Downloaded from https://www.cambridge.org/core. University of Colorado Boulder, on 29 Dec 2020 at 14:24:42, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms,

https://doi.org/10.1017/jfm.2020.952

J. Fluid Mech. (2021), vol. 909, A24.  © The Author(s), 2020. 909 A24-1
Published by Cambridge University Press
doi:10.1017/jfm.2020.952

Evolution of truncated and bent gravity wave
solitons: the Mach expansion problem

Samuel Ryskamp!, Michelle D. Maiden', Gino Biondini?
and Mark A. Hoefer! T

IDepartment of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
2Department of Mathematics, State University of New York, Buffalo, NY 14260-2900, USA

(Received 7 July 2020; revised 15 October 2020; accepted 26 October 2020)

The dynamics of initially truncated and bent line solitons for the Kadomtsev—Petviashvili
(KPII) equation modelling internal and surface gravity waves is analysed using
modulation theory. In contrast to previous studies on obliquely interacting solitons that
develop from acute incidence angles, this work focuses on initial value problems for the
obtuse incidence of two or three partial line solitons, which propagate away from one
another. Despite counterpropagation, significant residual soliton interactions are observed
with novel physical consequences. The initial value problem for a truncated line soliton
— describing the emergence of a quasi-one-dimensional soliton from a wide channel — is
shown to be related to the interaction of oblique solitons. Analytical descriptions for the
development of weak and strong interactions are obtained in terms of interacting simple
wave solutions of modulation equations for the local soliton amplitude and slope. In the
weak interaction case, the long-time evolution of truncated and large obtuse angle solitons
exhibits a decaying, parabolic wave profile with temporally increasing focal length that
asymptotes to a cylindrical Korteweg—de Vries soliton. In contrast, the strong interaction
case of slightly obtuse interacting solitons evolves into a steady, one-dimensional line
soliton with amplitude reduced by an amount proportional to the incidence slope. This
strong interaction is identified with the ‘“Mach expansion’ of a soliton with an expansive
corner, contrasting with the well-known Mach reflection of a soliton with a compressive
corner. Interestingly, the critical angles for Mach expansion and reflection are the same.
Numerical simulations of the KPII equation quantitatively support the analytical findings.
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1. Introduction

The oblique interaction of solitary waves or solitons is a fundamental problem in fluid
dynamics and nonlinear sciences more broadly. Early theoretical consideration of this
problem for acute, collisional angles of incidence dates back to Miles (1977a.,b), where
weak and strong gravity water wave soliton interactions were shown to be dependent
upon the incidence angle and soliton amplitudes. In the case of weakly interacting oblique
solitons, a sufficiently small incidence angle leads to the approximate linear superposition
of the two solitons accompanied by a phase shift. The strong interaction case at large acute
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angles leads to a resonant triad of obliquely interacting solitary waves, the so-called Miles
resonant soliton. Miles used his theory to identify the long-time dynamics of regular and
Mach reflection of a soliton incident upon a compressive corner or wedge.

Building upon original water wave experiments by Perroud (1957), Miles’ studies
have since been expanded and refined with the help of laboratory experiment (Melville
1980; Li, Yeh & Kodama 2011; Kodama & Yeh 2016) and field observations (Ablowitz
& Baldwin 2012; Wang & Pawlowicz 2012), numerical simulation (Funakoshi 1980;
Tanaka 1993; Porubov et al. 2005; Tsuji & Oikawa 2007; Biondini ef al. 2009; Kodama,
Oikawa & Tsuji 2009; Li er al. 2011; Kao & Kodama 2012; Chakravarty, McDowell &
Osborne 2017) and exact multisoliton solutions (Kodama 2004; Biondini 2007; Biondini
et al. 2009; Chakravarty & Kodama 2009; Kodama 2010; Kodama & Yeh 2016) of
the Kadomtsev—Petviashvili (KP) equation and its higher-order generalisations. The KP
equation is a generic model of weakly nonlinear, weakly dispersive unidirectional waves
with weak transverse variation (Kadomtsev & Petviashvili 1970)

(ur + utty + Urrx)x + Uy =0,  (x,y) €R? >0, (L.1)

originally derived in the context of shallow water waves by Ablowitz & Segur
(1979) and for internal waves by Grimshaw (1981). Subscripts in (1.1) and elsewhere
correspond to partial derivatives. In applications such as shallow water waves, the
non-dimensionalisation is achieved by entering the reference frame moving with the long
wave speed /gh (g is gravitational acceleration and 4 is the mean fluid depth), scaling
time by 7, scaling the longitudinal and transverse lengths by the typical wavelengths A,
and A,, respectively, and scaling the surface disturbance height by the typical amplitude
n. The KP equation arises when weak nonlinearity, long wave dispersion and weak
transverse variation balance according to, respectively, n/h ~ (h/A,)* ~ (1,/1,)* <K 1.
The particular scaling in (1.1) manifests if we set T = A3/(h*\/gh). A, = 22/(+/2h), and
n = 2h3/(322) for some A, > h. The asymptotic validity of the KP equation requires
small transverse wave curvature for quantitative comparison with physical observations.
Geometric and higher-order asymptotic considerations can be used to achieve even better
agreement between theory and experiment (Kodama & Yeh 2016).

This version of the Kadomtsev—Petviashvili equation is known as the KPII equation
— the KPI equation occurs when +u,, — —uy,. The KPII equation is a completely
integrable equation (Ablowitz & Clarkson 1991) that admits a two-parameter family of
stable line soliton solutions

a

u(x, y, t) = asech? (\/%(x +qy — cr)) ,oe=3+ T, (1.2a,b)

uniquely determined by the amplitude a > 0 and soliton inclination from the y-axis or
slope g € R. See figure 1 for a representative example. We note that the weak transverse
scaling used in the derivation of the KP equation (1.1) incorporates this assumption so that
the slope g can be an order-one quantity.

The Mach reflection problem has an interesting history that begins with Ernst Mach’s
research on shock wave interactions in gas dynamics. Utilising two separated electric
spark sources between two glass plates, one covered in soot, Mach & Wosyka (1875)
generated cylindrical shock fronts that left residual patterns from their interaction. From
these experiments, Mach keenly discerned two types of shock interaction — termed regular
and irregular — that depended upon the interacting fronts’ obliqueness. Both cases involved
a reflected shock but the irregular interaction for sufficient obliqueness resulted in a triple
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FIGURE 1. Contour plot of a line soliton solution and its slope parametrisation. The soliton
propagation slope is g = tan ¢.
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FIGURE 2. Schematic of Mach (a) and regular () reflection of a soliton impinging upon a
compressive corner.

point where three regions of different pressures and densities met. An additional wave was
generated from the triple point and has become known as the Mach stem resulting from
Mach reflection of shock waves (Krehl & van der Geest 1991). Motivated by the so-called
hydraulic analogy between two-dimensional supersonic gas dynamics and supercritical
shallow water waves, Gilmore, Plesset & Crossley (1950) reconsidered regular and Mach
reflection of shocks by obliquely interacting two hydraulic jumps. This phenomenon was
also observed in shallow ocean waves (Cornish 1910). But the theoretical interpretation
of Mach reflection in water waves had to wait until the seminal work of Miles (1977a.b),
in which two obliquely interacting solitary waves were described. The irregular or Mach
reflection case is embodied in the resonant or ¥-shaped solitary wave solution. Regular
reflection is described by the X-shaped solitary wave solution. Regular and Mach reflection
can also be formulated as an initial-boundary value problem in which a semi-infinite shock
or soliton propagating parallel to a wall impinges upon a wedge or corner. Depending upon
the corner angle, the ensuing dynamics leads to the spontaneous generation of a reflected
wave and, in the case of irregular or Mach reflection, the additional generation of a Mach or
stem wave in which a resonant triad of three waves meet and propagate away from the wall.
See figure 2 for a schematic of the two reflection types. Because the KP equation (1.1) is a
generic, universal model of weakly nonlinear, dispersive, two-dimensional wave patterns,
regular and Mach reflection are fundamental to the description of multidimensional
nonlinear waves.

One approach to describe Mach reflection of solitons is the use of exact solutions of the
KPII equation (Li er al. 2011). A classification of 2-soliton solutions in (Kodama 2004;
Biondini 2007; Chakravarty & Kodama 2009) was used to identify two particular 2-soliton
solutions whose parameters can be chosen to satisfy the requisite structure of regular and
Mach reflected waves. To describe the soliton-corner initial-boundary value problem, a
nonlinear method of images is applied and hypothesised to locally describe the long-time
dynamics. This results in the critical angle ¢, — corner inclination measured from the
positive x-axis — for the transition from regular, ¢ > ¢,,, to Mach, 0 < ¢ < ¢, reflection
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FIGURE 3. (a,c) Diagram of Mach expansion for a front encountering a reverse wedge boundary
with small ¢ (a,b) and large ¢ (c,d). Note the emergence of a new, smaller amplitude line soliton
along the boundary when ¢ is small. (b,d) Bent soliton initial conditions are identical for the
purposes of analysis.

of an incident soliton with amplitude a as

tan g, = +/a. (1.3)

Numerical simulations of initially V-shaped waves were used to justify the long-time,
locally 2-soliton solution hypothesis for the soliton-corner initial-boundary value problem
(Kodama er al. 2009; Kao & Kodama 2012). Herein lies a subtle difference between
oblique soliton interaction — described by exact 2-soliton solutions — and a soliton incident
upon a corner, which involves a transient dynamics that, after long enough times, is locally
described by 2-soliton solutions.

The aforementioned regular/Mach reflection problem involves a compressive corner
with angle ¢ measured counterclockwise from the positive x-axis. In this paper, we
consider the problem of a soliton incident upon an expansive corner, opening in the
opposite direction so that ¢ is measured clockwise from the positive x-axis. This problem
is rather different from the regular/Mach reflection problem in many respects but we find
an interesting parallel. The critical corner angle that separates regular expansion and Mach
expansion for an incident soliton with amplitude a occurs precisely at ¢, the same critical
angle separating regular and Mach reflection in (1.3). Regular expansion occurs when
@ > @, and leads to the development of a decaying parabolic wave that connects the
incident soliton to the wall. Mach expansion when 0 < ¢ < ¢, involves the development
of a new soliton perpendicular to the wall with reduced amplitude relative to the incident
soliton. The development of this soliton is the expansion analogue of the Mach stem in the
reflection case. See figure 3 for a schematic of the two cases.

A new approach is required to describe regular and Mach expansion of solitons
because the dynamics is not described by multisoliton solutions. While the transient
dynamics of Mach reflection is subtle, crucial aspects of Mach expansion are transient
and are not steady in a local reference frame. By making a slowly varying assumption,
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FIGURE 4. Initial data corresponding to a truncated line soliton (a), a bent-stem soliton
(b) and a bent soliton (c).

we approximately describe the full expansion dynamics developing from initial value
problems by appropriate modulation of the line soliton (1.2a,b). Our KPII numerical
simulations demonstrate that modulation theory is effective at uncovering key, quantitative
features of the nonlinear wave dynamics.

In order to describe the soliton-corner expansion problem, we take a seemingly
circuitous route by considering three classes of initial value problems, depicted in figure 4,
for the KPII equation (1.1). From left to right, we identify the data as truncated, bent-stem
and bent soliton initial conditions. The bent soliton case corresponds to the appropriate
reflection, via the nonlinear method of images (Kodama & Yeh 2016), needed to describe
regular/Mach expansion as depicted in figure 3. Bent initial conditions are equivalent to
a single soliton moving along a boundary at the location where the boundary suddenly
angles away from the front.

The reason for considering these three classes of initial data in turn is both mathematical
and physical. From a mathematical point of view, each initial condition limits to the
next so that their solution is informed by the previous and they share some solution
properties. Moreover, these are among the simplest and more natural kinds of non-solitonic
initial conditions for the KP equation one could consider. Although the data consist
of modulated solitons, they do not contain exact soliton solutions. In contrast to our
approach, the primary analytical means by which all previous studies have interpreted
related non-solitonic initial value problems is by approximating the evolution of initial
configurations with exact multisoliton solutions of the KP equation. See, for example
Biondini ef al. (2009), Kao & Kodama (2012) and Chakravarty et al. (2017).

From a physical point of view, the truncated soliton initial data models the emergence
of a quasi-one-dimensional soliton from transverse confinement such as the internal
ocean solitons generated at the front of a river plume (Nash & Moum 2005; Pan, Jay
& Orton 2007; Wang & Pawlowicz 2017) and a surface wave soliton when a channel
suddenly widens. This problem was considered experimentally by John Scott Russell in
his celebrated Report on Waves (Russell 1845). The rapid deceleration or transcritical
propagation of a ship in open, shallow water can similarly launch a bent-stem or bent
soliton from the ship’s prow (Li & Sclavounos 2002), dependent upon the prow shape.
Finally, internal wave solitons are ubiquitous in the world’s oceans (Jackson 2004; Wang
& Pawlowicz 2012) and topography significantly impacts their propagation and interaction
(Yuan et al. 2018). The classes of initial data in figure 4 represent cases where the
modulated solitons propagate away from one another. Nevertheless, their interaction is
significant.
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We study these initial value problems using modulation theory in which the local soliton
amplitude a = a( y, 1) and slope ¢ = ¢g( y, t) are allowed to vary slowly in space and time.
There are several approaches to derive the effective modulation equations. In appendix A,
we provide a derivation using multiple scale perturbation theory of the equations

a, + 2ga, + 3aq, = 0, (L4a)
9 + 294y + 30, = 0. (14b)

The dynamical equation (1.4a) for the amplitude results from an appropriate orthogonality
condition and the slope equation (1.4b) results from a consistency condition of the
modulated phase. The modulation equations (1.4) were also derived from a variable
coefficient KP equation in (Lee & Grimshaw 1990) and by an averaged Lagrangian
approach in Neu (2015) and Grava, Klein & Pitton (2018). They are also a limiting case
of the more general KP—Whitham modulation equations for periodic waves (Ablowitz,
Biondini & Wang 2017) in the case of x independent modulations of a line soliton
(Biondini, Hoefer & Moro 2020). These soliton modulation equations are equivalent to the
equations modelling the isentropic flow of a polytropic gas with density oc a*?, velocity
o g and ratio of specific heats ¥ = 5/3. The linearisation of the modulation equations
(1.4) for small |g| was used in Kadomtsev and Petviashvili’s original paper to determine
the stability of line soliton solutions to the KP equation (Kadomtsev & Petviashvili 1970).

Despite variation in only one spatial dimension, the corresponding modulated line
solitons exhibit non-trivial two-dimensional structure. In particular, once a modulation
solution a( y, ), g( y, t) is obtained, the modulated soliton is reconstructed by projection
onto (1.2a,b) according to

u(x,y, 1) ~a(y,r sech? ( %5) s
(L.5)

¥ T
§:x+quﬁmf—fdaﬂﬁ,
0 0

where the soliton speed satisfies c(y, 1) = a(y, 1)/3 + q(y,1)? = —&(x, y, 1) (cf. (1.2a,b)
and (A 3)).

The class of initial data we consider here corresponds to expansive conditions, so
that we are guaranteed global existence of modulation solutions. We will obtain explicit
modulation solutions in the form of simple waves and their interactions that describe the
evolution of the data shown in figure 4.

Our analysis is supported by numerical simulations of the KPII equation (1.1)
using a Fourier pseudospectral method adapted from Kao & Kodama (2012) that
allows for outgoing line solitons at the top and bottom of the simulation domain
[-L,,L,] x [—Ly, Ly] through use of a windowing function. We maintain the non-local

constraint f_LL uyy, dx = 0 to high accuracy by including localised ‘image’ initial data
whose superposition with the test data of interest satisfies this constraint. Simulations

were terminated before the image and test data interacted. For further details,
see appendix B.

2. Basic properties of the modulation equations

In this section, we summarise the classical analysis of the hyperbolic system (1.4).
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The modulation equations admit the amplitude symmetry
d=a/A, ¢ =q/vVA, Y =+Ay, (=t A>0, (2.1a)
the quasi-rotational symmetry
d=a, ¢=q+0, Y=y-—-20t, =t QeR, (2.1b)
the hydrodynamic scaling symmetry
yV=ay, =af, a>0, (2.1¢)

and the reflection symmetry
y=-y. 4=-q (2.1d)

all leaving (1.4) unchanged in primed coordinates. Namely, if a( y, ) and g(y,t) solve
(1.4),sodod (y,r)and ¢'(y', 7).

It was shown in Biondini et al. (2020) that appropriate linear combinations of (1.4a) and
(1.4b) result in the equivalent pair of equations in characteristic form

+ [a: + 2q £ 2V/a)ay| + 2+/a[q: + (2q £ 2\/a)g,] =0, (2.2)

which reveal the characteristic velocities U = 2q — gﬁ andV =2¢g+ %ﬁ. Integration
of (2.2) along each characteristic direction demonstrates that

r=q—+a, s=q++a (2.3a,b)

are Riemann invariants for the modulation equations (1.4), which afford the
diagonalisation

rr+Ur,=0, s+Vs =0, (2.4a)
U=3Q2r+s), V=230r+2), (2.4b)

where the characteristic velocities U and V are now written in terms of the Riemann
variables r and s.

Simple wave solutions of (2.4) correspond to variation in only one characteristic
direction so that one of the Riemann invariants r or s is constant, i.e. either g(y, ) +
Ja(y,t) or g(y,t) —+/a(y,t) is independent of y and t. Since the characteristic
velocities are ordered U < V, we identify simple waves with variation along the slow
characteristics dx/dr = U as 1-waves (s = const) and those with variation along the fast
characteristics dx/dr = V as 2-waves (r = const). Across a simple wave, the non-constant
Riemann invariant’s characteristic velocity is monotonically increasing because the strictly
hyperbolic system (1.4) is genuinely nonlinear so long as @ > 0 (Biondini ef al. 2020).

Expansive initial data a(y,0), g(y,0) correspond to the condition that both
characteristic velocities U and V evaluated on the initial data are monotonically increasing
functions of y. By virtue of the fact that dU/dr = 9V /ds = % > 0, expansive initial data
correspond to the case where both Riemann invariants r and s are non-decreasing functions
of y.

Simple waves propagate into constant regions of the y—f plane, and are therefore
fundamental building blocks for Riemann problems that posit step initial data at the origin.
The interaction of simple waves can most conveniently be investigated by use of the
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hodograph transformation (Courant & Friedrichs 1948) in which the role of dependent
and independent variables is swapped. Namely, we take 1 = t(r, 5), y = y(r, s), yielding
the following set of linear equations

2
s + _(rr - rs) =0, (250)
§—=r
y.i' = Urj‘! yr = Vrr! (25b)

so long as the Jacobian J = r;sy —s,ry, remains non-zero. Equation (2.5a) is an
Euler—Poisson—Darboux (EPD) equation that is equivalent to the radial wave equation in
five dimensions, which admits the general solution

r(r,s):A+( Fo) ) +( () ) , 2.6)

(s —r)? (s—r)?

for an arbitrary constant A € R and functions F(r), G(s). In order to determine A, F' and
G, one must specify suitable initial and/or boundary conditions.

3. Partial and truncated line solitons

By a partial or truncated line soliton, we mean initial data in which the soliton
modulation amplitude is zero on one or two semi-infinite intervals, respectively. This
scenario where a = 0 corresponds to a vacuum state in which the soliton slope g
is undefined. To resolve this ambiguity, we will require that the value of g in the
neighbourhood of the point where a becomes positive corresponds to a simple wave in
which one of r or s is constant (Smoller 1994). Then, the propagation speed of the vacuum
front will necessarily be lim,_,o U = lim,_,, V = 2q.

3.1. Partial line solitons

This problem was previously posed and solved in Neu (2015) as a model for
two-dimensional soliton diffraction or diffusion as identified by Russell (1845). Here, we
show that the resulting simple wave solution forms an important building block for other,
more complex, truncated and partial soliton interactions.

Without loss of generality (recall the symmetries (2.1)), we consider the partial (half)
line soliton initial data

0, > 0,
“(y’o):{l §<0

for the modulation equations (1.4). This Riemann problem is solved by a I-wave
corresponding to a centred, self-similar rarefaction wave (1-RW) in which s = ¢ + v/a =
1 and U = y/t (Neu 2015)

0, 2t <y,
Va(y,0) =131 =y/Q0), —3t<y<2, gy,)=1-=va(y, 0. (32)
1, y < —%r,

This solution describes the progressive disintegration of the partial soliton. This evolution
is shown in figure 5(a—c), where we depict the evolution of the partial soliton, as computed
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FIGURE 5. (a-c) Numerical simulation of partial soliton evolution for # € (0, 60, 300). (d.e)
Comparison of characteristic speeds of the upper (d) and lower (e) edges of the partial soliton
rarefaction wave. The plot displays the predicted front speeds as reference lines (dash-dotted,
blue) with slopes from the solution (3.2), the numerically extracted front positions (solid, black)
and a least squares linear fit (dashed, red) whose slope determines the measured speeds.

via numerical integration of the KP equation (see appendix B). In figure 5(d.e), we
compare the analytical predictions with numerical evolution by identifying the positions
of the vacuum front and vertical soliton front as the first points where @ — 0.03 and
a — 0.97, respectively. These fronts are well approximated by straight lines with slopes
given by the predicted characteristic speeds from the solution in (3.2). Below, we will
use the solution in (3.2) to analyse the evolution resulting from more complex initial
conditions.

3.2. Truncated line solitons

We now consider the KPII equation with initial conditions for a truncated line soliton
(recall figure 4a) of length £ > 0 by imposing the modulation initial conditions

(y,0) Lo s (y,0)=0, |yl <£/2 (3.3)
a ) = s =u, = . .
Y 0, Iyl>ep2 Y

By the reflection symmetry (2.1d), ¢ and a are respectively odd and even functions of
y for each > 0. As in the case of the partial soliton, the truncated soliton slope in
the vacuum region where a = 0 is determined by a simple wave condition. Namely, for


https://doi.org/10.1017/jfm.2020.952
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. University of Colorado Boulder, on 29 Dec 2020 at 14:24:42, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms,

https://doi.org/10.1017/jfm.2020.952

909 A24-10  S. Ryskamp, M. D. Maiden, G. Biondini and M. A. Hoefer

ar

FIGURE 6. Simple waves and their interaction in the characteristic Y-T ((y/£€) — (t/£)) plane
for the truncated soliton initial data (3.3). The solid lines are simple wave characteristics. The
shaded region corresponds to interacting simple waves bounded by the dashed curves from (3.11).

short times, a non-centred 1-RW is generated from the upper truncation point at y = £/2.
Similarly, a 2-RW is generated from the lower truncation point y = —£/2. By use of
the reflection symmetry (2.1d), the initial evolution of these two simple waves can be
represented as even or odd extensions of a shifted partial soliton (3.2)

a(y,n) =ay(Iy| = £€/2,1), q(y,1) =sgn(y)gy(|y| — £/2, 1), (3.4a.b)

for y € R. However, this solution only holds prior to the interaction of the simple waves,
which limits its validity to 0 < 1 < %E. A characteristic diagram showing the 1-RW and
2-RW solutions emanating from ¥ = y/¢ = +1/2 is shown in figure 6.

Atr = %E, the two simple waves intersect at y = 0. In order to understand what happens
forT =t/l > %, we utilise the hodograph transformation and the corresponding equations
(2.5). The boundary conditions for the EPD equation (2.5a) can be obtained by recognising
that, at the boundaries of the simple wave interaction region, either r or s is constant. When
s = 1, as in the 1-RW propagating down from y = £/2, we differentiate the simple wave
equation

y—£/2
t

2
U= §(2r+ 1) (3.5)
with respect to r to obtain the relation
2 4
yr=35t-Q2r+1) + 3t. (3.6)

Using this expression to eliminate y, from (2.5b), we obtain

ty —

——1=0, s=1, rel-L1] (3.7a)
—r

Likewise, for the other 2-RW propagating up from y = —£/2, we obtain

=0, r=-1, se[-11]. 3.7b
s r se[-1,1] (3.7b)
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Integrating (3.7) from the initial time of simple wave interaction #(—1, 1) = 3£/4, we
obtain the boundary conditions

L3¢
1(r, )—m,

t(—1,5) =

rel[=11), (3.8a)

(1+5)2°
for (2.5a). Applying these boundary conditions to the general solution (2.6) yields A = 0,
F(r) =2£2— (1 =%, G(s) = —2£(2 — (1 + 5)?) and the solution
t(r,s) :3£m, (r,s) e[-1,1) x (=1, 1]. (3.9a)
(s—r)?

We now solve for y(r, s), by integrating both of (2.5b)

se(=1,1], (3.8b)

Lr+s5)* +4rs + s> —6)
2(r—s)3

y(r,s) = , (e el-L 1D x(=11], (3.9b)
where we used y(—1, 1) = O at the initiation of simple wave interaction. The expressions
(3.9) implicitly determine the simple wave interaction for ¢ > %f.

We observe in (3.9) that the quantities

t

Y or=_L (3.10a,b)
L £
are independent of the truncated soliton length £, a manifestation of the hydrodynamic
symmetry (2.1¢). We will henceforth report results in the scaled variables ¥ and T.

The boundary of the simple wave interaction region is determined by evaluating the
hodograph solution (3.9) at s = 1 for ¥ > 0 and using reflection symmetry

Y=

Y| =34+2T — 33T, T>3. (3.11)

These are the dashed curves in figure 6.

As shown in figure 6 for short times, two non-centred simple waves described by
(3.2). (3.4a.b) emanate from the soliton truncation points at ¥ = 1. For long times, the
interaction boundary (3.11) approaches |Y| ~ 2T with the same slope as the outermost
edges of the simple waves |Y| = 2T + 1. Note, however, that the two characteristic curves
never cross.

Returning to the physical variables a and g using (2.3a.,b), the simple wave interaction
is described by the hodograph solution (3.9), which yields the expressions

9

_ 2
Y= i (34+a-—3q), (3.12a)
T= —3 l4+a—¢* 3.12b

8a3»’2( a—q). (3.12b)

Since ¢(0, T) = 0 from (3.12a), we can obtain the explicit decay of the soliton amplitude
at the origin from (3.12b)

Ja(0,T) = é (2f(T)”3 +1+ %f(T)‘lﬁ) , % <T, (3.13a)
f(T) = § + 12T + T+/3 + 144T2. (3.13b)


https://doi.org/10.1017/jfm.2020.952
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. University of Colorado Boulder, on 29 Dec 2020 at 14:24:42, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms,

https://doi.org/10.1017/jfm.2020.952

909 A24-12  S. Ryskamp, M. D. Maiden, G. Biondini and M. A. Hoefer

Using (3.12), one could obtain explicit expressions for a = a(Y,T) and g = q(¥,T)
for general ¥ and T. However, we can draw several important conclusions from the
asymptotics of the implicit solution (3.12). For T 3> 1 and |Y| < T?/3, the amplitude is
approximately independent of ¥ and the slope is approximately linear in ¥

(Y T) 1 3 2{(34_31;’3 1 4/3
@ a\T g \7) °

Y y (1\””
Y.T)~—+—— (=) .
9. ) 2T+4-31/3(T)

(3.14)

The one-term expansion for a and ¢ in (3.14) is a self-similar solution of the modulation
equations (1.4) (Lee & Grimshaw 1990).

Using the above modulation solution to reconstruct the approximate soliton (1.2a.b)
yields interesting predictions for the initial data

2 1
u(x, y, 0) = {SeCh (\/;x) Iyl s /2, (3.15)
0, [yl > £/2,

to the KPII equation (1.1). The soliton phase & = &(x, y, t) in (1.2a,b) can be approximated
for large ¢ using (3.14) as

2 3£ 2/3
E(x,y, ) ~x+ % - (?) '3, (3.16)

Because the soliton maximum occurs where & = 0, we conclude that, for long times,
the truncated line soliton shape approaches a moving parabola opening in the negative
x direction with increasing focal length ¢

2

2/3
y —_— —_— J—
x+ = e, c@)= (SI) . (3.17a.b)

While the parabolic shape is independent of the initial truncated soliton length £, the
wave speed is proportional to £2/3. Concurrently, the soliton amplitude decays according
to (3.14).

The shape and amplitude of the modulated line soliton within the simple wave
interaction region has an interesting connection to the cylindrical Korteweg-de Vries
(cKdV) equation. As noted in Ablowitz, Demirci & Ma (2016), introducing the change
of variables

2
u(x,y, ) =f(m,1), n=x+ % (3.18a,b)

results in the exact reduction of the KPII equation (1.1) to the cKdV equation

1
ﬁ +ﬁn +f;rmq + 2_ff =0. (319)

This equation admits slowly decaying soliton solutions (Nakamura & Chen 1981).
Approximate soliton solutions for r >> 1 take the form of slowly varying Korteweg-de
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Vries (KdV) solitons (Ko & Kuehl 1979)

A7)
12

A(D)

fn, 1) ~ A(r) sech® ( (n— Z(f))) v AD=—= (3.20a.b)

In order to determine the slowly varying amplitude A(r), we appeal to the conserved
momentum

P= [ ya.otan, (321)
R

for any square integrable solution of cKdV (3.19). In shallow water waves, the quantity
P is identified with the momentum because +/Zf is proportional to both the deviations of
water height and vertically averaged horizontal velocity from their equilibrium values for
cylindrical waves (Johnson 1997). Inserting the slowly varying soliton ansatz (3.20a,b)
into (3.21), we obtain

P= IBA(I)W (3.22)
== .
Thus, given some momentum Py, the slowly varying amplitude is
3”3P0 2/3
A(r) = ( < ) . (3.23)

If we choose the initial momentum to be P, = 94, then this amplitude equation matches
the leading-order truncated soliton amplitude a(¥, T) (3.14) for large T. Moreover, the
approximate cKdV soliton (3.20a,b) admits the phase

2 3£ 2/3
n—z0) =x + % - (?) 7, (3.24)

which also matches the truncated soliton phase in (3.16), i.e. the leading-order soliton
slope g(Y,T) in (3.14).

Figure 7(a—c) depicts a numerical simulation of the truncated soliton initial data (3.15)
with £ = 300 that has been smoothed so as to minimise Gibbs type oscillations (Biondini
& Trogdon 2017). Curved waves emanate from the truncation edges as the central portion
propagates forward. When the central prominence decays, the entire wave forms a curved
shape with decaying amplitude and curvature as time increases. These qualitative features
are reflected in the obtained modulation solution for the soliton amplitude a( y, ) and
slope g(y, 1) in (3.4a,b), (3.12). In order to quantitatively compare the simulation to
modulation theory predictions, we extract the modulated soliton amplitude and slope from
the simulation via

a(y,t) = ma}R}( ux,y, t), q(y,r)=-— (arg max u(x, y, r)) . (3.25a,b)
Xe y

xRk

For the numerical computation of ¢, we smooth arg maxu prior to differentiation. Figure 7
bottom displays the numerical (solid) and modulation (dashed) solutions. In order to
quantitatively track the numerical simulation, we used the slightly smaller truncation width
£ = 280 for the modulation solution in order to account for the smoothing of the initial
data as given in (B 6a,b). Both the soliton amplitude and slope closely match the full
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(a) (b)
300

-300

()

0 400

y y
FIGURE 7. (a—c) Numerical evolution of truncated soliton initial data (B 6a.,b) according to the
KPII equation for t € (0, 150, 500) and £ = 300. (d,e) Modulated soliton amplitude a and slope
q at noted times extracted from the numerical simulation (solid curves) and the modulation
solution (3.4a.,b), (3.12) (dashed curves) with the slightly different, fitted initial soliton length
£ = 280. The dash-dotted blue lines correspond to the long-time asymptotic predictions (3.14)
evaluated at t = 500.

partial differential equation (PDE) evolution described by (1.1), demonstrating that our
modulation analysis captures both the qualitative and quantitative features of the solution.
The long-time (7 >> 1) asymptotic predictions in (3.14) for a parabolic, decaying cKdV
soliton also compare favourably with the numerical and modulation solutions for |y| < £
despite the modest scaled time T =1¢/£ ~ 1.5.

In summary, the truncated soliton initial data (3.15) evolve into a curved soliton with
algebraically decaying amplitude that approaches a cKdV soliton with a parabolic profile
and linearly increasing focal length.

4. Bent-stem and bent line solitons

The modulation solution for the truncated soliton consisting of two counterpropagating
and then interacting simple waves motivates a broader class of initial conditions where we
relax the assumption of zero soliton amplitude for |y| > €/2. In this section, we explore
this scenario with three distinct configurations: a special partially bent soliton, two bent
solitons joined via a larger amplitude stem with non-zero £ and finally a bent soliton
with the same amplitude throughout in which £ — 0 — the regular and Mach expansion
problem. First, we consider the partially bent soliton as a natural extension of the partial
line soliton described in § 3.1.
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4.1. Partially bent solitons
We first consider a single bend at y = 0 where

0, y<0,
qo, y > 0.

I, y<0,

. y=0 (4.1a,b)

a(y,O):{ q(y,O):{

For generic choices of 0 < gy < 1 and 0 < gy < 1, the initial data (4.1a,b) give rise to
two separated simple wave solutions of the modulation equations (1.4): a fast 2-RW and a
slow 1-RW separated by a constant region. As a natural extension of the partial line soliton
solution (3.2), we restrict the data (4.1a,b) so that only a single simple wave — the 1-RW —
is generated, i.e. s = g + +/a is constant

Got++Jao=1, O<ay<l1, 0<go<]l. (4.2a—c)

We call the corresponding initial data (4.1a,b) subject to (4.2a—c) a partially bent soliton,
which will be useful to describe the bent-stem soliton initial data in the next subsection.
The constancy of s (q(y, )+ +/a(y,t) =1) and U(a, q) = y/t result in the 1-RW
solution

Ay, Ugr <YV,
Vags(y, 1) = {31 = y/Q21), —3t <y <Uy, @3
1 y < =31, '

gp(y, 1) =1 — Jap(y, 1), Up=2—2/ac.

This solution is the same as that of the partial soliton (3.2) for y < Uyt and limits to
the partial soliton modulation as the angled soliton amplitude vanishes a; — 0. The
positive amplitude, outgoing soliton gives rise to the slower characteristic velocity Uy < 2.
The evolution of a partially bent soliton (4.1a,b) with \/a_o = 0.7, go = 0.3 according
to numerical integration of the KP equation (1.1) is shown in figure 8(a—c). The 1-RW
modulation solution’s edge characteristic velocities Up and —% in (4.3) are favourably
compared with the numerical simulation in figure 8(d,e) by identifying the front positions
where a — 0.52 and a — 0.97, respectively.

The solution (4.3) provides a building block to analyse the more complicated
configuration of a bent-stem soliton.

4.2. Bent-stem solitons

We now consider the initial condition

1, Iyl<E/2, 0, Iyl < £/2,
q(y,0) =

(4.4a.b)
ap, |yl > £/2, sgn(y)qo, |yl > £/2,

a(yso) = {

which is the modulation initial condition for the KPII data depicted in figure 4(b). This
configuration describes an initial truncated soliton of length £ that is extended with
outgoing line solitons of amplitude ap < 1 and non-zero, symmetric slopes +gqo. The
case ap = 0 and gy = 1 corresponds to the truncated soliton (3.3). As similarly noted for
the partially bent soliton, generic choices of 0 < @y < 1 and 0 < gp < 1 will give rise to
four separated non-centred simple waves, two emanating from each bend y = +£/2. The
fastest and slowest waves, however, will not interact with the other waves, propagating far
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FIGURE 8. (a—c) Numerical evolution of the partially bent soliton according to the KPII
equation for ¢ € (0, 150, 400) and ,/ag = 0.7, go = 0.3. (d.e) Comparison of the characteristic
speeds of the upper (d) and lower (e) edges of the partially bent soliton rarefaction wave. The
plot displays the predicted front speeds from the modulation solution (4.3) as reference lines
(dash-dotted, blue), the numerically extracted front positions from the numerical simulation
(solid, black) and a least squares linear fit (dashed, red) whose slope determines the measured

speeds.

away from the initial stem region. These non-interacting, propagating waves are of less
interest so we restrict the initial data such that a single simple wave is generated at each
bend, as in the partially bent soliton case. Consequently, we assume the same simple wave
constraint in (4.2a—c) corresponding to a non-centred 1-RW emanating from y = £/2 and
a non-centred 2-RW emanating from y = —£/2. We call the corresponding initial data
(4.4a.,b) a bent-stem soliton.

This initial value problem is nearly identical to the truncated soliton problem. In fact,
their solutions are essentially the same apart from one subtle yet crucial difference: the
velocities of the outermost edges of the counterpropagating simple waves are different.
These differing velocities lead to different interaction features.

We now use the partially bent soliton simple wave (4.3) to construct the
counterpropagating simple waves for the bent-stem soliton initial data (4.4a.b)

ﬂ()’, r) = apb(lyl - 5/2& r)& ‘I( v, r) = Sgn( )’)%b(|)’| - 8/2, r);

for y € R prior to simple wave interaction 0 < t < %E.
Compared to the truncated soliton, the Riemann invariants for the bent-stem soliton
simple waves take values on the smaller square

(r,s) € [—1,r0] X [—rg, 1] wherery=1—2,/a, < 1. (4.6)

(4.5a,b)
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@, ®)

FIGURE 9. Characteristic plots of interacting simple waves for the bent-stem soliton initial data
(4.4a.b); (a) 0 < ap < }T’ resulting in an infinite region of interaction for two simple waves

in (y, t)-plane, (b) % < ap < 1, resulting in a bounded interaction region. See main text for
description.

Consequently, the hodograph solution for the simple wave interaction region is the same
as for the truncated soliton, namely (3.9). However, the solution must be considered on
the restricted domain (4.6). Two space—time characteristic diagrams of the modulation
solution for different values of ao are shown in figure 9. The interaction region is shaded
grey. The bottom point of the interaction region corresponds to the initiation of simple
wave interaction when (¥, T) = (0, %). Note that the characteristic for the uppermost edge

of the incoming 1-RW, ¥ = % + U,yT, eventually intersects the edge of the interaction

region (3.11) at (¥,, T,). Similarly, the reflected characteristic emanating from ¥ = —%
intersects the interaction region at (—Y,, T,). These intersection points are given by
1 3-4 3
Y* ==+ —~/a’_0s T-}- = - (4?'1»5)
2 2ay 4day

and are shown in the characteristic diagrams of figure 9 for two different choices of a.
When ay — 0, T, — oo and we recover the result for the truncated soliton in which the
colliding simple waves do not completely intersect one another. For the bent-stem soliton
inwhich 0 < ap < 1, the existence of the intersection points (+Y,, T,) occurs because the
characteristic velocity Uy is slower than the corresponding characteristic velocity of the
truncated soliton Uy < 2. This subtle velocity difference leads to a significant change in
the dynamics as we now explain.

For T > T,, the 2-RW that propagated from the lower bend at y = —£/2 emerges from
the interaction region as a simple wave with constant » = ry and expands along the upper,
outgoing soliton. The uppermost, leading edge portion of the simple wave is the straight
line characteristic

Y=Vo(T~T)+Y,, Vo=V, 1)=32a+1). (4.8a.b)

The boundary of the interaction region emanating from (Y,,T,) now becomes the
parametric curve

Y = Y(r(]s S)s T = T(?‘(], S)s RS [—?‘0, ]]s (49)

where Y, = Y(ry, 1), T, = T(ry, 1) and the curve is traversed as s is decreased from 1.
A new Cauchy problem for the modulation equations (1.4) must be solved with data
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prescribed along the parametric curve (4.9). Because the region into which this Cauchy
problem propagates is constant, (a, g) = (ag, go), it is a simple wave, a 2-wave with
r = rp. The solution is determined by identifying the characteristics emanating from the
boundary curve (4.9). Given any s € (max(—ro, 0), 1) along the boundary curve (4.9), the
corresponding characteristic along which s is constant is the straight line

Y = 2(ro + 28)(T — T(ro, 5)) + Y (1o, 5). (4.10)

Example characteristics are shown in figure 9(b).

A bifurcation occurs in the shape of the interaction region depending on the initial
outgoing soliton amplitude ay. For sufficiently large ag, the interaction boundary (4.9)
terminates when ¥ = 0, which from the hodograph solution (3.95) occurs when s = —ry.
According to the parametric curve (4.9), it would appear that s = —ry can occur for any
—1 < ry < 1. However, the hodograph solution for 7 in (3.9a) shows that T — oo as
s — ry. As s is decreased from 1 in the parametric curve (4.9), s attains the value ry before
it reaches —ry if and only if ro > 0. Consequently, the critical value ro = 0 determines
the bifurcation from an unbounded (when 0 < ro < 1) to a bounded (when —1 < ry < 0)
simple wave interaction region. We now consider each case in turn.

The characteristic diagram for an unbounded interaction case where ry > 0 (equivalent
to either condition 0 < ap < 1/4 or 1/2 < gp < 1) is shown in figure 9(a). Aside from
the intersecting characteristics at (+£Y,, T,) and the concomitant simple wave (4.10) that
emerges from the interaction region, the bent-stem soliton diagram is similar to the
truncated soliton solution in which ay = 0 (cf. figure 6). In fact, the long-time asymptotic
behaviour of the solution is identical to the truncated line soliton (3.14) when |Y| < T?/3
in which the stem forms a decaying soliton that approaches the parabolic-shaped cKdV
soliton (3.20a,b).

In contrast, when rp <0 (equivalent to either 1/4 <ay <1 or 0 < gy < 1/2),
corresponding to the case of a bounded simple wave interaction region, the characteristic
diagram is significantly different as in figure 9(b). By symmetry, the interaction
boundary must close at ¥, = 0. Since s = —ry determines the terminus of interaction,
the corresponding closing time T, can be calculated from the hodograph solution (3.9a)

1+r5 301 —2/ag+ 2ay)
8r; 4@ — 1)}

T.=-3 @.11)

The corresponding soliton slope is zero by reflection symmetry and the amplitude can be
read off from s = —ry, giving

a(ch Tc) =4, = (2\/‘1_0 - ])2s ‘?(ch Tc) =4 = 0. (412ﬂ1b)

From this closing point, a constant region emerges, bounded by the edges of the simple
wave (4.10) and its symmetric reflection

Y| = V(ro, —ro)(T — To) = —3ro(T = T.) = 3(2y/ao — )(T —To). (4.13)

This constant region corresponds to the emergence of a line soliton with amplitude 0 <
a. < 1. Our findings for the bent-stem soliton are summarised in table 1.
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Simple wave interaction region Unbounded Bounded
Constraints on initial data Ogaogi@%gqogl ;]f{a{]{] {:}04(;04%
Initial geometric constraints Strongly bent soliton (q% > ap) Weakly bent soliton (q% < ap)
Long-time dynamics Decaying parabolic soliton Non-decaying line soliton

TABLE 1. Dynamics of the bent-stem soliton initial data (4.4a.b).

(@) (b) ©
100 100 100
y 0 0 0
100 100 -100
(d) (e)
100 100
y 0 0
-100 -100
0 75 0 75 0 75
X X X

FIGURE 10. (a—c) Numerical simulation of the bent-stem soliton for ,/ag = 0.8 and go = 0.2
with ¢ € (0, 80, 400) showing the emergence of a straight line soliton. The interaction region
closing time is predicted to be t = £T,. = 236 (cf. figure 9b). (d—f) Numerical simulation of
the bent-stem soliton for ,/ap = 0.3 and go = 0.7 with t € (0, 80, 400) leading to a decaying
parabolic soliton. In both cases, £ = 100.

Figure 10 depicts the numerical evolution of bent-stem solitons for each of the scenarios
in table 1. For figure 10(a—c). the initial conditions are nominally ,/a; = 0.8 and go = 0.2,
with £ = 100. From our analysis, the emergence of a constant region in the modulation,
i.e. a vertical soliton with amplitude a. = 0.36, should begin to appear at t = {7, ~ 236.
By t =400 in figure 10(c), the vertical soliton has emerged with amplitude very close to
the predicted value 0.36 shown in figure 11(a). In contrast, for figure 10(d—f), the initial
conditions are ,/ao = 0.3 and go = 0.7, again with £ = 100. As expected, the system
forms a parabola which slowly decays over time.

For quantitative analysis, we consider the amplitude decay at y = O for the bent-stem
simulations in figure 11. In (a) is displayed the amplitude decay for the weakly bent
simulation shown in figure 10(a—c), while in (b) are data from the strongly bent simulation
from figure 10(d—f). Here, we observe some deviation of the numerical simulation
from modulation theory for shorter times. We attribute these differences to higher order
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FIGURE 11. Comparison between numerical simulation (solid line) and the modulation solution
(dashed line) of the bent-stem amplitude decay at y = 0 for the parameters in figures 10(a)

and 10(f). In order to account for the smooth initial data, the modulation solution is ‘fitted’ by
choosing £ = 80.

dispersive effects that are not captured by the leading-order modulation equations (1.4).
However, the large ¢ predicted behaviour agrees quantitatively with numerical simulations.
For the weakly bent stem, the amplitude asymptotically approaches a. = 0.36 as predicted,
while for the strongly bent-stem case, the amplitude continues to decrease for large . As
in the truncated case, we slightly reduce the length £ in the modulation solution to £ = 80
in order to account for the smoothing of the initial conditions.

We also consider the predicted soliton phase & compared to the numerical simulations.
This is shown in figure 12. The overlaid predicted phases (dashed curves) were generated
by using the modulation solution for ¢ and then numerically integrating for & according to
(1.5). We utilised the speed ¢( y, 1) in the prediction after fitting the phase so that it lines
up with the front’s maximum along y = 0 at t = 100 in the left-most panels. The ensuing
phase profiles at t = 200 and t = 400 are slightly advanced relative to the numerical
simulation, which can be attributed to higher-order phase errors that are common in soliton
perturbation theory. Such a correction would result in an additional term &(x, y, t) being
added to the modulated soliton phase & in (1.5). Importantly, the shape of the front’s crest
is well-described by the modulation solution for g.

It is evident that both the weakly and strongly bent-stem numerical evolutions are well
approximated by the modulation solution, asymptoting to a line soliton and a parabolic
wave in long time, respectively.

4.3. Bent solitons

We now consider the bent-stem soliton initial data (4.4a.b) with a vanishing stem £ — 0,
i.e. a bent soliton in which

qo, y=>0,

o ¥ <0 (4.14)

a(y,0) =ap, 4q(y,0)=

Figure 4(c) displays the corresponding initial condition for the KPII equation (1.1). In
contrast to the truncated and bent-stem soliton initial conditions, the initial conditions
(4.14) for the modulation equations (1.4) correspond to a Riemann problem. We limit our
consideration to an expansive Riemann problem by taking g, > 0. This case corresponds
to a partial soliton interacting with an expansive corner (cf. figure 3). If g, < 0, a case we
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FIGURE 12. Modulation solution phase (dashed) overlaid on contour plots for weakly (a—c) and
strongly (d—f) bent-stem initial conditions when 7 € (100, 200, 400). The initial conditions are
the same as in figure 10.

do not consider, the partial soliton interacts with a compressive corner and gives rise to
regular and Mach reflection (cf. figure 2).

For the case where gy + ,/ag = 1, cf. (4.2a—c), the bent soliton’s evolution can be
obtained directly from the bent-stem soliton evolution by taking the vanishing stem limit
£ — 0. Consequently, the bent soliton inherits the bent-stem soliton’s bifurcation in the
long-time dynamics. When ,/ag > qo, the modulation solution for the bent-stem soliton
post-simple wave interaction (T > T,) exhibits an expanding constant region with a = a,,
q = q. in (4.12a,b) bounded by the characteristics (4.13). We refer to this as the strong
interaction case.

When ,/ay < qo and qo + /ap = 1, we can take the £ — 0 limit of the bent-stem
soliton with an unbounded interaction region. In this limit, the corners of the interaction
region in (4.7a,b) are (+y,,t,) = (€Y., £T,) — (0,0). Additionally, the interaction
boundaries (3.11) and (4.9) collapse to y = 0. However, the characteristics (4.10) leaving
the boundaries of the interaction region persist. At y = 0, the soliton amplitude in the
interaction region is explicitly (3.13a) so that a(0, r) — 0 as £ — 0. This case corresponds
to weak interaction.

In order to elucidate more details and provide an alternative method of solution, we now
solve the Riemann problem (4.14) for the bent soliton directly. We relax the assumption
go + +/ao = 1 and consider general a, > 0 and go > 0, which is equivalent to applying
the scaling symmetry (2.1a) to the bent-stem soliton problem and taking £ — 0.

First, we consider the strong interaction case ,/ap > go. The upper and lower solitons
cannot be connected by a single simple wave, which would require ,/a; — gy = /ao + qo.
leading to the conclusion g, = 0. Instead, we introduce the intermediate state (a;, g;) and
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FIGURE 13. Space-time contour plots of amplitude modulation solutions for bent soliton initial
data. (a) The strong interaction case (4.15a,b) withagp = 1 > go = 0.3. (b) The weak interaction
case (4.20) with ap = 1 < go = 1.4. The two cases are similar but note the non-zero central
amplitude for strong interaction.

connect it to (ap, £qo) with simple waves satisfying

Vai — qi = \Jag — qo,  Jai + qi = /a0 + (—qo). (4.15a.b)
The solution to these equations under the given constraints is
qi = 0, \/‘Ti = '\/a_ — 4o, (4l6ﬂ,b)

where we use a 2-RW to connect the intermediate state to the top soliton and a 1-RW to
connect to the bottom soliton.

Consequently, evolving the bent soliton over time gives an intermediate constant region
connected to the two canted solitons by centred simple waves

V/ao, V(ao, qo)t < |y,
va(y,t)y =13/t +2J/a), V(a,0)t < |y| < V(ao, qo)t.
Vai, [yl < V(a;, 0)t, @1
o, V(ao, go)t < |yl,
q(y, 1) =sgn(y) { Va(y.0) — Ja, V(a0 < |yl < V(ag, )t
0, Iyl < V(a;, O)t,

where V(a, qg) = 2q + %JE The solution contains a vertical line soliton expanding in y
with amplitude a; in (4.16a,b). A space-time contour plot of the amplitude a(y,r) for this
case is shown in figure 13(a). This solution agrees with our analysis of the £ — 0 limit
of the bent-stem soliton when g, + ,/a; = 1. As we will show in the next subsection,
this strong interaction case corresponds to Mach expansion of a soliton interacting with a
corner.

For weak interaction when JaT; < ¢y, the above calculation fails because JE,- exhibits
negative values. This determines the critical slope

between the two classes of bent soliton dynamics. Instead, we introduce the intermediate
vacuum state a; = 0. In order to connect to vacuum with a simple wave from each of the
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bent solitons, we require g; # 0. Since ¢ in the vacuum region is undefined, we determine
it locally based on the simple wave criterion. By symmetry,

giy = lim g(y,f) = — lim g(y,1) = gi, (4.19)
y—0+ y—0
with the initial discontinuity at y = 0. We can use Riemann invariants to calculate the

values of g;.. For the top simple wave, ,/a; — go = —¢g;,, and by symmetry g;, = —q;_.
The solution for the simple wave is

»\/a_{)! V(a(]! QO)I < |y|?
Va(y.ty =13/t —2q4), V(0,q)t < |yl < V(ao, qo)t,
0, [yl < V(O, gip)t,
{ (4.20)
4o, V(ay, o)t < |yl,
q(y, 1) =sgn(y) {+/a(y,t) + iy, V(0,qi)t < |yl < V(ao, qo)t,
Gi+» |}’| =< V(O! qi+)rs J

which includes a symmetric reflection for the bottom simple wave. This solution, whose
amplitude a(y.r) is depicted in a contour plot in figure 13(b), consists of an expanding
vacuum a = 0 region connected to outgoing, canted line solitons by simple waves. These
simple waves are rotated versions (see (2.1b)) of the partial soliton solution (3.2). They are
completely disconnected from one another; at this order of approximation, the interaction
is negligible in that the evolution of the upper and lower branches can be analysed
independently of one another. The vacuum region’s rate of expansion is proportional
to go — 4/ao > 0. A more ‘bent’ initial soliton (go > g.r) causes the outgoing solitons to
separate from one another sufficiently fast so that their interaction is negligible within the
context of modulation theory. As we will show in the next subsection, this weak interaction
case corresponds to regular expansion of a soliton interacting with a corner.

The numerical simulations in figure 14 are essentially consistent with these predictions.
For the bent soliton with @y = 1 and gy = 1.4 > g, = 1 in figure 14(d—f), a decaying
parabolic front with trailing oscillations appears. Although an expanding, strictly vacuum
region predicted by modulation theory is not immediately apparent, amplitude decay
is present. We have verified that the amplitude, shape, and propagation of the leading
parabolic front is consistent with the profile for the cKdV parabolic soliton (3.20a,b). The
trailing oscillations are consistent with a two-dimensional generalisation of the oscillatory
shelf that is common for perturbed KdV (cKdV) problems. In contrast, for an initial bent
soliton with ap = 1 and go = 0.3 < g = 1, as seen in figure 14(a—c), a new vertical line
soliton with reduced amplitude appears.

Quantitative results further confirm our analysis. In figure 15, it is evident that the
predicted solution for both soliton amplitude and slope, extracted according to (3.25a,b)
captures the behaviour of the strong interaction case withay = 1 and gp = 0.3 < g, = 1.
As expected, the solution for large times approaches a line soliton with a; ~ 0.49.

For the weak interaction case gy = 1.4 > g, = 1 shown in figure 16 (£ = 0 case), the
simulation’s lead wave slope (solid) is well approximated by the modulation solution
(dash-dotted). The amplitude does not reach zero as modulation theory predicts, although
it does continually decrease. Recalling that modulation theory applies under slowly
varying assumptions, it is not surprising that an immediate transition from unit amplitude
to zero amplitude does not occur in the numerical simulation. In figures 11 and 15,
we observe that the numerical solution temporally lags behind the modulation solution.
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FIGURE 14. Numerical simulation of bent solitons for the strong interaction whenag = 1, go =

0.3 for t € (0, 150, 400) in (a—c) and the weak interaction when ap =1, go = 1.4 when t
(0, 60, 220) in (d—).
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FIGURE 15. Modulated soliton amplitude a and slope g extracted from the numerical simulation

in the strong interaction case of figure 14(a—c) (solid curves) and the modulation solution (4.17)

(dashed curves) at different times.

The same happens here in figure 16, albeit to a more significant degree in amplitude.
While this weakly interacting bent soliton simulation deviates from the modulation
solution in amplitude, in fact it can be reasonably approximated by the bent-stem
modulation solution for moderate stem length £. This is to be expected; the bent-stem
analysis for sufficiently large gp shows that any positive stem length £ > 0 implies
algebraic amplitude decay to zero (cf. (3.14)) rather than a sudden amplitude decrease
to zero in finite time. The initial smoothing of the numerical simulations (see appendix B)
can be viewed as an effective £ > 0 for these bent soliton simulations. Consequently, we
compare the bent-stem soliton modulation solution for the initial data (4.4a,b) (rescaled
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(b)

200

FIGURE 16. Comparison of bent-stem soliton modulation with small stem £ = 12 (dashed, red)
and no stem £ — 0 (dash-dotted, blue) to numerical simulation (solid, black) of the weakly
interacting bent soliton evolution in figure 14(d—f).

according to (2.1a) so that the canted, outgoing solitons have unit amplitude) with £ = 12
to the numerical simulation of the weakly interacting bent soliton in figure 16. Now
the decaying parabolic front is represented in the modulation solution. In other words,
the weakly interacting bent soliton evolution exhibits a remnant of the bent-stem soliton
solution.

4.4. Regular and Mach expansions

We are now in a position to interpret this analysis in the context of the soliton-corner
initial-boundary value problem that is schematically depicted in figure 3. Consider a
vertical, partial soliton with amplitude a propagating in the positive x direction adjacent to
a horizontal wall located at y = 0. When this soliton encounters a corner at the origin that
suddenly opens or turns away by the clockwise angle ¢ > 0, it expands. The nature of its
expansion depends on the corner angle and soliton amplitude. Via the nonlinear method
of images, we map the partial soliton at the moment it encounters the corner to the bent
soliton initial data for the numerical simulation in figure 4(c) and for modulation theory in
(4.14) with @y = a and g, = tan ¢. Consequently, the critical corner angle separating two
distinct types of soliton-corner interaction is (cf. (4.18))

tan g, = /a. (4.21)

For the case ¢ > ¢, = arctan \/a (sharp corner), the soliton almost completely
separates from the wall. The residual soliton—wall interaction is through a decaying
parabolic soliton. In turn, the propagating partial line soliton decays, retreating further
away from the wall. We term this case regular expansion. In contrast, for slight turns of
the wall at the corner where 0 < ¢ < ¢, = arctan 4/a, the soliton also develops a curved
front that instead terminates at a non-decaying soliton perpendicular to the wall with lower
amplitude than the incident soliton. The predicted soliton wall amplitude is

a, = (v/a — tan p)>. (4.22)

Despite propagating away from the wall, it does not “escape’ its influence like in the regular
expansion case. The residual soliton formed at the wall is the expansion counterpart to the
Mach stem that forms during the course of Mach reflection (cf. figure 2). We term this
case Mach expansion. Surprisingly, the cross-over from regular to Mach expansion occurs
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Soliton-corner expansion Regular expansion Mach expansion
Soliton amplitude a, corner angle ¢ 0 <. a<tang tang < /a
Long-time dynamics at wall Decaying parabolic soliton ~ Non-decaying line soliton

TABLE 2. Soliton-expansive corner initial-boundary value problem.

at precisely the same corner angle (4.21) as the crossover from regular to Mach reflection
(1.3). These results are highlighted in table 2.

5. Discussion and conclusion

Using the KPII equation as a model of multidimensional gravity wave solitons, we
describe the evolution of truncated and interacting oblique solitons using modulation
theory and we compare the analytical predictions with the results from direct numerical
simulations. The initial value problems considered are distinguished by geometric
configurations of partial solitons that propagate away from one another. Despite this,
residual interactions between solitons occur that lead to non-trivial wave patterns.

An initial soliton that is transversely confined or truncated, and that propagates into
an open region, first ‘curls’ at the endpoints as it then morphs into a parabolic shape over
long times. The front’s parabolic shape flattens with a linearly increasing focal length with
time. The parabolic wave’s amplitude and speed exhibits algebraic decay proportional to
/3, Such wave patterns appear to be common in images of oceanic internal waves for
near-shore conditions (Jackson 2004; Nash & Moum 2005; Wang & Pawlowicz 2017).
In particular, figure 17 depicts internal solitary waves that strikingly resemble both the
early and long time evolution of the truncated soliton solution considered here. A nearly
straight solitary wave with curling edges and multiple parabolically shaped solitary waves
are visible.

We also generalise the above truncated soliton configuration by appending canted partial
solitons to it and find new dynamical behaviour. In addition to the decaying parabolic
wavefront for sufficiently canted solitons, a non-decaying vertical soliton with reduced
amplitude relative to the original soliton segment appears. This bifurcation in behaviour
carries over to the soliton-corner expansion problem.

The final initial value problem for a bent soliton also describes the interaction of a
soliton propagating parallel to a wall with an expansive corner. For a sharp enough
bend, the solitons exhibit weak interaction through a decaying parabolic front, the case
we identify as regular expansion of a soliton. For a slight enough bend, the solitons
continue to interact so as to produce an intermediate, non-decaying soliton at the wall with
reduced amplitude a,, (4.22) that connects them. This case of Mach expansion parallels
the well-known Mach reflection of oblique solitons, both of which occur at the same
critical angle and display a similar transition between strong and weak interactions. Such a
transition in the wave dynamics could potentially be observed in the shallow water context
by soliton generation from a moving disturbance (Lee & Grimshaw 1990; Li & Sclavounos
2002) or by experiments analogous to previous shallow water studies involving Mach
reflection (Perroud 1957; Melville 1980; Li ef al. 2011; Kodama & Yeh 2016).

In the Mach reflection case, an important quantitative test of the theory is its prediction
of amplitude amplification of the Mach stem at the wall. After properly taking into account
a higher-order asymptotic approximation to shallow water waves than the KP equation,
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FIGURE 17. Synthetic aperture radar image of internal solitary waves generated at the Columbia
River plume front. Reproduced with permission from Pan ez al. (2007) copyright 2007 by the
American Geophysical Union.

the soliton wall amplitude has been demonstrated to satisfactorily predict experiments
across a range of incident soliton parameters (angle and amplitude) (Kodama & Yeh 2016).
This points to a possible quantitative test of the Mach expansion theory presented here by
measuring the wall reduction factor

2

» tan

o= (1— ‘9) , tang < +a (5.1a.b)
a Ja

in similar shallow water experiments. The factor o < 1 is the ratio of wall soliton
amplitudes post (a,,) and pre (a) corner interaction, respectively, predicted by KP theory.
We note that, in order to achieve quantitative agreement with experiment, it may be
necessary to incorporate higher-order effects such as those considered in (Kodama & Yeh
2016).

These results also motivate the conjecture that outgoing gravity line solitons propagating
away from one another with slopes ¢, and similar amplitudes a, lead to a decaying
parabolic or negligible interaction region when sufficiently sloped g~ > /a~ but leave a
residual line soliton between them when g, < 4/de.

This work demonstrates the practical utility and efficacy of soliton modulation theory to
describe the rich nonlinear wave dynamics. All the solutions that we consider are globally
existing simple wave or interacting simple wave solutions of the hyperbolic modulation
equations. These solutions, when projected back onto a line soliton, quantitatively
agree with direct numerical simulations of the KPII equation. Although not previously
recognised as such, simple wave-modulated solitons can also be seen in a variety of
previous KPII numerical studies (Funakoshi 1980; Kodama et al. 2009; Kao & Kodama
2012; Chakravarty ef al. 2017). In particular, the transient portion of the reflected wave
that develops during both regular and Mach reflection of a soliton by a corner appears to
show a similar wave pattern to the partial soliton studied here. An intriguing problem is
to consider the modulation equations with initial data that are compressive, i.e. that would
give rise to shock solutions. Indeed, two colliding partial solitons and ‘V-shaped’ initial
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conditions (Kodama et al. 2009; Chakravarty et al. 2017) for regular and Mach reflection,
give rise to compressive Riemann problems for the modulation equations (1.4). How are
such initial value problems regularised? What do shocks mean in this modulation context?
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Appendix A, Derivation of the soliton modulation equations

Here we show how (1.4) can be directly derived from the KP equation (1.1) using
multiple scales, without employing the full Whitham modulation theory. First, we
introduce the rescaling

X=€x, Y=¢€y, T=et (A la—c)
into the KPII equation (1.1)

(ur + uuy + egum)x + uyy = 0. (A2)
In order to study modulated line solitons, the asymptotic expansion

uX,Y,T;€) = ug(€, Y, T) +em (.Y, T)+---, u(& Y, T)=a(¥,T)sech’ (nf),
1 [a0.T) 1 [av.T) 1 [a(V.T)
néx = - o néy = z o nér = —C B c(a, q),

is assumed where & is the fast variable. The coefficient n(Y,T) = /a(Y,T)/12 is
determined by the consistency condition &y = &yy = 0. The consistency condition &y =
&ry yields the slope modulation equation (1.4b). The amplitude modulation equation (1.4a)
is obtained by inserting the ansatz (A 3) into the KPII equation (A 2). At first order in ¢,
we obtain an inhomogeneous ordinary differential equation for u; that, when integrated
once with respect to &, is

(A3)

— €z + 3 (uowr) + dgeeur + ¢ 0w = — (druo + 2qdyuto + qyio) - (A4)

Solvability over the space of L*(R) solutions is enforced by the orthogonality condition

(37 + 243 + qy) f w3 dg = (3 + 243y + qy) (S—fam) =0, (A5
R 3

which, upon simplification, results in the amplitude modulation equation (1.4a).
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Appendix B. Numerical integration of the KP equation

To validate our analytical results, we implement the pseudospectral method described in
Kao & Kodama (2012), which utilises a hyper-Gaussian windowing function and Fourier
discretisation for non-periodic data in y and periodic data in x. We essentially follow Kao
& Kodama (2012) with a few modifications. The method proceeds as follows. Instead of
solving the KP equation (1.1) for the original function u, we instead solve an equivalent
PDE for a windowed function

v(x, y, ) = W(yu(x, y, 1), B1

where
W(y) = exp(—a,ly/Ly|"), (B2)

with n = 27 and a, = 1.111" In 10. The rapid decay of W( y) for |y| near L, ensures that
v = 0 near the top and bottom boundaries of the domain so that its periodic extension is
smooth. In this region, we assume that the solution u asymptotes to non-modulated line
solitons. Thus, u can be decomposed as

u=v+(1-Wwi, (B3)

where # are line solitons with constant @ and g of the form shown in (1.2a,b). Inserting
the transformation (B 3) into the KP equation (1.1), we obtain an equivalent PDE for the
windowed function v

A

(vr + vur + vpe)x + Uyy = (1-w) (W&ﬁx - (U&)x + 2W!ﬁy + Wi, (B4a)
subject to the initial conditions
v(x,y,0) =u(x,y,0 — (1 —W(y)i(x, y,0). (B 4b)

The above PDE (B4) is solved numerically. At each time ¢ we reconstruct the true
solution u using (B 3). The advantage of this method is that since v is zero at the domain
boundaries, we obtain spectral convergence using a Fourier discretisation in space. In order
to preserve spectral accuracy, the derivatives i,, ﬁ},, W’, and W” on the right-hand side of
(B 4a) are calculated analytically; this is one difference from Kao & Kodama (2012) where
these derivatives are calculated using finite difference approximations. Time stepping is
performed with an integrating factor and the classic fourth-order Runge—Kutta scheme.
Simulations are terminated before the windowing region is corrupted by non-solitonic
data.

The numerical scheme described above is validated using an exact Y-shaped solution,
also known as the Miles resonant soliton (see figure 18a and, e.g. Biondini & Kodama
(2003) for the explicit form of the solution). By refining the time and space steps,
convergence is obtained at 7 = 10 to approximately 10~'2 in the 2-norm relative difference
of the numerical and exact travelling wave solutions, as shown in figure 18(b,c). The rate
of spatial convergence in figure 18(b) demonstrates that spectral accuracy is obtained.
In order to ensure reasonable computation time and memory demands, the simulation
parameters are fixed at the grid spacing Ax = 1/2 and time step Ar = 1073. Based on
figure 18(b,c), this ensures 2-norm errors below 10~ for resolving the Y-soliton solution
up to + = 100. Simulations are run on domains of various sizes that depend upon the
problem, typically with an area comparable to [—512, 512]%. To take full advantage of our
system’s graphics processing unit, we used single precision for all calculations presented
in the main text.
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FIGURE 18. Convergence of Y-shaped soliton (@) in space (b) and time (c). These simulations
were run on the domain [—128, 128] x [—64, 64] with Ax = Ay. For (b) we fixed At = 103,

and for (¢) we fixed Ax = Ay = 1/4.
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FIGURE 19. Full initial conditions for simulation of truncated (a) and bent-stem solitons (b),
satisfying the constraint [ uyy dx = 0.

One unique feature of our numerical simulations is the incorporation of the KP equation
constraint requiring [ u,, dx =0 (see Ablowitz & Villarroel 1991; Klein, Sparber &
Markowich 2007). The bent soliton initial conditions satisfy this constraint. For the initial
conditions which do not satisfy the constraint, a reflection is added that ensures that
[ uydx =0, thereby satisfying the constraint. The reflected solitons have parameters
(ar, g,) defined by

a(y) = (1-+a(y,0)* ¢,=0. (BS)

The full initial conditions including the reflection for the truncated and bent-stem cases are
displayed in figure 19. Simulations are terminated before the reflected solitons influence
the solution in the region of interest. We find that this approach to satisfying the non-local
constraint is more efficient than an odd extension of the initial data, which would result
in the generation and propagation of fast dispersive wavetrains that quickly corrupt the
solution.

To reduce the Gibbs phenomenon, initial data for the simulations are obtained by
smoothing the discontinuous initial data a(y,0) and g(y,0) and inserting these data
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into (1.5). For example, the truncated soliton data (3.3) become

u(x,y,0) = a(y, 0y sech? [ 222} acy0)= 2 (tanh (M) + 1) ,
12 2 w
(B 6a,b)
withw =5, £ = 300.

The two parameters of interest in this paper are the soliton amplitude and the soliton
centre. The amplitude is obtained from the numerical results by finding the maximum
value over x € [—L,, L,] for each fixed y and 7 in the domain via local interpolation of
the solution. The soliton centre is simply the location of that maximum value. These
are then compared to the predicted amplitude and centre values. The predicted soliton
centre is calculated using the analytical solution for g( y, r) combined with (1.5) or, if y is
in the simple wave interaction region, using (3.17a,b). The numerical values for g( y, 1)
are found by negating the numerically differentiated soliton centre location in x with
respect to y.

REFERENCES

ABLowITZ, M. J. & BALDWIN, D. E. 2012 Nonlinear shallow ocean-wave soliton interactions on flat
beaches. Phys. Rev. E 86 (3), 036305.

ABLowiTtz, M. J., BionDINI, G. & WANG, Q. 2017 Whitham modulation theory for the
Kadomtsev—Petviashvili equation. Proc. R. Soc. Lond. A 473 (2204), 20160695.

ABLOWITZ, M. J. & CLARKSON, P. A. 1991 Solitons, Nonlinear Evolution Equations and Inverse
Scattering. Cambridge University Press.

ABLOWITZ, M. J., DEMIRCI, A. & MA, Y.-P. 2016 Dispersive shock waves in the Kadomtsev—Petviashvili
and two dimensional Benjamin—Ono equations. Physica D 333, 84-98.

ABLOWITZ, M. J. & SEGUR, H. 1979 On the evolution of packets of water waves. J. Fluid Mech. 92 (04),
691-715.

ABLOWITZ, M. J. & VILLARROEL, J. 1991 On the Kadomtsev—Petviashvili Equation and Associated
Constraints. Stud. Appl. Maths 85 (3), 195-213.

BionDiINI, G. 2007 Line soliton interactions of the Kadomtsev—Petviashvili equation. Phys. Rev. Lett.
99 (6), 064103.

BionDINI, G., HOEFER, M. A. & MoORO, A. 2020 Integrability, exact reductions and special solutions of
the KP—-Whitham equations. Nonlinearity 33, 4114-4132.

BionDINI, G. & Kobama, Y. 2003 On a family of solutions of the Kadomtsev-Petviashvili equation
which also satisfy the Toda lattice hierarchy. J. Phys. A 36 (42), 10519-10536.

BionpinI, G., MaruNoO, K.-I., Oikawa, M. & Tsui, H. 2009 Soliton interactions of the
Kadomtsev—Petviashvili equation and generation of large-amplitude water waves. Stud. Appl. Maths
122 (4), 377-394.

BionDINI, G. & TROGDON, T. 2017 Gibbs phenomenon for dispersive PDEs on the line. SIAM J. Appl.
Maths 77 (3), 813-837.

CHAKRAVARTY, S. & KoDaMA, Y. 2009 Soliton solutions of the KP equation and application to shallow
water waves. Stud. Appl. Maths 123 (1), 83-151.

CHAKRAVARTY, S., McDowEeLL, T. & OsSBORNE, M. 2017 Numerical studies of the KP line-solitons.
Commun. Nonlinear Sci. Numer. Simul. 44, 37-51.

CoORNISH, V. 1910 Waves of the Sea and Other Water Waves. T. Fisher Unwin.

CouRrANT, R. & FrIEDRICHS, K. O. 1948 Supersonic Flow and Shock Waves. Springer.

FunakosHI, M. 1980 Reflection of obliquely incident solitary waves. J. Phys. Soc. Japan 49 (6),
2371-2379.

GILMORE, F. R., PLESSET, M. S. & CROSSLEY, H. E. 1950 The analogy between hydraulic jumps in
liquids and shock waves in gases. J. Appl. Phys. 21 (3), 243-249.


https://doi.org/10.1017/jfm.2020.952
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. University of Colorado Boulder, on 29 Dec 2020 at 14:24:42, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms,

https://doi.org/10.1017/jfm.2020.952

909 A24-32 . Ryskamp, M. D. Maiden, G. Biondini and M. A. Hoefer

Grava, T., KLEIN, C. & PI1TTON, G. 2018 Numerical study of the Kadomtsev—Petviashvili equation and
dispersive shock waves. Proc. R. Soc. Lond. A 474 (2210), 20170458.

GriMsHAW, R. 1981 Evolution equations for long, nonlinear internal waves in stratified shear flows. Stud.
Appl. Maths 65 (2), 159-188.

JAcksoN, C. R. 2004 An atlas of internal solitary-like waves and their properties. Tech. Rep. Global Ocean
Associates, 2nd edn.

JoHNSON, R. S. 1997 A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge
University Press.

KADOMTSEV, B. B. & PETVIASHVILIL, V. I. 1970 On the stability of solitary waves in weakly dispersing
media. Sov. Phys. Dokl. 15 (6), 753-756.

Kao, C.-Y. & Kobpama, Y. 2012 Numerical study of the KP equation for non-periodic waves. Math.
Comput. Simul. 82 (7), 1185-1218.

KLEIN, C., SPARBER, C. & MARKowICH, P. 2007 Numerical study of oscillatory regimes in the
Kadomtsev—Petviashvili equation. J. Nonlinear Sci. 17 (5), 429-470.

Ko, K. & KuUEgHL, H. H. 1979 Cylindrical and spherical Korteweg-de Vries solitary waves. Phys. Fluids
22 (7), 1343-1348.

Kopama, Y. 2004 Young diagrams and N-soliton solutions of the KP equation. J. Phys. A: Math. Gen. 37
(46), 11169-11190.

KobaMaA, Y. 2010 KP solitons in shallow water. J. Phys. A: Math. Gen. 43 (43), 434004.

Kobpama, Y., Oikawa, M. & Tsuii, H. 2009 Soliton solutions of the KP equation with V-shape initial
waves. J. Phys. A: Math. Gen. 42 (31), 312001.

Kopama, Y. & YEH, H. 2016 The KP theory and Mach reflection. J. Fluid Mech. 800, 766-786.

KREHL, P. & VAN DER GEEST, M. 1991 The discovery of the Mach reflection effect and its demonstration
in an auditorium. Shock Waves 1, 3—15.

LEE, S.-J. & GrIMSHAW, R. H. J. 1990 Upstream advancing waves generated by three-dimensional
moving disturbances. Phys. Fluids A 2 (2), 194-201.

L1, W., YEH, H. & KopaMA, Y. 2011 On the Mach reflection of a solitary wave: revisited. J. Fluid Mech.
672, 326-357.

L1, Y. & ScLavoUNOS, P. D. 2002 Three-dimensional nonlinear solitary waves in shallow water generated
by an advancing disturbance. J. Fluid Mech. 470, 383-410.

MAcH, E. & WoSYKA, J. 1875 Uber einige mechanische Wirkungen des electrischen Funkens. Sitz. ber.
Akad. Wiss. Wien 72, 44-52.

MELVILLE, W. K. 1980 On the Mach reflexion of a solitary wave. J. Fluid Mech. 98 (2), 285-297.

MILES, J. W. 1977a Obliquely interacting solitary waves. J. Fluid Mech. 79 (01), 157-169.

MILES, J. W. 1977b Resonantly interacting solitary waves. J. Fluid Mech. 79 (01), 171-179.

NAKAMURA, A & CHEN, H.-H. 1981 Soliton solutions of the cylindrical KdV equation. J. Phys. Soc.
Japan 50 (2), 711-718.

NEU, J. C. 2015 Singular Perturbation in the Physical Sciences. American Mathematical Society.

NasH, I. D. & Moum, J. N. 2005 River plumes as a source of large-amplitude internal waves in the
coastal ocean. Nature 437, 400-403.

Pan, J., Jay, D. A. & OrTON, P. M. 2007 Analyses of internal solitary waves generated at the Columbia
River plume front using SAR imagery. J. Geophys. Res.: Oceans 112 (C7), C07014.

PERROUD, P. H. 1957 The solitary wave reflection along a straight vertical wall at oblique incidence.
Institute of Engineering Research. Wave Research Laboratory. Tech. Rep. 99. University of
California, Berkeley.

PoruBov, A. V., Tsuil, H., LAvRENTOV, 1. V. & O1kawa, M. 2005 Formation of the rogue wave due
to nonlinear two-dimensional waves interaction. Wave Motion 42, 202-220.

RUSSELL, J. S. 1845 Report on Waves. pp. 360-361, Plate LIV. British Association for the Advancement
of Science.

SMOLLER, J. 1994 Shock Waves and Reaction-Diffusion Equations. Springer.

TANAKA, M. 1993 Mach reflection of a large-amplitude solitary wave. J. Fluid Mech. 248, 637-661.

Tsun, H. & O1kawa, M. 2007 Oblique interaction of solitons in an extended Kadomtsev—Petviashvili
equation. J. Phys. Soc. Japan 76 (8), 084401.


https://doi.org/10.1017/jfm.2020.952
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. University of Colorado Boulder, on 29 Dec 2020 at 14:24:42, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms,

https://doi.org/10.1017/jfm.2020.952

Evolution of truncated and bent gravity wave solitons 909 A24-33

WANG, C. & PawLowicz, R. 2012 Oblique wave-wave interactions of nonlinear near-surface internal
waves in the Strait of Georgia. J. Geophys. Res.: Oceans 117 (C6), C10021.

WANG, C. & PawLowIcz, R. 2017 Internal wave generation from tidal flow exiting a constricted opening.
J. Geophys. Res.: Oceans 122 (1), 110-125.

Yuan, C., GRiMsHAW, R., JOHNSON, E. & WANG, Z. 2018 Topographic effect on oblique internal
wave—wave interactions. J. Fluid Mech. 856, 36-60.


https://doi.org/10.1017/jfm.2020.952
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

	1 Introduction
	2 Basic properties of the modulation equations
	3 Partial and truncated line solitons
	3.1. Partial line solitons
	3.2. Truncated line solitons

	4 Bent-stem and bent line solitons
	4.1. Partially bent solitons
	4.2. Bent-stem solitons
	4.3. Bent solitons
	4.4. Regular and Mach expansions

	5 Discussion and conclusion
	Appendix A. Derivation of the soliton modulation equations
	Appendix B. Numerical integration of the KP equation
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


