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Computational methods for training set selection
and error assessment applied to catalyst design:
guidelines for deciding which reactions to run first
and which to run next†
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Jeremy J. Henle and Scott E. Denmark *

The application of machine learning (ML) to problems in homogeneous catalysis has emerged as a

promising avenue for catalyst optimization. An important aspect of such optimization campaigns is

determining which reactions to run at the outset of experimentation and which future predictions are the

most reliable. Herein, we explore methods for these two tasks in the context of our previously developed

chemoinformatics workflow. First, different methods for training set selection for library-based optimization

problems are compared, including algorithmic selection and selection informed by unsupervised learning

methods. Next, an array of different metrics for assessment of prediction confidence are examined in

multiple catalyst manifolds. These approaches will inform future computer-guided studies to accelerate

catalyst selection and reaction optimization. Finally, this work demonstrates the generality of the average

steric occupancy (ASO) and average electronic indicator field (AEIF) descriptors in their application to

transition metal catalysts for the first time.

Introduction

Since the turn of the century, computational methods for
enantioselective catalyst optimization have gained traction
within the scientific community.1–28 The most established
method for computational catalyst design is transition state
analysis with quantum chemistry or force field methods
calculate the relative energy differentials leading to
enantiomers which then enables more informed catalyst
optimization.2,5,6,8,10–12,29–33 A more recent alternative to
these approaches is the application of quantitative structure–
selectivity relationships (QSSR).34 In this method, numerical
values representing catalyst structural characteristics are
correlated with an experimental observable, generating a
mathematical model which can be used to evaluate new
catalyst structures in silico. QSSR also has the advantage of
being mechanistically agnostic at the outset of investigation.
In enantioselective catalysis, the seminal example of QSSR
was reported by Norrby and coworkers to predict ratios of

isomeric products from various nucleophilic substitution
reactions on palladium η3-allyl complexes.35 Since this initial
report, this field has become an established area of
research.36–44 Of particular note, Sigman and coworkers have
pioneered the application of linear free energy relationships
(LFERs) for mechanistic interrogation.45

In our own laboratories, molecular interaction field
(MIF)-based approaches have been investigated to elucidate
important structural characteristics of phase transfer
catalysts.46,47 More recently, we have used additional
statistical learning protocols with MIF-type descriptors to
evaluate chiral catalysts, culminating in a computer-driven
workflow for the optimization of enantioselective
catalysts.48,49 The aim of this workflow is to identify the
most selective catalyst from a large in silico library of
catalysts in a way that is agnostic of mechanism. However,
these studies, like many studies investigating the
application of machine learning to enantioselective catalysis,
are proof-of-principle studies. In practice, when employing
this kind of a workflow, researchers must have quantitative
measures for identifying which chemical entities to
synthesize and which predictions are the most reliable.
Notably, some of these concepts have been explored in
other applications in the chemical sciences.50–57 However,
these concepts have not been explored rigorously in the
context of enantioselective catalysis. In the work described
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herein, a variety of catalyst selection protocols are evaluated.
Further, multiple metrics for error assessment are compared
in multiple catalyst systems. Specifically, error assessment

metrics used previously in the literature are tested to
determine how best to use them in our previously published
workflow. Finally, suggestions are made as to how these

Fig. 1 Enantioselective hydrogen transfer catalyst system and possible catalyst structures.
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investigations can aid decision making in ML-guided
optimization campaigns.

Results and discussion
Evaluation of different training set selection methods

First, this work seeks to identify suitable algorithmic
methods for subset selection (i.e. selection of the initial
training set). Specifically, we hypothesize that algorithmic
selection will reliably provide more accurate models than
random selection or selection on the basis of synthetic or
commercial availability. In our previous work, the Kennard–
Stone algorithm was used to select an initial subset for
model training and validation, and K-means clustering was
used to augment training data for ML studies.48,49 Both
algorithms have been empirically successful selection
methods; however, to our knowledge, no study in
homogenous catalysis has investigated an array of subset
selection protocols to determine which is best for selecting
an initial set of experiments. To probe this hypothesis, a
literature dataset of enantioselective transfer hydrogenation
reactions previously used in chemoinformatic analysis will
be used as a case study.58–60 In this investigation, 330
amino alcohol ligands were combined with six transition
metal complexes, which were then employed in the
enantioselective transfer hydrogenation of acetophenone
(Fig. 1). From this dataset, reactions providing yield and
enantioselectivity values were chosen, reducing the total
number of reactions to 315. The original report chose to
optimize for a combination of these values, which was
termed normalized performance factor (NPF). NPF is
calculated as the conversion multiplied by two plus the
enantiomeric excess (ee). That value is normalized to the
highest performer by this metric to give NPF values for all
catalysts, with the catalyst having the highest performance
factor normalized to 1.

With multiple reaction outcomes to predict, this dataset
was used for further exploration. As in our previous
study,49 average steric occupancy (ASO) and average
electronic indicator field (AEIF) descriptors were calculated
for the amino alcohol metal complexes. Although these
descriptors were successfully implemented for different
classes of organocatalysts, we wanted to assess the efficacy
of these descriptors for representing chiral transition metal
complexes. The capability to represent disparate catalyst
families with the same molecular representation would
indicate good generality in the molecular representation,
which is a necessary requirement if comparisons between
different families of catalysts is desired in future work.
Additional parameters for the respective metals were also
calculated (see ESI† for full computational details). When
investigating methods for selecting initial subsets of
compounds, the most appropriate were deemed to be
those dependent on only the catalyst descriptors. The
rationale for this approach is that the initial subset of
catalyst structures (i.e. the training set) should be general

for use at the outset of optimization campaigns for any
application. By considering only catalyst structure
descriptors, the selection process is agnostic to the specific
reaction under study.

When evaluating methods to use for subset selection
some considerations need to be taken in the context of
our workflow. Most notably, our system for catalyst
optimization first begins with the construction of a large
in silico library containing thousands of synthetically
accessible catalyst structures. The remainder of the
workflow (at this stage of development) works under the
assumption that this library will remain static. Thus, every
sample for which a value could be measured is known at
the outset of experimentation. Therefore, the ideal subset
of molecules will yield models that most accurately predict
reaction outcomes for the remainder of the library. Toward
this end, five different methods fulfilling this criterion
were used: the Kennard–Stone algorithm, K-means
clustering, affinity propagation, agglomerative clustering,
and mean shift clustering.61 For each method, 33 catalysts
were selected except for affinity propagation and mean
shift clustering in which the number of clusters cannot be
preset. For affinity propagation, 34 clusters were identified
by the algorithm and for mean shift clustering 33 clusters
were recommended. Thus, affinity propagation has a slight
advantage over the other four methods owing to the
additional cluster employed. For comparison, ten randomly
selected subsets were also compiled. It is worth noting
that, in general, random selection from a diverse in silico
library likely covers more chemical space than most
experimental catalyst optimization campaigns. As
demonstrated in our previous work, most such campaigns
over-sample a limited region of chemical space owing to
commercial availability or synthetic accessibility of certain
types of structures.49 Consequently, it is likely that
random selection from a diverse library would give more
diverse structures than most instances of “traditional”
catalyst optimization. Therefore, any selection protocol that
gives consistently higher performance than random
selection can be considered a particularly promising
selection method.

The performance of interest in this study is the
capability to determine the selectivity of every catalyst in
the library a priori. Thus, to determine the best subset
selection methods, models were trained and cross
validated using only the selected catalysts and their
performance compared by using all remaining catalysts in
the library as an external test set. Although we have
chosen this experimental design with our own workflow
in mind, it is worth noting that in many cases
experimentalists have an idea of which catalysts are
acceptable at the outset of experimentation. The following
analysis should be applicable to all of such cases. Using
each initial subset (which in practice was used for model
training and cross validation), an ensemble of models
was generated for both the NPF and the enantioselectivity
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datasets. Because limited training data was used to
simulate real optimization scenarios, an ensemble of
linear models was constructed (see ESI† for full detailed
regarding this ensemble). The summary of the models for
enantioselectivity and NPF are given in Tables 1 and 2,
respectively.

The data in Tables 1 and 2 demonstrate that, in general,
models derived from algorithmically selected training set
outperform those selected through random selection. For
both enantioselectivity models and NPF models, three of the
top five models are derived from algorithmically selected
training sets. Further, in both cases even the worst
performing model derived from an algorithmically selected
training set yields a lower MAETest than the average

performance of the randomly selected training sets. Finally,
all models derived from algorithmically selected training data
perform with excellent accuracy as dictated by MAETest
(enantioselectivity models MAE < 0.235 kcal mol−1, NPF
models < 0.087 NPF). This observation is encouraging in
such studies, as it indicates that it is generally possible to
make accurate models with limited training data, which
should facilitate adoption of such methods in experimental
optimization campaigns.

When comparing the performance of the different training
sets, it is apparent that random training data selection
results in model accuracy that is highly dependent on set
selection. For the randomly selected training sets, resulting
model MAETest scores ranged from 0.198 kcal mol−1 to 0.310

Table 2 Summary of different selection methods for NPF models

Selection protocol Test MAEa (NPF) Test MAE Stdev (NPF) Cross Val Scoreb (NPF) Cross Val Score Stdev (NPF)

Mean shift 0.074 0.000 0.044 0.001
Random TS7 0.078 0.006 0.075 0.004
Kennard–Stone 0.079 0.001 0.039 0.002
Agglomerative clustering 0.081 0.001 0.053 0.001
Random TS3 0.081 0.002 0.069 0.003
Random TS1 0.082 0.001 0.048 0.002
K-means clustering 0.083 0.000 0.056 0.001
Random TS9 0.083 0.005 0.058 0.003
Random TS8 0.083 0.005 0.060 0.013
Affinity propagation 0.084 0.002 0.052 0.006
Random TS10 0.088 0.005 0.089 0.012
Random TS4 0.089 0.003 0.066 0.000
Random TS5 0.091 0.007 0.093 0.006
Random TS2 0.095 0.005 0.079 0.004
Random TS6 0.105 0.010 0.092 0.006
All random 0.088 0.005 0.073 0.005
All algorithmic 0.080 0.001 0.049 0.002

a Average MAE for the ensemble of models. b Results of 3-fold cross validation with MAE as the evaluation metric.

Table 1 Summary of different selection methods for enantioselectivity models

Selection protocol
Test MAEa

(kcal mol−1)
Test MAE Stdev
(kcal mol−1)

Cross Val Scoreb

(kcal mol−1)
Cross Val Score Stdev
(kcal mol−1)

Random TS1 0.198 0.001 0.297 0.004
Agglomerative clustering 0.207 0.003 0.196 0.005
Kennard Stone 0.214 0.014 0.187 0.017
Affinity propagation 0.215 0.013 0.142 0.008
Random TS3 0.217 0.009 0.181 0.012
Random TS7 0.218 0.012 0.215 0.002
Random TS5 0.220 0.008 0.284 0.011
K-means clustering 0.220 0.010 0.197 0.013
Random TS4 0.223 0.003 0.220 0.006
Random TS2 0.225 0.016 0.320 0.023
Mean shift 0.235 0.013 0.276 0.014
Random TS8 0.253 0.016 0.206 0.021
Random TS10 0.273 0.004 0.221 0.005
Random TS6 0.283 0.006 0.138 0.008
Random TS9 0.310 0.012 0.184 0.014
All random 0.242 0.009 0.227 0.011
All algorithmic 0.218 0.010 0.199 0.011

a Average MAE for the ensemble of models. b Results of 3-fold cross validation with MAE as the evaluation metric.
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kcal mol−1 for models predicting enantioselectivity and 0.078
to 0.105 for models predicting NPF.62 This wide fluctuation
in performance is expected when a small portion of the
dataset is sampled randomly; as the number selected
randomly increases, the overall variability of model accuracy
decreases. However, for synthetic applications, acquiring
enough datapoints to reduce this variation resulting from
“fortuitous” (e.g. random training set 1 or random training
set 7) or “unfortunate” (e.g. random training set 6) training
set selection is undesirable and unrealistic. In this regard, all
algorithmic selection methods demonstrate the advantage of
avoiding an “unfortunate” random selection. It is also
noteworthy that algorithmic subset selection methods result
in models with lower MAEs than random sampling as
indicated by comparing the MAETest of each subset selection
method to the average MAETest of the random sets. In both
enantioselectivity and NPF models, all algorithmic selection
methods had lower MAEs than the mean MAE of the random
sets. Finally, it is worth noting other datasets might have a
different highest performing subset selection algorithm.
Until numerous high-quality large datasets are available for
benchmarking, it is not possible to determine which subset
selection algorithm is the most general when applied to
asymmetric catalysis. That notwithstanding, it is safe to
conclude that such algorithmic methods will give a more
reliable and robust selection than random selection when
applied to library-based optimization protocols.

Evaluation of different error assessment metrics

Having probed suitable selection protocols for gathering
initial datasets, we next sought to examine an array of error
assessment metrics to inform which reaction should be run

“next” in an optimization campaign. As such, the hydrogen
transfer catalyst dataset was used to generate an ensemble of
neural networks which was then used to evaluate different
error assessment protocols. The dataset was divided into a
training set of 200 reactions, a validation set of 37 reactions,
and a test set of 78 reactions. A set of 2000 neural networks
with randomized hyperparameters was selected, and the top
40 networks were used in the ensemble of networks. This
process was repeated to create models both for predicting
enantioselectivity and NPF. The external test sets for both
models are depicted in Fig. 2.

Both models in Fig. 2 have excellent accuracy;
enantioselectivity is predicted with MAE = 0.17 kcal mol−1

and NPF predicted with MAE = 0.10. This level of accuracy in
itself is an interesting finding for two reasons: (1) the same
conformer-dependent descriptors used to describe molecular
shape in chiral Brønsted acid catalysis48 and asymmetric
phase transfer catalysis49 have now been applied to transition
metal catalysis with no modification, suggesting broad
applicability of these descriptors, and (2) models have been
constructed with consideration for both the enantioselectivity
and conversion, demonstrating the capability of optimizing
multiple reaction properties simultaneously.

As a preliminary investigation, two conceptually distinct
error metrics were employed. The first type is founded on the
premise that the outcome of reactions farther in feature
space from the data on which the models were trained will
be less reliably predicted. In this regard, four different
dimensionality reduction methods were used on the total
feature space. For each space, the distance between each test
point and its three nearest neighbors in the training set was
calculated. For unsupervised dimensionality reduction,
principal component analysis (PCA) and multi-dimensional

Fig. 2 (A) Test set predicted vs. observed for the model predicting enantioselectivity and (B) test set predicted vs. observed for the model
predicting NPF.
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Fig. 3 Summary of different error assessment methods for enantioselectivity, including (A) distance in principal component analysis (PCA)-space
from training data, (B) distance in multi-dimensional scaling (MDS)-space from training data, (C) standard deviation in predicted values of the
ensemble, (D) distance in neural network latent space from the training data, and (E) distance in projection to latent structure (PLS)-space from the
training data.
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Fig. 4 Summary of different error assessment methods for NPF, including (A) distance in PCA-space from training data, (B) distance in MDS-space
from training data, (C) standard deviation in predicted values of the ensemble, (D) distance in neural network latent space from the training data,
and (E) distance in PLS-space from the training data.
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scaling (MDS) were used to reduce the dimensionality of the
input data. It is worth noting that because our workflow
operates under the assumption that all future chemical
entities for which predictions will be made are known and
descriptors for those entities have been calculated (i.e. the in
silico library is constructed and descriptors have been
calculated), all samples are used in the unsupervised
dimensionality reduction transforms. For supervised
dimensionality reduction, distance in PLS space (commonly
referred to as distance in model space, or DModX) and the
average distance in the latent space63 of the neural network
were used. More specifically, because the different neural
networks had different numbers of nodes in their hidden
layers, the distances used are the average distances computed
for the entire ensemble.

The second metric is the standard deviation in predicted
values. The concept is that if predictions vary widely
between different estimators, there is more uncertainty in
that prediction, and it may be less reliable. Both concepts
(distance in feature space and variability in predictions)
have been explored previously in the chemical sciences.50,64

All five metrics were calculated for both the
enantioselectivity models (Fig. 3) and NPF (Fig. 4) models
for this dataset. The different accuracy metrics can then be
compared by (1) plotting error vs. the error metric and (2)
constructing accuracy averaging curves. Accuracy averaging
curves are plots in which data points (in this case test set

samples) are ordered by their error metric from smallest to
highest. The average error of retained points is then plotted
against the number of points retained (i.e. the first point on
the plot is the sample with the smallest error metric and its
error, the last point is the entire dataset and the MAE of
the dataset). In this case, as more points are retained, one
would expect the average error to increase if the error
metric is indeed a good indication of error. Further, a
steeper curve would indicate a larger response, in turn
indicated a better metric of error.

From examination of the error metrics (Fig. 3 and 4), it
becomes immediately apparent that no one metric is best for
each dataset. For the enantioselectivity models, average
distance in neural network latent space (Fig. 3D) appears to
be the best metric of prediction reliability, with the largest
response in the accuracy averaging curve. Distance from the
training data in PLS-space (Fig. 3E) also shows a meaningful
response with regard to averaged error. Standard deviation in
predicted values (Fig. 3C), distance in MDS-space (Fig. 3B),
and distance in PCA space (Fig. 3A) curves are relatively flat
curve, indicating less efficacious error metrics. In contrast,
the NPF models have different error metrics best correlating
with the residuals. As with the enantioselectivity models,
average distance in neural net latent space appeared to be
the best metric of error when analyzing the accuracy
averaging curve (Fig. 4D). The superiority of this metric is in
line with previous results.50 However, the next greatest

Fig. 5 Matrix of 25 different possible substrate combinations derived from imines 1–5 and thiols A–E. Adapted with permission from ref. 48.
Copyright 2019 American Association for the Advancement of Science.
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response is distance in MDS-space (Fig. 4B), all other metrics
appearing to have flatter response curves.

These results suggest that the best error metric for a given
application is dataset and application dependent. Despite
this apparent limitation, these conclusions are useful in
informing future studies. We envision that in the course of
an optimization campaign the first set of models obtained
will be externally validated. Each of the above metrics can be
plotted against the error for each test set member to best
identify which error assessment metric(s) are best for that
specific application. Then, when evaluating a set of
predictions to be tested experimentally, practitioners can
quantitatively assess which predictions to pursue on the basis
of prediction confidence. It is also worth noting that all of
the curves in Fig. 3 and 4 are relatively flat. This could arise
from the accuracy of the parent models; because a large
portion of the total dataset is sampled and the overall

accuracy of the models was very high in evaluation of the
external test set, it is possible that the test points fall well
within the domain of the model resulting in relatively flat
response curves. In this sense, the relative response in the
accuracy averaging curves is likely application dependent.

To further probe this hypothesis, our previously published
dataset of BINOL phosphoric acid catalyzed additions of
thiols to imines was used as an additional case study
(Fig. 5).48 Originally published by Antilla and coworkers,65

the modularity, technical accessibility, and reproducibility of
this reaction enabled collection of a dataset of 1075 reactions
in duplicate runs. In this work, the dataset has been further
expanded to a total of 1150 reactions in an effort to provide
larger, high-quality datasets for use in ML studies. The
descriptors used to represent the molecules are identical to
those previously reported.48,49 The dataset was first divided
into two sets: a set of 384 reactions for training and

Fig. 6 The 24-member universal training set of chiral phosphoric acids.

Reaction Chemistry & EngineeringPaper



React. Chem. Eng., 2021, 6, 694–708 | 703This journal is © The Royal Society of Chemistry 2021

validation—24 training catalysts (Fig. 6) with 16 training
substrate pairs (imines 1–4 and thiols A–D, Fig. 5) and the
remaining 766 reactions as an external test set. The 384
training reactions include catalyst structures that were
selected in our universal training set previously disclosed48

and the remaining catalysts were selected on the basis of
either their commercial availability or their qualitative
diversity. In the partitioning scheme, imine 5, thiol E, and
catalysts 30–51 (Fig. 7) were purposefully withheld from the
possible training data to force out-of-sample predictions. The
384-member set was then randomly divided into a training
set of 300 members and a validation set of 84 members.
Models were then generated using an ensemble of
feedforward networks, which were constructed with a single
hidden layer. Parameters including activation functions for
each layer, number of nodes in the hidden layer, and percent
dropout were optimized randomly. In total, 10 000 different
hyperparameter combinations were tested and the top 100
models (determined by the performance on the validation

set) were used as the final ensemble of models. The average
predicted values for the model ensembles were then used as
the predicted value for the purposes of this study.

The ensemble of neural networks accurately predicted the
outcome of the reactions in the test set, with a MAE in test set
predictions of 0.30 kcal mol−1 (Fig. 8). Using the absolute values
of the residuals in the test set, the five different error metrics
detailed above were compared by plotting the errors against
each metric (metric refers to either distance in the respective
dimensionality-reduced space or the standard deviation in
predicted values of the ensemble). In addition, average accuracy
plots were constructed for each metric (Fig. 8).

As depicted in Fig. 8, standard deviation in predicted
values, distance from training data in neural network latent
space, and distance from training data in PLS space all
appear to be good indicators of prediction accuracy. In
contrast, distance in the reduced dimensionality space for
the unsupervised methods (PCA and MDS) gives a weaker
response. Notably, considering both case studies, it appears

Fig. 7 The 22-member external catalyst test set of chiral phosphoric acids.
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Fig. 8 (A) Predicted vs. observed plot for the 766-member external test set for the BPA dataset. (B) Error plot with the standard deviation in
predicted values of the ensemble as the error metric (C) error plot with distance in the neural network latent space as the error metric (D) error
plot with distance in PLS space as the error metric (E) error plot with distance in PCA space as the error metric (F) error plot with distance in MDS
space as the error metric.
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that metrics associated with a supervised dimensionality
reduction method have best performance. With this analysis,
users can identify predictions as potentially high-risk.
Further, it may be possible to use multiple metrics
simultaneously to better assess how much of a risk a
particular prediction would be in an actual optimization
campaign. Predictions that fall into multiple categories could
be identified as even higher-risk predictions which may
inform the end user to consider selecting a different
prediction to test experimentally depending on the effort
required per new data point. By using a collection of error
metrics, users will make the most well-informed decisions
when considering how best to use a given model.

Conclusions

This work demonstrates the successful application of ASO and
AEIF descriptors to transition metal catalysts over and above
their previous use for organocatalysts. The capacity to use the
same 3D molecular representation across such disparate chiral
catalyst families has laid the groundwork for future studies, in
which comparisons across different catalyst scaffold may be
desired. Further, this work demonstrates that algorithmic
subset selection protocols give more reliable results and
generally can be used to construct more accurate models than
random selection when selecting small datasets in library-based
optimization manifolds. Additionally, multiple metrics of error
assessment have been investigated in this context to assist in
identifying which predictions are the most reliable when
attempting to use ML models in optimization campaigns,
particularly those beginning with a pre-defined set of catalyst
candidates. Combining these ideas will enable more efficient
initialization and execution of computer-guided workflows for
catalyst design. We envision that in new scenarios, practitioners
can use an algorithmic selection protocol (e.g. informed by
agglomerative clustering) to gather an initial set of catalyst
structures. Next, that dataset will be acquired experimentally
and used to train and validate statistical learning models. Error
can then be correlated with a set of error assessment metrics to
identify which metrics are best for assessing error for that
particular dataset. The models can then be used to evaluate an
in silico library of catalyst structures to identify catalysts
predicted to be more selective than those in the initial set of

data. When identifying which of the catalysts predicted to be
more selective than the initial set should be experimentally
evaluated, the decision can be informed by the error metric to
guide a more reliable prediction. In other words, the more
reliable predictions will be given priority over others when
selecting which predictions to experimentally evaluate (Fig. 9).
Further, we suspect that identification of the best error metric
could also find use in an active learning campaign in which
unreliable predictions could be selected as the next best
reactions to improve the model. In fact, this concept has already
been demonstrated in other areas of the chemical sciences.57,66

Together, the concepts explored in this work will provide a
practical guide to ML-guided optimization in catalysis.
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