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Abstract

This paper presents numerical and asymptotic analytical solutions for
the current-voltage characteristic of a flame using a one-dimensional ion
transport model with boundary conditions that include detailed treat-
ment of sheath formation. Nondimensional conservation equations are
presented for the free electron, the hydronium ion, and the electrical po-
tential in a one-dimensional flow field with uniform velocity, electrical
mobility, and diffusivity, but allowances are made for non-equilibrium elec-
tron temperature. In this study, the size and location of the ion formation
region and the electric Reynolds numbers are changed, and their impacts
are studied. The model predicts the formation of charged sheaths at both
ends of the domain, which are responsible for saturation events that are
reliably observed in experiments. A new saturation regime can be made
to appear in the model, but its absence from experiment is argued to have
implications on transport near absorbing surfaces in the experiment. For
example, the Reynolds numbers at which the current-voltage characteris-
tic converges to the shape and magnitude observed in experiment implies
that the sheaths form in low-velocity region in the real flow that reduce
the apparent Reynolds number.
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Nomenclature

Dimensioned
Dk Diffusivity spec. k m2s−1

e Fundamental charge (1.6E-19) C
kb Boltzmann const. (1.38E-23) J K−1

kr Recombination coef. s−1m3

L Domain length m
nk Num. dens. of spec. k m−3

n0 Ion density scale m−3

p Pressure Pa
qk Charge of species k C
Tk Temperature of spec. k K
U Total bulk velocity m s−1

Γ Number flux density s−1 m−2

λd Debye length m
λr Recombination length m
ε0 Vac. permittivity (8.9E-12) C V−1 m−1

µk Mobility of spec. k mN−1s−1

ρ Mass density kgm−3

ω̇′′′
f Vol. ion formation rate s−1m−3

Dimensionless
Rk Reynolds num. of spec. k UL/µkkbTi

Kz Sheath thickness coef.
√
2α2ηs−1

z D’less position x/L
z1 Formation regn. start
z2 Formation regn. end
Lf Formation regn. width z2 − z1
α Debye length λd/L
β Recombination rate krn0L/U
η Positive ion density ni/n0

ηd1 Downstream sheath ion dens.

ηs Upstream sheath ion dens. Ri
1/2αω̇1/2τ−1/2

η2 Peak ion density
η∞ Inf. len. ion density
ν Negative ion density ne/n0

ϕ Electric potential V e/kbTe

ϕp Plasma potential
ϕa Applied potential
τ Elec./ion temp. ratio Te/Ti

ω̇ D’less formation rate ω̇′′′
f L/Un0
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1 Introduction

This paper presents a one-dimensional reduced-order model for the transport
of ions between two absorbing surfaces in a flame. The purpose of the effort
is to identify links between aspects of the flame’s small-signal voltage-current
characteristic and transport mechanics and boundary conditions. To formulate
a problem that permits an anlytical solution for these features, we drastically
simplify the geometric and chemical kinetic complexity of the problem in favor
of a detailed treatment of metal surfaces’ sheaths. The work demonstrates that
even in the absence of detailed numerical simulation, by taking pains to model
these compact regions of charge at metal surfaces, the model correctly predicts
the important features of the current-voltage (IV) characteristic.

The work is originally inspired by a series of experimental investigations
into the electrical aspects of the oxyfuel cutting torch [21, 22, 25, 23], but it
is sufficiently abstracted that it might apply to a number of flame geometries.
The oxyfuel cutting torch flame is formed by an annular array of circular jets
of premixed fuel and oxygen gas. The jets vary in number and size, but the
entire flow regime is typically on the order 6mm (1/4-inch) in diameter. These
jets form an array of bunsen-like inner cones, about 4mm (0.16in) in length,
in which Hydronium (H3O

+) and free electron (e−) are the most numerous
charged species. The products of the inner cones converge to form a single faintly
luminous outer-cone, where the charged species recombine before impacting the
work piece. The flame and the experiment are described in more detail in the
above sources.

In its typical use, the oxyfuel torch is held over some metal work piece, which
the flame is used to heat. When an electrical potential in the range ±10V is
applied between the torch tip and the work piece, IV characteristics can be
measured like those shown in Figure 1 (taken from [21]). The authors identify
three regimes of the IV characteristic, each with an apparently piece-wise linear
behavior: (from left to right) regimes 1 and 2 are locally linear; regime 3 is
saturated. The authors demonstrate empirical relationships to the flow and
process parameters [22, 25].

There is a multitude of similar efforts intended to leverage ion currents for
sensing in propulsion systems [7, 24, 19], IC engines [14, 26, 27], mass spec-
troscopy [15], and especially furnaces and boilers [16, 34, 6]. In most of these
applications, it is sufficient to detect the presence, absence, or timing of ion cur-
rent signals, while it is comparatively rare to leverage the details of calibrated
IV characteristics as a sensing technique.

In comparison to the number of works examining ionic winds and their
impact on flame stability, burning velocity, or chemical kinetic studies (e.g.
[20, 33, 2, 32, 3]), there are relatively few works that scrutinize the small-signal
characteristics of ion currents in flames with significant geometric complexity.

Speelman et al. and Han et al. both conducted numerical studies with
detailed transport and reduced chemistry on one-dimensional burner-stabilized
flames with a downstream absorbing surface. Both predicted saturation and
some piece-wise characteristics with interesting similarities to those observed
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Figure 1: Current-voltage characteristics for three combinations of standoff dis-
tance and fuel/oxygen ratio by volume.

in the oxyfuel flame [30, 29, 13]. Xiong et al. used a highly simplified model
much more in the spirit of the present work to examine small signal currents
in counter-flow flames, and also identified piece-wise behaviors [35]. Yamashita
used detailed chemical and transport models to study the IV characteristics
of a bluff-body anchored flame [36]. Meanwhile, Di Renzo et al. modeled IV
characteristics of a diffusion flame using a flamelet progress variable approach,
and they predicted that minority negative species can have measurable impacts
on flame voltage distributions [28].

These works offer several common themes with relevance to the present
endeavor. Firstly, saturation is known to occur when regions of the fluid are
diminished of one or more charge carriers, so further intensifying the electric
field has little or no effect on the current. The piece-wise behaviors can be
made to occur when ions are transported to or evacuated from regions in space
bridging absorbing surfaces and regions where charged species are formed. The
strong asymmetry between electron and Hydronium mobilities causes similar
asymmetry in the positive versus the negative portion of the IV characteristic.

The present work takes a fundamentally different approach. All of the works
listed above as pertaining to small signal characteristics used boundary condi-
tions that permit non-zero ion concentrations at absorbing surfaces. While that
assumption can be a reasonable simplification for convergence in full-scale nu-
merical modeling, the tiny charged sheaths that form around absorbing surfaces
in plasmas were shown a century ago to cause many of the nonlinear aspects
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of the voltage-current characteristics in flames and plasmas [18, 4, 1]. They
are frequently neglected in high-voltage studies because their effects are small
compared to the applied potentials, but when considering small-signal measure-
ments, they are quite important.

Sometimes called the Langmuir sheath, these charged regions occur naturally
(without the application of external electric fields) near surfaces with zero ion
density boundary conditions (metal or absorbing surfaces) due to the severe
imbalance in charge carrier mobility [31, 8]. Hydronium and the free electron
differ in mass by a factor of about 35,000, so their transport properties are so
asymmetrical that absorbing metal surfaces depleat the negative charge around
them, leaving only a thin film of positive charge, called a sheath. This can
mimic the semi-conductor characteristics of metal oxide semiconductors, and
they occur on scales that can be thousands of times smaller than the domain.

Descriptions of sheaths in flames feature prominently in Fialkov’s review
[12], Langmuir probe studies were an essential part of the early identification of
ions [5], and measurements in flames were even among the first confirming the
sheath’s existence [4]. More recently, Karrer et al. used escalating voltages to
grow a sheath through the non-reacting gap at the edge of a flame propagating
along a wall as a means of measuring the quenching distance [17]. Perhaps the
most complete work on theory of sheath formation in dense flowing plasmas is
due to Clements and Smy’s studies of Langmuir probes in flames [8, 10, 9, 11].

With the philosophy that analytical links between fundamental physics and
IV characteristics are to be valued above precise numerical predictions, we de-
liberately abandon all but the most essential physics. We presume that regions
where ions are formed is known a priori and that the essential effects of trans-
port can be reasonably approximated as uniform in a single dimension. Further,
the derivation presumes that the applied electric fields are too feeble to impact
the bulk flow.

This work presumes that the system is in a regime where the physical domain
size, L, the Debye length, λd, and the mean-free-path, λ, are sized L ≫ λd ≫ λ.
As was commented by Fialkov in his review of the topic [12, pp.406], the plasma
found in flames is in a regime uncommon to much of the study of plasmas, which
has tended to focus on the very sparse and the very hot (T > 104K), where this
order might be reversed entirely.

2 Model

2.1 Derivation

In a dense flowing plasma, the number flux density, Γk, of a charged species, k,
subjected to convection, diffusion, and electrical body forces, is

Γk = Unk −Dk
dnk

dx
− µkqknk

dV

dx
. (1)

For clarity, it should be emphasized that instead of mobility, µk, many authors
work in terms of electrical mobility, which is treated here as µkqk with units
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m2V−1s−1.
When the same species is formed at a rate, ω̇′′′

f , and is annihilated by a
recombination reaction, it obeys the conservation equation,

0 = −dΓk

dx
+ ω̇′′′

f − krnine. (2)

This equation presumes that there are only two oppositely charged species, ne

and ni (electron and ion respectively) that recombine with some rate coefficient,
kr.

At this juncture, the derivation benefits from the Einstein relation, Dk =
µkkbTk, and the generous simplifying assumption that neither the transport
coefficients nor temperatures have spatial derivatives. After substitution, the
result is a generalized conservation equation in one dimension,

0 = −U
dnk

dx
+ µkkbTk

d2nk

dx2
+ µkqk

d

dx

(
nk

dV

dx

)
+ ω̇′′′

f − krnine. (3)

This equation may be written twice: once for the free electron, ne, and once for
the positive ion, ni.

Meanwhile, the Poisson equation governs the voltage field, V , response to
space charge.

d2V

dx2
=

e

ε0
(ne − ni) (4)

Here, ne and ni are the number densities of the free electron and the positive
ion. The fundamental charge, e, and vacuum permittivity, ε0, are defined in the
nomenclature.

2.2 Boundary conditions

The domain may be defined over a range x ∈ [0, L], such that the torch issuing
the reacting fluid is imagined to be at x = 0, and a work piece is imagined to
be at x = L. This places the velocity in the positive direction, so U will be
positive.

Both the torch tip and the work piece are absorbing surfaces, so the number
density boundary conditions are all the same,

ne(0) = ne(L) = ni(0) = ni(L) = 0.

Some voltage, Va, may be imposed at the torch, while the work piece is imagined
to be at ground potential. Therefore,

V (0) = Va V (L) = 0
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2.3 Nondimensionalization

The domain offers a natural length scale, L, and the ions are known to occur
in some density, n0. Other scales are offered naturally by the governing equa-
tions, including the electric potential due to thermal motions kbTe/e. We adopt
nondimensional variables,

z =
x

L
η =

ni

n0
ν =

ne

n0
ϕ =

V e

kbTe
.

The new length scale and the ion concentration scales are such that z, η, ν ∈
[0, 1].

The voltage has been nondimensionalized by the ”thermal” kinetic energy,
kbTe, the electrical energy needed for electrical motion to begin to dominate
natural diffusive processes. In a 3,000K flame, ϕ = 1 corresponds to about
0.26V, so large values of ϕ may be considered. We have taken some pains to
emphasize, however, that this work will consider only ”small” applied voltages.
We define a limit for this assumption by asserting that the electrical body do
not contribute significantly to the fluid’s bulk kinetic energy,⏐⏐⏐⏐2n0eVa

ρU2

⏐⏐⏐⏐ ≪ 1. (5)

If the velocity is 75m/s, ion density on the order 5× 1017m−3, and bulk density
on the order 0.1kg m−3, then an applied voltage around 3.5kV is necessary to
violate this assumption. We may establish a similar limit on ϕ as the ratio of
bulk kinetic to ion thermal energy density,

|ϕa| ≪
ρU2

2n0kbT
. (6)

Under the same physical conditions, the applied dimensionless potential, ∥ϕa∥,
must be smaller than 13,500.

When these terms are substituted, and the conservation equations are nor-
malized by the convection scale, n0U/L,

0 = −η′ +Ri
−1[η′′ + τ(ηϕ′)′] + ω̇ − βην (7a)

0 = −ν′ +Re
−1[ν′′ − (νϕ′)′] + ω̇ − βην (7b)

α2ϕ′′ = ν − η. (7c)

This introduces a number of important dimensionless groups.

Rk =
UL

µkkbTk
ω̇ =

ω̇′′′
f L

Un0
α =

√
ε0kbTe

e2n0L2
=

λd

L

β =
krn0L

U
=

L

λr
τ =

Te

Ti
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The ionic and electric Reynolds numbers, Ri and Re, are the ratios of convective
transport to diffusive and electrical transport for the ion and the free electron
respectively. The dimensionless formation rate, ω̇, is the ratio of formation to
convection. A unity value for ω over the entire domain would result in unity η
and ν if diffusion and recombination are neglected. The dimensionless Debye
scale, α, is the ratio of the Debye length to the domain length. The recombina-
tion strength, β, is the inverse of a nondimensionalization of the recombination
length scale, λr = U/krn0. The recombination length is the distance over which
the recombination reaction occurs in the convecting flow. Finally, the temper-
ature ratio, τ , is the ratio of the electron temperature to the ion temperature.
Typically, the ion temperature is quite close to the bulk flow temperature, but
electrons’ tendency to retain thermal energy often leads them to higher, non-
equilibrium temperatures.

The boundary conditions become

η(0) = η(1) = ν(0) = ν(1) = 0

ϕ(0) = ϕa ϕ(1) = 0.

Using the same approach to the total current and the number flux densities,

Fi =
Γi

Un0
= η +Ri

−1[−η′ − τ(ηϕ′)] (8a)

Fe =
Γe

Un0
= ν +Re

−1[−ν′ + (νϕ′)] (8b)

J =
I

Un0e
= Fi − Fe (8c)

2.4 Selection of ω̇

The dimensionless formation rate, ω̇, is presumed to occur in a known region,
and we will further presume that it is uniform over this region. The physical ion
formation rate, ω̇′′′

f , is difficult to determine explicitly from experiment, but ion
densities have been measured explicitly, so it is much more sound to construct
the nondimensionalization scheme around n0 rather than ω̇′′′

f .
The true relationship between ion density and formation rate is a balance

between transport, formation, and recombination, but when convection is pre-
sumed to dominate the other processes, this relationship is quite simple. Con-
sider a model limited to a uniform region of ion formation between z locations,
z1 and z2, and zero everywhere else. When convection dominates, η′ and ν′ are
equal to ω̇, so to enforce that η and ν are on the order 1,

ω̇ =

{
1

z2−z1
: z1 < z < z2

0 : otherwise.
(9)

The actual solution for the peak values of η and ν will not be precisely one,
but they will not deviate too far from unity so long as the assumption that
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convection is strong remains true. Fortunately, this will have little bearing on
the model results; it is merely a choice of nondimensionalization scheme.

2.5 Perturbation

The appearance of piece-wise linear behaviors in the IV characteristics inspires
special treatment for the effect changes in voltage have on the solution. If the
ϕ(0) boundary condition is modified to be

ϕ(0) = ϕa + ϵ, (10)

where ϵ is the perturbation in the applied potential, the resulting solution may
be written as a polynomial expansion on ϵ.

η = η0 + ϵη1 + ϵ2η2 + . . . ν = ν0 + ϵν1 + ϵ2ν2 + . . .

ϕ = ϕ0 + ϵϕ1 + ϵ2ϕ2 + . . . J = J0 + ϵJ1 + ϵ2J2 + . . .

When these perturbed values are substituted into (7a), (7b), and (7c), the
results are polynomials on ϵ, where each coefficient of ϵ is an independent differ-
ential equation. The constant-term is merely identical to the original equations,
and may be discarded as redundant. The coefficient of ϵ provides the linearized
response to perturbations in applied voltage:

0 = −η′1 +Ri
−1[η′′1 + τ(η0ϕ

′
1)

′ + τ(η1ϕ
′
0)

′]− β(η0ν1 + η1ν0) (11a)

0 = −ν′1 +Re
−1[ν′′1 − (ν0ϕ

′
1)

′ − (ν1ϕ
′
0)

′]− β(η0ν1 + η1ν0) (11b)

α2ϕ′′
1 = ν1 − η1. (11c)

The boundary conditions are

η1(0) = η1(1) = ν1(0) = ν1(1) = 0

ϕ1(0) = 1 ϕ1(1) = 0

Finally, the flux and current densities are

Fi,1 = η1 +Ri
−1[−η′1 − τ(η0ϕ

′
1)− τ(η1ϕ

′
0)] (12a)

Fe,1 = ν1 +Re
−1[−ν′1 + (ν0ϕ

′
1) + (ν1ϕ

′
0)] (12b)

J1 = Fi,1 − Fe,1.. (12c)

3 Asymptotic Analysis

The governing equations, (7a), (7b), and (7c), were discretized using a method of
finite differences with quadratic interpolation in a non-uniform grid. Sheaths at
the up-stream and down-stream boundaries caused intense gradients, requiring
a high density of nodes that was not necessary in the center of the solution.
Once discretized, the problem was reduced to a quadratic tensor problem on a
solution vector, x, containing node values for η, ν, and ϕ. This was then solved
using Newton iteration. On convergence, the residuals from (7a), (7b), and (7c)
were on the order 10−10.
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Table 1: Conditions for the five cases modeled in the present study.
Ri α β τ z1 z2

Case 1 1,000 10−3 20 1 .01 .21
Case 2 2,000 10−3 20 1 .01 .21
Case 3 1,000 10−3 20 1 .00 .20
Case 4 2,000 10−3 20 1 .00 .20
Case 5 1,000 10−3 20 1 .00 .40

3.1 Selection of Parameters

There are five cases represented here, and in each all conditions were held con-
stant while varying the applied dimensionless potential, ϕa, from -50 to +40.
In a 3000K flame, this corresponds roughly to -12 to 10V. The ionic Reynolds
number, Ri, and the start, z1, and end, z2, of the formation region were var-
ied while values for α, β, and τ were held constant. Note that the size of the
reaction region (and ω̇) were held constant in all but case 5.

These conditions are intended to be crudely representative of those observed
in the oxyfuel preheat flame. The physical domain is approximately 12mm (.5in)
long, and the inner cone flame length is readily observed to be about 2.4mm
(0.1in) long. The lifted conditions represent a 0.1mm gap between the flame
and the torch tip. If the velocity is about 75m/s, ion density scale, n0, is on the
order 5×1017m−3, and recombination rate coefficient, kr, is 2.4×10−13m3/s (as
used by [12, 2, 30]) the dimensionless recombination scale, β, is on the order 20.
The Debye length in such a plasma at a temperature 3000K can be calculated
to be on the order of 10µm, so α is determined to be on the order of 1/1000 of
the domain length.

The Reynolds number of such a plasma is likely to be on the order 3,000
or higher in the bulk of the flame, where velocity is at its maximum. Instead,
we have elected to examine cases with lower Reynolds numbers to reflect the
conditions near the absorbing surfaces. The result of this choice will be clear in
Section 4, and the implications of these results are specifically addressed in the
conclusions.

3.2 Numerical Solution

Figure 2 shows numerical solutions for three applied potentials, ϕ(z = 0) = ϕa,
selected from case 2. The dimensionless hydronium and electron concentrations,
η and ν, are shown with solid and dashed lines respectively. Two of the con-
ditions give results precisely on top of one another, but applying a negative
potential has the counter-intuitive effect of shifting the ion concentrations right
slightly. Otherwise, the ion concentrations predictably rise in the formation
region and decline in the downstream region due to recombination.

It is clear from these solutions that the bulk of the interesting physics occurs
in the small charged sheaths that form near the z = 0 and z = 1 boundaries.
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Figure 2: Three solutions selected from case 2. ϕ should be read from the
right-hand axis. η and ν should be read from the left-hand axis.

11



Figure 3: The sheaths at z = 0 from Figure 2. The dotted line has been
repurposed to represent the asymptotic solution for the only saturated case
shown.

These form when the imbalance in mobility of the two charge carriers causes one
to deplete (usually the more mobile electron) while the other lingers. The charge
creates a region of intense electric field, which elevates the plasma potential
from ground (usually smaller than order 10). Classically, the plasma potential
is regarded as zero, but since this system already has a well defined reference
potential, we will call this ϕp.

3.3 Upstream Sheath

Figure 3 shows the upstream sheath (near z = 0) more clearly. As will become
clear in the next section, the downstream sheath is always present, but, as can
be seen here, the upstream sheath only exists when the applied potential is
sufficiently strong to grow the region of positive charge. The electron mobility
is so much greater than hydronium that the same potential completely evacuates
the region of electrons, so all currents there are due to positive ions.

Setting ν to zero everywhere in (7a) and (7c) so drastically simplifies the
system that it becomes possible to derive an asymptotic solution. These can be
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combined to yield

0 = α2ϕ′′′ −Ri
−1α2ϕ′′′′ − τRi

−1α2(ϕ′′ϕ′)′ + ω̇. (13a)

η = −α2ϕ′′ (13b)

Next, the solution must be divided into two sections in space; one upstream
of the formation region, z < z1, where the formation rate is zero, and one
downstream of that, where ω̇ is constant. The sheath will then extend to a
location, zs, at which point the electron concentration abruptly rises and the
electric potential relaxes into the plasma potential. This sheath thickness must
be greater than the flame offset, z1. Were that not the case, then there would
be no conductive layer of ions, and there would be no saturation current.

The boundary conditions on these piece-wise solutions are

ϕ(0) = ϕa ϕ(zs) = ϕp ϕ′(zs) ≈ 0

ϕ(z1
+) = ϕ(z1

−) = ϕ1 ϕ′(z1
+) = ϕ′(z1

−) η(z1
+) = η(z1

−)

This implies the definition of three important parameters: ϕ1, the interface
potential between the two regions, zs, the sheath thickness, and ϕp, the plasma
potential above ground. These conditions also include the assumption that the
field strength (ϕ′) away from the sheath is small.

Equation (13a) may be twice integrated to obtain

− ω̇

2α2
z2 + C1z + C0 = ϕ′ −Ri

−1ϕ′′ − τRi
−1 1

2
(ϕ′)2 (14)

where C1 and C0 are integration constants.
In the region where ω̇ is not zero, this is solved precisely by a quadratic on

z, so after applying the above boundary conditions, when z1 < z < zs,

ϕ(z) = − ηs
2α2

(zs − z)2 + ϕp (15a)

η(z) = ηs =

√
Rα2ω̇

τ
= const. (15b)

It should be emphasized that while the ion concentration can already be solved
explicitly, the sheath thickness, zs, is still unconstrained. However, it can be
seen by evaluating (15a) at z1, that sheath thickness grows like the root of
voltage,

zs − z1 = Kz

√
ϕp − ϕ1, (16)

when Kz = (2α2/ηs)
1/2. Recall that in saturation, ϕ1 ≪ −1, so the root will

always be positive and dominated by ϕ1.
Meanwhile, in the upstream region, where ω̇ is zero, the electric field is at

its strongest. When Riz1 ≫ 1, the (ϕ′)2 and ϕ′ terms dominate the ϕ′′ term in
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(14). The remaining balance between convection and electrical conduction in
the 0 < z < z1 region is a quadratic on ϕ′ that is solved when

ϕ′ =
Ri

τ
+A(z0 − z)1/2

η = −α2ϕ′′ =
Aα2

2
(z0 − z)−1/2.

A and z0 are merely adaptations of the integration constants from (14). For η to
be piece-wise continuous at z1, A is determined from the downstream solution,

A =
ηs(z0 − z1)

1/2

α2
(17)

When the same continuity is enforced for ϕ′, the z0 constant may be determined.

z0 =
zs + z1

2
− α2Ri

2τηs

= z1 +
1

2
Kz(ϕp − ϕ1)

1/2 − α2Ri

2τηs
(18a)

Upon integrating ϕ′ and enforcing continuity at z1, one finally obtains a set
of formulae for ϕ and η in the region 0 < z < z1,

ϕ =
Ri

τ
(z − z1) +

4ηs
3α2

[(z0 − z1)
2 − (z0 − z1)

1/2(z0 − z)3/2] + ϕ1 (18b)

η = ηs

√
z0 − z1
z0 − z

(18c)

The potential at the start of the formation region is related to the applied
potential, ϕa, simply by substituting z = 0 in (18b).

ϕa = −Ri

τ
z1 +

4ηs
3α2

[(z0 − z1)
2 − (z0 − z1)

1/2z0
3/2] + ϕ1 (19)

≈ ϕ1 −
Ri

τ
z1 (20)

The first term is dominant, which allows for a simple approximation. Unfor-
tunately, the approximation is too imprecise to give good predictions, but it
illustrates that there is a voltage penalty on the order of Riz1/τ incurred to
force the positive ions against the flow through the upstream gap.

The current flowing through the sheath is most readily calculated at z = z1
from the downstream solution, (15a), which will be valid even when z1 = 0.

Fi(z1) = η −Ri
−1η′ − τRi

−1ηϕ′

= ηs − ω̇(zs − z1)

= ηs − ω̇Kz

√
ϕp − ϕ1 (21)
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Equations (15a), (15b), (16), (18b), (18c), and (18a) represent explicit solu-
tions for the sheath in terms of the interface potential, ϕ(z1) = ϕ1. This model
is implicit with respect to the applied potential, ϕa, which may be calculated
from (19). For the cases when z1 = 0, ϕ1 = ϕa, the upstream solution may be
ignored, and only the downstream solution in (15b), (15a), and (16) need be
considered. The piece-wise predictions for η are shown as a dotted line in Figure
3 for the only saturated case shown in that figure. Predictions for current versus
voltage will be addressed in the next section.

3.4 Downstream Sheath

Figure 4 shows the sheath at the downstream boundary (near z = 1). Unlike
the upstream sheath, this sheath always exists regardless of the applied voltage,
causing the plasma potential to rise from earth ground. This sheath model
requires the consideration of three layers. In the distant plasma, the flow is
dominated by recombination and convection over long length scales, up to a
location we will name zd1, where the electron concentration begins to drop
precipitously. This continues in a narrow layer where the diffusion of electrons
is strong, until the electron concentration drops to zero at location we will
name zd2. When the plasma potential is elevated by an applied potential at the
upstream boundary, there is a third layer where the concentration of electrons
is zero. Otherwise, the third layer collapses, and zd2 = 1.

The same diffusive layer existed in the upstream solution after zs, but it
was possible to ignore it since the sheath ion concentration could be calculated
explicitly. In the downstream sheath, the ion concentration dips along with
the electron concentration, and establishing a model for that dip is essential for
predicting the sheath thickness and voltage drop.

However, if the purpose of the model is to predict the saturation current
and its relationship to the applied voltage, then no such analysis is necessary.
However thick the sheath is, and whatever electric field is incurred there, both
the formation and depletion of ions will be zero or small. The sheath is evacuated
of all electrons, so whatever electric current is observed at the downstream
boundary will be due entirely to the positive ions that convected there from
upstream. Therefore, in saturation everywhere in the downstream sheath will
have ion flux density

Fi(zd2) = η(zd2). (22)

As the electric field intensifies, ion transport in the sheath intensifies and their
concentrations dip, but their flux density is conserved. All that remains is to
predict the ion density delivered to the downstream sheath.

3.5 Bulk

In the bulk of the flow, far away from the sheaths, the length scales are on the
order unity. The diffusion and mobility of positive ions here are too feeble to
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Figure 4: The sheaths at z = 1 from Figure 2.
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have any significant impact on the solution. Electrons are far more mobile, but
they are forced to remain near their positive counterparts, so ν ≈ η. Therefore,
the governing equations simplify dramatically.

0 = −η′ − βη2 + ω̇ (23)

These may be solved in a piece-wise fashion. In z1 < z < z2, ω̇ is a constant,
and downstream of z2, ω̇ is zero.

The boundary conditions are constructed by asserting that the ion concen-
tration begins at zero and is piece-wise continuous at the interface between these
regions.

η(z1) = 0 η(z2
+) = η(z2

−) = η2

Note that the peak ion concentration at the boundary, η2 is defined here.
Were formation allowed to continue over an infinite length, the ion con-

centration would rise to bring formation into equilibrium with recombination,
η∞ =

√
ω̇/β. Using a slight variation on the solution of Bernoulli equations,

when η = y−1 + η∞,

y′ − 2βη∞y = β,

which is trivial to solve.

y =

{
A exp(−2

√
ω̇βz)− 1

2η∞
ω̇ ̸= 0

βz +B ω̇ = 0

Here, A and B are integration constants. When the boundary conditions are
applied, solutions for η may be constructed.

η =

{
η∞ − 2η∞

1+exp
(
2
√
ω̇β(z−z1)

) z1 < z < z2(
η2

−1 + β(z − z2)
)−1

z > z2
(24)

The peak ion concentration is

η2 = η∞ − 2η∞

1 + exp
(
2
√
ω̇β(z2 − z1)

) , (25)

and the ion concentration at the downstream boundary is

ηd1 =
(
η2

−1 + β(1− z2)
)−1

. (26)

This solution is not plotted in Figure 2 because its curve is indistinguish-
able from the numerical results. Predictions for ηd1 also reliably predict the
saturation currents in the downstream sheath.
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Figure 5: Current-voltage plots for the five cases. Asymptotic saturation so-
lutions are shown with dotted lines. The regimes are annotated: (1) negative
partial saturation, (1a) negative saturation, (2) unsaturated regime, (3) positive
saturation.

4 Results

4.1 Current-Voltage Characteristics

Figure 5 shows the IV characteristic for each of the five cases in Table 1. These
are labelled by their type, lifted (z1 ̸= 0) or anchored (z1 = 0); the length of the
formation region, Lf = z2− z1, and their Reynolds number, R. Lifted cases are
plotted with filled markers while anchored cases are plotted with open markers.

The IV characteristic forms four regimes; one of which is not apparent in
all cases. To remain consistent with the experimental works exploring these
physics, we will label these:

Regime 1: Partial Saturation In the partial saturation mode, current is
limited by the sheath at the upstream boundary, but the flow of current is still
sensitive to voltage. In this mode, the gap between the formation region and
the absorbing surface is small enough that the positive charge carrier’s mobility
allows it to be conducted. Meanwhile the flow of electrons has completely halted,
so we elect to call this partial saturation: current limited absence of only one
of the charge carriers but not the other.

18



The current predictions for the upstream saturation are plotted in dotted
lines while assuming a plasma potential ϕp = 1. The asymptotic solutions
can be seen converging to the correct solution at large voltages and diverging
somewhat at lower voltages, where accurate predictions for the plasma potential
become important.

Regime 1a: Negative Saturation In negative saturation, the flow of all
current halts because there is neither negative nor positive charge carriers in the
upstream sheath. As is evident from Equation 21, promoting total saturation to
partial saturation requires that the applied potential is high enough to overcome
convection. This includes the penalty implied between ϕa and ϕ1 due to a flame
offset in Equation 19. When the applied potential is not sufficiently negative
to enter regime 1 (when the current predicted by Equation 21 is positive), the
system is, instead, in regime 1a. Regime 1a is especially interesting because it
is occasionally absent. In anchored cases with small Reynolds numbers, it can
be seen to be so small as to be undetectable.

Regime 2: Ohmic When neither the upstream nor the downstream sheath
limits the flow of current, the limiting factor for the flow of current is the finite
conductivity of the bulk of the plasma. In this narrow region, the current rapidly
transitions between the two saturation regimes.

Regime 3: Positive Saturation Finally, when voltages are sufficiently
positive to saturate the downstream sheath, all electrical current there is due to
the delivery of positive charge due to convection. The further increase of voltage
does nothing to enhance the delivery of charge. This is a true saturation.

4.2 Perturbation Solution

The local behavior of the IV characteristic operating in these different regimes
is made clearer by examining the solution to the perturbation model in (11a),
(11b), and (11c). Selected solutions are shown in Figure 7.

When the system experiences total saturation like in (b) and (d), the voltage
change is absorbed entirely by growing one of the two sheaths. When the system
is only partially saturated (in a), the majority of the voltage is absorbed in the
upstream sheath, but the increase in current also incurs a voltage drop along
the flame’s length due to the finite conductivity of the flame. In the so-called
“ohmic” regime, in (c), where the current in the flame was thought to be limited
primarily by its electrical resistance, only roughly 30% of voltage changes are
absorbed along the flame’s length; the remaining 70% are split roughly evenly
between the sheaths.

If the flame were truly in an “ohmic” mode of operation, the sheath voltage
drops would be stable, and changes in the applied voltage would be absorbed
entirely by changes in current through the finite resistance of the flame’s bulk.
When Ri ≫ 1, the increase in flame current per change in applied voltage in
(12c) can be simplified to

J1 ≈ η1 − ν1 −Re
−1[−ν′1 + ν0ϕ

′
1]

≈ −Re
−1ν0ϕ

′
1, (27)
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Figure 6: Electrical current due to positive ions and electrons at the upstream
boundary. The currents in Figure 5 are the sum of the two curves shown here.

20



(a) Regime 1: ϕa = −50

(b) Regime 1a: ϕa = −10

(c) Regime 2: ϕa = 2

(d) Regime 3: ϕa = 38

Figure 7: Sensitivity of the η (solid), ν (dashed), and ϕ (dotted) solutions per
unit change in applied voltage, ϕa. The conditions are in (a) regime 1, (b)
regime 1a, (c) regime 2, (d) regime 3.
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Figure 8: Flame conductance, J1, versus applied voltage for the five cases.

when ν′1 is small over the domain. This is shown to be the case, since changes
in the applied voltage over this range only impact the charge density at the
sheaths, not in the bulk of the flame.

It is possible to calculate a simple estimate for flame resistance since, just
like J , J1 is a constant over the entire domain. Further, the integral of ϕ1 is -1,
due to the perturbation boundary conditions. Therefore, the flame conductivity
is

J1 ≈ 1

Re

∫ 1

0
ν0−1dz

, (28)

and the flame’s resistance is Re

∫ 1

0
ν0

−1dz. The electrical resistance is deter-
mined by the scarcity of electrons.

The actual flame conductance calculated for the model for the five cases is
shown in Figure 8. Even if ν were at its minimum value (say about .06 for case
2) over the entire domain, the result would be roughly double the actual value
shown in Figure 8. Clearly, (28) over-predicts conductance because the voltage
drops at the sheaths have been neglected. In these cases, regime 2 is not truly
ohmic.
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5 Conclusions

A reduced-order, one-dimensional model for ion transport between upstream
and downstream absorbing surfaces is presented with associated asymptotic so-
lutions for the sheaths and the ion currents. Despite the appearance of an
apparently linear regime between the saturation phenomena in the IV charac-
teristic, the mode of conduction is never purely ohmic. At all conditions studied,
the local IV characteristics of at least one of the sheaths plays a significant role
in determining the current conducted by the flame.

5.1 Asymptotic Solutions

The upstream sheath (z = 0) asymptotic solution requires

• ϕ1 < ϕp − ηs
3/ω̇2Kz

2: The voltage at the upstream edge of the formation
region must be strong enough to overcome convection and drive current
upstream. This is required for (21) to be negative.

• ϕa ≪ ϕp−ηs
3/ω̇2Kz

2−Riz1/τ : To ensure the above condition, the applied
voltage must be strong enough to drive a conductive bridge through the
upstream gap. This is a combination of (21) and the approximation for
(19).

• Riz1 ≫ 1: The asymptotic analysis presumed that convection dominated
diffusion in the upstream gap. For very thin gaps, the gap may merely be
presumed zero, so ϕa = ϕ1, and z1 ≈ 0.

• Ri ≫ Re: The mobility of the positive ions must far exceed the mobility of
negative ions. This is required for the assumptions that negative particles
evacuate the sheath before a conductive path is formed.

When these conditions are met, the model is biased in regime 1, and currents
through the upstream sheath may be estimated by (21). In this mode of partial
saturation, the upstream sheath has grown into the formation region, and a
region of constant ion density forms there. The resulting bridge of positive ions
between the formation region and the upstream boundary is the only remaining
conductive path for electrical currents through the flame.

When ϕa ≪ ϕp but is insufficient to bias the system into regime 1, the
model is biased in regime 1a, and currents are very nearly zero. In this mode,
electrons have evacuated the region upstream of the ion formation region, but
the applied potential is not yet sufficient to form a conductive path between
the ion formation region and the upstream boundary. As a result, the flow of
current is blocked.

The downstream sheath (z = 1) saturation currents are determined entirely
by the ions that survive to impact the downstream surface, ηd1, calculated by
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(25) and (26),

η∞ =

√
ω̇

β
η2 = η∞ − 2η∞

1 + exp
(
2
√
ω̇β(z2 − z1)

)
1

ηd1
=

1

η2
+ β(1− z2)

This solution is valid when

• ϕa ≫ ϕp: The applied voltage is sufficient to bias current positive.

• Ri ≫ Re: The mobility of negative charge carriers far exceeds the mobility
of positive charge carriers.

• α ≪ 1: Electrical forces will mandate both charge carriers to share the
same solution in the flame’s bulk.

• Ri ≫ 1: Diffusion and mobility of positive ions are not important in the
flame’s bulk.

When the electrical potential is positive, but so meager that the system is
not in regime 3, then the model is biased in regime 2. Here, the flow of current is
determined by a series of voltage drops incurred in each of the two sheaths and
ohmic losses in the bulk of the flame. In this mode, the apparent conductance
of the flame is at its maximum.

5.2 Comparison with Oxyfuel Experiments

The shapes of the model’s predicted IV characteristics are astonishingly consis-
tent with the shapes in Figure 1 and all other experiments in the oxyfuel flame.
The model correctly predicts the existence of regime 1, and it correctly predicts
that elongating the formation region suppresses regime 1 currents, as is seen in
rich fuel/oxygen ratio tests exhibiting elongated inner cones. Measurements of
regime 2 slope in the oxyfuel system have also confirmed that some degree of
nonlinearity appears unless regime 3 currents are very high [25], supporting the
finding that the system may not be truly ohmic.

Regime 1a has never been observed in the oxyfuel flame, but the transition
from regime 1a to regime 1 has been identified in other flames as super-saturation
[36]. Realistic estimates for Reynolds numbers in the oxyfuel flame are well in
excess of 2000, so this model predicts that regime 1a should be present. It seems
almost certain that this is due to the limitations implied by uniform velocity
and 1D assumptions. In the oxyfuel flame, the shear layers at the torch tip will
induce local velocities far below those estimated in the jets. This inspires the
use of a local Reynolds number that more appropriately describes the balance
between convection and electrical mobility in the space between the flame front
and the torch tip. The quantity, Riz1, which appears in (19), already does this
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for the correct length scale, but for an unrealistically large velocity scale. It is
for this reason that we have elected to examine results with Reynolds numbers
far below what are typical in the bulk of the flame, which correctly predict the
disappearance of regime 1a.

In agreement with many one-dimensional models and experiments (e.g. [35,
36, 29]), the present model predicts transition between regimes 1 and 2 at nearly
zero current, but the oxyfuel flame demonstrates a significant current offset that
is variable with operating conditions [21]. Just as with the absence of regime 1a,
this is likely due to aspects of a geometrically complex system that defy such
a simple model. For example, if recirculation were to impose a negative local
velocity, that could drive the kind of negative current offset observed in Figure
1.

The model predicts roughly 0.06 regime 3 saturation current. If the flame
were a cylinder with diameter 6mm, velocity 100m/s, and number density scale
3 × 1018m−3 [23], the J = 0.06 scales to roughly 80µA, which gives order-
of-magnitude agreement with measurements in the oxyfuel flame [22] with no
particular care taken to tune the model to match experiment. While the model
predicts a nearly flat regime 3 current, the oxyfuel flame shows a persistent
climb. The stagnation at the work surface suppresses the local axial velocity
there, so the recombination length scales (β−1) there will be compressed. If
the model were configured with a shorter recombination length (lower velocity,
larger β) such that the ion concentration were to decline far more rapidly in
the immediate vicinity of the downstream boundary, applying higher potentials
to cause the downstream sheath to reach deeper into the flow would enhance
the regime 3 saturation current far more than what is observed here. Instead,
the uniform velocity model may be more appropriate to the metal screens often
used for downstream boundaries in flat burner-stabilized experiments.

Figure 8 shows a regime 2 conductivity on the order .008, which if the flame
were a cylinder with diameter 6mm, velocity 100m/s, and number density scale
3 × 1018m−3, corresponds to an electrical resistance of approximately 150kΩ.
This coincides astonishingly well with direct measurements of the oxyfuel flame
regime 2 resistance [22, fig.5]. We have now provided two re-scaled result com-
parisons against experiment that seem to agree quite well, but great care should
be taken interpreting this apparent success before a more rigorous re-scaling
study can be conducted. Instead, this effort has been scoped to the derivation,
solution, and study of the model’s features.
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