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Abstract— Graph coloring is a NP-hard problem, and
computing the solution on a digital computer entails an
exponential increase in the computing resources (time, memory)
with increasing problem size. This has motivated the search for
alternate and more efficient non-Boolean approaches. Here, we
experimentally demonstrate the solution to this problem using
the phase dynamics of coupled oscillators. Using a 30-oscillator
IC platform with reconfigurable all-to-all coupling and minimal
post-processing, our approach achieves 98% accuracy in
detecting (near-) optimal solutions within 1 color of the optimal
solution in comparison to the 77% accuracy achieved with the
heuristic Johnson algorithm. Additionally, we propose a new
local search-based post-processing scheme to improve the quality
of the coloring solution. Finally, using circuit simulations, we
demonstrate the scalability and speed up (~ 100%) achievable
with the above approach in larger graphs.
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I. INTRODUCTION

The graph coloring problem is an archetypal combinatorial
optimization problem defined as: Given a graph G where each
vertex is assigned a ‘color’ (label), compute the minimum
number of colors such that no two nodes that share a common
edge have the same color. While this graph theoretic problem
can be mapped to a broad spectrum of practical applications in
areas ranging from image processing to data mining, solving
this problem efficiently using conventional digital computers is
fundamentally challenging; even approximate high-quality
solutions, which are useful in many practical cases, are difficult
to compute [1]. This is because the graph coloring belongs to
the NP-hard computational complexity class of problems
where exponentially increasing resources are required as the
problem sizes increase. This limitation has motivated an effort
to realize alternate computing paradigms and platforms that
can accelerate such problems.

Dynamical systems of synchronized oscillators, wherein
discrete (digital) sequential computing is replaced by
continuous time evolution of the system, offer unique
advantages when solving such problems. Each oscillator
evolves in parallel, and the memory is distributed along with
the “compute” operations allowing the system to search the
high-dimensional solution space efficiently [2]. Prior work by
Parihar et al. [3] on graph coloring laid the theoretical
foundation of this approach and demonstrated the coloring of
up to 5 node graphs using insulator-metal phase transition
(VOy)-based oscillators. However, scaling this emerging
device technology is challenging and can preclude the
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Fig. 1. (a) A representative 10 node graph solved using the coupled
relaxation oscillators. (b) Measured outputs of the topologically
equivalent coupled oscillator circuit. (¢) Corresponding ordering of
phases experimentally measured from the time domain waveform; and
(d) Resulting coloring solution for the graph (=5, which is optimal).

evaluation of the computational primitive in larger oscillator
systems. Other oscillator works [4][5] focused on graph
coloring have relied on circuit simulations. In contrast, works
on oscillator-based computing using the more mature CMOS
technology have not focused on graph coloring [6][7]; Ahmed
et al [6] recently showcased the dynamics of coupled
oscillators as an Ising machine (Max-Cut problem was
addressed) in a planar configuration. Planar graphs are 4
colorable [8] (i.e. any planar graph requires a maximum of 4
colors to color it optimally) and can be solved in polynomial
time. Thus, the dynamics of the oscillators when solving the
computationally hard non-planar graphs remains to be
explored. The ability to compute the Maximum Independent
Set (MIS) using CMOS-based coupled oscillators was recently
demonstrated by the authors in [9]. Computing the optimal
MIS only entails obtaining the cardinality of the largest
partition in the phase ordering (as discussed in the following
section) while optimal graph coloring requires the correct
number of partitions in the phase ordering of the oscillators. In
other words, optimal MIS can be obtained even if the phase
ordering (required for graph coloring) is sub-optimal (as long
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as the largest partition of nodes contains the optimal number of
nodes). This makes graph coloring- the focus of the present
work- a significantly harder problem to solve using coupled
oscillators.

II. GRAPH COLORING USING COUPLED OSCILLATORS

The foundation of using coupled oscillators to color graphs
lies in the equivalence between the eigenvalues of the coupled
oscillator system in state space as and those of the adjacency
matrix, A of the graph [3]:

x(H)=(Cr+Cc+Cp) '[-G(x)x(t)+H(x)] 1)

where, C;, Cc, Co are the internal, coupling and the load
capacitances of the system and x= {Xi, X2, ...., Xa} represents
state of the oscillators. Further, to help map the oscillator
dynamics to graph coloring, the problem is recast as an
equivalent color sorting problem that aims to establish a
circular ordering such that nodes of the same color appear
consecutively. The oscillator phase ordering then corresponds
to ordering of the colored nodes [3] which can subsequently be
sorted (in polynomial time) to obtain the solution to the graph
coloring problem.

In order to process a graph using coupled oscillators, the
adjacency Matrix, A, of the input graph is used to construct a
topologically equivalent oscillator circuit. Each node
(represented by a column/row of A) is represented by an
oscillator and every edge (Aj) is represented by a coupling
element; since we consider undirected graphs here, Aj=A;. Fig.
1(a) shows a representative 10-node graph (with 36 edges) that
is mapped to a topologically equivalent coupled oscillator
circuit (experimental details are described in the following
section). The corresponding time domain output of the
oscillators (Fig. 1(b)) shows the relative phase difference and
phase ordering among the oscillators which encodes the
combinatorial solution to the problem. The oscillators exhibit a
unique phase ordering such that clusters of nodes in the graph
network without an edge (the nodes in a cluster can be assigned
the same color since they have no edge) appear consecutively
in the ordering. For instance, nodes 2 and 3, which do not have
an edge, appear consecutively; similarly, nodes 8, 10; and 1, 9
etc. Subsequently, the cyclic ordering of nodes (Fig. 1(c)) can
be sorted into the clusters of nodes having the same color using
a simple sorting algorithm with the number of such clusters
approximating a near-optimal/optimal solution (=5; solution is
optimal for the considered graph) to the problem (Fig. 1(d)).

III. COUPLED OSCILLATOR HARDWARE

To explore this computational capability of the oscillators,
we utilize an integrated circuit (die photo in Fig. 7) consisting
of 30 oscillators with all-to-all reconfigurable coupling. Fig.
2(a) shows the architecture of the oscillator IC with the
reconfigurable coupling network implemented using a
capacitor (32.5 fF) in series with a transmission gate (T-gate)
to turn ON/OFF the coupling between any two oscillators.
There are 870 (=P(30,2)) coupling elements which facilitates
any oscillator to be coupled/decoupled to any and all other
oscillators in the network. Consequently, the IC can solve a
graph with arbitrary connectivity among the oscillator nodes
including NP-hard non-planar graphs. The relaxation oscillator
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Fig. 2. (a) Architecture of the oscillator IC with reconfigurable all-to-all
coupling. (b) Circuit schematic; and (c) Measured output of a single
oscillator in the IC.

is implemented using an inverting Schmitt-trigger with a
negative RC feedback. The feedback resistor (tuned to R=402
MQ) is realized using a switched capacitor (C=1.66 fF; =1.5
MHz) (Fig. 2(b)). The output of each oscillator is buffered, and
the corresponding time domain waveform is shown in Fig.
2(c). The binary output of the oscillator simplifies the
measurement and read-out of the oscillator phases while
preserving the critical phase information which is essential for
computing the graph coloring solution.

The oscillators are selected using the oscillator enable
register. The coupling network is programmed according to the
values of Ajj such that the T-gate is ON when A;=1; else it is
turned OFF. The adjacency matrix is formulated into a binary
bit-stream and passed on to a SIPO register (Coupling
configuration register) to program the coupling elements. The
solution which is encoded in the steady state phase ordering of
the oscillators is computed by comparing the phase of each
oscillator measured through a 32:1 MUX) with a reference
oscillator (oscillator 1) read directly from the buffer (i.e.
without the MUX).
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IV. COMPUTATIONAL PERFORMANCE OF COUPLED OSCILLATORS

To evaluate the computational properties of the oscillators,
we experimentally measure multiple randomly generated graph
instances (including non-planar graphs) of various size (N: 10,
20, 30) and edge density (: 0.2-0.8); 5 graphs are evaluated
for every combination of N, n (total 60 graphs). Fig. 3(a)
shows the mean number of colors (averaged over 5 graphs for
each N, n)) detected by the oscillators as a function of the  for
graphs of different sizes (10, 20, 30 nodes). It is evident that
larger and denser graphs (high n) require larger number of
colors making them more challenging to compute.
Furthermore, the bubble plot in Fig. 3(b) compares the
oscillator solutions for the measured graphs with the optimal
coloring solutions. It can be observed that most solutions lie
close to the identity line (y=x) implying the oscillators compute
high quality (near-) optimal solutions; size of the bubble
indicates the number of instances lying at the same (x,y).

-2 F(a) 10 node Experiment ]

N

0l-—%—o o o o= . optimal _{

8

16

4

2

éO nodev g
re—e * e - 314
12

8

6

4

42

0

Count (#)

0 oo ‘ o optimal
2F 30 node ' ' L3
Afe——e ¢ ¢ oo ¢ o]

0 . opt\mal

Distance from Optimal Solution (#)

34 6 8 10 1
Optlmal Colors, X (#)

Experiment
Total graphs=60 Cluster .,

—_— -
Increasing graph size ™
O and edge depsity | |

234567891112
Colors (#)
Fig.4 (a) Distance of the measured solution from the optimal solution as a
function of the number of colors. (b) Mean cluster separation vs. the
number of colors detected; cluster separation decreases with increase in
the coloring solution.
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However, since computing the optimal solution to the
graphs using an exact algorithm can take up to several days
(especially in denser graphs), we also benchmark our results
with the Johnson’s heuristic algorithm which does not
guarantee optimal solutions but is significantly faster. Fig. 3(c)
shows the accuracy of the solution produced by the coupled
oscillators and compares it with that obtained using the
Johnson algorithm. The oscillators (with minimal post
processing) produce a solution within 1 color of the optimal
solution in 98% of the measured graphs in comparison to the
77% observed with the Johnson algorithm; the oscillators
produce an optimal solution in 62% of the measured graphs in
comparison to the 40% accuracy observed with the Johnson’s
algorithm. The inset in Fig. 3(c) shows the maximum number
of optimal colors detected by the oscillators (=9) in comparison
to prior oscillator works [3].

To further analyze how the input graph affects the
computational performance of the oscillators, the bar plots in
Fig. 4(a) measure the quality (optimality) of the oscillator
solution (specified as the distance of the measured oscillator
solution from the optimal value) as a function of the number of
optimal colors. We observe that the deviation from the optimal
solution is a strong function of the number of optimal colors
required which increases with the size and edge density of the
graph as shown in Fig. 3a. Bigger and denser graphs requiring
larger number of colors for optimal coloring show increased
deviation. This is also supported by the observed phase
dynamics of the oscillator system evaluated using mean cluster
separation, given by:

m

Z | 2"’I"[Hl)we..n/ X‘f’f/ I
it 1)som = n
- 1 m ] (2)

m

A =

where m: number of clusters, nj;; number of elements in i

cluster, ¢: phase difference of an oscillator with respect to the
reference oscillator, and % represents modulo operation. Fig.
4(b) shows that the mean separation between the clusters (that
are assigned a particular color each) decreases with increasing
number of optimal colors making it more challenging for the
system to settle to the phase optimal ordering in larger and
denser graphs.
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V. POST PROCESSING SCHEME

The reduced cluster separation in larger and denser graphs
increases the likelihood of the system settling to a sub-optimal
phase ordering. Our empirical observations reveal that this due
to a few nodes being misplaced in the ordering. As alluded to
earlier, this dramatically impacts the optimal graph coloring
solution even though it may not affect the solution to other
problems like MIS. We therefore develop a polynomial time
post processing scheme (based on local search) that corrects
the oscillator ordering to reduce the number of colors. The
underlying algorithm shown in Fig. 5 starts by sorting the color
groups obtained from the oscillator dynamics in descending
order of their size. Subsequently, a node from the smallest
group is selected and added to a larger group if and only if it
shares no common edge with the existing nodes in the group.
This process is repeated for all the nodes during which it is
observed that (nodes from) some smaller groups get
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completely redistributed. Consequently, this reduces the
number of colors and improves the solution.

VI. SCALABILITY

We also test using circuit simulations, the scalability of the
oscillator approach to color larger graphs beyond 30 nodes. We
use the SPICE-compatible Xyce computing platform (provided
by Sandia National Labs [10]) to build and emulate the coupled
oscillators and evaluate graphs form the DIMACs [11] as well
as other randomly generated graph instances; for the latter, we
consider graph sizes (N) up to 128 nodes and 1n=0.2-0.8; 2
graphs are analyzed for each N, n (24 graphs in total). Fig.
6(a)(b) shows the number of colors detected and compares the
oscillator solution with that obtained from the Johnson’s
heuristic ~ algorithm  (finding optimal  solutions is
computationally intractable and no solution is available even
after >24 hours); the table in Fig. 6(c) compares the graph
coloring solutions obtained for the graph instances from the
DIMACS database where the oscillators provide an equal or
improved solution in 4 of the 6 graphs considered. More
importantly the oscillators provide a ~100x speed up in the
time to compute the solution (computation time includes time
to settle into the circular phase ordering, and the time required
for post processing) as shown in Fig. 6(d).

(a) —O— Mean Color (b) 64nodes  Simulation o
—a0l - colors at each node :‘: @40 [zfzssf‘:::; //1,:
g Simulation % Johnson algorithm pr
= = 32 |- produces better solution "'
= (5] o
B30 :‘: g %
le) =24t 4
= o s
® + | 8 4
o 20+ o L .‘/
3 y :+: 816 P
o C i k] Oscillators produce
Z 10F L 8 graphs analyzed for every g 81 ,,"' petiersoluton
z | ,node . o . . . .
64 96 128 8 16 24 32 40
Graph Size (#) No. of Colors (Johnson Algorithm)
(c) No. of Colors 10°[ (d) Simufation
Graph |Size Oscillators John_son
Algorithm o oo
1et 64 | 64 8 8 \EJ 0 F ™ Ngoritam >100x
1tc_64 | 64 7 7 g ,
1et 128/128| 15 9 |F10°F coupld
1dc_128| 128 19 13 Oscillator
0 -
2dc_128128| 51 53 | 10°F o s
32 64 96 128
2dc_256/| 256 71 79 Graph Size (#)

Fig. 6. (a) Number of colors detected by the oscillators as a function of
graph size (N). (b) Bubble plot comparing the number of colors detected
using the oscillators with that detected using the Johnson algorithm. (c)
Simulations comparing coupled oscillators with the Johnson algorithm
for larger DIMACS implementation challenge graphs. (d) Comparison of
computing time for Johnson algorithm and the coupled oscillators. The
oscillator computing time includes time for the system to reach steady-
state as well as the post-processing scheme.

VII. COMPARISON

Fig. 7 shows the die photo and operating parameters of the
oscillator IC (1.2x1.2 mm?) used in this work. The IC is
fabricated using the bulk CMOS 65nm technology. Fig. 8
compares our approach with other non-Boolean schemes
(including other oscillator demonstrations) that have been used
to solve the graph coloring problem (it is important to note that
only [3] actually focuses on solving graph coloring; other
demonstrations focus on solving other combinatorial
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Fig. 7. Die photo and operating parameters of the coupled oscillator IC
used in this work.
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optimization problems such as Max-Cut). It can be observed
that the oscillator approach and hardware evaluated in this
work not only enables a compact (IC technology compatible),
low-power and highly reconfigurable platform (in comparison
to other non-oscillator-based approaches) but also facilitates
the evaluation of NP-hard non-planar graphs (in contrast to
prior oscillator works).

VIII. CONCLUSION

In summary, we show that coupled oscillators provide an
efficient non-Boolean approach for computing high quality
(near-) optimal solutions to graph coloring; the oscillator hard-
ware demonstrates a 98% success rate in comparison to 77%
with state-of-the-art Johnson’s algorithm. Our work marks a
step forward towards realizing highly efficient and compact
non-Boolean circuits that complement digital computers to
solve NP-hard problems.
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