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ABSTRACT: Regression modeling is becoming increasingly
prevalent in organic chemistry as a tool for reaction outcome
prediction and mechanistic interrogation. Frequently, to acquire the
requisite amount of data for such studies, researchers employ
combinatorial datasets to maximize the number of data points while
limiting the number of discrete chemical entities required. An
often-overlooked problem in modeling studies using combinatorial
datasets is the tendency to fit on patterns in the datasets (i.e., the
presence or absence of a reactant or catalyst) rather than to identify meaningful trends between descriptors and the response
variable. Consequently, the generality and interpretability of such models suffer. This report illustrates these well-known pitfalls in a
case study, demonstrates the necessary control experiments to identify when this property will be problematic, and suggests how to
perform further validation to assess general applicability and interpretability of models trained using combinatorial datasets.
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Machine learning (ML) in organic chemistry has garnered
much attention recently, with the promise to create

tools capable of predicting reaction outcomes,1−3 identifying
reaction conditions,4 planning synthetic routes,5,6 or expediting
catalyst optimization.7,8 A requirement for machine learning
studies is suitably large datasets for the construction of
regression models. In the development of new catalytic
reactions, generating a suitably large dataset is often prohibitive
owing to the lack of available catalysts and the effort required
to obtain accurate analysis of experimental outcomes.
Combinatorial, high-throughput experimentation is therefore
a natural pairing with ML tools in that the number of data
points obtained per unique reaction component is maximized.
As interest in applying ML to chemical problems increases, so
will the use of combinatorial experimentation to generate
sufficiently large datasets.
The desired outcome of modeling combinatorial data is to

obtain a model that correctly fits chemical descriptors of
reactions with experimental outcomes in a generally predictive
way. It is expected that the model has developed correlations
with parameters reflecting the underlying chemistry in the
system of interest; however, this assumption is far from certain
without careful analysis. An important aspect of combinatorial
datasets that has implications in ML studies is that the data
have an intrinsic pattern in which identical reaction
components9 are present many times in different reactions.
When these reaction components are parameterized and
concatenated combinatorially to produce reaction parameters,
identical sets of descriptors will be present in many different
reactions (Figure 1). Models trained on these data can fit the
intrinsic pattern in the dataset (i.e., the presence or absence of

a particular chemical entity) resulting from the combinatorial
construction of the reactions. As a result, the correlations
identified by the model may not be founded in relevant
chemical information; the lack of any physical relationship
between the descriptors and the regressand (e.g., yield,
selectivity, etc.) can potentially hamper the utility of the
model when used in an extrapolative fashion. These hidden
shortcomings confound model interpretation and limit general
applicability of the model. Further, when individual reaction
components are present in both the training set and the
external test set, it is possible that this phenomenon will carry
over to the external test set, resulting in inflated accuracy and
an overoptimistic indication of model performance in novel
systems. Thus, two concerns must be addressed when
modeling with combinatorial datasets: (1) the resulting models
may be less likely to be successfully applied to novel reaction
components, diminishing predictive utility, and (2) the model
may lack interpretability; consequently, extraction of mecha-
nistic information is impossible.10 This concept, termed “data
leakage”, has been thoroughly investigated in the machine
learning literature.11 Additionally, many resources containing
introductory level explanations are available for machine
learning novices.12−15 We feel it is imperative for experimen-
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talists evaluating ML studies or attempting to incorporate ML
studies into their own research program to familiarize
themselves with these topics prior to designing ML studies.
Additionally, we anticipate this study will serve as an
application-specific example for experimentalists exploring
this topic.
Although practitioners should be cognizant of these

potential limitations, with appropriate experimental design
and proper control experiments, one may avoid these potential
pitfalls. In fact, this aspect of modeling with combinatorial
datasets is well-known in data science and has been discussed
in at least one study relating to the chemical sciences.16

However, we feel that this concept is not well appreciated in
the chemistry community, particularly with regards to machine
learning in catalysis. As ML studies using combinatorial
datasets continue gaining in popularity, experimentalists must
be aware of these potential limitations before designing and
analyzing the results of ML studies that employ such data
structures. Accordingly, the work described herein investigates
how data partitioning can influence hypothesis testing in
studies with combinatorial datasets. To that end, this study
aims to demonstrate the importance of standardized control
experiments and intentional experimental design in ML
endeavors to develop predictive, meaningful models using
combinatorial datasets.

In this study, a dataset gathered and analyzed previously in
our laboratories is examined.17,18 In this work, the chiral
Brønsted-acid-catalyzed, enantioselective formation of N,S-
acetals was used as a model system.19 By testing 43 different
chiral catalysts with a matrix of 5 imines and 5 thiols, a total of
1075 reactions were evaluated, each of which were run in
duplicate (Figure 2). The enantioselectivity of each reaction
was measured, and the percent enantiomeric excess (% ee) was
recorded as an average of duplicate runs. This value is then
converted to the ΔΔG (kcal/mol) between competing
transition structures, which is used as the regressand.

The dataset employed to develop cross-validated ML models
comprises 24 training catalysts and 16 training substrate
combinations to construct a training set of 384 reactions. This
set was used to train the models and to perform k-fold cross-
validation. The models with the best performance were then
compared in their ability to predict the outcomes of an external
test set (that is, a set not involved in model training or
selection in any way) of 691 reactions. In this way, every test
reaction is an out-of-sample prediction. An out-of-sample
prediction is a case in which at least one reaction component is
not present in any reaction in the training data. An alternative
phrasing of this definition is that all reaction components used
to fit the model are considered in-sample components, and all
other components constitute out-of-sample predictions. In this
case, every imine, thiol, and catalyst used in model develop-
ment constitute in-sample predictions. These are the reactions
in the top left quadrant in Figure 3. It follows then that the
reactions in the top right, bottom left, and bottom right
quadrants are out-of-sample predictions because they include
substrates or catalysts (or both) that are absent from the
training data (for specific details on catalyst/substrate
partitioning, see the Supporting Information). The conclusion
from our previous study is that conformer-dependent
molecular field descriptors produce statistically significantly
more accurate models than single-conformer descriptors. In
the present study, we demonstrate that different data
partitioning would lead to different conclusions.
To demonstrate how data partitioning schemes can

influence hypothesis testing, two different data partitioning
methods were compared. The first data partitioning scheme
used in this work mandates out-of-sample predictions, as
described in Figure 3. Using this method of data partitioning,
reaction components are intentionally omitted from the
training data and only appear in the test set. The second
data partitioning used random selection to identify a test set of
691 from the full 1075 reaction dataset, and the remaining 384

Figure 1. Combinatorial construction of reaction features with the
hypothetical reaction A + B → P catalyzed by C, resulting in
structured data. A and B are reactants with corresponding descriptors
a and b, and cat is the catalyst represented by features c.

Figure 2. Dataset summary for the enantioselective formation of N,S-
acetals.
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reactions were used for model training and validation. Note
that by randomly selecting the training and test reaction sets,
out-of-sample predictions in the test set are unlikely.20 In this
data partitioning scheme, we suspect test set reactions will be
erroneously accurately predicted from the model simply fitting
to the pattern in the data. However, in the first data
partitioning scheme, this error can be mitigated by intention-
ally including reaction components in the external test set that
are absent from the training set. Using both data partitioning
methods, the performance of different descriptor classes was
compared. In addition, a set of control experiments was
performed by training models using randomly generated
descriptors to represent discrete chemical entities and one-
hot encoding of reactions (see the Supporting Information for
more information regarding control experiments and descrip-
tor types utilized in this analysis).16

The models discussed in this study are gradient boosting
regression models trained using the 384 reaction sets. Three
different types of molecular field descriptors were used in
model generation: average steric occupancy (ASO), steric
indicator fields (SIF), and molecular interaction fields (MIF).
Additionally, two control experiments were run. In the first,
individual reaction components are represented by a series of
randomly generated numbers. Similarly, in the second control
experiment, the reactions are parameterized with one-hot
encoding. In this case, the presence of a reaction component is
represented by a 1 and the absence is represented by a 0. In
these control experiments, the models are clearly fitting to the
pattern in the dataset and should fail when used to make
extrapolative predictions for reactions with novel components
(i.e., an imine, thiol, or catalyst absent from the training data)
because chemical information is obviously absent from the
molecular representation. If models generated using these

features perform equally well to models constructed using
chemical descriptors, one cannot yet determine if the chemical
descriptors contain meaningful chemical information associ-
ated with reaction outcome. It is also not yet possible to assess
if the model will succeed in predicting the outcome of
reactions with novel components (again, in this case referring
to imine, thiol, or catalyst structures not present in the training
data). In this scenario, the minimum requirement for assessing
model extrapolability and interpretability has not been met. To
probe these concepts, a data partitioning scheme forcing out-
of-sample predictions is necessary. Hypothetically, if the
models derived from chemical descriptors were to demonstrate
poor performance in out-of-sample predictions, it would
indicate that the models have poor extrapolative performance
and, consequently, will give erroneous predictions when
applied to new scenarios. Further, this would indicate that
the chemical descriptors do not contain information related to
reaction outcome. Without forcing out-of-sample predictions,
these types of conclusions would go unnoticed. In the present
study, this type of analysis is necessary to draw conclusions
regarding the superiority or inferiority of different chemical
descriptors. Using the nonrandom data partition scheme,
models calculated using chemical descriptors that perform
statistically significantly better than both random featurization
and one-hot encoding in making out-of-sample predictions
likely have some degree of extrapolability. Consequently, the
descriptors that result in models with the highest performance
likely contain the most chemical information related to
reaction outcome. We hypothesize that using the descriptors
containing the most relevant chemical information will achieve
the models with the broadest applicability domain, increasing
the likelihood of making successful predictions in novel use
cases (i.e., identification of a more selective catalyst, predicting
a reaction outcome for a novel substrate combination, etc.).
Herein, we demonstrate how the data partitioning method
used influences the conclusions one would draw from this type
of study.
The five different parameterizations described above (ASO,

SIF, MIF, random featurization, and one-hot encoding) were
used to make models using both data partitioning methods
(intentionally designating out-of-sample predictions vs random
partitioning). The five different models with each partitioning
method are then compared on the basis of their performance
in predicting reaction outcomes of the 691 reaction external
test set. A summary of this analysis is provided in Figure 4.
The graphs presented in Figure 4 clearly indicate different

results depending on which data partitioning method is used.
First, when examining the randomly selected external test set
(Figure 4, top), no chemical descriptor classes are statistically
significantly different than the random featurization as
determined by a one-way ANOVA with a Tukey posthoc
test (see the Supporting Information for a full statistical
analysis). This analysis suggests that the models are fitting to a
pattern in the data, and that the descriptors are performing no
better than random numbers. Accurate models can still be
constructed because every catalyst or substrate present in the
external test set is also present in the training settherefore,
fitting to the pattern in the data in model training carries over
to the external test set. This result leads to two possible
interpretations: (1) in the absence of the control models,21 one
would conclude that the three different descriptor classes are
not significantly different from one another, or (2) in the
presence of the control models, one would conclude that the

Figure 3. Data partitioning of the total 1075 member set used in ref 8.
The top left quadrant is used for training and cross-validation, and the
other three are external test sets. The top right quadrant has catalyst
structures novel to the model but substrate combinations from the
training set; the bottom left quadrant has catalyst structures present in
the training data but substrate combinations novel to the model, and
the bottom right quadrant has both substrate combinations and
catalyst structure that are novel to the model. The three quadrants
with test groups are combined to form the 671 member test set.
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experimental models are not necessarily learning the under-
lying chemistry and simply fitting to a pattern in the data.
When incorporating out-of-sample predictions in the

experimental design, strikingly different results are obtained
(Figure 4, bottom). In this case, all three molecular field
descriptor types lead to statistically significantly more accurate
models than both random features and one-hot encoding (see
the Supporting Information for the complete statistical analysis
and all pairwise comparisons). Further, the ASO descriptors
lead to statistically significantly more accurate models than

either the SIF or MIF descriptors. Clearly, a difference in data
partitioning strategy changed the analysis of the experiment
and allowed for better understanding of the utility of these
models. If researchers were to attempt to implement the
models with random partitioning of data in a novel system
containing out-of-sample predictions, the predictions made
would likely be significantly less accurate than expected when
predicting the external test set, especially if a lower-performing
descriptor class was used. In other words, common metrics
such as R2 and MAD alone are not adequate to assess

Figure 4. Comparison of models generated with different descriptor sets. The sets on the top are external test sets selected from random
partitioning and contain no out-of-sample predictions, whereas the models on the bottom contain out-of-sample predictions. The blue squares in
the bottom plots represent reactions in which the imine, thiol, and catalyst in that reaction do not appear in the training set.
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extrapolative performance of a model. By intentionally
incorporating out-of-sample predictions, a more accurate
indication of how the model would perform in practical
applications can be obtained. Further, higher confidence in
evaluating the efficacy of different molecular representations
can be obtained. This conclusion is in line with previous work
exploring the concept of leave-one-cluster-out cross-validation,
indicating that this concept is generally applicable to machine
learning studies in the chemical sciences.22

An additional observation regarding the models in Figure 4
is that random features and one-hot encoding still provide
some accurate predictions of reaction outcomes of the test set.
In these reactions, one or more reaction components (imine,
thiol, or catalyst) are present in the training data. Because not
every reaction component is absent from the training data in
these reactions, it is the structure in the training set that leaks
over to the test set. However, the statistically significant
difference between the chemically meaningful descriptors and
random featurization and one-hot encoding indicates that the
accuracy of those models is attributed to more than this
structure alone, that is, learned chemical information. Further,
there are some reactions in which none of the imine, thiol, or
catalyst appears in the training data. These reactions are
depicted as the blue points in Figure 4 and demonstrate the
expected behavior in the control experiments (i.e., completely
inaccurate predictions), whereas they are more accurately
predicted with the model using chemical descriptors. This
observation suggests that an experimental design designating
some external test reactions in which all reaction components
are out-of-sample is best for validation studies.
This study shows that validation of models trained using

combinatorial datasets will benefit from intentionally including
out-of-sample predictions, particularly when comparing
between different descriptor sets or attempting to interpret
models. Test reactions in which no reaction component is
present in the training set will likely give the best indication of
model performance in novel applications and model
interpretability. Additionally, multiple partitions should be
performed to ensure that model efficacy is not arising from
fortuitous test set selection. Finally, as stated in a previous
report,16 this experimental design does not circumvent the
need for additional control experiments (e.g., comparison with
random featurization and one-hot encoding). Accordingly,
standard control experiments and an experimental design that
incorporates out-of-sample predictions are necessary for
rigorous validation when modeling with combinatorial data-
sets.
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