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ABSTRACT
Interaction enables users to navigate large amounts of data e�ec-
tively, supports cognitive processing, and increases data representa-
tionmethods. However, there have been few attempts to empirically
demonstrate whether adding interaction to a static visualization
improves its function beyond popular beliefs. In this paper, we ad-
dress this gap. We use a classic Bayesian reasoning task as a testbed
for evaluating whether allowing users to interact with a static visu-
alization can improve their reasoning. Through two crowdsourced
studies, we show that adding interaction to a static Bayesian rea-
soning visualization does not improve participants’ accuracy on a
Bayesian reasoning task. In some cases, it can signi�cantly detract
from it. Moreover, we demonstrate that underlying visualization
design modulates performance and that people with high versus
low spatial ability respond di�erently to di�erent interaction tech-
niques and underlying base visualizations. Our work suggests that
interaction is not as unambiguously good as we often believe; a
well designed static visualization can be as, if not more, e�ective
than an interactive one.
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1 INTRODUCTION
Interaction is core to visualization design and is a vital mode of
communication between the user and visual system. In the visual-
ization community, the study of interaction ranges from de�ning
interaction [10, 21, 45], to understanding the interplay between
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interaction and cognition [27, 34], to leveraging user interactions to
improve analytics [5, 13]. However, investigations into the value of
adding interaction to a static design are rare and results are varied.

In some cases, the value-add of interaction to visualization is
clear. In The Value of Visualization van Wijk explains “interaction
is generally considered as good", and argues that it is invaluable
to tasks such as allowing users to explore more data than can �t
on a screen, and to customizing new visualization methods [42].
Heer and Shneiderman echo this sentiment in their taxonomy of
interactive dynamics for visual analysis [21]. Additionally, it has
been argued that interaction is valuable due to its ability to amplify
or illustrate user cognition [27, 34, 45]. A recent study by Zhi et
al. found that adding interaction to a storytelling visualization
increased engagement [46]. Studies of multimedia instruction have
shown that interactivity can increase deep learning and learning
transfer [14, 43].

However, the literature does not uniformly support interaction
as an indisputable means of improving visualization. In fact, in
The Value of Visualization immediately after expressing the “good"
aspects of interaction van Wijk states that “one could advocate the
opposite: interaction should be avoided,” and explains that interac-
tion can negatively impact visualization by increasing subjectivity,
and the user’s perceptual and exploration costs [42]. Lam designed
a framework that accounts for potential costs of interaction in infor-
mation visualization, and encourages designers to weigh the cost
against potential gains [25]. A study by Theis et al. [39] comparing
task performance on interactive and static uncertainty visualiza-
tions found no signi�cant di�erence in error rate between the two.
And a study by Ragan et al. [35] comparing outcomes of a pictorial
learning activity given an interactive or automatic view control
found no signi�cant di�erences between the two.

In this paper, we investigate the following research question:
“What value can interaction add to a static Bayesian reasoning
visualization?” We use a Bayesian reasoning task, because it is
a well de�ned but di�cult reasoning problem, with a clear-cut
correct answer [23, 29, 32]. Moreover, Bayesian reasoning can be
summarized quite succinctly by conditional probabilities and Bayes
rule, however this often fails to adequately communicate the real
world situation represented by these numbers [17]. As a result,
there has been a plethora of research on communicating Bayesian
reasoning through static visualization [2, 4, 7, 8, 15–17, 22–24, 29,
31, 32, 36, 38, 41].

In addition to being an open problem area, communicating
Bayesian reasoning is an ideal test bed for interaction because
interaction is not imperative to the e�ectiveness of a Bayesian
reasoning visualization like it is for most visual analytic systems,
which are built to analyze large amounts of data. Static Bayesian
reasoning visualizations typically do not represent more data than
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can �t on one screen. Thus, adding interaction does not add any
otherwise obscured information to the visualization, it simply high-
lights or draws connections between information already present.
This allows us to to isolate the value-add of interaction independent
of data exploration and sensemaking.

Based on prior work [23, 24, 29, 32, 41], we postulate that inter-
action can facilitate visual Bayesian reasoning, but its e�ects are
modulated by: (1) the interaction technique, and (2) the visualization
design. Moreover, we expect to see di�erent e�ects for people with
high versus low spatial ability [32]. In this work, we aim to gain a
better understanding of how these factors a�ect the value-add of
interaction to a static Bayesian reasoning visualization.

To this end, we run two Amazon Mechanical Turk studies. Ex-
periment 1 investigates the e�ect of adding interactive checkboxes
to three di�erent static (or base) visualizations, which range in their
use of Gestalt principles to e�ectively depict sub-populations of in-
terest in a Bayesian reasoning task. Analysis of Experiment 1 shows
that adding interactive checkboxes to a static Bayesian reasoning
visualization does not signi�cantly impact participants’ reasoning
accuracy. Moreover, we do not �nd a case in which interaction
signi�cantly improves participants’ performance. Experiment 2
investigates the same three base visualizations, and expands the
number of interaction techniques tested (two types of checkboxes,
drag and drop, hover, and tooltips). In our analysis of Experiment
2, we again do not �nd any cases in which interaction signi�cantly
improves participants’ performance on Bayesian reasoning. More-
over, we �nd that for participants with high spatial ability, hover
signi�cantly decreases performance.

To summarize, we make the following contributions:
(1) We demonstrate that adding interaction to a static Bayesian

reasoning visualization can (under certain circumstances)
decrease users’ accuracy on a Bayesian reasoning task.

(2) We provide empirical and observational evidence that the
value-add of interaction to a static Bayesian reasoning vi-
sualization is dependant on two factors: design of the static
visualization, and interaction technique.

(3) We show that adding interaction to a static Bayesian rea-
soning visualization can lower accuracy of people with high
spatial ability on a Bayesian reasoning task, and generally
does not e�ect accuracy of people with low spatial ability
on a Bayesian reasoning task.

2 RELATEDWORK
Interaction and Bayesian Reasoning are widely studied areas in
visualization, but they are typically studied in isolation from each
other. This paper focuses on the intersection of these two areas. By
using Bayesian reasoning as a test bed for interaction techniques,
we add to the body of knowledge on interactivity, and Bayesian
reasoning visualizations. The following sections discuss related
work studying the value add of interaction, Bayesian reasoning
visualizations, and the intersection of the two.

2.1 Value add of interaction
Recent work by Dimara and Perin [10] de�nes interaction (in visu-
alization) as “the interplay between a person and a data interface
involving a data-related intent, at least one action from the person

and an interface reaction that is perceived as such.” Similarly, Yi
et al. [45] and Heer and Shneiderman [21] construct taxonomies
of interactions for visualization. Others have endeavored to better
explain why interaction is useful to visualization from a cognitive
processing standpoint [27, 34]. In addition to theorizing and catego-
rizing interaction, work has been done designing novel interaction
techniques, for example [6, 18, 26, 44], and identifying how visual-
ization designers can leverage interaction to learn about users and
create customized visualizations [5, 13].

The majority of work on de�ning, categorizing, theorizing, and
leveraging interaction for visualization focuses on visual analytic
systems built to help users explore large amounts of data. The
value-add of interaction in such cases is relatively clear; actions
such as panning, zooming, and selecting subsets are indisputably
essential to exploring datasets too large to reasonably �t on a sin-
gle screen [21, 42]. Although there are potential costs to interac-
tion [25, 42], in the case of visual analytic systems, these are often
outweighed by bene�ts. Furthermore, in visual analytic systems
interaction is often seen as an essential support for users’ cognitive
processing; it is viewed as the embodiment of sensemaking and
knowledge discovery [27, 33, 34, 45]. In contrast, the value-add
of interaction to static visualizations is not clear cut. Here we are
speci�cally referring to interactions that do not reveal otherwise
hidden data; i.e. they do not add any information to the visualiza-
tion. This consideration is vital because the reasoning problems
that we consider in this paper are notoriously di�cult and studies
suggest that adding interaction to a challenging task can result in
cognitive overload [28].

There is a sampling of prior work that are relevant to the in-
vestigations in this paper. For example, Zhi et al. [46] found that
adding interaction through brushing and linking to a storytelling
visualization increased engagement. Theis et al. [39] compared
static and interactive versions of an uncertainty data visualization
and concluded based on accuracy and speed that the static visu-
alization was preferable to its interactive counterpart. Ragan et
al. [35] compared comprehension and detail recall in a pictorial
learning activity across interactive versus automatic view controls,
and found no signi�cant di�erences between the two. Note that all
of these studies include an A-B test between one static and one in-
teractive visualization. Our work adds nuance to this body of work
by investigating the value-add of interactivity with a multi-factor
experimental design.

2.2 Bayesian Reasoning
An area in which Bayesian reasoning problems are prevalent is
medical decision making. The standard example of a Bayesian rea-
soning problem in this context is the mammography problem [17]:

The probability of breast cancer is 1% for women at
age forty who participate in routine screening. If a
woman has breast cancer, the probability is 80% that
she will get a positive mammography. If a woman
does not have breast cancer, the probability is 9.6%
that she will also get a positive mammography.
A woman in this age group had a positive mammogra-
phy in a routine screening. What is the probability that
she actually has breast cancer?
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Using conditional probabilities and Bayesian reasoning to solve
this problem is di�cult for patients and physicians alike [11]. Given
the importance of accurate medical risk communication and under-
standing, numerous studies have investigated how to aid people
in Bayesian reasoning. One common approach is to change the
text from probability format to frequency format [17, 41]. Another
approach is visualization.

Numerous studies have investigated the e�ect of visualization
on Bayesian reasoning with a variety of di�erent designs. Di�erent
techniques tested include Euler diagrams [4, 22, 23, 29], frequency
grids or icon arrays [2, 16, 22, 23, 29, 31, 36, 41], decision trees [2,
15, 23, 36, 38], “beam cut" diagrams [17], probability curves [7],
contingency tables [7, 8], double trees [2, 23, 24], �ow charts [23],
pipe diagrams [23], Sankey diagrams [23], and unit squares [2].

Despite all of these studies, there is still no clear consensus on
the best visualization for Bayesian reasoning. Several studies com-
pared multiple Bayesian reasoning visualizations to each other and
to text [23, 29, 32]. All of these studies found that visualization did
not signi�cantly improve users’ accuracy in performing a Bayesian
reasoning task compared to text. Findings from Ottley et al. and
Micallef et al. indicate that there may be a detrimental e�ect on
users’ ability to perform Bayesian reasoning when visualizations
and numerical text descriptions are presented together [29, 32]. Ot-
tley et al. [32] shed light on a signi�cant performance gap between
people with high and low spatial ability on a Bayesian reasoning
task, and indicated that optimal visualization and text designs for
people with high spatial ability di�er from those for people with
low spatial ability.

To the best of our knowledge, only two studies have investi-
gated the e�ect of interactive Bayesian reasoning visualizations,
and the results are con�icting. Tsai et al. [41] tested a frequency
grid with interactive checkboxes against textual descriptions of the
Bayesian reasoning problem. They found the interactive frequency
grid resulted in a signi�cant increase in accuracy compared to a
textual description of the problem with statistics in probability for-
mat. Khan et al. [24] compared a static and interactive double tree
diagram of the Bayesian reasoning problem. They added interaction
via drag and drop, and found the interactive double tree diagram
signi�cantly decreased accuracy in performing the Bayesian rea-
soning task compared to static. Our goal is to provide context for
these con�icting results. By identifying how static visualization
design and users’ spatial ability a�ect the value-add of interaction
to a static visualization, we can shed light on confounding factors
that may explain di�erences in prior results.

3 RESEARCH GOALS
Given con�icting prior results on how interaction impacts Bayesian
reasoning visualizations, the overarching goal of this paper is to
empirically test whether adding interaction to a static Bayesian rea-
soning visualization can improve performance on a reasoning task.
We hypothesize that the mixed results of prior work are partially
due to confounding factors between experiments, such as under-
lying visualization designs. Additionally, based on work by Ottley
et al. [32] which demonstrates that spatial ability is a signi�cant
predictor of one’s accuracy on Bayesian inference, we expect to
see di�erent e�ects of adding interaction to a Bayesian reasoning

visualization across di�erent levels of spatial ability. Speci�cally,
we investigate the following:

RQ1: Does adding interaction to a static visualization im-
prove accuracy on a Bayesian reasoning task?
RQ2: Is the e�ect of interaction modulated by the e�ective-
ness of the underlying static visualization?
RQ3: Do users with di�erent levels of spatial ability react to
an interactive Bayesian reasoning visualization di�erently?

In the remainder of this paper we describe two crowdsourced
experiments designed to begin answering these research questions.
These experiments are a step towards a deeper understanding of
interaction in visualization. By empirically demonstrating what
speci�c factors lead to performance gains and losses when making
a static visualization interactive, we hope to lay the ground work for
better interactive visualization design with evidence-based design
guidelines.

4 EXPERIMENT 1
Although interaction is commonly used in data visualization, e�orts
to de�ne interactivity are ongoing [10]. Additionally, there is no con-
sensus on the best visualization for Bayesian reasoning [23, 29, 32].
As a result, the design space for interactive Bayesian reasoning visu-
alizations is large. For this experiment, we simplify the visualization
design space by focusing on variants of icon arrays – one of the most
popular and well-studied visualizations in this context [29, 30, 32].
Guided by prior work on interactive Bayesian reasoning visualiza-
tions that found positive results [41], we narrow the interaction
design space to a single category, checkboxes. In short, this experi-
ment examines whether adding interactive checkboxes to variations
of static icon arrays improves accuracy in a Bayesian reasoning
task.

4.1 Visualization Designs
We present users with a Bayesian reasoning problem concerning a
disease in the population and the false positive and negative rates
associated with testing for the disease (Section 4.2). Each stimulus
is an icon array that encodes the four key sub-populations of the
problem: H��� D������, D� N�� H��� D������, T��� P�������,
and T��� N�������. Examples of interactive and static stimuli are
shown in Table 1. Below, we describe each experimental factor:

• Base Visualization: { grouped, aligned, randomized }
• Interaction: { checkboxes, static }

4.1.1 Base Visualizations. We observe three primary designs of
icon arrays in the literature which are loosely based on theories for
how to facilitate Bayesian reasoning. For example, some researchers
propose that representing randomness can more accurately commu-
nicate the inherent uncertainly in the problem space [19]. Others
hypothesize that spatially grouping visual elements aids reason-
ing [29]. Based on these theories, we design three variations for icon
arrays by changing the types of contextual placements of icons (see
examples in Table 3). Following guidelines of Bertin [1], background
color was used to di�erentiate between members of the population
who H��� D������ versus D� N�� H��� D������, and icon color
was used to di�erentiate between members of the population who
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Table 1: Three interactive and static conditions used inExperiment 1. Full size images are available in supplementarymaterials.

T��� P������� versus T��� N�������. The base visualizations dif-
fered in their use of Gestalt principles [9] to perceptually group
the sub-populations in the Bayesian reasoning problem. Each base
visualization design is described in detail below:

Grouped: The grouped icon array uses spatial grouping. It
shows the sub-populationsH��� D������ and D� N��H���
D������ in two separate grids of icons. Additionally, the
T��� P������� sub-population is in a block aligned at the top
left of the visualization. This design is similar to the hybrid
Euler-frequency grid diagram used by Micallef et al. [29].
Aligned: The aligned icon array shows all icons in one 5 X 20
grid. It aligns the sub-population H��� D������ in a block at
the top left of the grid, and the sub-population T��� P�������
in a block at the top middle of the grid. A similar design was
used by Brase et al. [4], and Ottley et al. [30, 32].
Randomized: The randomized icon array does not spatially
group any sub-populations; icons representing members of
each of the four sub-populations are randomly distributed
in a 5 X 20 grid. Similar designs are used in medical risk
communication by Han et al. [19].

4.1.2 Interaction. We add checkboxes to traditional icon arrays
which allow the user to hide or show visual elements, and create a
more explicit link between the text and the graphical encodings. We
chose the checkbox interaction (1) for continuity with (and replica-
tion of) prior work [41], which found positive results from adding
checkboxes to a Bayesian reasoning visualization; and (2) because
the checkboxes enable participants to manipulate the visualization
such that it directly encodes the answer to the Bayesian reasoning
question without any additional distractors i.e. users can remove
all information irrelevant to answering the questions posed.

As a default, when the interactive visualizations loaded on the
page all checkboxes were checked, meaning the interactive visual-
izations initially look identical to the static version. When using
the checkboxes, one of {H��� D������, D� N�� H��� D������} as
well as one of {T��� P�������, T��� N�������} had to be checked
for any sub-populations to show on the visualization. The top row
of Table 1 shows an example of what the visualization would show
if everything except T��� N������� were checked. We call this
interaction technique cbAll (i.e. checkboxes where all boxes are
initially checked).

4.2 Task
We run a between-subjects 2 {interaction} � 3 {base visualization}
factor experiment. In the study, participants are asked to answer a
Bayesian reasoning problem given textual and visual representa-
tions. For continuity with prior work, the textual description and
question components of each stimulus were consistent with those
used by Ottley et al. [32]:

Textual description:
There is a newly discovered disease, Disease X, which is
transmitted by a bacterial infection found in the population.
There is a test to detect whether or not a person has the
disease, but it is not perfect. Here is some information about
the current research on Disease X and e�orts to test for the
infection that causes it.
There is a total of 100 people in the population. Out of the 100
people in the population, 6 people actually have the disease.
Out of these 6 people, 4 will receive a positive test result
and 2 will receive a negative test result. On the other hand,
94 people do not have the disease (i.e., they are perfectly
healthy). Out of these 94 people, 16 will receive a positive
test result and 78 will receive a negative test result.
Questions:
(a) How many people will test positive? _ _ _
(b) Of those who test positive, how many will actually have
the disease? _ _ _

4.3 Participants
We recruited 530 participants from Amazon Mechanical Turk. Par-
ticipation was restricted to workers in the United States with an
approval rating of greater than 90 percent. Participants were paid a
base rate of $1.80 for participation plus a bonus of $0.10 for every
correct answer.

Before analysis, participants who skipped entire sections of the
experiment or did not follow instructions (# = 3), and participants
who self-identi�ed as colorblind (# = 55) were dropped from the
data set. This left # = 472 participants distributed among stimuli
as shown in Table 2. Demographics of participants are shown in
Table 3.
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4.4 Procedure
The experiment followed an approved protocol per redacted for
anonymity’s IRB, and was posted as a HIT on Amazon Mechan-
ical Turk. Workers who accepted the HIT followed a link to the
experiment. After providing informed consent, participants were
taken to an instruction page explaining the experiment. This page
demonstrated what the legend for a static visualization would look
like versus the cbAll legend. After the instruction page, participants
were shown one of the six experimental stimuli. Participants could
take as much time with the stimulus as they wanted before click-
ing a button to view the questions to answer. After completing
the main task, participants were asked to complete a short demo-
graphic questionnaire, the paper folding test (VZ-2) from Ekstrom,
French, & Hardon [12] to measure spatial ability1, and to provide
any additional feedback they wished.

grouped aligned randomized Total
cbAll 64 100 82 246
static 86 70 70 226
Total 150 170 152 472

Table 2: Sample size (N) for each condition in Experiment 1.

N 472

Age 18-24: 6.4%, 25-39: 64.4%, 40-49: 17.2%,
50-59: 7.6%, 60+: 4.4%

Gender Female: 38.3%, Male: 61.0%,
Non-Binary: 0.8%

Education High School: 28.6%, Bachelors: 56.6%,
Masters: 10.2%, PhD: 1.5%, Other: 3.2%

Expertise with
Statistical
Visualization

Novice: 21.4%, Low-intermediate: 20.1%,
Intermediate: 32.3%,
High-intermediate: 17.4%, Expert: 8.5%

Statistical Training
1(none) -
5 (highly trained)

1: 32.4%, 2: 22.5%, 3: 16.7%,
4: 15.3%, 5: 12.5%

Table 3: Experiment 1 participant demographics.

4.5 Research Questions
We analyze data from Experiment 1 to answer these questions:

Q1.1 Does adding interaction to a static visualization
improve accuracy on Bayesian reasoning task? We in-
vestigate whether participants who use an interactive visu-
alization will be more accurate in answering the Bayesian
reasoning question than participants who saw a static visu-
alization.
Q1.2 Is the e�ect of interaction modulated by the un-
derlying static visualization design?We investigatewhether
di�erences in accuracy will be modulated by the base visual-
ization design (grouped, aligned, randomized).

1Due to space constraints, spatial ability analysis for Experiment 1 is included in
supplemental materials.

4.6 Findings
For analysis, participants’ answers were considered correct only if
they answered both parts of the two-part question correctly (this
approach is consistent with prior work [30, 32]). Our analysis script
is included in supplemental materials, however under the guidelines
of our IRB we are unable to release the data.

4.6.1 Does adding interaction to a static visualization im-
prove accuracy on Bayesian reasoning task? Figure 1 shows
proportions of participants answering the Bayesian reasoning ques-
tion correctly in the cbAll and static conditions. We observe 53%
of the participants in the cbAll condition entered the correct an-
swers, whereas the static visualization had a 57% correct response
rate. We perform a 2-sample test for equality of proportions of
022DA02~ ⇠ 8=C4A02C8E4_>A_BC0C82 with the null hypothesis that
there is no di�erence in proportions of correct answers. We �nd
no statistically signi�cant di�erence in accuracy between partic-
ipants using the cbAll versus the static visualization (j2 (1,# =
472) = 0.69, ? = 0.41), and therefore fail to reject the null hypothe-
sis. Ultimately, we found no evidence that adding interaction improves
accuracy on a Bayesian reasoning task.

Figure 1: Proportion of participants answering the Bayesian
reasoning task correctly given an interactive (cbAll) versus
static visualization. Bars represent a 95% logit transformed
con�dence interval.

Figure 2: Proportion of participants assigned to cbAll an-
swering the Bayesian reasoning task correctly grouped by
if they interacted or not. Bars represent a 95% logit trans-
formed con�dence interval.

Next, we look at how many participants in the cbAll condi-
tion interacted with the visualization they saw. Out of the 246
participants assigned to cbAll, only 43% used the checkboxes on
the visualization. Seventy percent of the participants who inter-
acted with the visualization answered correctly, while only 40% of
those who did not interact answered correctly, as shown in Fig-
ure 2. We perform a 2-sample test for equality of proportions of
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022DA02~ ⇠ 8=C4A02C43_>A_=>C with the null hypothesis that there
is no di�erence in proportions of correct answers. We �nd a sta-
tistically signi�cant di�erence in accuracy between participants
who did and did not interact with the cbAll visualization (j2 (1,# =
246) = 21.63, ? < 0.001), and therefore reject the null hypothesis.
The 95% con�dence interval (using Wilson’s score method) for the
di�erence between the proportions is [�43.48,�18.04]. Taken to-
gether with the previous �nding, this suggests that simply adding
interaction does not guarantee use. However, the act of interacting
may improve performance on a Bayesian reasoning task. We note
future work is needed to isolate if this is an artifact of participant
engagement, or an e�ect of interacting.

Figure 3: Proportion of participants answering the Bayesian
reasoning task correctly by base visualization. Bars repre-
sent a 95% logit transformed con�dence interval.

Figure 4: Proportion of participants answering the Bayesian
reasoning task correctly by interaction and base visualiza-
tion. Bars represent a 95% logit transformed con�dence in-
terval.

4.6.2 Is the e�ect of interaction modulated by the under-
lying static visualization design? To investigate whether base
visualization design has an e�ect on participants’ accuracy we per-
form a 3-sample test for equality of proportions of 022DA02~ ⇠
10B4_E8BD0;8I0C8>= with the null hypothesis that there is no dif-
ference in proportions of correct answers. We �nd no signi�cant
di�erence in accuracy by base visualization (j2 (2,# = 472) =
2.15, ? = 0.34), and therefore fail to reject the null hypothesis. As

shown in Figure 3, we observe near-equal proportions of correct
answers for the three base representations, suggesting that the
variations in the design of icon arrays had no signi�cant e�ect on
accuracy.

To investigate if there is an interaction e�ect between base vi-
sualization and whether a visualization is interactive or static we
perform a 6-sample test for equality of proportions of 022DA02~ ⇠
{10B4_E8BD0;8I0C8>=}- {8=C4A02C8E4_>A_BC0C82}with the null hypoth-
esis that there are no di�erences in proportions of correct answers.
We �nd no signi�cant di�erence (j2 (5,# = 472) = 6.42, ? = 0.27),
and therefore fail to reject the null hypothesis. This suggests that the
value-add of interaction may not be modulated by base visualization
design.

Notably, Figure 4 shows proportions of correct answers are
nearly identical given all combinations of base visualization and
interactive or static, but that the proportion of correct answers is
smaller on average for participants assigned the cbAll version of
the randomized visualization. While this di�erence is not statisti-
cally signi�cant, we note that practically speaking it is important to
consider; particularly in the case of medical risk decision making,
where small improvements on this task can lead to more informed
and autonomous medical decisions.

4.7 Discussion
Although it is a common belief that interactivity adds value to visu-
alizations, investigations into it merits can reveal essential insights
about the pros, cons, or missed opportunities in interactive visual-
ization design. In this experiment, we used Bayesian reasoning – a
problem that is notoriously challenging for the general population
– and showed that adding interactive checkboxes to a Bayesian
reasoning visualization does not signi�cantly improve reasoning
accuracy. Moreover, in this experiment we observe cases where
adding interaction decreases average performance on the Bayesian
reasoning. Though these di�erences are not statistically signi�cant,
the lack of a clear value add suggests future work should continue
to investigate the potential costs and bene�ts of interaction in this
setting.

Our analyses suggest that there may not be a value-add to mak-
ing a static visualization interactive. Moreover, our observational
�ndings suggest that the e�ect of adding interactivity to a static
visualization may depend on the design of the visualization itself.
We used three variations of icon arrays based on theories for how
to facilitate Bayesian reasoning: grouped, aligned, and randomized.
We observed nearly identical accuracy between the interactive
and static versions of the grouped and aligned designs, and an in-
signi�cant, but practically relevant, decrease in accuracy for the
interactive version of the randomized design. We speculate that
one rationale for this outcome is that the combination of a chal-
lenging Bayesian problem with randomness and interactivity may
have induced an extraneously high cognitive load. Some experts
caution that adding interactivity to a signi�cantly complicated task
can result in cognitive overload [28]. Due to the lack of perceptual
grouping, the randomized base visualization induces more cogni-
tive load than the grouped and aligned bases. Based on this and
our observational �ndings, we postulate that adding interaction
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to the randomized base may have caused cognitive overload in
participants.

An important observation is that a sizable portion of our study
population assigned to the interactive visualization did not interact
with it (57%). There are a combination of factors that can explain
this result. No interaction could be indicative of participants who
were either confused about the task or were simply clicking through
to get paid, as discussed in Section 4.6.1. Alternatively, it is possible
that participants did not want to interact. Existing work indicates
that people may not engage with interactive visualizations as much
as previously thought [3] and there have been reports of media
venues such as The New York Times, scaling back their creation
of interactive visualization in lieu of static images2. While under-
standing if there is a value-add of interaction is an important step
to user-centered interactive visualization design, we recognize that
understanding users’ perceived value of interaction is also crucial.

5 EXPERIMENT 2
The �ndings of Experiment 1 suggest that adding a checkbox inter-
action to a static Bayesian reasoning visualization has little to no
e�ect on reasoning accuracy. Experiment 2 expands on this study by
exploring the e�ect of di�erent interaction techniques. Speci�cally,
we compare the e�ects of adding two types of checkboxes, drag and
drop, hover, and tooltips to the three icon array base visualizations
used in Experiment 1.

5.1 Visualization Designs
Consistent with Experiment 1, each stimulus is an icon array that
encodes the four key sub-populations in the Bayesian reasoning
problem. Examples of stimuli are shown in Table 4. Below, we
describe each experimental factor:

• Base Visualization: {grouped, aligned, randomized}
• Interaction Technique: {checkboxes, drag and drop, hover,
tooltips}

5.1.1 Base Visualizations. We use the same three icon array de-
signs as Experiment 1 (grouped, aligned, randomized).

5.1.2 Interaction Techniques. We test �ve di�erent interaction
techniques. We chose three of them (two types of checkboxes, and
drag and drop) for consistency with prior work [24, 41], and two
additional techniques representative of the well known “overview
�rst, zoom and �lter, details on demand" mantra of visualization
design [37].We chose hover as an interaction representative of zoom
and �lter, and tooltips as a representative of details on demand.

We recognize that even within the constraints of these �ve inter-
action techniques there are countless ways to design an interactive
Bayesian reasoning visualization. Our goal in designing each in-
teraction (similar to Experiment 1) was to enable participants to
remove information irrelevant to answering the Bayesian reasoning
question from the visualization, or to allow participants to more
easily integrate information shown in the visualization and text.
Below, we describe the implementation and design goals of each
interaction technique:

2Why We Are Doing Fewer Interactives (Archie Tse, The New York Times):
https://github.com/archietse/malo�ej-2016/blob/master/tse-malo�ej-2016-slides.pdf

Checkbox All: We included checkboxes in Experiment 2
for continuity with Experiment 1, and consistency with
prior work [41]. We modify the interaction from Experi-
ment 1 such that any sub-population “checked" on the leg-
end is shown on the visualization with color, and any sub-
population “unchecked" on the legend is shown on the visu-
alization with light grey placeholders. This enabled partici-
pants to check o� only populations explicitly mentioned in
the Bayesian reasoning question (H��� D������ and T���
P�������) in order to answer it. In contrast, the implemen-
tation of checkboxes in Experiment 1 required participants
to check o� H��� D������, D� N�� H��� D������, and
T��� P������� in order to answer the Bayesian reasoning
question.
Checkbox None: Checkbox None (cbNone) is identical to
cbAll, except all checkboxes are unchecked by default. In
other words, the page loads with only light grey placeholders
shown on the visualization.
Drag and Drop: Drag and drop (drag) is a direct manipu-
lation interaction. It was chosen to be consistent with in-
teraction tested in prior work [24]. We designed drag with
the intent of providing the same direct encoding bene�ts as
checkboxes. In practice, drag functions identically to cbNone
except that participants drag legend labels onto and o� of
the visualization.
Hover: Hover (hover) is a �lter interaction. Prior studies sug-
gest that users struggle to integrate text and visualization
when performing Bayesian reasoning [29, 30, 32]. We de-
sign hover with intent to help users overcome this hurdle
by drawing a clearer connection between text and visualiza-
tion. As participants hover their mouse over areas of text
describing sub-populations in the visualization, the text and
corresponding sub-population are highlighted.
Tooltip: Tooltips (tooltip) are an example of details on de-
mand. Similar to hover, we design this interaction with the
intent to help users integrate text and visualization more
easily. To facilitate this, we reduce the distance users need
to move their eyes to integrate the text and visualization
by directly overlaying the two. When a participant hovers
their mouse over any icon in the visualization a text box
appears describing to which of the four sub-populations that
particular icon belongs.

It is relevant to note that although these techniques di�er, all
interaction techniques provide the same amount of information as
the static visualization condition. The use of interactions does not
addmore information. Since Bayesian reasoning is themanipulation
of 4 basic values (true positive, true negative, false positive, and
false negative), the goal of the interaction techniques is to help the
user in two ways: (1) isolating values of interest in the visualization,
and (2) drawing connections between the visual representation and
the textual description of the problem.

5.2 Task
We run a between-subjects 5 {interaction techniques} � 3 {base vi-
sualizations} factor experiment. The same textual description and
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Table 4: Five interactive conditions used in Experiment 2. Full size images are available in supplementary materials.

questions as in Experiment 1 (Section 4.2) are used for this experi-
ment.

grouped aligned randomized Total
cbAll 119 129 123 371
cbNone 147 125 122 394
drag 102 115 129 346
hover 131 136 167 434
tooltip 147 154 134 435
Total 646 659 675 1980

Table 5: Sample size (N) for each condition in Experiment 2.

5.3 Participants
We recruited 2,149 participants from Amazon Mechanical Turk.
Participation was restricted to workers in the United States with an
approval rating greater than 90 percent. Participants were paid a
base rate of $0.80 for participation, plus a bonus of $0.10 for every
correct answer.

N 1,980

Age 18-24: 7.8%, 25-39: 50.8%, 40-49: 20.4%,
50-59: 12.5%, 60+: 8.2%

Gender Female: 54.1%, Male: 45.1%,
Non-Binary: 0.5%

Education High School: 27.1%, Bachelors: 49.8%,
Masters: 15.1%, PhD: 1.5%, Other: 6.0%

Expertise with
Statistical
Visualization

Novice: 15.2%, Low-intermediate: 21.4%,
Intermediate: 38.8%,
High-intermediate: 18.5%, Expert: 5.4%

Statistical Training
1(none) -
5 (highly trained)

1: 29.6%, 2: 22.3%, 3: 21.8%,
4: 16.9%, 5: 8.0%

Table 6: Experiment 2 participant demographics.

Participants who skipped entire sections of the experiment or
did not follow instructions (# = 35), and participants who self-
identi�ed as colorblind (# = 134) were dropped from the data set.
This left# = 1, 980 participants distributed among stimuli as shown
in Table 5. Demographics of participants are shown in Table 6.
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5.4 Procedure
Experiment 2 follows the same procedure as Experiment 1 with two
exceptions. First, there is no instruction page, instead instructions
are provided alongside each stimulus. And second, participants are
asked to complete a an additional NASA-TLX [20] survey after the
completion of the main study to measure task di�culty.

5.5 Research Questions
We analyze data from Experiment 2 to answer these questions:

Q2.1 Do di�erent interaction techniques have di�er-
ent e�ects on accuracy in Bayesian reasoning?We test
whether participants who saw any interactive visualization
will be more accurate in answering the Bayesian reasoning
question than participants who saw a static visualization.
Q2.2 Is the e�ect of interaction moderated by inter-
action design and the underlying static visualization
design?We test if di�erences in accuracy will be modulated
by base (grouped, aligned, randomized) visualization design,
and interaction technique (cbAll, cbNone, drag, hover, tooltip).
Q2.3 How does the e�ect of di�erent interaction tech-
niques change given di�erent spatial abilities?We split
participants into high and low spatial ability groups and re-
peat the analyses for Q2.1 within each group.
Q2.4 Does underlying static visualization design mod-
erate the e�ect of interaction techniques within spa-
tial ability groups?We split participants into high and low
spatial ability groups and repeat the analyses forQ2.2within
each group.

5.6 Findings
As in Experiment 1, participants’ answers were considered correct
only if they answered both parts of the two-part question correctly.
In order to compare our interactive visualizations against a static
one, we included the static group from Experiment 1 as an “inter-
action technique" in our analysis (this brings the total number of
participants to # = 2, 206). From here forward the term “interaction
techniques" refers to cbAll, cbNone, drag, hover, tooltip, and static.
Our analysis script is included in supplemental materials, however
under the guidelines of our IRB we cannot release data.

5.6.1 Do di�erent interaction techniques have di�erent ef-
fects on accuracy inBayesian reasoning? Weperform a 6-sample
test for equality of proportions of022DA02~ ⇠ 8=C4A02C8>=_C42⌘=8@D4B
with the null hypothesis that there is no di�erence in proportions of
correct answers. We �nd no statistically signi�cant di�erence in ac-
curacy between participants using di�erent interaction techniques
(j2 (5,# = 2206) = 11.33, ? = 0.05), and therefore fail to reject the
null hypothesis. As shown in Figure 5, we observe similar propor-
tions of correct answers across interactions. This suggests that the
design of an interactive technique does not a�ect the value-add of
interaction.

Similar to Experiment 1, out of the 371 participants assigned
to cbAll, only 44% actually interacted. This proportion was signi�-
cantly higher for all other interactive conditions. For each interac-
tion technique we perform a 2-sample test for equality of propor-
tions of 022DA02~ ⇠ 8=C4A02C43_>A_=>C with the null hypothesis

Figure 5: Portion of participants answering the Bayesian rea-
soning task correctly given each interaction technique. Bars
represent a 95% logit transformed con�dence interval.

Figure 6: Portion of participants answering the Bayesian rea-
soning task correctly by base visualization. Bars represent a
95% logit transformed con�dence interval

that there is no di�erence in proportions of correct answers. In-
terestingly drag is the only condition in which participants who
interacted were signi�cantly more accurate than those who did not
(j2 (1,# = 346) = 18.49, ? < 0.001), and therefore is the only case
in which we reject the null hypothesis. The 95% con�dence interval
(using Wilson’s score method) for the di�erence between propor-
tions is [-38.69, -14.93]. Further analysis is included in supplemental
materials.

5.6.2 Is the e�ect of interaction moderated by interaction
design and the underlying static visualization design? We
compare participants’ accuracy across base visualizations with a 3-
sample test for equality of proportions of022DA02~ ⇠ 10B4_E8BD0;8I0C8>=
with the null hypothesis that there are no di�erences in proportions
of correct answers. We �nd a signi�cant di�erence in accuracy by
base (j2 (2,# = 2206) = 8.09, ? = 0.02), and therefore reject the
null hypothesis. Pairwise comparisons with a Bonferroni corrected
alpha (0.02) show a signi�cant di�erence between the grouped and
randomized bases (j2 (1,# = 1477) = 6.74, ? < 0.01). The 95%
con�dence interval (using Wilson’s score method) for the di�er-
ence between these two proportions is [�12.10,�1.67]. As shown
in Figure 6, the proportion of correct answers in the grouped base is
higher than that for the randomized base. This suggests that design
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of the underlying static visualization has an e�ect on participants’
accuracy in a Bayesian reasoning task.

Figure 7: Portion of participants answering the Bayesian rea-
soning task correctly given each interaction technique and
base visualization. Bars represent 95% logit transformed con-
�dence intervals.

To investigate whether there is an interaction e�ect between base
visualization and interaction technique we perform an 18-sample
test for equality of proportions of022DA02~ ⇠ {10B4_E8BD0;8I0C8>=}- {8=C4A02C8>=_C42⌘=8@D4}
with the null hypothesis that there are no di�erences in proportions
of correct answers. We �nd no signi�cant di�erence (j2 (17,# =
2206) = 27.92, ? = 0.05) and therefore fail to reject the null hypoth-
esis.

Figure 7 shows proportions of participants answering the Bayesian
reasoning task correctly given each combination of base visualiza-
tion design and interaction technique. Similar to Experiment 1, we
observe that any interactive technique added to the randomized
base resulted in lower accuracy on average than the static version
of randomized. This is not the case for the grouped and aligned
bases. Practically speaking, this suggests that the combination of
the randomized base design with interaction may reduce average
accuracy on the Bayesian reasoning task.

5.6.3 Howdoes the e�ect of di�erent interaction techniques
change given di�erent spatial abilities? Prior work demon-
strates that spatial ability is a signi�cant predictor of performance
on a Bayesian reasoning task and that people with low spatial abil-
ity in particular struggle to perform Bayesian inference [32]. Based
on this prior �nding, we assume a di�erence in accuracy for partic-
ipants with high versus low spatial ability and re-run our previous
analyses strati�ed by spatial ability. We assess how people with
high and low spatial ability react to the interaction techniques and
base visualization designs we test.

Participants’ spatial ability scores ranged from �5 to 20. The
median scorewas 6.25. Consistent with prior work [32], we assigned
participants with spatial ability scores greater than or equal to the
median to the high spatial ability group, and participants with
scores less than the median to the low spatial ability group. Figures
8 and 9 plot performance on the Bayesian reasoning task by spatial
ability group (high or low). In both of these �gures we observe

no overlaps in 95% con�dence intervals for proportions of correct
answers of participants with high versus low spatial ability. This
supports our assumption that there is a di�erence in accuracy for
people with high versus low spatial ability. The following sections
report analyses strati�ed by spatial ability group.

First, we perform a 6-sample test for equality of proportions of
022DA02~ ⇠ 8=C4A02C8>=_C42⌘=8@D4 with the null hypothesis that
there are no di�erences in proportions of correct answers, strati�ed
by spatial ability group.

Within the high spatial ability group we �nd a statistically sig-
ni�cant di�erence in accuracy between participants using di�erent
interaction techniques (j2 (5,# = 1114) = 17.76, ? < 0.005), and
therefore reject the null hypothesis. Pairwise tests with a Bonferroni
corrected alpha (0.003) show a signi�cant di�erence between the
hover and static interactions (j2 (1,# = 332) = 12.44, ? < 0.001).
The 95% con�dence interval (using Wilson’s score method) for the
di�erence between these two proportions is [9.43, 30.37]. A larger
proportion of participants with high spatial ability answered the
Bayesian reasoning task correctly using the static visualization
versus the hover visualization (Figure 8).

Within the low spatial ability group we �nd no statistically sig-
ni�cant di�erence in accuracy between participants using di�erent
interaction techniques (j2 (5,# = 1092) = 5.72, ? = 0.33), and
therefore fail to reject the null hypothesis.

These results suggest that for people with high spatial ability, an
interactive hover visualization can signi�cantly decrease accuracy
on Bayesian inference compared to a static visualization. And that
for people with low spatial ability, adding interaction to a static
visualization does not signi�cantly e�ect reasoning accuracy.

Figure 8: Portion of participants answering the Bayesian rea-
soning task correctly by spatial ability (SA) and interaction
technique. Bars represent 95% logit transformed con�dence
intervals.

5.6.4 Does underlying static visualization design moderate
the e�ect of interaction techniqueswithin spatial ability groups?
Within each spatial ability group we compare participants’ accuracy
across bases by performing a 3-sample test for equality of propor-
tions of 022DA02~ ⇠ 10B4_E8BD0;8I0C8>=, with the null hypothesis
that there are no di�erences in the proportions of correct answers.
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Figure 9: Proportion of participants answering the Bayesian
reasoning task correctly by base visualization for each spa-
tial ability group. Bars represent 95% logit transformed con-
�dence intervals.

Within the high spatial ability group we �nd no signi�cant dif-
ference in accuracy by base (j2 (2,# = 1114) = 2.93, ? = 0.23), and
therefore fail to reject the null hypothesis. Figure 9 shows near equal
proportions of participants with high spatial ability answering the
Bayesian reasoning questions correctly across base visualizations.

Within the low spatial ability group we �nd a signi�cant di�er-
ence in accuracy by base (j2 (2,# = 1092) = 11.23, ? < 0.005), and
therefore reject the null hypothesis. Pairwise tests with a Bonfer-
roni corrected alpha (0.02) show participants with low spatial ability
assigned the randomized base performed signi�cantly worse than
those assigned the grouped (j2 (1,# = 721) = 9.43, ? < 0.005) and
aligned (j2 (1,# = 722) = 6.77, ? < 0.01) bases. The 95% con�dence
intervals (using Wilson’s score method) for the di�erences in these
proportions are [�18.38,�4.01] and [�16.62,�2.32], respectively
(Figure 9). This suggests that for people with high spatial ability,
performance on a Bayesian reasoning task is not a�ected by design of
the underlying static visualization, and for people with low spatial
ability it is.

Finally, within each spatial ability group we check for an interac-
tion e�ect between base visualization design and interaction tech-
nique. To do this we perform an 18-sample test for equality of pro-
portions of022DA02~ ⇠ {10B4_E8BD0;8I0C8>=}- {8=C4A02C8>=_C42⌘=8@D4}
with the null hypothesis that there are no di�erences in proportions
of correct answers.

Within the high spatial ability group we �nd no signi�cant dif-
ferences (j2 (17,# = 1114) = 23.64, ? = 0.13), and therefore fail to
reject the null hypothesis.

Within the low spatial ability group we again �nd no signi�cant
di�erences (j2 (17,# = 1092) = 23.41, ? = 0.14), and therefore fail
to reject the null hypothesis. As shown in Figures 10 and 10 we ob-
serve near equal proportions of correct answers in all combinations
of base visualizations and interaction techniques. This suggests
that for people with high and low spatial ability the value-add of
interaction is not modulated by underlying static visualization design
and interaction technique.

6 DISCUSSION
Three of the interaction techniques tested in Experiment 2 are
similar to those tested in prior work (cbAll, cbNone, drag) [24, 41].
Our �ndings from both experiments suggest that neither checkbox
interaction signi�cantly improves performance on a Bayesian rea-
soning task compared to a static visualization. While prior work has
suggested that an interactive checkbox visualization can increase

Figure 10: Portion of participants with low spatial ability an-
swering the Bayesian reasoning task correctly given each in-
teraction technique and base visualization. Bars represent a
95% logit transformed con�dence intervals.

Figure 11: Portion of participants with high spatial ability
answering the Bayesian reasoning task correctly given each
interaction technique and base visualization. Bars represent
a 95% logit transformed con�dence intervals.

accuracy on a Bayesian reasoning task [41], that work compared an
interactive visualization coupled with a textual description of the
problem using frequencies to a textual description of the problem
using probabilities. Our �ndings add nuance to this work by explic-
itly comparing an interactive and static visualization, and by using
a constant wording of the text. These di�erences in experimental
set up likely explain the discrepancy between �ndings in prior work
and our �ndings. Similarly, we �nd that the drag interaction does
not signi�cantly change performance on the Bayesian reasoning
task compared to a static visualization. These �ndings are consis-
tent with prior work [24], which found adding a drag and drop
interaction to a double tree diagram decreased performance on a
Bayesian reasoning task, but not signi�cantly so.

To broaden the scope of our results, we include interactions rep-
resentative of the popular “overview �rst, zoom and �ler, details on
demand" mantra of visualization design [37] (hover, tooltip). Again
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we �nd neither of these interaction techniques lead to signi�cantly
better performance on Bayesian reasoning than a static visualiza-
tion.

Moreover, we �nd participants with high spatial ability have sig-
ni�cantly worse accuracy given the interactive hover visualization
versus static. We postulate that this is another case where adding
interaction to an already complex task causes cognitive overload.
Ottley et al. [32] showed that integrating text and visualization is
especially di�cult for people with high spatial ability. As hover
draws a very explicit link between text and visualization, it is likely
an extremely cognitively taxing interaction for high spatial abil-
ity participants and thus led to cognitive overload and decreased
performance. We encourage future work to further investigate the
nuanced relationship between cognitive load, interaction, and spa-
tial ability.

The results of Experiment 2 coupled with those of Experiment 1
suggest a perhaps unexpected answer to the question “does interac-
tion improve Bayesian reasoning with visualization?” Despite our
best e�orts, none of the interaction techniques we test signi�cantly
improve participants’ performance on a Bayesian reasoning task
compared to a static visualization. Moreover, we identify several sce-
narios that suggest interaction decreases participants’ performance.
In Experiment 1, we observe adding checkboxes where all the boxes
are pre-checked (cbAll) to the randomized base visualization de-
creases performance of participants (Figure 4). This decrease is not
statistically signi�cant, but has practical implications. Similarly,
in Experiment 2 we observe statistically insigni�cant decreases in
accuracy across all interaction techniques added to the randomized
design (Figure 7). In addition, in Experiment 2 we see that across
visualization designs participants with high spatial ability perform
signi�cantly worse with an interactive hover visualization than
with a static visualization. While all of these �ndings are not statis-
tically signi�cant, together they suggest that interaction may not
be universally bene�cial to static Bayesian reasoning visualizations,
and that this topic warrants further investigation.

Our �ndings suggest that a well-designed static visualization can
be as (if not more) bene�cial to solving complex reasoning tasks as
an interactive visualization. In cases where the user’s interactions
result in additional information being shown on the visualization
(e.g. panning a map), the value of the interaction is undisputed.
However, general claims that interaction can improve reasoning,
and o�er cognitive support can be called into question given the
results of our experiments. We observe more than one scenario in
which the use of an interactive visualization can be detrimental, and
we were unable to show any cases in which use of an interactive
visualization led to signi�cant improvement in Bayesian inference.
Therefore, we echo the sentiment made by researchers such as
Lam [25] and van Wijk [42], and practitioners like the New York
Times, and suggest a cautious use of interactivity in cases where it
does not add additional information to a visualization.

7 LIMITATIONS AND FUTUREWORK
We acknowledge there are limitations to our work and that there
remain open questions for future research.

Studies such as the ones presented in this paper are fundamen-
tally limited in scope. While we made our best e�ort to select the

most appropriate visualization designs and implement the best in-
teractions based on existing literature, we acknowledge that there
are in�nite options that could be tested. It is plausible that there
exists a combination of visualization and interaction techniques
that can improve participants’ abilities to solve the Bayesian rea-
soning task. However, our recommendation of a cautious use of
interactivity as a reasoning aid remains true. In everyday designs
of interactive visualizations, practitioners are unlikely to be able
to carefully evaluate a large number of combinations of visualiza-
tion and interaction designs. Our results show that, in those cases,
practitioners should be cautious in adding interactions to a static
visualization designed to help users perform reasoning tasks.

It is important to note that the interaction techniques used in
our studies do not add new information to the static visualizations.
However, doing so would not aid in Bayesian reasoning. Adding
new information is not meaningful because the Bayesian reason-
ing is inherently based on understanding relationships between
four integer values (true positive, false positive, true negative, and
false negative counts). Moreover showing the user the numerical
answer to the Bayesian reasoning problem does not help them
better understand the reasoning process behind that number. In
practice, that reasoning process, more so than a number value,
is critical to decision making (e.g. in a medical decision-making
scenario [19, 40]).

In addition, we acknowledge that there are many di�erent for-
mulations of the Bayesian reasoning problem with di�erent levels
of sensitivity, speci�city and disease prevalence and that perturbing
these values could result in di�erent �ndings than what we have
presented here. Moreover, there are numerous static visualization
designs with which we could have performed this study. However,
we see this work as a starting point to a principled investigation
of the costs and bene�ts of interaction. There are countless factors
that could be manipulated and tested. In performing this study we
chose to bound the static visualizations tested to one category (icon
arrays) as well as the formulation of the Bayesian reasoning prob-
lem. Both of these choices were made in an e�ort to keep as much
consistency as possible with prior work in this space. Icon arrays
are one of the most popular and well studied visualizations in this
context [4, 29, 30, 32], and the speci�c formulation of the Bayesian
reasoning problem used in this work has been used in a number of
other studies [23, 29, 32, 41]. In future work we plan to explore the
e�ects of di�erent formulations of the Bayesian reasoning problem,
as well as di�erent static visualization designs.

Finally, our results suggest interaction may impede performance
on high cognitive load tasks. However, to the best of our knowledge,
beyond theoretical guidelines (such as the one by Lam [25]), there
is no empirical work on evaluating interaction techniques based
on their e�ect on a user’s cognitive load. As a future work, we
aim to investigate interaction techniques using a cognitive-load
theory. The result of which we hope will provide a theoretical
understanding on the outcome of the studies presented in this
paper.
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8 CONCLUSION
This paper empirically shows how di�erent interaction techniques
and visualization designs a�ect users in solving Bayesian reason-
ing tasks. Through two crowdsourced studies, we evaluated �ve
interaction techniques across three di�erent static visualization
designs. The results illustrate that the e�ect of interaction is largely
dependent on the design of the underlying static visualization, and
implementation of the interaction itself. Additionally, we observe
that people with di�erent spatial abilities react to interaction dif-
ferently. These �ndings suggest that adding interaction to a static
Bayesian reasoning visualization may not be bene�cial, and in some
cases can be detrimental. For example, we �nd adding interaction
to certain designs of static Bayesian reasoning visualizations can
decrease users’ accuracy on Bayesian inference. Similarly, we �nd
when people with high spatial ability use a hover Bayesian rea-
soning visualization, they perform a Bayesian reasoning task with
signi�cantly worse accuracy than they do with a static visualization.
Based on these �ndings we conclude that interaction may not be as
unanimously bene�cial as it is often believed to be; in some cases a
well designed static visualization can be as, if not more, e�ective.
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