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Abstract— Graph coloring is a NP-hard problem, and 

computing the solution on a digital computer entails an 

exponential increase in the computing resources (time, memory) 

with increasing problem size. This has motivated the search for 

alternate and more efficient non-Boolean approaches. Here, we 

experimentally demonstrate the solution to this problem using 

the phase dynamics of coupled oscillators. Using a 30-oscillator 

IC platform with reconfigurable all-to-all coupling and minimal 

post-processing, our approach achieves 98% accuracy in 

detecting (near-) optimal solutions within 1 color of the optimal 

solution in comparison to the 77% accuracy achieved with the 

heuristic Johnson algorithm. Additionally, we propose a new 

local search-based post-processing scheme to improve the quality 

of the coloring solution. Finally, using circuit simulations, we 

demonstrate the scalability and speed up (~ 100×) achievable 

with the above approach in larger graphs. 
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I. INTRODUCTION  

The graph coloring problem is an archetypal combinatorial 

optimization problem defined as: Given a graph G where each 

vertex is assigned a ‘color’ (label), compute the minimum 

number of colors such that no two nodes that share a common 

edge have the same color. While this graph theoretic problem 

can be mapped to a broad spectrum of practical applications in 

areas ranging from image processing to data mining, solving 

this problem efficiently using conventional digital computers is 

fundamentally challenging; even approximate high-quality 

solutions, which are useful in many practical cases, are difficult 

to compute [1]. This is because the graph coloring belongs to 

the NP-hard computational complexity class of problems 

where exponentially increasing resources are required as the 

problem sizes increase. This limitation has motivated an effort 

to realize alternate computing paradigms and platforms that 

can accelerate such problems.  

Dynamical systems of synchronized oscillators, wherein 

discrete (digital) sequential computing is replaced by 

continuous time evolution of the system, offer unique 

advantages when solving such problems. Each oscillator 

evolves in parallel, and the memory is distributed along with 

the “compute” operations allowing the system to search the 

high-dimensional solution space efficiently [2]. Prior work by 

Parihar et al. [3] on graph coloring laid the theoretical 

foundation of this approach and demonstrated the coloring of 

up to 5 node graphs using insulator-metal phase transition 

(VO2)-based oscillators. However, scaling this emerging 

device technology is challenging and can preclude the 

evaluation of the computational primitive in larger oscillator 

systems. Other oscillator works [4][5] focused on graph 

coloring have relied on circuit simulations. In contrast, works 

on oscillator-based computing using the more mature CMOS 

technology have not focused on graph coloring [6][7]; Ahmed 

et al. [6] recently showcased the dynamics of coupled 

oscillators as an Ising machine (Max-Cut problem was 

addressed) in a planar configuration. Planar graphs are 4 

colorable [8] (i.e. any planar graph requires a maximum of 4 

colors to color it optimally) and can be solved in polynomial 

time. Thus, the dynamics of the oscillators when solving the 

computationally hard non-planar graphs remains to be 

explored. The ability to compute the Maximum Independent 

Set (MIS) using CMOS-based coupled oscillators was recently 

demonstrated by the authors in [9]. Computing the optimal 

MIS only entails obtaining the cardinality of the largest 

partition in the phase ordering (as discussed in the following 

section) while optimal graph coloring requires the correct 

number of partitions in the phase ordering of the oscillators. In 

other words, optimal MIS can be obtained even if the phase 

ordering (required for graph coloring) is sub-optimal (as long 

1

9

6

8

3
5

10

2

4

7
Input Graph(a)

Colored Graph 

1

72

4 10

9

5

3

6

8

Color1

Red

Color2

BlueColor3

Orange

Color4

Green Color 5

Gold

Circular Phase ordering

Edge absent between vertices

Edge present between vertices

(d)

(c)

Experimental Waveform

20.52 20.54

0.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

 

o
s
c
 (

9
)

A

 

C
 (

7
)

 

D
 (

1
0

)

 

E
 (

4
)

 

F
 (

8
)

 

G
 (

6
)

 

H
 (

5
)

 

I 
(2

)

 

J
 (

3
)

 

 

K
 (

1
)

Time (ms)

V
o
lt
a
g
e
 (

V
)

1

6

10

9

7

4

2

5

8

3

1

9

6

8

3

5

10

2

4

7

(b)

No. of colors detected =5 (optimal 

solution)  
Fig. 1. (a) A representative 10 node graph solved using the coupled 
relaxation oscillators. (b) Measured outputs of the topologically 

equivalent coupled oscillator circuit. (c) Corresponding ordering of 

phases experimentally measured from the time domain waveform; and 
(d) Resulting coloring solution for the graph (=5, which is optimal).  
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as the largest partition of nodes contains the optimal number of 

nodes). This makes graph coloring- the focus of the present 

work- a significantly harder problem to solve using coupled 

oscillators. 

II. GRAPH COLORING USING COUPLED OSCILLATORS  

 The foundation of using coupled oscillators to color graphs 
lies in the equivalence between the eigenvalues of the coupled 
oscillator system in state space as and those of the adjacency 
matrix, A of the graph [3]:  

                  x(t)=(CI+CC+CL)−1[−G(x)x(t)+H(x)]                     (1) 

where, CI, CC, CL are the internal, coupling and the load 
capacitances of the system and x= {x1, x2, …., xn} represents 
state of the oscillators. Further, to help map the oscillator 
dynamics to graph coloring, the problem is recast as an 
equivalent color sorting problem that aims to establish a 
circular ordering such that nodes of the same color appear 
consecutively. The oscillator phase ordering then corresponds 
to ordering of the colored nodes [3] which can subsequently be 
sorted (in polynomial time) to obtain the solution to the graph 
coloring problem. 

In order to process a graph using coupled oscillators, the 
adjacency Matrix, A, of the input graph is used to construct a 
topologically equivalent oscillator circuit. Each node 
(represented by a column/row of A) is represented by an 
oscillator and every edge (Aij) is represented by a coupling 
element; since we consider undirected graphs here, Aij=Aji. Fig. 
1(a) shows a representative 10-node graph (with 36 edges) that 
is mapped to a topologically equivalent coupled oscillator 
circuit (experimental details are described in the following 
section). The corresponding time domain output of the 
oscillators (Fig. 1(b)) shows the relative phase difference and 
phase ordering among the oscillators which encodes the 
combinatorial solution to the problem. The oscillators exhibit a 
unique phase ordering such that clusters of nodes in the graph 
network without an edge (the nodes in a cluster can be assigned 
the same color since they have no edge) appear consecutively 
in the ordering. For instance, nodes 2 and 3, which do not have 
an edge, appear consecutively; similarly, nodes 8, 10; and 1, 9 
etc. Subsequently, the cyclic ordering of nodes (Fig. 1(c)) can 
be sorted into the clusters of nodes having the same color using 
a simple sorting algorithm with the number of such clusters 
approximating a near-optimal/optimal solution (=5; solution is 
optimal for the considered graph) to the problem (Fig. 1(d)). 

III. COUPLED OSCILLATOR HARDWARE 

To explore this computational capability of the oscillators, 
we utilize an integrated circuit (die photo in Fig. 7) consisting 
of 30 oscillators with all-to-all reconfigurable coupling. Fig. 
2(a) shows the architecture of the oscillator IC with the 
reconfigurable coupling network implemented using a 
capacitor (32.5 fF) in series with a transmission gate (T-gate) 
to turn ON/OFF the coupling between any two oscillators. 
There are 870 (=P(30,2)) coupling elements which facilitates 
any oscillator to be coupled/decoupled to any and all other 
oscillators in the network. Consequently, the IC can solve a 
graph with arbitrary connectivity among the oscillator nodes 
including NP-hard non-planar graphs. The relaxation oscillator 

is implemented using an inverting Schmitt-trigger with a 
negative RC feedback. The feedback resistor (tuned to R=402 
MΩ) is realized using a switched capacitor (C=1.66 fF; f=1.5 
MHz) (Fig. 2(b)). The output of each oscillator is buffered, and 
the corresponding time domain waveform is shown in Fig. 
2(c). The binary output of the oscillator simplifies the 
measurement and read-out of the oscillator phases while 
preserving the critical phase information which is essential for 
computing the graph coloring solution.  

The oscillators are selected using the oscillator enable 
register. The coupling network is programmed according to the 
values of Aij such that the T-gate is ON when Aij=1; else it is 
turned OFF. The adjacency matrix is formulated into a binary 
bit-stream and passed on to a SIPO register (Coupling 
configuration register) to program the coupling elements. The 
solution which is encoded in the steady state phase ordering of 
the oscillators is computed by comparing the phase of each 
oscillator measured through a 32:1 MUX) with a reference 
oscillator (oscillator 1) read directly from the buffer (i.e. 
without the MUX). 
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Fig. 2. (a) Architecture of the oscillator IC with reconfigurable all-to-all 

coupling. (b) Circuit schematic; and (c) Measured output of a single 

oscillator in the IC. 

Fig. 3. (a) Mean number of 
colors detected by the oscillators 

as a function of (N, η) (b) Bubble 

plot comparing the measured 

oscillator solution with the 

optimal solution. (c) Comparison 
of coloring solution computed by 

the oscillators with the heuristic 

Johnson algorithm. Inset 
compares the maximum no. of 

optimal colors detected with 

those in prior oscillator works. 
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IV. COMPUTATIONAL PERFORMANCE OF COUPLED OSCILLATORS 
 

 To evaluate the computational properties of the oscillators, 
we experimentally measure multiple randomly generated graph 
instances (including non-planar graphs) of various size (N: 10, 
20, 30) and edge density (ƞ: 0.2-0.8); 5 graphs are evaluated 
for every combination of N, ƞ (total 60 graphs). Fig. 3(a) 
shows the mean number of colors (averaged over 5 graphs for 
each N, ƞ) detected by the oscillators as a function of the ƞ for 
graphs of different sizes (10, 20, 30 nodes). It is evident that 
larger and denser graphs (high ƞ) require larger number of 
colors making them more challenging to compute. 
Furthermore, the bubble plot in Fig. 3(b) compares the 
oscillator solutions for the measured graphs with the optimal 
coloring solutions. It can be observed that most solutions lie 
close to the identity line (y=x) implying the oscillators compute 
high quality (near-) optimal solutions; size of the bubble 
indicates the number of instances lying at the same (x,y).  

 

However, since computing the optimal solution to the 
graphs using an exact algorithm can take up to several days 
(especially in denser graphs), we also benchmark our results 
with the Johnson’s heuristic algorithm which does not 
guarantee optimal solutions but is significantly faster. Fig. 3(c) 
shows the accuracy of the solution produced by the coupled 
oscillators and compares it with that obtained using the 
Johnson algorithm. The oscillators (with minimal post 
processing) produce a solution within 1 color of the optimal 
solution in 98% of the measured graphs in comparison to the 
77% observed with the Johnson algorithm; the oscillators 
produce an optimal solution in 62% of the measured graphs in 
comparison to the 40% accuracy observed with the Johnson’s 
algorithm. The inset in Fig. 3(c) shows the maximum number 
of optimal colors detected by the oscillators (=9) in comparison 
to prior oscillator works [3].  

To further analyze how the input graph affects the 
computational performance of the oscillators, the bar plots in 
Fig. 4(a) measure the quality (optimality) of the oscillator 
solution (specified as the distance of the measured oscillator 
solution from the optimal value) as a function of the number of 
optimal colors. We observe that the deviation from the optimal 
solution is a strong function of the number of optimal colors 
required which increases with the size and edge density of the 
graph as shown in Fig. 3a. Bigger and denser graphs requiring 
larger number of colors for optimal coloring show increased 
deviation. This is also supported by the observed phase 
dynamics of the oscillator system evaluated using mean cluster 
separation, given by:  

 

where m: number of clusters, ni: number of elements in ith 
cluster, ϕ: phase difference of an oscillator with respect to the 
reference oscillator, and % represents modulo operation. Fig. 
4(b) shows that the mean separation between the clusters (that 
are assigned a particular color each) decreases with increasing 
number of optimal colors making it more challenging for the 
system to settle to the phase optimal ordering in larger and 
denser graphs. 

 
V. POST PROCESSING SCHEME 

The reduced cluster separation in larger and denser graphs 
increases the likelihood of the system settling to a sub-optimal 
phase ordering. Our empirical observations reveal that this due 
to a few nodes being misplaced in the ordering. As alluded to 
earlier, this dramatically impacts the optimal graph coloring 
solution even though it may not affect the solution to other 
problems like MIS. We therefore develop a polynomial time 
post processing scheme (based on local search) that corrects 
the oscillator ordering to reduce the number of colors. The 
underlying algorithm shown in Fig. 5 starts by sorting the color 
groups obtained from the oscillator dynamics in descending 
order of their size. Subsequently, a node from the smallest 
group is selected and added to a larger group if and only if it 
shares no common edge with the existing nodes in the group. 
This process is repeated for all the nodes during which it is 
observed that (nodes from) some smaller groups get 

: ith Color Group

: total number of colors

: Adjacency matrix

: number of vertices in ith color 

group

: counter for no. of color group to 

be expanded

: counter for no. of color group to 

be distributed

: counter for no. of elements in a 

color group 

= jth element in ith color group

Legends
Compute no. of vertices for all and sort in descending order of 

Read Color Groups , Adjacency Matrix 

n

vertices , ? Where, 

p
, 

, , 

No

Yes
p ? q

Yes

No

q ?
No

n , 
Yes

? n ?

n

No

YesYes

?

q

q ?

Yes

No

No

Yes

No

 
 

 

 

 

 

C
o

u
n

t 
(#

)

D
is

ta
n

c
e

 f
ro

m
 O

p
ti
m

a
l 
S

o
lu

ti
o

n
 (

#
)

0

1

2

2

4

6

8

 

0

1

2

2

4

6

8

 

 

2 4 6 8 10 12

0

1

2

0

2

4

6

8

 

10 node

30 node

20 node

optimal

optimal

optimal

Optimal Colors, χ (#)

(a)-

-

-

-

-

-

Colors (#)
2 3 4 5 6 7 8 9 11 12

0

40

80

120

Y
 A

x
is

 T
it
le

X Axis Title

 

 
Experiment
Total graphs=60 

M
e

a
n

 C
lu

s
te

r 
S

e
p

a
ra

ti
o

n
, 
Δ

ϕ
 (

0
)

Increasing graph size 

and edge density 

R2=0.9

Phase 

Plot

180 0

90

270

1
3

Cluster 

Separation

458

9
7

6 2

(b)

Experiment

 
Fig.4 (a) Distance of the measured solution from the optimal solution as a 

function of the number of colors. (b) Mean cluster separation vs. the 

number of colors detected; cluster separation decreases with increase in 

the coloring solution.  
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Fig. 5. Local search-
based post processing 

scheme to further 

improve the graph 
coloring solution 

obtained from the 

oscillators. 
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completely redistributed. Consequently, this reduces the 
number of colors and improves the solution.  

VI. SCALABILITY 

We also test using circuit simulations, the scalability of the 
oscillator approach to color larger graphs beyond 30 nodes. We 
use the SPICE-compatible Xyce computing platform (provided 
by Sandia National Labs [10]) to build and emulate the coupled 
oscillators and evaluate graphs form the DIMACs [11] as well 
as other randomly generated graph instances; for the latter, we 
consider graph sizes (N) up to 128 nodes and ƞ=0.2-0.8; 2 
graphs are analyzed for each N, ƞ (24 graphs in total). Fig. 
6(a)(b) shows the number of colors detected and compares the 
oscillator solution with that obtained from the Johnson’s 
heuristic algorithm (finding optimal solutions is 
computationally intractable and no solution is available even 
after >24 hours); the table in Fig. 6(c) compares the graph 
coloring solutions obtained for the graph instances from the 
DIMACS database where the oscillators provide an equal or 
improved solution in 4 of the 6 graphs considered. More 
importantly the oscillators provide a ~100x speed up in the 
time to compute the solution (computation time includes time 
to settle into the circular phase ordering, and the time required 
for post processing) as shown in Fig. 6(d).  

 
VII. COMPARISON 

 Fig. 7 shows the die photo and operating parameters of the 
oscillator IC (1.2x1.2 mm2) used in this work. The IC is 
fabricated using the bulk CMOS 65nm technology. Fig. 8 
compares our approach with other non-Boolean schemes 
(including other oscillator demonstrations) that have been used 
to solve the graph coloring problem (it is important to note that 
only [3] actually focuses on solving graph coloring; other 
demonstrations focus on solving other combinatorial 

optimization problems such as Max-Cut). It can be observed 
that the oscillator approach and hardware evaluated in this 
work not only enables a compact (IC technology compatible), 
low-power and highly reconfigurable platform (in comparison  
to other non-oscillator-based approaches) but also facilitates 
the evaluation of NP-hard non-planar graphs (in contrast to 
prior oscillator works).  
 

VIII. CONCLUSION 

 In summary, we show that coupled oscillators provide an 
efficient non-Boolean approach for computing high quality 
(near-) optimal solutions to graph coloring; the oscillator hard-   

ware demonstrates a 98% success rate in comparison to 77% 

with state-of-the-art Johnson’s algorithm. Our work marks a 

step forward towards realizing highly efficient and compact 

non-Boolean circuits that complement digital computers to 

solve NP-hard problems. 
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Fig. 7. Die photo and operating parameters of the coupled oscillator IC 
used in this work. 
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