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Abstract

We present the task of modeling information
propagation in literature, in which we seek to
identify pieces of information passing from
character A to character B to character C', only
given a description of their activity in text. We
describe a new pipeline for measuring informa-
tion propagation in this domain and publish a
new dataset for speaker attribution, enabling
the evaluation of an important component of
this pipeline on a wider range of literary texts
than previously studied. Using this pipeline,
we analyze the dynamics of information prop-
agation in over 5,000 works of English fiction,
finding that information flows through charac-
ters that fill structural holes connecting differ-
ent communities, and that characters who are
women are depicted as filling this role much
more frequently than characters who are men.

1 Introduction

With the rise of sociological approaches to nar-
rative, work in literary criticism has increasingly
turned to the ways in which authors depict social
networks in their texts. This includes critical at-
tention to both network topologies, such as under-
standing characters and their structural relation-
ships with others (Levine, 2009), and information
flow, such as theorizing the representation of dis-
ease and gossip (Levine, 2009; Margolis, 2012;
Spacks, 1985). Much computational work in NLP
has arisen to support the former line of research,
including extracting social networks from text (El-
son et al., 2010), predicting familial relationships
(Makazhanov et al., 2014), and modeling the in-
teractions between characters (Iyyer et al., 2016;
Chaturvedi et al., 2017). This in turn has driven
work in the digital humanities examining the struc-
ture of literary networks (Moretti, 2011; Algee-
Hewitt, 2017; Piper et al., 2017; Alexander, 2019).

At the same time, however, there remains a sub-
stantial gap in computational work to support the
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“Miss Havisham is dead” “‘She died”
Figure 1: The character co-occurrence network for

Great Expectations. Nodes represent characters and
edges represent conversational interactions. Below the
network, we illustrate an example of information trans-
mission across a character triad.

latter research goal of modeling the flow of infor-
mation within depicted networks. Yet understand-
ing how the transmission of information is repre-
sented in these imagined worlds has the potential
to be of great value to scholars in the humanities,
since the resulting models can serve as a basis for
broader insights about the social structures embed-
ded in narratives, the role of characters based on
attributes such as race and gender, and the infor-
mational dynamics of gossip (Spacks, 1982, 1985;
Martin, 2014).

In this work, we specifically aim to fill this gap
by developing methods to track the flow of informa-
tion in novels by extracting instances of a message
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passing from character A to character B to char-
acter C, only given a depiction of their conversa-
tional interactions. We develop a methodology for
modeling this mode of propagation in both explicit
networks (where one character provides informa-
tion that is explicitly attributed to another character,
such as “Bob told me that Jack escaped”); and in
implicit networks, where information is repeated by
multiple characters without such attribution. While
the results of the methods enable a range of poten-
tial analyses—for instance, comparative analysis
between authors, characters, and dyads—we focus
on two illustrative case studies. First, we examine
the linchpins of information flow—the characters
who are most responsible for the propagation of
information—and how they are positioned relative
to the overall network topology; and second, we
examine the gender dynamics of information prop-
agation and what it tells us about how novelists rep-
resent men and women as the means and agents for
transmitting facts, gossip, and other details about
the social workings of these imagined worlds.

We make the following contributions with this
work:

1. We present a new NLP pipeline for determin-
ing information propagation in literary texts,
incorporating a range of different sub-tasks,
including coreference resolution, speaker attri-
bution, character network identification, and
information extraction.

2. We present a new dataset for speaker attribu-
tion, comprised of 1,765 quotations linked to
their speakers in 100 different literary texts,
allowing us to evaluate a critical component
of this pipeline on a wider range of literary
texts than previously studied.

3. We leverage our pipeline to analyze the dy-
namics of information propagation in a col-
lection of 5,345 works of English fiction from
Project Gutenberg. We find that information
flows through characters that fill structural
holes connecting different communities, and
that characters who are women are depicted
as filling this role much more frequently than
characters who are men.

2 Related work

Much of the computational research into informa-
tion propagation and diffusion has focused on the

domain of social media (Bakshy et al., 2012). Re-
search in this area includes analyses of information
diffusion in blogs (Gruhl et al., 2004; Leskovec
et al., 2007), the spread of news across online net-
works (Leskovec et al., 2009), and in particular, the
spread of rumor and misinformation (Kwon et al.,
2013; Friggeri et al., 2014; Del Vicario et al., 2016;
Vosoughi et al., 2018).

A core aspect of this work that strongly differs
from networks in fiction is that the individual com-
ponents of social media networks (the nodes, edges,
and instances of propagation) are often directly ob-
served. In modeling retweet dynamics in Twitter,
for instance, nodes are defined as unique users,
edges are directly observed friend and follow links
defined by the platform, and propagation occurs
when one user retweets a message posted by an-
other they are connected to. More closely related
to the challenges posed by detecting propagation in
fiction is work that may directly observe the node
and edge structure of a network, but must infer an
act of propagation, including work in tracking the
diffusion of memes (Leskovec et al., 2009), text
reuse across legislative bills (Wilkerson et al., 2015)
and quotations in news (Niculae et al., 2015).

While information propagation has yet to inform
work in narrative (hence the purpose of this study),
network structure has increasingly informed liter-
ary scholarship. Following the work of Bourdieu
(1996), literary scholars have in recent years be-
gun to explore the role that social networks play
both in authorial composition (So and Long, 2013;
Mazanec, 2018) and in the narrative representation
of “networked social experience” (Levine, 2009).

Treating literary works themselves as networks,
however, poses distinct computational challenges.
While research into information propagation in so-
cial media tends to presume access to explicit net-
works, the character networks represented in novels
are implicit. To determine these networks, we draw
on previous work by Elson et al. (2010), who build
edges between character nodes through conversa-
tional interactions. Various computational work
to extract social networks from literature has built
on this research over the past ten years,' including
fundamental methods designed to extract networks
for other languages like German (Jannidis et al.,
2016), incorporate other categories of nodes such
as locations (Lee and Yeung, 2012) and objects
(Sudhahar and Cristianini, 2013), and analyze the

'See Labatut and Bost (2019) for a review.
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structure of networks to test specific hypotheses
(Elson et al., 2010; Agarwal et al., 2012; Coll Ar-
danuy and Sporleder, 2014; Piper et al., 2017). Our
work builds on this tradition by introducing meth-
ods to reason about the phenomenon of propagation
in fiction based on these constructed networks.

3 Methods

Our goal in this work is to investigate the behav-
ior of information propagation in literary texts. In
order to identify acts of propagation in this con-
text, we need to determine the underlying network
structure of a novel, including the nodes (by infer-
ring characters) and the edges (by inferring some
interaction between them). We describe first our
pipeline for doing so, which involves identifying a
set of unique characters from their mention in a text
using coreference resolution (§3.1), attributing dia-
logue to those characters (§3.2), building a social
network of speakers and listeners from that data
(§3.3), and operationalizing a measure of “informa-
tion” that we can treat as an atomic unit involved
in propagation using slot-based information extrac-
tion (§3.4). With these constructed networks, we
can measure acts of implicit propagation (§3.5) and
explicit propagation (§3.6) within it.

3.1 Coreference resolution

Most contemporary systems for coreference res-
olution are trained on the benchmark OntoNotes
dataset (Hovy et al., 2006), which primarily con-
sists of news and conversation; literature is repre-
sented there only in the narrow genre of the Bible.

In order to use coreference resolution specifi-
cally trained on literature, we use the coreference
annotations and trained model described in Bam-
man et al. (2020). This model is a neural coref-
erence system inspired by Lee et al. (2017), aug-
mented with BERT contextual representations (De-
vlin et al., 2019), and trained on 210,532 tokens
in LitBank, comprising 100 different works of
English-language fiction. Bamman et al. (2020) re-
port its cross-validated average F-score on LitBank
to be 68.1, notably higher than the performance
for a model trained on OntoNotes (which has an
average F1 score of 62.9).

3.2 Speaker attribution

Data. Previous work in literary speaker attribu-
tion has focused on a relatively small set of novels.
Both He et al. (2013) and Muzny et al. (2017)

annotate Austen’s Pride and Prejudice and Emma
as well as Chekhov’s The Steppe. Similarly, the
Columbia Quoted Speech Corpus includes six texts
by Austen, Dickens, Flaubert, Doyle and Chekhov.
While these datasets have been able to drive much
work in the development of models for speaker at-
tribution, they represent a comparatively narrow
slice of how dialogue is depicted in literature.

In order to evaluate the robustness of models
across a diverse range of novels and authors, we
annotate all 100 texts in LitBank (Bamman et al.,
2019) with the boundaries for all true quotations
and link each to the entity who spoke it. Here
we are able to draw on the coreference annota-
tions present in LitBank, which already link each
mention to a unique entity. All annotations were
carried out using the BRAT annotation interface
(Stenetorp et al., 2012) by four annotators after a
period of initial training, prompted to identify all
quotations and attribute each one to the speaker
who uttered it. Given the high agreement rate
observed by Muzny et al. (2017) (x of 0.97 for
quote-speaker labels), each quotation is attributed
by a single annotator. To check consistency, we
double-annotate a sample of 10 texts (10% of the
entire collection) at the end of the annotation pro-
cess and find a similarly high inter-annotator agree-
ment rate (Cohen’s x of 0.962). In total, 1765
quotations were annotated across all 100 works
of fiction. This data is freely available under
a Creative Commons ShareAlike 4.0 license at
https://github.com/dbamman/litbank.

Quotation identification. For the task of quota-
tion identification, we use the method implemented
in BookNLP (Bamman et al., 2014), which uses
simple regular expressions (text contained between
an opening quote and a closing quote). On our gold
annotations, this method results in an F1 score of
90.8 for quotation identification (87.1 precision and
95.0 recall). False positive failure cases of strings
wrapped in quotation marks that do not constitute
dialogue include various typographical uses of quo-
tation for signifying other phenomena, including
scare quotes for emphatic use (to introduce jargon,
neologisms, or irony), titles of works of art, the
mention of a term (as distinct from its use), and
written use (see Brendel et al. (2011) for a sur-
vey). False negatives primarily arise due to regex
matching errors (such as a stray quotation mark that
results in an inversion of the subsequent speech and
narration), or texts that do not delimit speech with
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B3 | MUC | CEAFy, | Average | A
Predicted coreference 68.0 | 84.9 61.0 71.3 -
—Trigram matching 67.7 | 84.5 60.1 70.8 -0.5
—Dependency parses 66.5 | 834 56.8 68.9 2.4
—Singleton mention detection 67.0 | 859 59.6 70.8 -0.5
—Paragraph final mention linking | 68.0 | 84.9 61.0 71.3 0.0
—Vocatives 689 | 859 62.1 72.3 +1.0
—Conversational pattern 66.8 | 85.0 58.9 70.3 -1.0
Oracle coreference 802 ] 897 [ 747 | 815 | +102]

Table 1: Metrics for cluster overlap between the gold set of clusters G and predicted set of clusters C. Each cluster
is defined as the set of quotations spoken by the same speaker. We also present the upper bound of carrying out
speaker attribution using gold coreference labels (oracle coreference), which suggests that there is much to be

gained in improving quotation attribution not only by improving coreference, but independently of it as well.

quotation marks at all (such as Joyce’s Ulysses,
which introduces direct speech with dashes).

Attribution. For speaker attribution, we reim-
plement the deterministic method of Muzny
et al. (2017) using the full coreference informa-
tion predicted above. Muzny et al. (2017) de-
scribes a series of deterministic sieves for the
two tasks of a.) mapping quotes to the near-
est speaker mention and b.) linking identified
speaker mentions to character entities. The
Quote—Mention phase includes sieves such as
high-precision regular expressions for predefined
Quote/Mention/Verb patterns (e.g., [“...,”louoTE
[said]y grp Jane]laenTroN), originally defined
in Elson and McKeown (2010); dependency struc-
ture information (identifying mentions that hold an
NSUBJ relation to a verb of communicating); and
vocatives in the previous quotation. Quotations
unattributed after running all sieves are assigned
the majority speaker in the context.

To separate out the task of quotation identifica-
tion from quotation attribution, we evaluate quo-
tation attribution with gold quotation boundaries.
While previous work on quotation attribution in
literary texts, including Muzny et al. (2017) and He
et al. (2013), evaluate system performance using
classification accuracy and precision/recall (where
each quotation in a test book is judged to be as-
signed to the correct true speaker from a predefined
gold character list), we do not presume access to
a gold character list during prediction time. Like
Almeida et al. (2014), we evaluate performance
using a measure of cluster overlap (here, the suite
of metrics used in evaluating coreference resolu-
tion), where each cluster is defined by the set of
quotations spoken by the same speaker.
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As Table 1 illustrates, our reimplementation of
Muzny et al. (2017) for the task of speaker attri-
bution yields an average F1 score of 71.3 across
the three cluster metrics when evaluated on all 100
books in our newly annotated data. As we ablate
different aspects of the Muzny et al. (2017) model,
performance generally degrades, attesting to the
value of individual sieves.

3.3 Identifying character networks

Similar to previous approaches for determining
character networks in literary fiction (Elson and
McKeown, 2010; Moretti, 2011), we use conver-
sation as the basis for determining the edges in
our graph. However, rather than trying to identify
specific speaker-listener interactions, we instead
extract dialogue blocks, drawing an edge between
all characters mentioned outside of a quotation in
a given block. Edges are weighted by the total
number of dialogue blocks in which a given pair
of characters are found to be co-present. We use
a simple heuristic to identify these conversation
blocks: if three or more contiguous sentences do
not contain any quoted dialogue, we treat this as
the termination of the block. The resulting graph
serves as the basis for identifying information prop-
agation in a given novel, as detailed in the following
subsections.

3.4 Defining information

Whereas large-scale corpora such as social media
data sets provide networks in which fuzzy matching
of information may be appropriate and in which in-
formation repetition is often substantial (Leskovec
et al., 2009), in the context of novels such meth-
ods are unlikely to have sufficient precision. As



a result, we select an information approach which
allows us to maximize precision at the cost of po-
tentially missing some instances of propagation.
Our approach entails identifying quoted speech
that references at least one character. One way to
define this type of speech would be to simply de-
scribe it as gossip, though we feel that this is an
overly narrow term given the general nature of our
approach. Specifically, we select propositional tu-
ples of the form (subject, verb, object), such that
the subject holds an nsub j dependency relation to
the verb and the object holds an ob 7 relation (us-
ing the terminology of the Universal Dependencies
(Nivre et al., 2016)); the subject and object may be
filled by a character entity, a non-character nominal
phrase, or a null token if neither is present. We ig-
nore any tuples which contain /, you, or we (along
with their variants) in either the subject or object
slots, since they have comparatively higher errors
in coreference. For the verb slot, we always se-
lect the lemma form of the proposition’s head verb.
Character entities in a proposition are identified
by their unique character IDs established through
coreference resolution (and not by the surface form
of their mention).
Consider the following hypothetical example:

Bob punched Tom and he left

Given the operation of coreference resolution
mapping “Bob” and “he” to the entity Bob-id1
and “Tom” to Tom-1id2, the extracted tuples
for this sentence would be: [Bob-id1l, punch,
Tom-1d2] and [Bob-1id1, leave, #]. We ex-
tract all propositional tuples using a set of rules
applied to the dependency parse of a given sen-
tence. Although reductive to some degree, defining
and extracting information in this way allows us to
avoid informational noise and only select consis-
tent propositional units.

To further reduce potential informational noise,
we also only select tuples containing words that
are likely to have some intrinsic interest to the plot
and which have a relatively fixed meaning. After
analyzing the 100 words that occur most frequently
across all the tuples extracted from our corpus, we
select tuples containing terms associated with the
following four categories: amorous, hostile, juridi-
cal, and vital. For each category, we include the
following words along with any synonyms that are

also present in the top 100 tuple words: amorous
(love, marriage), hostile (hurt, hit, shoot, kill), ju-
ridical (arrest, escape, innocent, guilty), and vital
(alive, sick, dead). Since the Gutenberg corpus pri-
marily contains nineteenth-century novels, these
topics reflect many of the key events that these
works of fiction tend to focalize.

3.5 Defining implicit propagation

We identify instances of implicit information prop-
agation simply by determining whether a propo-
sitional tuple passes between a minimum of three
characters. In other words, we look for an informa-
tional triad of the form character A — character B
— character C, such that character A and charac-
ter B are co-present when character A voices the
initial instance of the proposition (but character C
is not), and character B and character C' are co-
present when character B repeats the proposition
during a different conversation block.

3.6 Defining explicit propagation

Along with implicit instances of information prop-
agation, we note that novels often contain explicit
propagation as well. We define explicit propaga-
tion as occurring when a character reports what
another character said to a third character. In other
words, we simply search for variations of the pat-
tern “[character—-id] said” in the context of
quoted speech. Specifically, the variations consid-
ered include synonyms for “say” along with any
arguments or modifiers that are relevant to intro-
ducing reported speech (e.g., “declared,” “told me,”

“mentioned that,” “claimed to,” etc.).

The benefit to capturing instances of explicit
propagation is that such instances can be extracted
with very high precision regardless of the informa-
tional topic being discussed. Consequently, unlike
for implicit propagation, we make no constraints
on the nature of the information itself (in contrast
to the four topics defined above). After identifying
instances of explicit propagation, we incorporate
coreference resolution and speaker attribution to
determine the specific characters of a given propa-
gating triad. Section 5.2 discusses how the result-
ing data from this approach can be used to analyze
the role that gender plays in the depiction of infor-
mation propagation within novels.
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4 Experiments

Given instances of information propagation ex-
tracted from novels, we seek to understand the
structural roles of the literary network and its to-
pography that contribute to information passing
between dyads. In particular, we seek to disentan-
gle two possible alternatives:

H1. Information propagates through bridges who
pass information between otherwise discon-
nected communities.

H2. Information propagates among densely con-
nected strong ties (such as between members
of the same family who interact frequently).

These alternatives correspond to different func-
tions of gossip in literature, as theorized by Spacks
(1985): while gossip primarily involves the “delib-
erate circulation of information,” it also functions
to reinforce existing relationships among strong
ties (a point taken up in real-world social networks
in Foster (2004)). We operationalize this distinc-
tion for understanding the dynamics of implicit
propagation by describing information-propagating
characters and non-information-propagating char-
acters through six network measures that capture
their topological properties within the network:

1. Closeness centrality: the average inverse dis-
tance between a given node and all other
nodes in a graph.

2. Betweenness centrality: the fraction of short-
est paths that pass through a node, summed
over all node pairs.

3. Average neighbor degree: the average de-
gree of the nodes in a given node’s neighbor-
hood.

4. Effective size: the measure of the non-
redundancy between a node and its contacts—
specifically how connected a node’s contacts
would be in its absence (i.e., the resulting
structural hole).

5. Efficiency: the effective size of a node di-
vided by its degree.

6. Triangle count: the number of triangles for
which a node serves as a vertex, where a trian-
gle is defined as a set of three nodes that are
directly connected to each other.
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We use the above measures to describe all nodes
that either function as the B node in an A —
B — C information triad, or could function as
such a node. More specifically, whenever we ob-
serve an instance of propagation A — B — C,
in which at least one separate character B’ was
co-present with B when hearing A’s information
(but did not propagate it further), we select a pair
comprised of B as a propagating node and B’ as a
non-propagating node (sampling B’ from the set of
co-present characters if more than one was present).
In cases in which no non-propagating character was
co-present, we instead sample a B’ from the set of
propagating instances that had multiple co-present
characters. When sampling the non-propagating
B’ nodes, we only select characters that have been
observed to speak at least once in the text based on
our speaker attribution model (we hypothesize that
selecting these characters is a better way to judge
the efficacy of a propagation model, since they at
least vocalize some information in the narrative,
and hence are more likely to resemble propagating
nodes in terms of their narrative functions).

4.1 Results

In order to test implicit information propagation in
literature, we run tuple extraction on 5,345 works
of fiction from the Project Gutenberg corpus. We
find that roughly 3,600 of these books contain at
least one instance of a repeated tuple containing a
word from our four topics of interest (indicating
the possibility of propagation based on our criteria).
We proceed to run the rest of our pipeline on this
subset of books.? In total, we find that 35% of
these works contain at least one instance of implicit
information propagation.

To distinguish between the two hypotheses out-
lined above, we scale all the features of the data
between 0 and 1 and train a non-regularized logistic
regression model to distinguish between informa-
tion propagating B nodes and non-propagating B’
nodes. We run the model on 1,730 B nodes and
1,730 B’ nodes. The results are shown in Table 2
and discussed in more detail in the next section.

To ensure that our results are not simply caused
by aspects of each network’s general topology (ir-
respective of the unique qualities of propagating B
nodes) we also run a degree-preserving randomiza-

2We process all books on a high-performance computing
cluster using 24-core Intel Xeon Haswell processors and 64
GB of RAM,; the average runtime of this pipeline on one book
on this platform is five minutes and two seconds.



Graph Measure Coefficient
Efficiency 3.0*
Effective size 2.7
Betweenness centrality 0.5
Closeness centrality 0.1
Triangles —-04
Average neighbor degree —4.9*

Table 2: Logistic regression model coefficient values.
Stronger positive values are indicative of information-
propagating nodes; stronger negative values are indica-
tive of non-propagating nodes. * denotes p < 0.01.

tion experiment (Miller and Hagberg, 2011) as a
more stringent means for testing significance. For
each network containing a propagating node, we
generate 10 expected degree graphs and use them to
calculate network measures for the corresponding
propagating B and non-propagating B’ nodes in
the original network, producing a set of 10 random-
ized measures for each of the 1,730 original nodes
in each class. We then randomly sample a single
measure from each of these sets, yielding 1,730
randomized node measures for both classes, and re-
run our logistic regression model on that resample.
We repeat this process 10,000 times to generate an
expected null distribution for each coefficient and
assess the frequency with which a null coefficient
value was observed to be as extreme as the value
we observe under the true network—analogous to a
p-value in a bootstrap hypothesis test (Efron, 1982;
Berg-Kirkpatrick et al., 2012; Dror et al., 2018).
For the two node measures found to be signif-
icant under our original model, efficiency has a
p-value of 0.08 (8% of 10,000 random trials ob-
serve a statistic as extreme as 3.0), no longer rising
to the level of significance at & = 0.01, while aver-
age neighbor degree has a p-value of 0 (no random
trial sees as a statistic as extreme as —4.9), provid-
ing further evidence of its significance as a feature
for discriminating information-propagating nodes.

5 Analysis

5.1 Implicit propagation and weak ties

As Table 2 shows, average neighbor degree and
efficiency are both found to be significant at a
threshold of o = 0.01, while average neighbor de-
gree is confirmed to be significant under a degree-
preserving randomization experiment. These re-
sults support the first of our two postulated hy-
potheses (introduced in §4): information in novels
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propagates through characters that serve as bridges
between otherwise disconnected communities.

Average neighbor degree has the largest coef-
ficient (by absolute value) and is negatively cor-
related with propagation. High values of average
neighbor degree denote communities that are al-
ready well-connected (both to each other and to
the rest of the network). In such a information-rich
neighborhood, instances of propagation would be
of less value or necessity, and hence would be less
likely to be observed.

Support for the first hypothesis is further con-
firmed by the strong positive coefficient for effi-
ciency. Like effective size, efficiency is a means of
determining the extent to which a structural hole
would occur if a specific node were removed from
the network. Whereas effective size indicates the
possibility of such a structural hole in general, ef-
ficiency measures how much each one of a node’s
connections on average contribute to linking oth-
erwise disconnected neighborhoods. Thus high
efficiency suggests that a node is not only serving
as a useful bridge between other nodes, but that it
is doing so productively relative to its total number
of connections.

In a sense, these results suggest that we are ob-
serving a version of the weak tie theory first pro-
posed by Granovetter (1973). By virtue of the fact
that a character’s connections are not themselves
closely connected, that character can in turn serve
an essential informational role for the community.

5.2 Explicit propagation and gender

While our methods for extracting implicit prop-
agation for amorous, hostile, juridical and vital
events identified 1,730 instances in 5,345 novels,
our method for identifying explicit propagation
yields far more—93,948 instances of propagation
involving 258,619 triads (since there may be mul-
tiple listeners for a single instance). Although the
analysis carried out on implicit propagation is not
possible for the explicit case (since there is no way
to identify co-present B’ nodes when the initial in-
stance of a proposition remains unobserved in the
text), the size of the explicit results are conducive
to other analyses. Specifically, we consider here the
role that gender plays in the depiction of propaga-
tion. As Spacks (1985) points out, women are often
stereotyped (both within the real world and in repre-
sentations in literature) as more likely to engage in
gossip; from a networked perspective, they are also



often cast as intermediaries between men, “serving
as points through which to triangulate male-to-male
desire or power” (Selisker, 2015). Analyzing gen-
der (and other demographic attributes) in the con-
text of information propagation enables scholars to
consider how authors construct the informational
ecology of their novels given the functional roles
played by different characters.

To measure the role that gender plays in how au-
thors represent information propagation in novels,
we calculate the relative proportion of different gen-
der configurations for propagating triads compared
to all triads present across our entire data set (we
determine the gender of a character by counting up
all the male and female nouns and pronouns in that
character’s coreference chain). This allows us to
answer the question: given the overall structural op-
portunity to transmit information, how often does
transmission actually occur based on gender?

|:| Al triads

. Propagating triads

0.3-

0.2-

Percentage

0.1-

0.0-

FF-F F-FM  F-M-F MFM  MMF  M-MM

Gender triad type

Figure 2: Comparison of the relative proportions of
triad variations based on gender. All triads (light blue,
n = 158,250,238) represent every observed triad across
5,345 books. Propagating triads (dark blue, n =
258,619) indicate only those triads observed to explic-
itly propagate information. The widest 95% confidence
interval across all proportions is £0.0018, so that all
differences within a gender triad type are significant.

Figure 2 illustrates the proportion of each gender
configuration compared to the total; for instance,
while 15.4% of all character triads are comprised
of three women (F-F-F), 20.1% of triads involved
in information propagation involve three women.
Overall, we find that not only are female characters
more likely to serve as propagators than male char-
acters in this dataset, but that female characters fill
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this role more frequently than one would expect
given the proportion of female connector nodes
across all triads. The proportion of propagation
when the middle node is male, conversely, is lower
than the expected value for every configuration.
In other words, authors represent women as infor-
mation propagators comparatively more frequently
than men relative to their overall expectation.
Although literary criticism tends to envision
the role of women in novels as being intermedi-
aries between men (Woolf, 1929; Sedgwick, 1985;
Schantz, 2008; Selisker, 2015), our analysis of in-
formation propagation tells a slightly different story.
While women do indeed appear to serve as inter-
mediaries/connectors more frequently than men
do, women propagate information between men
much more rarely than they do in other config-
urations (i.e., F-F-F, F-F-M). Though women
may of course still connect men in these narratives,
they do not appear to do so by notably passing
on information. We leave determining the broader
significance of this result to future work.

6 Conclusion

We introduce the task of identifying information
propagation in literary social networks, designing
an NLP pipeline for extracting both implicit and
explicit propagation. This work offers a new per-
spective on the analysis of social networks in lit-
erary texts by considering the dynamics of how
information flows through them—both as a result
of the structural topology of the network (charac-
ters who successfully propagate are information
bridges between communities), and as a result of
the specific characteristics of each node (women
are depicted more frequently as successful propa-
gators than men).

This study, of course, contains limitations: read-
ers of fictional works are only afforded a par-
tial perspective of the world that is represented—
namely the interactions an author chooses to de-
scribe (and not, for example, the dialogue we
might presume takes place “off-screen”). Con-
sidered from a narratological perspective, how-
ever, this is a benefit rather than a drawback, since
our goal is not to understand the underlying real-
ity of these imagined worlds but rather how au-
thors opt to represent the informational dynam-
ics from which their stories are constructed. In
developing this pipeline to examine how authors
depict the transmission of information within nar-



rative texts, we hope to drive a variety of future
research in this space, including not only such nar-
ratological questions as how “gossip impels plots”
(Spacks, 1985), but also questions pertaining to
issues of bias in representation, the flow of infor-
mation, and factuality. Code to support this work
can be found at nttps://github.com/mbwsims/

literary-information-propagation.
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