” in IEEE Symposium on Security
and Privacy (S&P). IEEE Computer Society, 2013, pp. 526–540.

[147] J. Somorovsky, “Curious padding oracle in OpenSSL (cve-2016-
2107),” 2016. [Online]. Available: https://web-in-security.blogspot.
com/2016/05/curious-padding-oracle-in-openssl-cve.html

[148] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in IEEE Sympo-
sium on Security and Privacy (S&P). IEEE, 2019, pp. 1–19.

[149] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in USENIX
Security Symposium (USENIX). USENIX Association, 2018, pp. 973–
990.

[150] G. Barthe, B. Grégoire, and V. Laporte, “Secure compilation of side-
channel countermeasures: The case of cryptographic ”constant-time”,”
in IEEE Computer Security Foundations Symposium (CSF). IEEE
Computer Society, 2018, pp. 328–343.

[151] D. Molnar, M. Piotrowski, D. Schultz, and D. A. Wagner, “The program
counter security model: Automatic detection and removal of control-
flow side channel attacks,” in International Conference on Information
Security and Cryptology (ICISC), ser. LNCS, vol. 3935. Springer,
2005, pp. 156–168.

[152] A. Langley, “ctgrind,” 2010. [Online]. Available: https://github.com/
agl/ctgrind/

[153] M. Andrysco, A. Nötzli, F. Brown, R. Jhala, and D. Stefan, “Towards
verified, constant-time floating point operations,” in ACM Conference
on Computer and Communications Security (CCS). ACM, 2018, pp.
1369–1382.

[154] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and
H. Shacham, “On subnormal floating point and abnormal timing,” in
IEEE Symposium on Security and Privacy (S&P). IEEE Computer
Society, 2015, pp. 623–639.

[155] D. Kohlbrenner and H. Shacham, “On the effectiveness of mitigations
against floating-point timing channels,” in USENIX Security Symposium
(USENIX). USENIX Association, 2017, pp. 69–81.

https://github.com/agl/curve25519-donna
https://gmplib.org/
https://github.com/veorq/cryptocoding
http://www.openssl.org/~bodo/tls-cbc.txt
http://www.openssl.org/~bodo/tls-cbc.txt
https://web-in-security.blogspot.com/2016/05/curious-padding-oracle-in-openssl-cve.html
https://web-in-security.blogspot.com/2016/05/curious-padding-oracle-in-openssl-cve.html
https://github.com/agl/ctgrind/
https://github.com/agl/ctgrind/

[156] T. Kaufmann, H. Pelletier, S. Vaudenay, and K. Villegas, “When
constant-time source yields variable-time binary: Exploiting
curve25519-donna built with MSVC 2015,” in International
Conference on Cryptology and Network Security (CANS), ser.
LNCS, vol. 10052, 2016, pp. 573–582.

[157] G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte, D. Pichardie,
and A. Trieu, “Formal verification of a constant-time preserving C
compiler,” Proc. ACM Program. Lang., vol. 4, no. POPL, pp. 7:1–7:30,
2020.

[158] A. Reid, “Trustworthy specifications of arm® v8-a and v8-m system
level architecture,” in 2016 Formal Methods in Computer-Aided De-
sign, FMCAD 2016, Mountain View, CA, USA, October 3-6, 2016.
IEEE, 2016, pp. 161–168.

[159] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, K. E. Gray, R. M.
Norton, P. Mundkur, M. Wassell, J. French, C. Pulte, S. Flur, I. Stark,
N. Krishnaswami, and P. Sewell, “ISA semantics for armv8-a, risc-v,
and CHERI-MIPS,” PACMPL, vol. 3, no. POPL, pp. 71:1–71:31, 2019.

[160] G. Heiser, “For safety’s sake: We need a new hardware-software
contract!” IEEE Design & Test, vol. 35, no. 2, pp. 27–30, 2018.

[161] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware
design language for timing-sensitive information-flow security,” in
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 2015, pp. 503–
516.

[162] M. Tiwari, H. M. G. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood, “Complete information flow tracking from the gates up,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 2009, pp. 109–
120.

[163] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam,
R. Kastner, T. Sherwood, B. Hardekopf, and F. T. Chong, “Sap-
per: a language for hardware-level security policy enforcement,” in
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 2014, pp. 97–
112.

[164] X. Li, M. Tiwari, J. Oberg, V. Kashyap, F. T. Chong, T. Sherwood, and
B. Hardekopf, “Caisson: a hardware description language for secure
information flow,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). ACM, 2011, pp. 109–
120.

[165] K. von Gleissenthall, R. G. Kici, D. Stefan, and R. Jhala, “IODINE:
verifying constant-time execution of hardware,” in USENIX Security
Symposium (USENIX). USENIX Association, 2019, pp. 1411–1428.

[166] H. Eldib, C. Wang, and P. Schaumont, “Smt-based verification of soft-
ware countermeasures against side-channel attacks,” in International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), ser. LNCS, vol. 8413. Springer, 2014, pp. 62–77.

[167] A. G. Bayrak, F. Regazzoni, D. Novo, and P. Ienne, “Sleuth: Automated
verification of software power analysis countermeasures,” in Confer-
ence on Cryptographic Hardware and Embedded Systems (CHES), ser.
LNCS, vol. 8086. Springer, 2013, pp. 293–310.

[168] A. Moss, E. Oswald, D. Page, and M. Tunstall, “Compiler assisted
masking,” in Conference on Cryptographic Hardware and Embedded
Systems (CHES), ser. LNCS, vol. 7428. Springer, 2012, pp. 58–75.

[169] H. Eldib and C. Wang, “Synthesis of masking countermeasures against
side channel attacks,” in International Conference on Computer-Aided
Verification (CAV), ser. LNCS, vol. 8559. Springer, 2014, pp. 114–130.

[170] G. Barthe, S. Belaı̈d, F. Dupressoir, P. Fouque, B. Grégoire, and
P. Strub, “Verified proofs of higher-order masking,” in Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), ser. LNCS, vol. 9056. Springer, 2015,
pp. 457–485.

[171] G. Barthe, S. Belaı̈d, G. Cassiers, P. Fouque, B. Grégoire, and F. Stan-
daert, “maskverif: Automated verification of higher-order masking in
presence of physical defaults,” in European Symposium on Research
in Computer Security (ESORICS), ser. LNCS, vol. 11735. Springer,
2019, pp. 300–318.

[172] J. B. Almeida, M. Barbosa, G. Barthe, and F. Dupressoir, “Certified
computer-aided cryptography: efficient provably secure machine code
from high-level implementations,” in ACM Conference on Computer
and Communications Security (CCS). ACM, 2013, pp. 1217–1230.

[173] L. Beringer, A. Petcher, K. Q. Ye, and A. W. Appel, “Verified correct-
ness and security of openssl HMAC,” in USENIX Security Symposium
(USENIX). USENIX Association, 2015, pp. 207–221.

[174] J. B. Almeida, M. Barbosa, G. Barthe, and F. Dupressoir, “Verifiable
side-channel security of cryptographic implementations: Constant-time
MEE-CBC,” in International Conference on Fast Software Encryption
(FSE), ser. LNCS, vol. 9783. Springer, 2016, pp. 163–184.

[175] A. Tomb, “Automated verification of real-world cryptographic imple-
mentations,” IEEE Security & Privacy, vol. 14, no. 6, pp. 26–33, 2016.

[176] J. K. Zinzindohoue, E. Bartzia, and K. Bhargavan, “A verified extensi-
ble library of elliptic curves,” in IEEE Computer Security Foundations
Symposium (CSF). IEEE Computer Society, 2016, pp. 296–309.

[177] K. Q. Ye, M. Green, N. Sanguansin, L. Beringer, A. Petcher, and A. W.
Appel, “Verified correctness and security of mbedTLS HMAC-DRBG,”
in ACM Conference on Computer and Communications Security (CCS).
ACM, 2017, pp. 2007–2020.

[178] A. Chudnov, N. Collins, B. Cook, J. Dodds, B. Huffman,
C. MacCárthaigh, S. Magill, E. Mertens, E. Mullen, S. Tasiran,
A. Tomb, and E. Westbrook, “Continuous formal verification of amazon
s2n,” in International Conference on Computer-Aided Verification
(CAV), ser. LNCS, vol. 10982. Springer, 2018, pp. 430–446.

[179] K. Eldefrawy and V. Pereira, “A high-assurance evaluator for machine-
checked secure multiparty computation,” in ACM Conference on Com-
puter and Communications Security (CCS). ACM, 2019, pp. 851–868.

[180] J. Protzenko, B. Beurdouche, D. Merigoux, and K. Bhargavan, “For-
mally verified cryptographic web applications in webassembly,” in
IEEE Symposium on Security and Privacy (S&P). IEEE, 2019, pp.
1256–1274.

[181] C. Meyer and J. Schwenk, “Sok: Lessons learned from SSL/TLS
attacks,” in Proc. of the International Workshop on Information Security
Applications (WISA), ser. LNCS, vol. 8267. Springer, 2013, pp. 189–
209.

[182] J. Clark and P. C. van Oorschot, “Sok: SSL and HTTPS: revisiting
past challenges and evaluating certificate trust model enhancements,”
in IEEE Symposium on Security and Privacy (S&P). IEEE Computer
Society, 2013, pp. 511–525.

[183] K. G. Paterson and T. van der Merwe, “Reactive and proactive
standardisation of TLS,” in International Conference on Security Stan-
dardisation Research (SSR), ser. LNCS, vol. 10074. Springer, 2016,
pp. 160–186.

[184] T. Ringer, K. Palmskog, I. Sergey, M. Gligoric, and Z. Tatlock, “QED
at large: A survey of engineering of formally verified software,”
Foundations and Trends in Programming Languages, vol. 5, no. 2-3,
pp. 102–281, 2019.

[185] D. R. Jeffery, M. Staples, J. Andronick, G. Klein, and T. C. Murray,
“An empirical research agenda for understanding formal methods
productivity,” Information & Software Technology, vol. 60, pp. 102–
112, 2015.

[186] K. Bhargavan, F. Kiefer, and P. Strub, “hacspec: Towards verifiable
crypto standards,” in International Conference on Security Standardi-
sation Research (SSR), ser. LNCS, vol. 11322. Springer, 2018, pp.
1–20.

[187] T. C. Hales, “The nsa back door to nist,” Notices of the AMS, vol. 61,
no. 2, pp. 190–192, 2014.

[188] S. Checkoway, J. Maskiewicz, C. Garman, J. Fried, S. Cohney,
M. Green, N. Heninger, R. Weinmann, E. Rescorla, and H. Shacham,
“A systematic analysis of the juniper dual EC incident,” in ACM
Conference on Computer and Communications Security (CCS). ACM,
2016, pp. 468–479.

[189] A. Inoue, T. Iwata, K. Minematsu, and B. Poettering, “Cryptanalysis
of OCB2: attacks on authenticity and confidentiality,” in International
Cryptology Conference (CRYPTO), 2019, pp. 3–31.

[190] L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta,
R. Perlner, and D. Smith-Tone, Report on post-quantum cryptography.
US Department of Commerce, National Institute of Standards and
Technology, 2016.

	Introduction
	Structure of the Paper

	Design-Level Security
	Critical Review
	Symbolic Tools: State of the Art
	Symbolic Security: Discussion
	Computational Tools: State of the Art
	Computational Security: Discussion
	Further Reading

	Functional Correctness and Efficiency
	Critical Review
	Program Verification Tools: State of the Art
	Discussion
	Further Reading

	Implementation-Level Security
	Critical Review
	Digital Side-Channel Tools: State of the Art
	Discussion
	Further Reading

	Case Study I: Consolidating Guarantees
	Case Study II: Lessons Learned from TLS
	Concluding Remarks
	Recommendations to Authors
	Recommendations to Tool Developers
	Recommendations to Standardization Bodies

	References

