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Abstract—A novel reinforcement learning scheme to synthesize
policies for continuous-space Markov decision processes (MDPs)
is proposed. This scheme enables one to apply model-free, off-the-
shelf reinforcement learning algorithms for finite MDPs to com-
pute optimal strategies for the corresponding continuous-space
MDPs without explicitly constructing the finite-state abstraction.
The proposed approach is based on abstracting the system with
a finite MDP (without constructing it explicitly) with unknown
transition probabilities, synthesizing strategies over the abstract
MDP, and then mapping the results back over the concrete
continuous-space MDP with approximate optimality guarantees.
The properties of interest for the system belong to a fragment
of linear temporal logic, known as syntactically co-safe linear
temporal logic (scLTL), and the synthesis requirement is to
maximize the probability of satisfaction within a given bounded
time horizon. A key contribution of the paper is to leverage the
classical convergence results for reinforcement learning on finite
MDPs and provide control strategies maximizing the probability
of satisfaction over unknown, continuous-space MDPs while
providing probabilistic closeness guarantees. Automata-based
reward functions are often sparse; we present a novel potential-
based reward shaping technique to produce dense rewards to
speed up learning. The effectiveness of the proposed approach
is demonstrated by applying it to three physical benchmarks
concerning the regulation of a room’s temperature, control of a
road traffic cell, and of a 7-dimensional nonlinear model of a
BMW 320i car.

Index Terms—Model-Free Reinforcement Learning,
Continuous-Space MDPs, Formal Controller Synthesis.

I. INTRODUCTION

Motivations. Control systems with stochastic uncertainty

can be modeled as Markov decision processes (MDPs) over

uncountable state and action spaces. These stochastic models

have received significant attentions as an important modeling

framework describing many engineering systems; they play

significant roles in many safety-critical applications includ-

ing power grids and traffic networks. Automated controller

This work was supported in part by the H2020 ERC Starting Grant
AutoCPS (grant agreement No. 804639).

synthesis [1] for general MDPs to achieve some high-level

specifications, e.g., those expressed as linear temporal logic

(LTL) formulae [2], is inherently challenging due to its compu-

tational complexity and uncountable sets of states and actions.

Closed-form computation of optimal policies for MDPs over

uncountable spaces is not available in general. One promising

approach is to first approximate these models by simpler ones

with finite state sets, perform analysis and synthesis over the

abstract models (using algorithms from formal methods [1]),

and translate the results back over the original system, while

providing guaranteed error bounds in the detour process.

Related Literature. There have been several results, pro-

posed in the past few years, on abstraction-based synthesis of

continuous-space MDPs. Existing results include construction

of finite MDPs for formal verification and synthesis [3] and the

extension of such techniques to infinite horizon properties [4]

under some strong assumptions over the dynamics. Algorith-

mic construction of the abstract models and performing formal

synthesis over them are studied in [5], [6]. Safety verification

and formal synthesis of stochastic systems are respectively

studied in [7] and [8] using so-called control barrier certifi-

cates. Although the proposed approaches in [7] and [8] do not

need the state set discretization, they require knowing precisely

the probabilistic evolution of states in models which may not

be known in general.

To construct finite MDPs of continuous-space ones with

guaranteed error bounds between them, we need to establish

some sort of similarity relations between them. Similarity

relations over finite-state stochastic systems have been stud-

ied, either via exact notions of probabilistic (bi)simulation

relations [9], [10] or approximate versions [11]. Similarity

relations for models with general, uncountable state spaces

have also been proposed in the literature. These relations

either depend on stability requirements on model outputs via

martingale theory or the contractivity analysis [12] or enforce

structural abstractions of models by exploiting continuity
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conditions on their probability laws [13]. A new bisimilarity

relation is proposed in [14], [15] based on the joint probability

distribution of two models and enables combining model

reduction together with space discretization.

Unfortunately, construction of finite MDPs, studied in the

aforementioned literatures, suffers severely from the so-called

curse of dimensionality: the computational complexity of

constructing finite MDPs grows exponentially as the number

of state variables increases. In addition, one needs to know

precise models of continuous-space MDPs to construct those

finite abstractions and, hence, the proposed approaches in the

relevant literature are not applicable in the settings where the

transition structure is unknown. These challenges motivated us

to employ reinforcement learning for the controller synthesis

of such complex systems.

Reinforcement learning (RL) [16] is an approach to sequen-

tial decision making in which agents rely on reward signals

to choose actions aimed at achieving prescribed objectives.

Model-free reinforcement learning [17] refers to techniques

that are asymptotically space-efficient because they do not

store the probabilistic transition structure of the environment.

These techniques include algorithms like TD(λ) [18] and Q-

learning [19] as well as their extensions to deep neural net-

works such as deep deterministic policy gradient (DDPG) [20]

and neural-fitted Q-iterations [21]. Model-free reinforcement

learning has achieved performance comparable to that of

human experts in video and board games [22]–[24]. This

success has motivated extensions of reinforcement learning

to the control of safety-critical systems [20], [25] in spite of

a lack of theoretical convergence guarantees of reinforcement

learning for general continuous state spaces [26].

Main contribution. By utilizing a closeness guarantee be-

tween probabilities of satisfaction by the unknown continuous-

space MDP and by its finite abstraction which can be con-

trolled a-priori, and leveraging the classical convergence re-

sults for reinforcement learning on finite-state MDPs, we

provide, for the first time, a reinforcement learning ap-

proach for MDPs with uncountable state sets while providing

convergence guarantees. In particular, this approach enables

us to apply model-free, off-the-shelf reinforcement learning

algorithms to compute ε-optimal strategies for continuous-

space MDPs with a precision ε that is defined a-priori and

without explicitly constructing finite abstractions. Another key

contribution of the paper is a novel potential-based reward

shaping [27] technique to produce dense rewards that is based

on the structure of the property automaton. Although the

techniques presented in this paper can be adapted to model-

based RL, the experiments presented in this work deal with

model-free RL.

Recent Works. A model-free reinforcement learning frame-

work for synthesizing policies for unknown, and possibly

continuous-state, MDPs is recently presented in [28]–[30]. The

proposed approaches in [28]–[30] provide theoretical guaran-

tees only when the MDP has the finite number of states, and

the corresponding results for continuous-state MDPs are em-

pirically illustrated. The results in [31] provide a reinforcement

learning approach for deterministic continuous-space control

systems where the closeness between finite approximations

and concrete models are only guaranteed asymptotically, rather

than according to some formal relations that are in the end re-

quired to ensure the correspondence of controllers for temporal

logic specifications over model trajectories. The results in [32]

provide deterministic policy gradient algorithms for MDPs

with continuous state and action spaces using reinforcement

learning, but without providing any quantitative guarantee on

the optimality of synthesized policies for original MDPs. In

contrast, we utilize here a closeness guarantee between proba-

bilities of satisfaction by the unknown continuous-space MDP

and by its finite abstraction to compute ε-optimal strategies for

original systems using the reinforcement learning with a-priori

defined precision ε.

Organization. The rest of this paper is organized as follows.

In the next section we introduce background definitions and

notations. Then we formulate the main problem in the section

afterward. In that section, in particular, we propose closeness

guarantees between probabilities of satisfaction by continuous-

space MDPs and their finite-state counterparts and its con-

nection to the classical convergence results for reinforcement

learning on finite-state MDPs. Finally, to demonstrate the

effectiveness of the proposed results, we apply our approaches

to several physical benchmarks in the last section.

II. PRELIMINARIES

As usual, we write N and N>0 for sets of nonnegative

and positive integers. Similarly, we write R, R>0, and R≥0

for sets of reals, positive and nonnegative reals, respectively.

For a set of N vectors, x1 ∈ R
n1 , . . . , xN ∈ R

nN , we write

[x1; . . . ;xN ] to denote the corresponding vector of dimension∑
i ni. Given a vector x ∈ R

n we write ‖x‖ for its Euclidean

norm and for a ∈ R we write |a| for its absolute value.

A discrete probability distribution, or just distribution, over

a (possibly uncountable) set X is a function d : X→[0, 1]
such that

∑
x∈X d(x) = 1 and supp(d) = {x ∈ X | d(x)>0}

is at most countable. Let D(X) denote the set of all dis-

crete distributions over X . We consider a probability space

(Ω,FΩ,PΩ), where Ω is the sample space, FΩ is a sigma-

algebra on Ω comprising subsets of Ω as events, and PΩ is

a probability measure that assigns probabilities to events. We

assume that random variables introduced in this article are

measurable functions of the form X : (Ω,FΩ) → (SX ,FX).
Any random variable X induces a probability measure on

its space (SX ,FX) as Prob{A} = PΩ{X−1(A)} for any

A ∈ FX . When clear from the context, we use the probability

measure on (SX ,FX) without mentioning the probability

space and the function X .

A topological space S is called a Borel space if it is

homeomorphic to a Borel subset of a Polish space (i.e., a

separable and completely metrizable space). Examples of a

Borel space are Euclidean space Rn, its Borel subsets endowed

with a subspace topology, as well as hybrid spaces. Any Borel

space S is assumed to be endowed with a Borel sigma-algebra,
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which is denoted by B(S). We say that a map f : S → Y is

measurable whenever it is Borel measurable.

A. Discrete-Time Stochastic Control Systems

Definition 1. A discrete-time stochastic control system (dt-
SCS) is a tuple

Σ = (X,U, ς, f), (1)

where
• X ⊆ R

n is a Borel space as the state space of the
system. We denote by (X,B(X)) the measurable space
with B(X) being the Borel sigma-algebra X;

• U is the input space of the system;
• ς is a sequence of independent and identically distributed

(i.i.d.) random variables from a sample space Ω to the
set Vς , namely ς := {ς(k) : Ω → Vς , k ∈ N};

• f : X×U×Vς → X is a measurable function character-
izing the state evolution of Σ.

The evolution of the state of dt-SCS Σ for an initial state

x(0) ∈ X and an input sequence {ν(k) : Ω → U, k ∈ N} is

described as:

x(k + 1) = f(x(k), ν(k), ς(k)). (2)

Remark 2. The input space U of a dt-SCS Σ is in general a
continuous Borel space, e.g., a subset of Rm. Since any input
sequence will be implemented by a digital controller, w.l.o.g.
we assume that the input space U is finite.

We define Markov policies to control the system in (1).

Definition 3. For the dt-SCS Σ in (1), a Markov policy is
a sequence ρ = (ρ0, ρ1, ρ2, . . .) of universally measurable
stochastic kernels ρn [33], each defined on the input space
U given X such that for all xn ∈ X , ρn(U

∣∣xn) = 1. The
class of all such Markov policies is denoted by Π̄M .

We associate to U the set U to be the collection of sequences

{ν(k) : Ω → U, k ∈ N}, in which ν(k) is independent of

ς(t) for any k, t ∈ N and t ≥ k. The random sequence xaν :
Ω × N → X satisfying (2) for any initial state a ∈ X , and

ν(·) ∈ U is called the solution process of Σ under the input

ν and the initial state a.

B. Requirement Specification in scLTL

Formal requirements provide the rigorous and unambiguous

formalism to express requirements over MDPs [1]. A common

way to describe formal requirements is by using automata-

based specifications or logic-based specifications using formu-

lae in, for instance, linear temporal logic (LTL). For example,

consider a dt-SCS Σ in (1) and a measurable target set B ⊂ X .

We say that a state trajectory {x(k)}k≥0 reaches a target set

B within time interval [0, T ] ⊂ N, if there exists a k ∈ [0, T ]
such that x(k) ∈ B. This bounded reaching of B is denoted

by ♦≤T {x ∈ B} or briefly ♦≤TB. For T → ∞, we denote the

reachability property as ♦B, i.e., eventually B. For a dt-SCS

Σ with a policy ρ, we want to compute the probability that

a state trajectory reaches B within the time horizon T ∈ N,

i.e., P(♦≤TB). The reachability probability is the probability

that the target set B is eventually reached and is denoted by

P(♦B). In this paper, we deal with properties more complex

than simple reachability property.

Finite Automata. A deterministic finite automaton (DFA) is

a tuple A = (Q,Σa, t, q0, Fa) where Q is a finite set of states,

Σa is an alphabet, t : Q×Σa → Q is a transition function, q0 ∈
Q is the initial state, and Fa ⊆ Q are accepting states. We write

λ for the empty string and Σ∗
a for the set of all strings over Σa.

The extended transition function t̂ : Q × Σ∗
a → Q (transition

function extended to summarize the effect of reading a string)

can be defined as:

t̂(q, w̄) =

{
q, if w̄ = λ,

t(̂t(q, x), a), if w̄ = xa for x ∈ Σ∗
a and a ∈ Σa.

The language L(A) accepted by a DFA A is defined as

L(A) = {w̄ : t̂(q0, w̄) ∈ Fa}. DFAs are well-established mod-

els to express regular specifications over finite words. DFAs

can also be interpreted over ω-words: an ω-word is accepted

if there is a prefix that is accepted by the DFA. Among others,

DFAs are expressive enough to capture syntactically a co-safe

fragment of linear temporal logic (LTL) defined next.

Linear Temporal Logic. Consider a set of atomic propo-

sitions AP and the alphabet Σa := 2AP . Let ω =
ω(0), ω(1), ω(2), . . . ∈ ΣN

a be an infinite word, that is, a

string composed of letters from Σa. We are interested in

those atomic propositions that are relevant to the dt-SCS via

a measurable labeling function L from the state space to the

alphabet as L : X → Σa. State trajectories {x(k)}k≥0 ∈ XN

can be readily mapped to the set of infinite words ΣN
a , as

ω = L({x(k)}k≥0) := {ω ∈ ΣN
a |ω(k) = L(x(k))}. Consider

LTL properties with the syntax [1]

φ ::= true | p | ¬φ |φ1 ∧ φ2 |©φ |φ1 U φ2.

Let ωk = ω(k), ω(k + 1), ω(k + 2), . . . be a subsequence

(suffix) of ω, then the satisfaction relation between ω and

a property φ, expressed in LTL, is denoted by ω � φ (or

equivalently ω0 � φ). Semantics of the satisfaction relation

are defined recursively over ωk and the syntax of the LTL

formula φ. An atomic proposition p ∈ AP is satisfied by

ωk, i.e., ωk � p, iff p ∈ ω(k). Furthermore, ωk � ¬φ if

ωk � φ and we say that ωk � φ1 ∧ φ2 if ωk � φ1 and

ωk � φ2. The next operator ωk � ©φ holds if the property

holds at the next time instance ωk+1 � φ. We denote by

©j , j ∈ N, j times composition of the next operator. With

a slight abuse of the notation, one has ©0φ = φ for any

property φ. The temporal until operator ωk � φ1 U φ2 holds

if ∃i ∈ N : ωk+i � φ2, and ∀j ∈ N :0 ≤ j < i, ωk+j � φ1.

Based on these semantics, disjunction (∨) can be defined by

ωk � φ1 ∨φ2 ⇔ ωk � ¬(¬φ1 ∧¬φ2). This paper focuses on

a fragment of LTL properties known as syntactically co-safe

linear temporal logic (scLTL) [34] defined below.

Definition 4 (Syntactically Co-Safe LTL (scLTL)). An scLTL
over a set of atomic propositions AP is a fragment of LTL
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such that the negation operator (¬) only occurs before atomic
propositions characterized by the following grammar:

φ ::= p | ¬p |φ1 ∨ φ2 |φ1 ∧ φ2 |©φ |φ1 U φ2.

Even though scLTL formulas are defined over infinite words

(as in LTL formulae), their satisfaction is guaranteed in the

finite time [34]. Any infinite word ω ∈ ΣN
a satisfying an scLTL

formula φ has a finite word ωf ∈ Σn
a , n ∈ N, as its prefix such

that all infinite words with a prefix ωf also satisfy the formula

φ. We denote the set of all such finite prefixes associated with

an scLTL formula φ by Lf (φ).
For verification and synthesis purposes, the scLTL prop-

erties can be compiled into a DFA Aφ over the alphabet

2AP such that Lf (φ) = L(Aφ) [34]. This construction is

routine; we refer the interested reader to [34] for details of the

construction of the DFA Aφ from φ such that L(Aφ) = Lf (φ).
The resulting DFA has the property that there is a unique

accepting state and all out-going transitions from that state

are self-loops. Such a DFA is also known as a co-safety
automaton. In the rest of the paper we assume that the DFA

Aφ for an scLTL property φ is a co-safety automaton.

Given a policy ρ, the probability that a state trajectory of Σ
satisfies an scLTL property φ over the time horizon [0, T ],
is denoted by P(ωf ∈ L(Aφ) s.t. |ωf | ≤ T + 1), where

|ωf | is the length of ωf [35]. The co-safety automaton for

the bounded time-horizon satisfaction can be computed by

unrolling the DFA for φ. In the rest of the paper we assume

such a representation for the finite horizon satisfaction.

Remark 5. We emphasize that there is no closed-form solution

for computing optimal policies enforcing scLTL specifications
over continuous-space MDPs. One can employ the approxima-
tion approaches, discussed later, to synthesize those policies
which, however, suffer severely from the curse of dimension-
ality and require knowing precisely the probabilistic evolution
of states in models. Instead, we propose in this paper, for the
first time, an RL approach providing policies for unknown,
continuous-space MDPs while providing quantitative guaran-

tees on the satisfaction of properties.

III. CONTROLLER SYNTHESIS FOR UNKNOWN

CONTINUOUS-SPACE MDPS

We are interested in automatically synthesizing controllers

for unknown continuous-space MDPs whose requirements

are provided as scLTL specifications. Given a discrete-time

stochastic control system Σ = (X,U, ς, f), where f and the

distribution of ς are unknown, and given an scLTL formula

φ, we wish to synthesize a Markov policy enforcing the

property φ over Σ with the probability of satisfaction within

a guaranteed threshold from the unknown optimal probability.

In order to provide any formal guarantee, we need to make

further assumptions on the dt-SCS. In particular, we assume

that the dynamical system in (2) is Lipschitz-continuous with

a constant H . Consider the dynamical system in (2) where

ς(·) is i.i.d. with a known distribution tς(·). Suppose that the

vector field f is continuously differentiable and the matrix ∂f
∂ς

is invertible. Then, the implicit function theorem guarantees the

existence and uniqueness of a function g : X ×X × U → Vς

such that ς(k) = g(x(k + 1), x(k), ν(k)). In this case, the

conditional density function is:

tx(x
′|x, ν) =

∣∣∣∣det [ ∂g

∂x′ (x
′, x, ν)

]∣∣∣∣ tς(g(x′, x, ν)).

The Lipschitz constant H is specified by the dependency of

the function g(x′, x, ν) on the variable x. As a special case

consider a nonlinear system with an additive noise

f(x, ν, ς) = fa(x, ν) + ς.

Then the invertibility of ∂f
∂ς is guaranteed and g(x′, x, ν) =

x′ − fa(x, ν). In this case, H is the product of the Lipschitz

constant of tς(·) and fa(·).
The next example provides a systematic way of computing

H for the class of linear continuous-space MDPs with an

additive noise.

Example 6. Consider a dt-SCS Σ with linear dynamics x(k+
1) = Ax(k) + Bν(k) + ς(k), where A = [aij ] and ς(k) are
i.i.d. for k = 0, 1, 2, . . . with a normal distribution having
zero mean and covariance matrix diag1(σ1, . . . , σn). Then,

one obtains H =
∑

i,j

2|aij |
σi

√
2π

. Note that for the computation

of the approximation error (cf. (7)), it is sufficient to know an
upper bound on entries of the matrix A and a lower bound
on the standard deviation of the noise.

An alternative way of computing the Lipschitz constant H
is to estimate it from sample trajectories of Σ. This can be

done by first constructing a non-parametric estimation of the

conditional density function using techniques proposed in [36]

and then compute the Lipschitz constant numerically using the

derivative of the estimated conditional density function.

More specifically, we can use a conditional kernel density

estimation (CKDE) that puts a kernel around each data point.

The main purpose of using kernels is to interpolate between the

observed data in order to predict the density at the unobserved

data points. CKDE provides the following estimation for the

conditional density function:

testx (x′|x) =
∑Ns

i=1 Kh̄1
(x′ − x′

i)Kh̄2
(‖x− xi‖)∑Ns

i=1 Kh̄2
(‖x− xi‖)

, (3)

where data pairs (xi, x
′
i) are extracted from sample trajectories

with x′
i being the observed next state for the current state

xi, Kh̄(y) := 1
h̄nK( y

h̄
), K is a kernel function, i.e., a

symmetric probability distribution with a bounded variance

(e.g. the Gaussian), n is the dimension of x, and h̄ is the

bandwidth controlling the kernel widths. This form is known

as the Nadaraya-Watson conditional density estimator, which

is consistent when h̄1 → 0, h̄2 → 0, and Nsh̄1h̄2 → 0 as

Ns → 0 [37]. In our case, we can use (3) while making both

sides also dependent on the input ν, and then compute its

Lipschitz constant numerically. The numerical computation

1diag(σ1, . . . , σn) is a diagonal matrix with σ1, . . . , σn as its entries.
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involves taking the derivative w.r.t. x, then its norm, and

finally maximizing over both x, x′. Note that we do not need

the best possible Lipschitz constant: any upper bound is also

sufficient but at the cost of making the formulated errors more

conservative (cf. errors (7)-(8) in Theorem 8).

Now we have all required ingredients to state the main

problem we address in this paper.

Problem 7. Let φ be an scLTL formula and Σ =
(X,U, ς, f) a continuous-space MDP, where f and the
distribution of ς are unknown, but the Lipschitz constant
H is known. Synthesize a Markov policy that satisfies the
property φ over Σ with probability within a-priori defined
threshold ε from the unknown optimal probability.

To present our solution to this problem, we first present

a technical result connecting continuous-space MDPs with

corresponding finite MDP abstractions. We then exploit this

result to provide a reinforcement learning-based solution to

Problem 7. We emphasize again that we do not construct

explicitly finite abstractions of continuous-space MDPs in this

work. In fact, we cannot construct them because the dynamics

of continuous-space MDPs are unknown.

A. Abstraction of dt-SCS Σ by a Finite MDP

A dt-SCS Σ in (1) can be equivalently represented as a

Markov decision process (MDP) [38, Proposition 7.6]

Σ=(X,U, Tx),

where the map Tx : B(X)×X × U → [0, 1], is a conditional

stochastic kernel that assigns to any x ∈ X , and ν ∈ U ,

a probability measure Tx(·|x, ν) on the measurable space

(X,B(X)) so that for any set A ∈ B(X),

P(x(k + 1) ∈ A ∣∣x(k), ν(k)) = ∫
A
Tx(dx

′ ∣∣x(k), ν(k)).
For given input ν(·), the stochastic kernel Tx captures the

evolution of the state of Σ and can be uniquely determined

by the pair (ς, f) from (1). In other words, Tx contains the

information of the function f and the distribution of the noise

ς(·) in the dynamical representation.

Now we approximate a dt-SCS Σ with a finite Σ̂ using an

abstraction algorithm. The algorithm first constructs a finite

partition of the state space X = ∪iXi. Then representative

points x̄i ∈ Xi are selected as abstract states. Given a dt-SCS

Σ = (X,U, ς, f), the constructed finite MDP Σ̂ is

Σ̂ = (X̂, Û , ς, f̂), (4)

where X̂ = {x̄i, i = 1, . . . , nx}, a finite subset of X , and

Û := U are finite state and input sets of the MDP Σ̂. Moreover,

f̂ : X̂×Û×Vς → X̂ is defined as f̂(x̂, ν̂, ς) = Πx(f(x̂, ν̂, ς)),
where Πx : X → X̂ is the map that assigns to any x ∈ X , the

representative point x̄ ∈ X̂ of the corresponding partition set

containing x. The initial state of Σ̂ is also selected according

to x̂0 := Πx(x0) with x0 being the initial state of Σ.

The proposed dynamical representation employs the map

Πx : X → X̂ that assigns to any x ∈ X , the representative

point x̄ ∈ X̂ of the corresponding partition set containing x
satisfying the inequality:

‖Πx(x)− x‖ ≤ δ, ∀x ∈ X, (5)

where δ := sup{‖x−x′‖, x, x′ ∈ Xi, i = 1, 2, . . . , nx} is the

state discretization parameter.

Note that one can write the equivalent finite-MDP represen-

tation of Σ̂ in (4) as [39, Chapter 3.5]

Σ̂ = (X̂, Û , T̂ ), (6)

where

T̂ (x′|x, ν) = Tx(Ξ(x
′)|x, ν), ∀x, x′ ∈ X̂, ν ∈ Û ,

and Ξ : X → 2X is a map that assigns to any x ∈ X , the

corresponding partition set it belongs to, i.e., Ξ(x) = Xi if

x ∈ Xi for some i = 1, 2, . . . , nx. We employ this finite-MDP

representation of (6) in Section IV.

The following theorem [5] shows the closeness between

a continuous-space MDP Σ and its finite abstraction Σ̂ in a

probabilistic setting.

Theorem 8. Let Σ = (X,U, ς, f) be a continuous-space
MDP and Σ̂ = (X̂, Û , ς, f̂) be its finite abstraction. For a
given scLTL specification φ, and for any policy ν̂(·) ∈ Û that
preserves Markov property for the closed-loop Σ̂ (denoted by
Σ̂ν̂), the closeness between two systems can be acquired as

|P(Σν̂ � φ)− P(Σ̂ν̂ � φ)| ≤ ε, with ε := TδH L, (7)

where T is the finite time horizon, δ is the state discretization
parameter, H is the Lipschitz constant of the stochastic
kernel, and L is the Lebesgue measure of the specification set.
Moreover, optimal probabilities of satisfying the specification
over the two models are different with a distance of at most
2ε: ∣∣ max

ν∈Π̄M

P(Σν � φ)− max
ν̂∈ ˆ̄ΠM

P(Σ̂ν̂ � φ)
∣∣ ≤ 2ε, (8)

where Π̄M and ˆ̄ΠM are sets of Markov policies over Σ and
Σ̂, respectively.

The error bound ε in (7) is obtained by characterizing

P(Σν̂ � φ) recursively similar to dynamic programs (DP).

This error is related to the approximation of the continuous

kernel with a discrete one, hence the term δH . There is also

an integration over the specification set, thus L appears in ε.

Finally, the errors contributed in every iteration of the DP are

added, hence the horizon T .

Remark 9. Note that in order to employ Theorem 8, one
can first a-priori fix the desired threshold ε in (7). According
to the values of H , L , and T , one computes the required
discretization parameter as δ = ε

TH L . For instance in the
case of a uniform quantizer, one can divide each dimension
of the set X into intervals of size δ/

√
n with n being the

dimension of the set.

102

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on June 04,2021 at 19:54:37 UTC from IEEE Xplore.  Restrictions apply. 



Discrete-Time

Stochastic Control Systems
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Fig. 1. Model-free reinforcement learning is employed by DFA Aφ corresponding to SCLTL objective φ to provide scalar rewards by
combining DFA Aφ and a δ-quantized observation set of the continuous-space MDP Σ. In particular, the δ-quantized observation set of the
continuous-space MDP Σ is used by an interpreter process to compute a run of Aφ. When the run of Aφ reaches a final state, the interpreter
gives the reinforcement learner a positive reward and the training episode terminates. Any converging reinforcement learning algorithm
over such δ-quantized observation set is guaranteed to maximize the probability of satisfaction of the scLTL objective φ and converge to a
2ε-optimal strategy over the concrete dt-SCS Σ thanks to Theorem 8.

IV. SYNTHESIS VIA REINFORCEMENT LEARNING

In this section we sketch how we apply Theorem 8 to solve

Problem 7 when conditional stochastic kernels are unknown.

We begin by detailing the solution of finding optimal policies

for scLTL properties in the case of known MDPs, and then we

show how to exploit that to provide a reinforcement learning-

based algorithm to synthesize an optimal policy.

A. Product MDP

It follows from Theorem 8 that one can construct a finite

MDP Σ̂ from a continuous-space dt-SCS Σ with known

conditional stochastic kernels such that the optimal probability

of satisfaction of an scLTL specification φ for T steps in

Σ̂ is no more than 2ε-worse than the optimal policy in Σ;

see the definition of ε in Theorem 8. Hence, given a dt-

SCS Σ with known conditional stochastic kernels, an scLTL

property φ, and a time-horizon T , a 2ε-optimal policy to

satisfy φ in T steps is computed using a suitable finite MDP

with the corresponding δ as the state discretization parameter.

This problem can be solved using the finite-horizon dynamic

programming over the product of Σ̂ and the DFA Aφ (cf.

Definition 4 and the paragraph afterward) by giving a scalar

reward to all transitions once a final state of Aφ is reached.

Definition 10 (Product MDP). Given a finite MDP Σ̂ =
(X̂, Û , T̂ ) with initial state x̂0 ∈ X̂ , a labeling func-
tion L : X → Σa (cf. Subsection II-B), and a DFA
Aφ = (Q,Σa, t, q0, Fa) capturing the scLTL specification
φ, we define the product MDP M� as a finite MDP
(X�, U�, T�, x�, ρ�) where:

• X� = X̂ ×Q is the set of states;
• U� = Û is the set of actions;

• T� : X�×U�×X� → [0, 1] is the probabilistic transition
function defined as

T�((x, q), ν, (x
′, q′)) =

{
T̂ (x, ν, x′), if q′ = t(q, L(x)),

0, otherwise.

• x� = (x0, q0) is the initial state; and
• ρ� : X� × U� ×X� → N is the reward function defined

as:

ρ�((x, q), ν, (x
′, q′)) =

{
1, if q �∈ F and q′ ∈ F ,
0, otherwise.

Recall that the DFA Aφ corresponding to an scLTL specifi-

cation φ has the property that there is a unique accepting state

and all out-going transitions from that state are self-loops. It

follows that total optimal expected reward in the product is

equal to the optimal probability of satisfying the specification.

Proposition 11 (Product Preserves Probability [40]). An ex-
pected reward-optimal policy in (X�, U�, T�, x�, ρ�) along
with Aφ characterizes an optimal policy in Σ̂ to satisfy φ.
The optimal expected total reward and an optimal policy can
be computed in the polynomial time [41].

B. Unknown Conditional Stochastic Kernels

When stochastic kernels are unknown, Theorem 8 still

provides the correct probabilistic bound given a discretization

parameter δ if the Lipschitz constant H is known. This

observation enables us to employ reinforcement learning al-

gorithms over the underlying discrete MDP without explicitly

constructing the abstraction by simply restricting observations

of the reinforcement learner to the closest representative point

in the set of partitions (cf. Subsection III-A). We call such an

underlying finite MDP a Σ̂δ abstraction.
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Model-free reinforcement learning can be employed under

such observations by using the DFA Aφ to provide scalar

rewards as defined in Definition 10. The observations of the

MDP are used by an interpreter process to compute a run of

the DFA. When the DFA reaches a final state, the interpreter

gives the reinforcement learner a positive reward and the

training episode terminates. Since the product MDP M� is

a finite MDP, from Proposition 11, it follows that any correct

and convergent RL algorithm that maximizes this expected

reward is guaranteed to converge to a policy that maximizes

the probability of satisfaction of the scLTL objective. From

Theorem 8 it then follows that any converging reinforcement

learning algorithm [42], [43] over such finite observation set

then converges to a 2ε-optimal policy over the concrete dt-SCS

Σ thanks to Theorem 8. We summarize the proposed solution

in the following theorem.

Theorem 12. Let φ be an scLTL formula, ε > 0, and
Σ = (X,U, ς, f) be a continuous-space MDP, where f and the
distribution of ς are unknown but the Lipschitz constant H
as discussed before is known. For a discretization parameter
δ satisfying TδH L ≤ ε, a convergent model-free reinforce-
ment learning algorithm (e.g. Q-learning [43] or TD(λ) [42])
over Σ̂δ with a reward function guided by the DFA Aφ,
converges to a 2ε-optimal policy over Σ.

C. Reward Shaping: Overcoming Sparse Rewards

Consider a finite MDP Σ̂ = (X̂, Û , T̂ ), a co-safety au-

tomaton Aφ = (Q,Σa, t, q0, qF ), and their product MDP

M� = (X�, U�, T�, x�, ρ�). Since the reward function ρ� is

sparse, it may not be effective in the reinforcement learning.

For this reason, we introduce a “shaped” reward function ρκ
(parameterized by a hyper-parameter κ) such that for suitable

values of κ, optimal policies for ρκ are the same as optimal

policies for ρ�, but unlike ρ� the function ρκ is dense.

The function ρκ is defined based on the structure of co-

safety automaton Aφ. Let d(q) be the minimum distance of

the state q to the unique accepting state qF . Let dmax = 1 +
maxq{d(q) : d(q) < ∞}. If there is no path from q to qF ,

let d(q) be equal to dmax. We define the potential function

P : N → R as the following:

P (d) =

{
κd−d(q0)

1−dmax
, for d > 0,

1, for d = 0,

where κ is a constant hyper-parameter. Note that the potential

of the initial state P (d(q0)) = 0 and the potential of the final

state P (d(qF )) = 1. Moreover, note that

P (1)− P (dmax) = κ.

We define the “shaped” reward function ρκ : X̂× Û×X̂ → R

as the difference between potentials of the destination and of

the target states of transition of the automaton, i.e.,

ρκ((x, q), ν, (x
′, q′)) = P (d(q′))− P (d(q)).

Moreover, notice that for every run r = (x0, q0), ν1, (x1, q1),
ν2, . . . , νn, (xn, qn) of M�, its accumulated reward is simply

the potential difference between the last and the first states,

i.e., P (d(qn))− P (d(q0)).

Theorem 13 (Correctness of Reward Shaping). For every
product MDP M� = (X�, U�, T�, x�, ρ�), there exists κ� > 0
such that for all κ < κ� we have that the set of optimal ex-
pected reward policies for M� is the same as the set of optimal
expected reward policies for Mκ = (X�, U�, T�, x�, ρκ).

Proof. First we note that for the optimality, it is sufficient [44]

to focus on positional strategies. Let μ1 and μ2 be two posi-

tional strategies such that the optimal probability of reaching

the final state qF for μ1 is greater than that for μ2. We write

p1 and p2 for these probabilities and p1 > p2. Notice that

these probabilities are equal to optimal expected reward with

the ρ� reward function.

We denote the expected total reward for policies μ1 and μ2

for the shaped reward function ρκ as s1 and s2, respectively.

These rewards satisfy the following inequalities:

s1 ≥ p1(P (0)−P (d(q0))) + (1−p1)(P (dmax)−P (d(q0)),

s2 ≤ p2(P (0)−P (d(q0))) + (1−p2)(P (1)−P (d(q0))).

It can be verified that if κ < p1−p2, then s1 > s2. Therefore,

if μ1 is an optimal positional strategy, and μ2 is one of the next

best positional strategies, choosing κ∗ < p1 − p2 guarantees

that an optimal strategy in Mκ is also optimal for M�.

Theorem 13 demonstrates one way to shape rewards such

that the optimal policy remains unaffected while making the

rewards less sparse. Along similar lines, one can construct

a variety of potential functions and corresponding shaped

rewards with similar correctness properties. Of course, the

reward shaping schema presented here is no silver bullet: we

expect the performance of different potential functions to be

incomparable along a carefully chosen ensemble of MDPs.

Since rewards are shaped without any knowledge of the un-

derlying MDP, there may be MDPs where un-shaped rewards

may work as well or even better than a given shaped reward.

We envisage that the ability to combine several competing

ways to shape reward may work better in practice. While

sparse rewards may be sufficient for simpler learning tasks,

we demonstrate that shaped rewards such as the one provided

here are crucial for larger case studies such as the BMW case-

study reported in the next section.

V. CASE STUDIES

Before illustrating our results via some experiments, we

elaborate on the dimension dependency in our proposed RL

techniques compared to the abstraction-based ones. Assuming

a uniform quantizer, the finite MDP constructed in Subsec-

tion III-A is a matrix with a dimension of (nx × nu) × nx,

where nu is the cardinality of the finite input set U . Computing

this matrix is one of the bottlenecks in abstraction-based

approaches since an n-dimensional integration has to be done

numerically for each entries of this matrix. Moreover, nx

(i.e., the cardinality of the finite state set) grows exponentially

with the dimension n. Once this matrix is computed, it is
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employed for the dynamic programming on a vector of the

size (nx×nu). This is a second bottleneck of the process. On

the other hand, by employing the proposed RL approach, the

curse of dimensionality reduces to only learning the vectors

of size (nx × nu) without having to compute the full matrix.

Moreover, the abstraction-based techniques need to precisely

know the probabilistic evolution of states in models, whereas

in this work we only need to know the Lipschitz constant H .

Concerning the trade-off between iteration count, discretiza-

tion size, and performance, we should mention that by de-

creasing the discretization parameter, the closeness error in

Theorem 8 is reduced. On the other hand, one needs more

training episodes as the size of the problem increases. Note

that in our proposed setting, we do not need to compute

transition probabilities T̂ for finite MDPs Σ̂, since we directly

learn the value functions using RL.

To demonstrate the effectiveness of the proposed results,

we first apply our proposed approaches to two physical bench-

marks including regulation of room temperature and control of

road traffic. We then apply our algorithms to a nonlinear model

of a BMW 320i car by synthesizing a controller enforcing a

reach-while-avoid specification. The first two case studies are

intentionally chosen to be small such that we can compare

(cf. Table I) probabilities of satisfaction pr estimated by RL

with the optimal probabilities p∗ computed using the dynamic

programming when the exact dynamics are known.

A. Room Temperature Control

Here, we apply our results to the temperature regulation of

a room equipped with a heater. The model of this case study

is adapted from [45] by including stochasticity in the model

as an additive noise. The evolution of the temperature can be

described by the following dt-SCS:

Σ : x(k + 1) =(1− 2η − β − γν(k))x(k) + γThν(k)

+ βTe + 0.3162ς(k),

where η = 0, β = 0.022, and γ = 0.05 are conduction

factors respectively between this room and the other rooms

in a network, between the external environment and the

room, and between the heater and the room. Moreover, x(k)
and ν(k) are taking values in [19, 21] and a finite input

set {0.03, 0.09, 0.15, 0.21, 0.27, 0.33, 0.39, 0.45, 0.51, 0.57},
respectively. The parameter Te = −1 ◦C is the outside

temperature, and Th = 50 ◦C is the heater temperature.

The main goal is to synthesize a controller for Σ using our

main results in Theorem 12 such that the controller maintains

the temperature of the room in the safe set [19, 21].

B. Road Traffic Control

We also apply our results to a road traffic control containing

a cell with 2 entries and 1 way out, as schematically depicted

in Figure 2. The model of this case study is taken from [46];

stochasticity is included in the model as the additive noise.

One of the entries of the cell is controlled by a traffic light,

denoted by ν = {0, 1}, that enables (green light) or not (red

light) the vehicles to pass. In this model, the length of a cell

Traffic light

Σ

Way out

Entry

Fig. 2. Model of a road traffic control with the length of 500 meters, 1 way
out, and 2 entries, one of which is controlled by a traffic light.

is 0.5 kilometers ([km]), and the flow speed of the vehicles is

100 kilometers per hour ([km/h]). Moreover, during the time

interval τ = 6.48 seconds, it is assumed that 6 vehicles pass

the entry controlled by the traffic light, 3 vehicles go into the

entry of the cell, and one quarter of vehicles goes out on the

exit of the cell (the ratio denoted by q). We want to observe the

density of traffic x. The model of the system Σ is described

by:

Σ : x(k + 1) = (1− τv

l
−q)x(k) + 6ν(k)+1.9494ς(k)+3,

where l and v are the length of the cell and the flow speed of

vehicles, respectively. We synthesize a controller for Σ using

our main results in Theorem 12 such that the density of the

traffic is lower than 20 vehicles.

C. Experiments

Table I shows a comparison of Q-learning to the computed

optimal probabilities for the room temperature and road traffic

examples. For each model, five different discretization steps

(δ) are considered and for each value of δ probabilities of

satisfaction of the safety objectives are reported in the columns

labeled pr. These probabilities are Q-values of the initial state

of the finite-state MDP for the policy computed by Q-learning

after 106 episodes. The objective is to keep the system safe for

at least 10 steps. For the comparison, the optimal probability

p∗ for a time-dependent policy is reported assuming that we

know the exact dynamics for these two examples. Note that we

compute p∗ using the dynamic programming over constructed

finite MDPs as proposed in Subsection III-A. The optimal

probability p∗ reported in Table I corresponds to the same

initial condition that is utilized in the learning process. The

optimal probability for the original continuous-space MDP is

always within an interval [pl, ph] centered at p∗ and with a

radius ε as reported in Table I. One can readily see from

Table I that as the discretization parameter δ decreases, the size

of this interval shrinks, which implies that the optimal proba-

bility for the original continuous-space MDP converges to p∗.

While finer abstractions give better theoretical guarantees, for

a fixed number of episodes it is easier to learn good strategies

for coarser abstractions. This is reflected in Table I, where the

values of pr do not necessarily get better with smaller values of

δ. However, by increasing the number of episodes, strategies

converge toward the optimal one, as illustrated in Figure 3,

which visualizes room temperature control strategies computed

by Q-learning after different numbers of episodes. Note that

in Table I, the error bound ε exceeds one for δ ≥ 0.05 in
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TABLE I
Q-LEARNING RESULTS FOR ROOM TEMPERATURE AND ROAD TRAFFIC EXAMPLES.

Room Traffic
δ pr p∗ ε pl ph pr p∗ ε pl ph

0.01 0.9698 0.9753 0.2468 0.7285 1.0 0.9856 0.9995 0.0160 0.9835 1.0

0.02 0.9745 0.9753 0.4936 0.4817 1.0 0.9975 0.9995 0.0319 0.9676 1.0

0.05 0.9543 0.9753 1.2339 0.0000 1.0 0.9993 0.9995 0.0798 0.9197 1.0

0.1 0.9779 0.9754 2.4678 0.0000 1.0 0.9999 0.9995 0.1596 0.8399 1.0

0.2 0.9732 0.9743 4.9357 0.0000 1.0 0.9999 0.9995 0.3193 0.6802 1.0

the room temperate control example, which is not a useful

probability bound for the continuous-space MDP. However,

we prefer to report the corresponding values of pr and p∗ so

that they can still be compared.

D. 7-Dimensional Autonomous Vehicle

The previous case-studies are representative of what can be

solved by discretization and tabular methods like Q-learning.

Relaxing those constraints, we were able to apply deep deter-

ministic policy gradient (DDPG) [20] to a 7-dimensional non-
linear model of a BMW 320i car [47] to synthesize a reach-

while-avoid controller. Though convergence guarantees are not

available for DDPG and most RL algorithms with nonlinear

function approximations, breakthroughs in this direction (e.g.,

SBEED in [26]) will expand the applicability of our results to

more complex safety-critical applications.

The model of this case study is borrowed from [47, Section

5.1] by discretizing the dynamics in time and including a

stochasticity inside the dynamics as additive noises. We are

interested in an autonomous operation of the vehicle on a

highway. Consider a situation on a two-lane highway when

an accident suddenly happens on the same lane on which our

vehicle is traveling. The vehicle’s controller should find a safe

maneuver to avoid the crash with the next-appearing obstacle.

Figure 4 shows the simulation from 100 samples with

varying initial positions and initial heading velocities (16–

18 m/s) for the learned controller. We employed potential-

based reward shaping to speed-up learning in this case study

from 10K episodes (no success) to under 5K episodes (for a

convincing learning, see Figure 4).

VI. CONCLUSION

We studied the problem of finding policies for systems that

can be modeled as continuous-space MDPs but with unknown

dynamics. The goal of the policy is to maximize the probability

that the system satisfies a complex property expressed as a

fragment of linear temporal logic formulae. Our approach

replaces the unknown system with a finite MDP without

explicitly constructing it. Since transition probabilities of the

finite MDP are unknown, we utilize the reinforcement learning

(RL) to find a policy and apply it to the original continuous-

space MDP. We show that any converging reinforcement learn-

ing algorithm [42], [43] over such finite observation MDP con-

verges to a 2ε-optimal strategy over the concrete continuous-

space MDP with unknown dynamics (only an upper bound on

the Lipschitz constant is known), where ε is defined a-priori

and can be controlled. We applied our approach to multiple

case studies. The results are promising and demonstrate that by

employing an automata-theoretic reward shaping, the learning

algorithm enlarges the class of systems over which we can

perform the formal synthesis.
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Fig. 3. Room temperature control: A heatmap visualization of strategies learned via Reinforcement Learning after 105 episodes (left) and after 8 ·106 episodes
(right). The X axis represents the room temperature in ◦C, while the Y axis represents time steps 1 ≤ k ≤ 10. The action suggested by the strategy is in the
finite input set {0.03, 0.09, 0.15, 0.21, 0.27, 0.33, 0.39, 0.45, 0.51, 0.57} and is color-coded according to the map shown in the middle: Bright yellow and
deep blue represent maximum and minimum heat. In the first step, strategies are only defined for the initial state; this causes the blue bands at the top.

0 10 20 30 40 50

-2

0

2

4

6

8

Fig. 4. Trajectories of 100 simulations of the RL-synthesized controller for a 7-dimensional model of a BMW 320i car trained using DDPG. The road is 6
meter wide and 50 meter long, and the length of the car is 4. 508 meters and its width is 1. 610 meters.
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