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Abstract. Knowledge tracing refers to a family of methods that esti-
mate each student’s knowledge component/skill mastery level from their
past responses to questions. One key limitation of most existing knowl-
edge tracing methods is that they can only estimate an overall knowl-
edge level of a student per knowledge component/skill since they analyze
only the (usually binary-valued) correctness of student responses. There-
fore, it is hard to use them to diagnose specific student errors. In this
paper, we extend existing knowledge tracing methods beyond correctness
prediction to the task of predicting the exact option students select in
multiple choice questions. We quantitatively evaluate the performance of
our option tracing methods on two large-scale student response datasets.
We also qualitatively evaluate their ability in identifying common stu-
dent errors in the form of clusters of incorrect options across different
questions that correspond to the same error.

1 Introduction

Knowledge tracing (KT) [9] refers to a family of student modeling methods that
estimate student mastery levels on knowledge components/skills/concepts from
their past responses to questions/items and predict their future performance.
These estimates and predictions can be used to i) provide feedback to students
on their progress, especially in intelligent tutoring systems [44] and ii) drive
personalization, i.e., selecting the action that each learner should take next to
maximize their learning outcomes [10,28,36]. Many different KT methods have
been developed, ranging from hidden Markov model-based Bayesian knowledge
tracing methods [21,33,46], factor analysis-based methods such as learning fac-
tor analysis [5], performance factor analysis [34], and the item Difficulty, student
ability, skill, and student skill practice history (DAS3H) method [7], to deep
learning-based methods [15,31,32,35,45,47]. These methods have enjoyed vari-
ous degrees of success; some of these methods, including most Bayesian knowl-
edge tracing and factor analysis-based methods, exhibit excellent interpretability
while other, deep learning-based methods trade off interpretability for excellent
predictive accuracy on students’ future performance.
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Fig. 1. Some distractor options in well-designed MCQs are potentially capable of cap-
turing typical student errors. Option C in both questions here correspond to the error
of not mastering the order of operations and always working left to right.

However, one key limitation of these KT methods is that they operate exclu-
sively on (usually binary-valued) response data that indicates whether a student
responds to a question correctly or not. Therefore, they can only estimate stu-
dents’ overall mastery level on each knowledge component. However, not all
incorrect responses are equal: there can be numerous incorrect ways to answer
a math question [27], caused by different underlying errors. Studies have shown
that only a fraction of incorrect answers generated by students can be anticipated
and explained by cognitive models integrated into intelligent tutoring systems
[24,36,41], teachers [11], and numerical simulations [11,37]. Typical underly-
ing errors include having a “buggy rule” [4], exhibiting a certain misconception
[12,13,38], or a general lack of knowledge on certain knowledge components [2].
Since it is hard to diagnose such student errors from correctness data alone, we
need to develop KT methods that analyze full student responses.

Some datasets, including the large-scale Eedi1 [43] and EdNet2 [8] datasets,
contain the exact options students select on multiple choice questions (MCQs);
this option data provides us with an opportunity to extend existing KT meth-
ods to analyze specific student option selections rather than their answer cor-
rectness. In an ideal situation, well-designed MCQs should have well-crafted
incorrect distractor options that each corresponds to one or more typical stu-
dent errors; Figure 1 shows an example from the Eedi dataset for two questions
on the subject brackets, indices, division, multiplication, addition, subtraction
(BIDMAS). Option C in both questions correspond to the same error of not
fully mastering “order of operations” and always working left to right. However,
manually identifying these errors is an unscalable and labor-intensive process
since most existing MCQs do not come with consistent labels on the error(s)
underlying each incorrect option. Therefore, it is important to explore whether
we can develop KT methods to identify errors each incorrect option corresponds
to and potentially diagnose student errors automatically. These methods would
then be useful through i) informing teachers to communicate with students to
understand the source of their errors, ii) enabling the development of automated

1 https://eedi.com/projects/neurips-education-challenge.
2 https://github.com/riiid/ednet.

https://eedi.com/projects/neurips-education-challenge
https://github.com/riiid/ednet
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feedback [19], and iii) enabling the design of alternative instructional approaches
such as asking students to criticize erroneous examples [1].

1.1 Contributions

In this paper, we develop option tracing (OT), a KT framework that uses the
exact option each student selects on each question as both input and predicted
output. We extend several existing KT methods to the OT setting, includ-
ing a long short-term memory (LSTM) network-based method, deep knowledge
tracing (DKT) [35], a graph convolutional network-based method, graph-based
interaction model for knowledge tracing (GIKT) [45], and an attention network-
based method, attentive knowledge tracing (AKT) [15]. We emphasize that the
goal of this paper is NOT to compare all KT methods; instead, our goal is to
study how can we generalize them to analyze student option selections in MCQs.
Therefore, we only study some representative methods. We conduct the following
experiments on the Eedi and EdNet datasets: First, we quantitatively evaluate
our OT methods under both the collaborative filtering (CF) setup (introduced
by the NeurIPS 2020 Education Challenge [43]) and the typical KT setup on
the task of option prediction. Second, we qualitatively demonstrate the inter-
pretability exhibited by our OT framework using clustering algorithms to group
incorrect options across multiple questions into clusters of shared underlying
errors. Results show that the learned clusters match up with those manually
identified by a domain expert to some degree. Therefore, OT can potentially
offer a bottom-up approach for error identification by extracting student errors
from actual data instead of the typical top-down approach of anticipating errors
before seeing data. Our implementation will be publicly available at https://
github.com/arghosh/OptionTracing.

2 Related Work

The options students select in MCQs can be regarded as a type of categorical

data, which has previously been studied in both the item response theory (IRT)
and recommender systems research communities. However, in both cases, most
prior works focus on the case where the categories are ordered. In IRT research,
polytomous IRT-based models [25,26,30] are used to model students’ responses
with multiple ordered categories, such as letter grades and partial credits. In rec-
ommender systems research, neural collaborative filtering (NCF)-based methods
are used to model star ratings provided by users on items [20]. There are rela-
tively few models for unordered categorical data such as the nominal response
model (NRM) from the IRT research community, which has been applied to the
analysis of MCQs [40,42].

https://github.com/arghosh/OptionTracing
https://github.com/arghosh/OptionTracing
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3 Data and Problem Setup

The Eedi dataset contains the responses of more than 100,000 students to 27,613
MCQs across 389 labeled subjects, totaling over 15 million responses over the
course of more than a year. Each response corresponds to the exact option a
student selected on each question (among four options, {A,B,C,D}). We will
also use a small subset of the Eedi data where we have access to the exact
question (in the form of images) for quantitative analysis; this dataset contains
the responses of more than 4, 900 students to 948 questions, totaling in over
1.3 million responses. The EdNet dataset contains the responses of more than
700,000 students to 13,169 MCQs across 189 labeled subjects, totaling over 95
million responses over the course of more than two years.

We use two experimental setups for evaluation purposes. First, in the CF
setup, the task is to predict each student’s responses to a subset of questions
that they responded to, given their responses to other questions (possibly in the
future). Popular methods for this setup are neural collaborative filtering (NCF)
[20] and graph convolutional networks (GCN) [3,23]. Second, in the KT setup
for evaluating KT methods, the task is to predict each student’s responses to
future questions based on their entire past response history.

3.1 Problem Setup

Each student’s performance record consists of a sequence of responses to ques-
tions assigned at a series of discrete time steps. For student i at time step t, we
denote the combination of the question that they answered, the set of subjects
this question covers, their binary-valued response correctness, the option they

chose, and the correct option to this question as a tuple, (qi
t, {si

t,j}
ni

t

j=1, r
i
t, y

i
t, c

i
t),

where qi
t ∈ N

+ is the question index, si
t,j ∈ N

+ denotes the index of the jth

subject, j ∈ 1, . . . , ni
t since each question can be tagged with multiple subjects,

ri
t ∈ {0, 1} is the response correctness (1 corresponds to a correct response),

yi
t ∈ {A,B,C,D} is the option the student selected, and ci

t ∈ {A,B,C,D}
is the correct option for this question. In the CF setup, we associate a mask
variable mi

t ∈ {0, 1} with each time step, where 1 represents that the timestep
is part of the training set. This variable helps us to mask out responses we
need to predict when we compute the training loss. Given observed responses

{(qi
t, {si

t,j}
ni

t

j=1, r
i
t, y

i
t, c

i
t)}t:mi

t=1, the task is to predict the exact options students

select on questions in the test set, i.e., yi′

t′ for (t′, i′) : mi
t = 0. In the KT setup,

we observe each student’s entire history of responses to questions; thus, given

their past history up to time t−1 as {(qi
τ , {si

τ,j}
ni

τ

j=1, r
i
τ , yi

τ , ci
τ )}t−1

τ=1, our goal is

to predict yi
t at the current time step, t. Under these notations, existing KT

methods focus on predicting response correctness, ri
t.
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4 Methodology

In this section, we detail our OT methods for both the CF and KT setups.
Before delving into the individual methods, we start with a set of unified modules
that apply to all methods in this paper. The question embedding module Eq :
q → R

d transforms the question index qi
t to a d-dimensional, learnable real-

valued vector in R
d. Similarly, the response embedding module Er : r → R

d

transforms the response correctness ri
t to R

d and the option embedding module
Eo : {A,B,C,D} → R

d transforms the correct option ci
t and the chosen option yi

t

to vectors in R
d. We do not use separate embeddings for every question-option

(q, o) pair since that leads to overfitting in our experiments; instead, the 2d-
dimensional embedding for (q, o) is obtained using [Eq(q)⊕Eo(o)] where ⊕ is the
concatenation operator. The subject embedding module Es : s → R

d transforms
the subject index to R

d. Since each question may be tagged with several subjects,

we define the final subject embedding as Es({si
t,j}

ni
t

j=1) =
∑ni

t

j=1 Es(s
i
t,j). Some

of the methods (such as NCF) use a user embedding module Eu : i → R
d that

transforms the student index to R
d. For simplicity, we use the same d-dimensional

vector for all embedding modules; however, the dimensions of each module can
be different. We train all model parameters, denoted as Θ, which contains the
embeddings listed here and other model parameters specific to each individual
method, by minimizing the negative log-likelihood of the selected options as

minimize
Θ

−
∑|Students|

i=1

∑|Sequencei|
t=1

∑

o∈{A,B,C,D} 1[yi
t = o] log p(o|qi

t;Θ),

where 1 is the indicator function. Since the options are unordered categories,
the resulting loss function corresponds to the common cross-entropy loss [16].

4.1 Option Prediction Under the CF Setup

NCF. NCF is one of the most popular CF methods for user-item interaction
data. In the option prediction task, students correspond to users and questions
corresponds to items. The input for NCF at time step t for student i, xi

t, is

xi
t = [Eq(q

i
t) ⊕ Eu(i) ⊕ Es({si

t})].

Predictive probabilities p(yi
t = o) over four options o ∈ {A,B,C,D} are calcu-

lated using the softmax function [16],

zi
t = f(xi

t) ∈ R
4, p(yi

t = o|xi
t) = [softmax(zi

t)]o, ŷi
t = argmax

o∈{A,B,C,D}

[zi
t]o,

where f(·) denotes a feed-forward, fully-connected neural network and []o refers
to the oth entry of a vector. In NCF, the model parameters are the weights and
biases in the feed-forward neural network f(·); this prediction module is shared
by the subsequent methods.
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PO-BiDKT. The main drawback of NCF is that the student embedding is
static and not updated as students answer more questions and their knowledge
states evolve. Recurrent neural networks, and in particular LSTM-type mod-
els are capable of modeling evolving knowledge as hidden states [35]. However,
we cannot directly use methods such as DKT in the CF setup since the stu-
dent’s responses at some time steps in their response sequence are not observed.
Therefore, we use the following method to handle evolving knowledge states
using recurrent networks with missing observations. The input at each time step
is given by

xt = [Eq(q
i
t) ⊕ Eo(c

i
t) ⊕ Es({si

t}) ⊕
(

Eo(y
i
t) � mi

t

)

⊕
(

El(r
i
t) � mi

t

)

], (1)

where � denotes the element-wise multiplication between two vectors. We mask
the option embeddings and response correctness embeddings using mi

t for time
steps where we do not observe them but still use the question embedding as
input. We also extend the base LSTM module in DKT to a bi-directional LSTM
(Bi-LSTM) [17]. Here, we compute two latent knowledge states using two sepa-

rate LSTM modules, the forward state
−→
h t that summarizes the student’s past

response history and the backward state
←−
h t that summarizes the student’s future

response history at time step t as

−→
h t+1 = Forward LSTM(

−→
h t,xt),

←−
h t−1 = Backward LSTM(

←−
h t,xt).

The final latent knowledge state is the concatenation of the two states as ht =

[
−→
h t ⊕

←−
h t]. The parameters include two sets of parameters for the forward and

backward LSTMs in addition to the parameters for the fully connected network
f(·). We call this method partially observed bi-directional DKT, or PO-BiDKT.
The output to the prediction module is computed using

zi
t = f([hi

t ⊕ Eq(q
i
t) ⊕ Eo(c

i
t) ⊕ Es({si

t})]) ∈ R
4. (2)

GCN-Augmented PO-BiDKT (BiGIKT). In our datasets, each question is
tagged with a few subjects by question designers or domain experts. These sub-
ject tags provide important information on how these questions are related since
we expect questions from the same subject to have some shared features. GCNs
excel at formulating these relations and learning from graph-structured data.
Since we can represent the question-subject association matrix using a bipar-
tite graph, (loosely) following GIKT [45], we connect GCNs with PO-BiDKT to
jointly learn question and subject embeddings using the structure imposed by
the subject tags. In this method, we use hierarchical representations of subjects
and questions: starting with initial subject and question embeddings Es(s

i
t) and

Eq(q
i
t), the first layer GCN embedding for the jth subject and the second layer

GCN embedding for the ith question are computed as

s1
j =tanh

(

Ws
sEs(sj)+

∑

i∈Ns
j
Wq

sEq(qi)

|Ns
j |

)

, q2
i =tanh

(

Wq
qEq(qi)+

∑

j∈N
q

i
Ws

qs
1
i

|Nq
i |

)

,
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where Ns
j (Nq

i ) denotes the set of questions (subjects) associated with subject
(question) sj (qi) and Ws

s, Wq
s, Ws

q and Wq
q are learnable parameter matrices.

The hyperbolic tangent (tanh) non-linearity operate entry-wise on vectors. We
replace the subject embeddings Es(s

i
t) and the question embedding Eq(q

i
t) in

the base Bi-LSTM (Eq. 1 and Eq. 2) with these GCN-based embeddings. The
model parameters of this method include the GCN weight parameter matrices
in addition to the Bi-LSTM parameters.

4.2 Option Prediction Under the KT Setup

In the KT setup, we predict future responses using only past responses and
assume that every past student response is observed. We extend several existing
neural network-based KT methods for the option prediction task.

DKT. We apply a simple modification to the DKT method [35] to extend it to
i) predict options instead of response correctness and ii) handle questions that
are tagged with multiple subjects (the original DKT method assumes that each
question is tagged with a single subject). We use

xt = [Eq(q
i
t) ⊕ Eo(c

i
t) ⊕ Es({si

t}) ⊕ Eo(a
i
t) ⊕ El(r

i
t)]

as the input to the DKT LSTM input module. The student’s hidden knowl-
edge states are computed using the LSTM model as ht+1 = LSTM(ht,xt). The
predictive probabilities of selecting each option are computed using

zi
t = f([hi

t ⊕ Eq(q
i
t) ⊕ Eo(c

i
t) ⊕ Es({si

t})]) ∈ R
4, ŷi

t = argmax
o∈{A,B,C,D}

[zi
t]o.

DKVMN. Instead of using LSTMs to model latent knowledge state transitions,
the dynamic key-value memory network (DKVMN) method uses a key-value
memory network to retrieve and update knowledge at every time step using
an external memory module as ht+1 = MemoryModule(ht,xt); refer to [47] for
details. We use the same input and output structure for the DKVMN memory
module as that for DKT.

AKT. We also adapt AKT, an attention network-based, state-of-the-art KT
method for the option prediction task. AKT computes a query, a key, and a
value vector for each time step, and then uses the similarity between the query
and key vectors at different time steps to attend to questions in the past and use
their corresponding value vectors to retrieve acquired knowledge in the past. We
compute the query, key, and value vectors as qt = WQn, kt = WKn, and vt =
WV [El(r

i
t)⊕Eq(q

i
t)⊕Eo(y

i
t)⊕Eo(c

i
t)] respectively, where WQ, WK , and WV are

the query, key, and value projection matrices and n = [Eq(q
i
t)⊕Es({si

t})⊕Eo(c
i
t)].

The retrieved latent knowledge state is then computed as ht = g
(

∑

τ<t αt,τvτ

)

,

where g is another feedforward network and αt,τ is the normalized attention score
between the query at the current time step t and the key at a past time step
τ . For AKT, we employ the exponential decay module to compute the attention
scores [15] and then compute the output using the attention-weighted value hi

t

and a fully connected network f(·).
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Table 1. Performance of all methods under the CF (top half) and KT (bottom half)
setups on both datasets. Best results are in bold.

Model Option prediction Correctness prediction

Accuracy Average Macro F1 Score Accuracy

Eedi EdNet Eedi EdNet Eedi EdNet

NCF 64.75 ± 0.02 67.24 ± 0.01 0.2824 ± 0.002 0.2552 ± 0.001 72.6 ± 0.03 71.49 ± 0.01

PO-BiDKT 65.87 ± 0.01 69.42 ± 0.01 0.3283 ± 0.001 0.3260 ± 0.001 75.18 ± 0.01 75.21 ± 0.02

BiGIKT 66.16 ± 0.02 69.29 ± 0.02 0.3261 ± 0.001 0.3168 ± 0.001 75.62 ± 0.02 75.07 ± 0.01

DKT 65.95 ± 0.44 68.03 ± 0.09 0.313 ± 0.008 0.2887 ± 0.005 74.7 ± 0.34 73.19 ± 0.06

DKVMN 66.03 ± 0.49 68.01 ± 0.1 0.3152 ± 0.007 0.2842 ± 0.005 74.75 ± 0.3 73.02 ± 0.06

AKT 65.91 ± 0.47 68.44 ± 0.09 0.3139 ± 0.007 0.3062 ± 0.004 74.65 ± 0.31 73.6 ± 0.06

5 Experiments

Experimental Setup. In addition to the option prediction task, we also evalu-
ate all methods under the standard, binary-valued response correctness predic-
tion task. We do not need to use a separate set of methods; instead, we can simply
replace the final output layer of the option predictor module (f : · → R

4) with
an output layer that consists of a single node (f : · → R

1) for all OT methods;
the resulting loss function corresponds to standard binary cross entropy loss. For
option prediction, we use both accuracy and macro F1 score as evaluation met-
rics. For correctness prediction, we use accuracy as the only evaluation metric
which aligns with the option prediction task. We compute the F1 score for each
question-option pair individually and average across all such pairs. This met-
ric treats every option in every question equally, thus magnifying the impact of
options that are rarely selected. For reference, on the Eedi and EdNet datasets,
the selection probabilities across options for an average question (from most
frequent to least frequent) are 57%, 25%, 11%, 7% and 66%, 20%, 10%, 4%,
respectively. For option prediction, a random classifier has an average macro F1

score and an accuracy score of 0.25 on both of these datasets, while a majority
class classifier has an average macro F1 score (accuracy) of 0.184 (57%) and
0.205 (66%) on the Eedi and EdNet datasets, respectively.

Training and Testing. We perform standard k-fold cross-validation (with k =
5) for all methods on both datasets. Under the CF setup, on average 20% of the
time steps (for each student) are randomly chosen as the held out test set, 20%
of time steps are randomly chosen as the validation set, and the other 60% are
chosen as the training set to train all methods. Under the KT setup, all time
steps for a randomly chosen 20% of students are used as the test set, and the
validation and training sets are constructed similarly.

Network Architectures and Hyper-Parameters. Since the datasets are
large, we do minimal hyper-parameter tuning and set most of the values to their
default values for all the methods; exploratory experiments found that evaluation
results are robust across most parameter values. We set the question, subject,
option, response embedding dimension for all methods to d ∈ {32, 64} for the
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CF setup and d ∈ {64, 128} for the KT setup. We use the Adam optimizer [22]
to train all models with a batch size of 64 students to ensure that an entire
batch can fit into the memory of our machine (equipped with one NVIDIA
Titan X GPU). For all methods, we set the learning rate to 10−4/10−3 for the
Eedi/EdNet dataset and run all the methods for 200 epochs and perform early
stopping based on the loss on the validation set. We set the latent knowledge
state (ht) dimension to 256/512 for all methods under CF/KT setup. For NCF,
we select the user embedding dimension as d = 256.

Results and Discussion. Table 1 lists the performance of all OT methods
for both the CF and KT setups for both the option prediction and correctness
prediction tasks, on both datasets; we report the averages as well as the standard
deviations across the five folds. We observe a significant dropoff (∼ 10%) in
the accuracy metric on the option prediction task compared to the correctness
prediction task, which is as expected since there are four categories to predict
(A,B,C,D) instead of two categories (correct/incorrect). As a result of this
difference, the correctness prediction task can be seen as a sub-task in the option
prediction task by computing the probability a student selects the correct option.
The performance of different methods are also quite consistent across all cases.

We observe that recurrent neural network-based methods such as PO-BiDKT
perform significantly better than NCF in all cases. This observation suggests
that even in a CF setup for model evaluation, methods that take the evolving
nature of student knowledge into account are still more effective than popular CF
methods that do not account for these temporal dynamics. Overall, we observe
that the performance gains on the option prediction task provided by complex
model architectures are marginal. This observation suggests that more work
needs to be done on the option prediction task to understand the dynamics
behind students’ decisions to select a specific incorrect option, which motivates
our exploration in Sect. 5.1. In the KT setup, we observe that DKVMN performs
best on the Eedi dataset while AKT performs best on the EdNet dataset. This
observation suggests that complex neural network architectures such as attention
modules are more beneficial when a large amount of training data is available.

In both setups, we observe that the F1 scores are low for all methods; despite
clearly not simply predicting the most frequent option, the performance of these
methods leaves significant room for improvement due to class imbalance. Possible
approaches to improve prediction accuracy for options that are rarely selected
include oversampling them [6]; however, since a student’s responses to different
questions are not independent data points, how these methods can be applied
to the option tracing task is not immediately clear.

5.1 Clustering Incorrect Options

To qualitatively evaluate our option tracing methods, we attempt to group
incorrect options across multiple questions into clusters and examine whether
question-option pairs in the same cluster correspond to the same underlying
error. To this end, we train a modified version of PO-BiDKT on the Eedi
dataset [43]; we learn an embedding module Eq,o(q, o) : q × o → R

d for
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Table 2. Incorrect option clustering quality for a subset of questions in the Eedi dataset
using errors labeled by a domain expert. 1 in both metrics indicates perfect clustering.

Metric Adjusted rand index Fowlkes-Mallows index

Score 0.372 0.455

each question-option pair. Then, we compute the option selection probabilities
using the latent knowledge state hi

t and the question-option pair embeddings as

p(o|qi
t) =

f(hi
t)

T Eq,o(qi
y,o)

∑
o′ f(hi

t)
T Eq,o(qi

y,o′)
. This modification suffers a small drop in predictive

performance but encodes information in the question-option pair embeddings for
us to cluster them and search for common student errors.

We selected all incorrect options (31×3 = 63) in questions on subject 33
(BIDMAS) where question images are released on the smaller subset of the Eedi
dataset; see [43] for details. A domain expert manually labeled each option based
on which error likely resulted in the student selecting it, resulting in a total of 14
high-level errors (errors that cannot be named are excluded), each corresponding
to multiple options across different questions; further splitting them into finer-
grained errors results in clusters that are not meaningful. We perform k-means
clustering [29] on the learned question-option pair embeddings and compare
them to the “ground truth” option clusters provided by the expert.

Due to spatial constraints, we only report quantitative results on clustering
quality using two commonly used metrics: The adjusted Rand index [39] and
the Fowlkes-Mallows index [14]; the former has a range of [−1, 1] while the latter
has a range of [0, 1], with 1 corresponding to perfect clustering.

Table 2 lists these metrics on the learned question-option pair embeddings
based on the ground truth expert labeling. Overall, the clustering performance
is acceptable but not excellent. We observe that some errors such as “sign error
in calculation involving negative numbers” have relatively easy-to-identify corre-
sponding option clusters (5 out of 8 options labeled by the expert as correspond-
ing to that error are put into the same cluster). On the other hand, some options
such as 69D and 293C (the left half of Fig. 1) correspond to the same error but
are not grouped into the same cluster. One possible explanation is that students
may not consistently demonstrate an error, as found in prior research [41]; among
students who selected 69D, only 51% selected 293C while 34% of them selected
the correct option, 293B. Therefore, further work is required to study whether
more robust KT methods and clustering algorithms can identify error clusters
more effectively. Nevertheless, our approach produces a starting point to reduce
the effort for domain experts to manually label errors and provides them a way
to do it under data-driven support.

6 Conclusions and Future Work

Analyzing the exact options students select across multiple choice questions has
the potential to uncover their error modes and help teachers to provide targeted
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feedback to improve learning outcomes. In this paper, we proposed a set of
methods to extend common knowledge tracing methods that analyze only the
correctness of students’ responses to questions to analyze the exact options they
select on multiple choice questions. We validated these methods with quantita-
tive experiments on two large-scale datasets in terms of their ability to predict
the options students select on each question and qualitative experiments in terms
of clustering incorrect options according to underlying errors. There are many
avenues for future work. First, we need to develop methods that are aware of the
evolving nature of student errors. One possible approach is to develop methods
that can explicitly account for the recurrence of past errors, such as using a
neural copy mechanism [18]; these methods may help us track students’ progress
in correcting their errors. Second, low F1 scores for the option prediction task
suggest that it is much more challenging than the typical correctness prediction
task in knowledge tracing literature and thus deserves more attention.
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