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CONSPECTUS: Catalyst design in enantioselective catalysis has historically s

been driven by empiricism. In this endeavor, experimentalists attempt to Informed : ] .1 Predictive
qualitatively identify trends in structure that lead to a desired catalyst iprary pesign || E Modeling

function. In this body of work, we lay the groundwork for an improved, Iy

alternative workflow that uses quantitative methods to inform decision

making at every step of the process. At the outset, we define a library of l

synthetically accessible permutations of a catalyst scaffold with the [ o B A lcorithmi
philosophy that the library contains every potential catalyst we are willing 3p Molecular.“ * L gs?lr[;seT’C
to make. To represent these chiral molecules, we have developed general 3D RepresentationL i / " selection

representations, which can be calculated for tens of thousands of structures. =g

—= P

This defines the total chemical space of a given catalyst scaffold; it is

constructed on the basis of catalyst structure only without regard to a specific reaction or mechanism. As such, any algorithmic
subset selection method, which is unsupervised (i.e., only considers catalyst structure), should provide an ideal initial screening set
for any new reaction that can be catalyzed by that scaffold. Notably, because this design strategy, the same set of catalysts can be used
for any reaction that can be catalyzed with that parent catalyst scaffold. These are tested experimentally, and statistical learning tools
can be used to create a model relating catalyst structure to catalyst function. Further, this model can be used to predict the
performance of each catalyst candidate in the greater database of virtual catalyst candidates. In this way, it is possible estimate the
performance of tens of thousands of catalysts by experimentally testing a smaller subset. Using error assessment metrics, it is possible
to understand the confidence in new predictions. An experimentalist using this tool can balance the predicted results (reward) with
the prediction confidence (risk) when deciding which catalysts to synthesize next in an optimization campaign. These catalysts are
synthesized and tested experimentally. At this stage, either the optimization is a success or the predicted values were incorrect and
further optimization is required. In the case of the latter, the information can be fed back into the statistical learning model to refine
the model, and this iterative process can be used to determine the optimal catalyst. In this body of work, we not only establish this
workflow but quantitatively establish how best to execute each step. Herein, we evaluate several 3D molecular representations to
determine how best to represent molecules. Several selection protocols are examined to best decide which set of molecules can be
used to represent the library of interest. In addition, the number of reactions needed to make accurate, statistical learning models is
evaluated. Taken together these components establish a tool ready to progress from the development stage to the utility stage. As
such, current research endeavors focus on applying these tools to optimize new reactions.

B KEY REFERENCES Validation, Subset Selection, and Training Set Analysis.
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algorithmic subset selection, and analysis of data require-
ments for model development.

1. INTRODUCTION

I have not failed, I've just found 10,000 ways that won't
work.

Thomas Alva Edison
1.1. Disclaimer

This Account is a personal history masquerading as an
overview of the development of a new, versatile, fully
informatics-guided platform for the identification and opti-
mization of enantioselective catalysts. The corresponding
author is taking the opportunity provided by the unique
character of Accounts of Chemical Research to tell a behind-the-
scenes story about how a fundamentally new direction of
research evolved. It is a story of unavoidable failures and
misguided approaches over the course of over a decade, but it
is also a story of the crucial lessons learned from those failures
that ultimately led to success. Perhaps most importantly, it is a
story of the belief in a vision and the unwavering commitment
of many resilient, resourceful, and talented co-workers who
never lost faith in that vision.

1.2. How It All Started

In 2007, after 25 years of uninterrupted federal funding for a
program on the development and application of tandem [4 +
2]/[3 + 2] cycloadditions of nitroalkenes that lead to over 60
publications, including the enantioselective total synthesis of a
dozen alkaloid natural products,3 it was time to take this
program in a new direction. The modular nature of the three-
component cycloaddition process particularly in the inter-[4 +
2]/intra-[3 + 2] manifold and availability of multiple sites of
diversification especially the quaternization of the pyrrolizidine
nitrogen would enable a systematic interrogation of those
factors responsible for enantioselectivity in asymmetric phase
transfer catalysis, APTC (Scheme 1). Inspired by early studies
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using Comparative Molecular Field Analysis (CoMFA) from
Lipkowitz"> and Kozlowski,’ ™ it was hoped that structural
correlates with enantioselectivity could be identified using
regression modeling that would enable improvements in
catalyst performance. Related studies by Lygo and Hirst'”"!
on a more limited set of APTCs provided additional
motivation.

After a heroic effort, over 160 chiral ammonium ions built
upon the cyclozpentapyrrohzldme (CPP) core were Prepared
and evaluated'” in the classic O’Donnell alkylation'® and a

conformation
controlling site
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CoMFA model was developed to determine the catalyst design
criteria.' Although this work generated a 3D-QSAR model
with high correlation to enantioselectivity, the model never
achieved a high level of predictive accuracy. Owing in part to
experimental design, the R}, R? and R® positions were varied
extensively, but the R* position was substituted with only
hydrogen and methyl groups. This lack of variation led the
model to predict that additional steric bulk at R* would result
in higher enantioselectivities. Accordingly, lengthy syntheses of
ethyl, isopropyl and tert-butyl analogs were undertaken and all
of these failed to deliver the predicted, superior selectivities. It
is clear in hindsight that the model was unable to extrapolate
properly the effect of steric bulk at R* owing to a lack of
variation at this position in the iterations of training set
catalysts. Even with a training set consisting of over 160
catalysts, insufficient diversity of the training set from that
study resulted in the inability of the model to yield accurate
predictions.

The lesson from this years-long enterprise was that to create
reliable extrapolative models from 3D-QSAR analyses, better
methods are needed to obtain the appropriate training set data.
Thus, the next phase required a way to define, for any catalyst
scaffold, what constitutes a diverse subset of catalysts and how
to quantify meaningful chemical diversity.

This initial failure and many subsequent discussions also
stimulated a reevaluation of the project goals and clearer
formulation of guiding philosophy for algorithmically guided
optimization of enantioselective catalysts.

2. RESEARCH PHILOSOPHY

2.1. Mechanistic and Intuition-Guided Descriptors vs
Intuition-Agnostic Descriptors

The use of Linear Free Energy Relationships (LFERs) in
modeling selectivity of chiral catalysts has found increasing
application in asymmetric transformations, of particular note is
the extensive body of work by Sigman and co-workers.>~"”
This workflow identifies catalyst features—typically physically
interpretable quantities from physical organic parameters or
spectroscopic values—that can be correlated to selectivity for a
subset of catalysts. After fitting a multivariate correlation, one
can then identify the relative importance (by feature weights)
for each descriptor used in these models. The main advantage
of using physically interpretable descriptors and modeling with
them in this manner is that one can then formulate a
mechanistic hypothesis on the basis of the features which are
highly correlated with selectivity. This approach requires that
(1) features can be found that correlate to selectivity, typically
many candidates are found from supervised feature selection,
(2) it is possible to select among multiple predictive models
that use different features to make predictions, and (3) reliable
interpretation of the model can provide meaningful mecha-
nistic insight.

Our approach is complementary to the one described above
in that the primary goal is optimization of a reaction by
accurate prediction of improved selectivities instead of
mechanism elucidation. With a description of catalyst shape
and properties, and enough data, models can identify
correlations between the catalyst and its selectivity without
any knowledge of the mechanism. Since understanding which
catalyst/substrate interactions engender selectivity is not
required for reaction optimization, we have demonstrated a
method wherein a researcher can systematically evaluate a
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Figure 1. Comprehensive chemoinformatic workflow developed in these laboratories.

library of possible catalyst structures in order to optimize a
reaction without simultaneously exploring the reaction
mechanism. This approach does not exclude mechanistic
inquiry because it is then valid to use the same models to
formulate a mechanistic hypothesis as long as it is
experimentally tested. This approach has the following
requirements: (1) assuring sufficient catalyst and substrate
diversity in a data set and (2) using a description of the catalyst
which is agnostic to mechanism and captures the steric and
electronic properties of the catalyst. If those requirements are
met, then the resulting models will be effective at predicting
the selectivity of any catalyst with that scaffold, even those
which are more selective than any of the training data. Notably,
statistical learning approaches have recently gained traction in
the chemical sciences for such prediction tasks.”’~**

3. FULLY CHEMOINFORMATIC-GUIDED WORKFLOW

Despite years of effort to synthesize the CPP library and the
conclusion that it was still insufficiently diverse to enable

4,030 library members

25,100 library members

40,710 library members

Figure 2. Ligand scaffolds used to generate in silico libraries for
cheminformatic development.

reliable predictive modeling, a conceptually new approach was
needed that expanded the scope of chemical space and
simultaneously reduced the experimental overhead in generat-
ing training data. It became apparent that fulfilling those
criteria could be achieved through using algorithmically guided
steps from beginning to end. The conceptual framework for
this workflow is schematically illustrated in Figure 1.

The first stage focuses on the generation of an in silico
library that contains every synthetically accessible permutation
possible for the selected catalyst scaffold. As such, the in silico
library is intentionally agnostic to any perceived utility for
structural modification. Descriptors are then calculated for
each library member, numerically representing the properties
in such a way that they can be understood within the context
of statistical modeling. The collation of the descriptors of the
entire library then defines the chemical space in which the
library exists, giving a context to these properties with respect
to catalyst identity. This chemical space is then analyzed using

2043

different types of selection protocols to identify a subset of
these catalysts which comprises a training set whose properties
represent the breadth of the library itself within the chemical
space. This training set is termed a Universal Training Set
(UTS), as it can be used universally with any reaction in which
the scaffold can be applied.

The second stage is the synthesis of the UTS. The goal of
stage 2 is to acquire enough of each catalyst to be used in
reaction screening and optimization. Should synthetic
difficulties arise, the nearest-neighbor to the inaccessible one
in the chemical space can be selected.

In third stage of the workflow, the UTS is evaluated in a
reaction of interest. Experimental data (e.g, enantioselectivity,
diastereoselectivity, yield, etc.) is tabulated, from which models
are generated using a variety of statistical modeling techniques.
Once validated models are acquired, they are used to evaluate
every member of the in silico library. Those catalysts predicted
to be more selective are chosen for synthesis and experimental
validation. Once synthesized and tested, two outcomes are
possible: (1) the prediction is accurate and the reaction is
optimized or, (2) the prediction was inaccurate and the model
must be refined. In the case of the latter, this data can be fed
back into the training data, iteratively refining the model until
optimization is achieved. Of course, there exists the possibility
that even with the increased scope of diversity within the in
silico library that the optimal catalyst falls short of the desired
activity. In this case, a different catalyst scaffold must be
considered.

3.1. In Silico Libraries: Chemical Space Diversity
Accomplished

In view of the failure of the APTC effort despite synthesizing
~160 catalyst structures, we recognized the need to generate a
much large ensemble of potentially synthesizable compounds
to greatly expand the chemical space to be explored. This step
was accomplished by constructing large in silico libraries built
around several privileged catalyst scaffolds, such as BINOL
phosphoric acids (BPA),” methylene(bisoxazoline) (BOX),**
and TADDOL phosphoramidites* (Figure 2).

For each catalyst scaffold, a series of substituent databases
were created from which the each of the points of diversity
illustrated by the colored spheres was populated and then
members of the in silico library were constructed in a
combinatorial manner. From this process, in silico libraries
were generated for three scaffolds of interest: (1) 4030 BPA-
derived catalysts, (2) 25100 BOX ligands, and (3) 40710
TADDOL-phosphoramidite ligands. Descriptors for each
library member were calculated and training subsets were
algorithmically selected and synthesized. These training sets
were used in optimization campaigns, but the models
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Figure 3. (A) ASO descriptor calculation, (B) ASO feature plot of a BINOL-phosphoryltriflamide, and (C) plot of first three principal components
of in silico BPA library. Adapted with permission from ref 1. Copyright 2019 American Association for the Advancement of Science.

generated were not capable of making accurate extrapolative
predictions from the data. This failure clearly pointed to the
inability of the descriptor sets to capture the necessary
chemical features of the library members—new descriptors
were needed.

3.2. Chemical Descriptor Development and Evaluation

For algorithmic selection and subsequent modeling to be
successful, adequate representation of chemical structure is
imperative. In particular, discriminating between similar
structures with the same parent scaffold present in these in
silico libraries is particularly challenging. In fact, for most
common catalyst scaffolds, between 40% and 70% of the atoms
and connectivity remains constant between catalysts with
vastly different properties. For these reasons, 3D descriptors
were employed despite the greater computational cost.

A well-established method of 3D-QSAR modeling employs
molecular fields.*”'>***" These methods use molecular
interaction or molecular indicator fields to capture the 3D
properties of molecules. Molecular interaction fields capture
the interaction energy between the molecule of interest and a
probe particle at different positions in space around the
molecule. Indicator fields, by contrast, denote whether an atom
in the molecule occupies a region of space by assigning some
value (e.g., binary indicator or atomic property) to gridpoints
in that space if they overlap with an atom. Both methods
require the alignment of molecules. To circumvent this
necessity, grid independent descriptors (GRIND) were
developed which use internal distances instead of requiring
alignment.48 Over several years, we have implemented more
variations than can be enumerated here; however, every
method used to represent a whole molecule failed most likely
because only a single, ground-state conformer was used.
Obviously, this approach is chemically flawed but lacking the
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ability to identify and calculate reactive conformers for each
library member using quantum chemical methods, no way
forward was possible with the current workflow. Clearly, a new
molecular representation which captures the dynamic, 3D-
nature of molecular structures had to be developed to
overcome the limitations encountered in both raw MIF
descriptors and GRINDs. Then, those novel descriptors
would have to be algorithmically validated, then used to create
a UTS to provide experimental data from a new transformation
that enables accurate, predictive models to be generated if this
program was going to succeed.

3.2.1. Average Steric Occupancy Descriptor: The
Solution to the Conformer Issue. Because of the early
success of molecular field approaches in asymmetric catalysis
by Kozlowski,”” Lipkowitz,** and Hirst,'”"" as well as our own
efforts,"* we chose to continue implementing this family of
molecular representation. In particular, we were inspired Hirst
and co-workers development of 3.5-D QSSR**° and
application to asymmetric phase transfer catalysis. In this
protocol, multiple conformers of molecules are used in the
construction of the molecular field. Accordingly, new
descriptors were developed termed Average Steric Occupancy
(ASO) descriptors. These descriptors are calculated by first
generating a conformer distribution for every member of the in
silico library of catalyst candidates. Every conformer of every
library member is then superimposed with respect to a
common core scaffold and placed in a common grid. The ASO
descriptors are then generated from the collection of
conformers for a given molecule. For each conformer, every
grid point is queried if it falls within the van der Waals radius
of an atom in the molecule and assigned a binary value: yes =
1, no = 0 (Figure 3A). This process is repeated for every
conformer for a given molecule. Thus, if an individual catalyst
candidate has n conformers, possible values at each grid point

https://doi.org/10.1021/acs.accounts.0c00826
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range from O to n for that molecule. The occupancy values at
each grid point are then normalized to the number of
conformers, so that every grid point contains a value between 0
and 1. These numbers are the ASO descriptors (Figure 3B).
Principal Component Analysis (PCA) was used to visualize the
high-dimensional catalyst space for an in silico library of BPAs
in three dimensions. These catalysts were color coded on the
basis of the designations of 3,3’-substituent classes (Figure
3C). Qualitatively, the different classes of catalyst are
separated, indicating that catalyst subclasses are distinguishable
using ASO.>’!

3.2.2. Calculable Electronic Descriptor. A calculable
electronic descriptor employing electrostatic potential mapping
that can capture through-bond effects was invented. This
descriptor was an important step because experimental
Hammett parameters are not available for the diverse range
of substituents within large in silico catalyst libraries. The
process for calculating the electrostatic potential maximum
(EXPMax) is simple: first, a molecular fragment of interest is
appended to a tetramethylammonium ion, then an electrostatic
potential (ESP) surface is calculated for that molecule (Figure
4). Then, the maximum charge on that surface is identified. An
excellent correlation coefficient (R* = 0.98) between ESPMax
and Hammett parameters was found.”" It is not our intention
to use this fit to calculate ESPMax for any substituent, but the
strong correlation using these five samples means that
meaningful electronic information is encoded in this
descriptor. This descriptor has recently found use in a QSAR
setting for understanding Gram negative cell permeability of
positively charged nitrogen compounds.*”

With these molecular representations identified, the work-
flow was benchmarked on a model system to evaluate if (1) the
descriptors were adequate in representing molecular structure
and could be used to make models predicting reaction
outcomes and (2) if suboptimal reaction conditions could be
used to make a model capable of identifying optimal catalyst
structure. To this end, this workflow was prototyped with a
library of chiral Brensted acids in a model reaction developed
in by Antilla and co-workers (Figure 5).%

Investigations were performed with data from 43 different
catalysts, which were synthesized and tested experimentally
with 25 substrate combinations per catalyst, giving a total of
1075 data points. Although multiple models demonstrated
acceptable performance (q* > 0.6, R* > 0.85 for test set),
support vector machines gave the best performance on the
basis of mean absolute deviation of predicted values (Figure
6a). To simulate the optimization of reaction using nonoptimal
data, the data points below 80% ee were used to construct a
model that quantitatively reproduced the experimental values
of the more selective reactions (Figure 6b). More importantly,
the relative catalyst efficacy, on the basis of the average
selectivity of the reactions in which that catalyst was employed,
matches what is experimentally observed. The success of these
studies demonstrates the ability of the novel calculable features
(ASO, various electronic parameters) to be used with modern
machine learning methods to predict catalyst efficacy with
remarkable accuracy. Further, this work has provided a large
data set to use in other ML studies.”*>°

3.3. Benchmarking and Validation of Descriptors

To validate that the model performance using ASO (which
uses multiple conformers) is superior to those developed from
Steric Indicator Field (SIF) or Molecular Interaction Field

https://doi.org/10.1021/acs.accounts.0c00826
Acc. Chem. Res. 2021, 54, 2041-2054
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(MIF) descriptors (which use a single conformer), models
were trained and cross-validated using 384 examples of the
same data set. An external test set of 691 reactions which
contained out-of-sample predictions was used for further
validation.””” The primary goal of QSSR models is to making
predictions for novel examples; therefore, the reliability of
predictions for novel products must be assessed when training
models. This assessment is best done by using out of sample
predictions in test sets. This concept has been adopted in the
chemical sciences’®” and should be implemented in ML
studies in enantioselective catalysis, particularly when dealing
with combinatorial data sets. When chemical entities are
present in both training and test data, the performance of the
external test set is often overoptimistic owing to the model
identifying patterns in the data rather than fitting to chemically
relevant information. Out-of-sample predictions are a more
robust test for QSSR performance in ML studies because they
prevent these models from arising from pattern recognition.
A modeling experiment was conducted to demonstrate that
data set partitioning methods which force out-of-sample
predictions can prevent fitting to random patterns in data
instead of chemical information. Two data set partition
schemes of the BPA data set were constructed in which the
models used features, which either contained chemical
information or did not. The first partition of 384 training
examples was selected randomly from the 1075 unique
reactions (the remaining 691 reactions constituted the external
test set). The second set of training data was selected by a
scheme which defined “train” and “test” entities in the reaction
(24 catalysts and 16 products were “train” entities and the
remaining 19 catalysts and 9 products were “test” entities),
such that any reaction containing a “test” entity was a test set
example. This nonrandom partition scheme forces the
construction of a test set comprised of out-of-sample
predictions. These two data partitioning methods were used
to evaluate different descriptor classes, with random features
and one-hot encoding used as control experiments. If the
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control experiments perform as well as the chemical features, it
is likely that the models are fitting to the intrinsic structure in
the data rather than learning chemically relevant patterns.

The striking results of this study are summarized in Figure 7
(top). Test set performance of all models using random data
partitioning were superficially superior (on the basis of MAE)
to test sets with out-of-sample predictions. In fact, the
performance of the three models using chemical features did
not differ significantly from the random control, indicating that
test set performance is a result from information shared
between train and test sets. As such, conclusions regarding
feature performance cannot be made with this data partitioning
scheme.

In stark contrast, both the random and 1-hot encoding
features absolutely failed to make out-of-sample predictions
with the nonrandom data partition. The blue squares in Figure
7 (bottom) show examples in which all reaction components
are out of sample (imine, thiol, and catalyst). Whereas the
control experiments produce no correlation between predicted
and observed values, all chemical descriptors depict some
correlation with performance ranked ASO > SIF > MIF for this
experiment. Clearly, this experimental design is necessary to
draw meaningful conclusions, in this case demonstrating the
superiority of the ASO descriptors its single-conformer
counterparts.

Although ASO performs the best in this study, we
hypothesized that the superior performance of ASO compared
to SIF would increase as the catalyst structures being modeled
become more flexible. To test this hypothesis, and the
generality of this molecular representation, a literature data
set of enantioselective O'Donnell alkylations using cinchona
alkaloids was examined (Figure 8)."' Using this 88-member
data set, 70 data points were used to train and cross-validate
Projection to Latent Structure (PLS) models with 18-member
tests sets. The result was clear; using SIF and an Electronic
Indicator Field (EIF) provided a poor correlation between
predicted and observed selectivity of test set predictions (R* =

https://doi.org/10.1021/acs.accounts.0c00826
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Figure 7. Comparison of random and nonrandom data set partitioning with five different featurization methods. Adapted with permission from ref

56. Copyright 2020 American Chemical Society.

0.368) while models using ASO and Average Electronic
Indicator Field (AEIF) descriptors had a higher correlation
coefficient for predicted selectivities of test set reactions (R* =
0.768). These results suggest that more flexible catalyst
systems will show an increased benefit from using multiple
conformers (ASO) instead of one (SIF) when modeling
asymmetric transformations.
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3.4. Algorithmic Subset Selection

When following the established workflow (Figure 1), an
experimentalist must first select which catalysts will be
synthesized first for data collection and model calculation to
commence. One design principle of this workflow is the
implementation of a selection protocol that spans the breadth
of chemical space contained in the in silico library. As such,
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from the full in silico library (gray). Adapted with permission from ref 1. Copyright 2019 American Association for the Advancement of Science.

future predictions made within the in silico library will likely be
interpolative; as such, these are hypothetically higher
confidence predictions (Figure 9).606!

As stated previously, any UTS selected in this manner can be
used in any catalytic transformation for which that scaffold is
effective. Organic chemists often refer to “privileged” ligand
scaffolds;*” our goal is to apply this approach to such ligand
classes and create ideal screening sets for experimentalists to
initiate optimization campaigns. In principle, an algorithmically
selected subset of in silico catalysts should be the optimum set
of catalysts to evaluate in a transformation—this investment
represents an excellent return on the resources deployed to
synthesize the subset of catalysts.
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To evaluate this hypothesis, we tested whether commercially
available CPA catalysts could be used to make QSSR models,
obviating the need for training set synthesis. Models made with
data that used only commercially available catalysts under-
performed compared to models using algorithmically selected
catalysts, confirming our hypothesis that algorithmic subset
selection was important.*® Clearly, the commercially available
catalysts were insufficiently diverse to represent all of the
chemical space of possible catalyst structures. However, we
also asked if it were possible to augment the set of
commercially available catalysts and “rescue” the model
performance. To do this, an unsupervised learning technique
called k-means clustering was used to divide the in silico library
into chemically similar clusters. The optimal number of

https://doi.org/10.1021/acs.accounts.0c00826
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clusters was identified using the elbow method,*® in which
distortion (defined as the average distance between all catalysts
in a cluster the and corresponding cluster centroid) was
plotted against the number of clusters, k, for many values of k.

The location of an elbow, the point at which the change in
distortion decreases sharply, is taken at the optimal number of
clusters. In this work, the optimal k was six (Figure 10).

Inspection of the six clusters revealed that commercially
available catalysts were completely absent from one cluster.
Adding in data from one catalyst from the unrepresented
cluster (Figure 11, bottom right) rescued the QSSR model’s
performance (Figure 11, top right). This method also
represents one way to efficiently utilize existing data sets
with our workflow.

In principle, randomly selecting catalysts from a diverse
library should eventually provide coverage of the chemical
space, though it is likely that algorithmic selection would prove
more reliable than random selection when selecting a small
portion of the library. To test this hypothesis, we quantitatively
examined the impact of algorithmic subset selection methods
compared to ten randomly selected catalyst training sets in the
enantioselective transfer hydrogenation of acetophenone by
331 unique amino acid ligated transition metal catalysts
(Figure 12).64

Various catalyst subset selection methods were used, and
models trained on that subset of reactions were evaluated on
the basis of their ability to accurately predict the selectivities of
the remaining catalysts in the library to assess out of sample
prediction performance. In general, algorithmic subset
selection methods (Kennard—Stone, agglomerative clustering,
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Figure 12. Enantioselective transfer hydrogenation and possible catalyst structures.

affinity propagation, k-means, and mean shift) outperformed wide variability in their model performances (MAEs from 0.20
(average MAE = 0.22 kcal/mol) the average performance

to 0.31 kcal/mol). In optimization campaigns in which
(MAE = 0.24 kcal/mol) of ten randomly selected subsets of

catalysts (average MAE = 0.22 and 0.24 kcal/mol synthetic overhead is precious, reliably selecting adequate
= 0. . ,

respectively). Importantly, the randomly selected subsets had training samples is imperative. Clearly, algorithmic selections
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Figure 13. Three different QSSR models of the BPA data set using only 72 training reactions demonstrate effective modeling with limited
experimental data. Adapted with permission from ref 2. Copyright 2020 American Chemical Society.

are more reliable than random selection for optimization
initialization.

3.5. Examining the Influence of Model Type and Training
Set Size on Model Performance

A common critique of machine learning methods in
enantioselective catalysis is the requirement of large amounts
of data to produce accurate models. We challenged that claim
by pushing the limits of modeling using the BPA data set by
using 72 reactions for training and cross validation of models
and 1003 reactions as an external test set. Three different
models were trained with acceptable cross validated correlation
coefficients: SVR (g* = 0.803), PLS (q*> = 0.785), RF (¢q* =
0.693). The MAE in test set predictions were 0.24, 0.23, and
0.25 kcal/mol, respectively (Figure 13). Of course, generating
predictive models with limited data will be case dependent.

A learning curve is a more quantitative tool for measuring
the trade-off between training data and model accuracy; a
learning curve generated for the BPA data set is illustrative
(Figure 14). Using this plot, an experimentalist can identify
when the increase in g* and decrease in MAE level off. The
MAE of test set predictions is between 0.3 and 0.35 kcal/mol
using 96 training examples and continues to decrease to 0.21
kcal/mol after more than tripling the number of training
reactions. Any number of training examples in that range
would be an acceptable investment to make a useful model to
predict selectivities in this system.

Moreover, in the study on APTC alkylation of a glycine
imine (vide supra), acceptable QSSR models were generated
using 70 data points for training and cross validation and the
transfer hydrogenation case study (vide supra) used only 33 or
34 reactions for model training and cross validation, albeit with
simpler models.”* In both cases, a synthetically accessible
number of examples were used to train predictive enantiose-
lectivity models. Thus, the complexity of a model and the
nature of the system ultimately dictates the minimum amount
of training data necessary. The data requirement appears to be
highly system dependent. A useful model for selectivity can
often be trained on fewer than 100 examples depending on the
complexity of the system.

4. CONCLUSIONS AND OUTLOOK

This body of work constitutes the first chapter of a major effort
in our laboratory to use data-driven methods to optimize
enantioselective catalysts. Taken together, these studies
comprise a computational workflow that can be used to
inform experimentation. Through the development of
numerical representations of chiral molecules, algorithmic
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Figure 14. Learning curve relating the quantity of training examples
to both the MAE and g Adapted with permission from ref 2.
Copyright 2020 American Chemical Society.

subset selection, machine learning, and risk assessment, we
have developed a robust tool that can be used reproducibly to
optimize many different kinds of reactions. As this first chapter
of the program closes, we envision the next in which this tool is
used to develop unprecedented catalyst structures in the
optimization of new transformations.”” We look forward to
using models generated by this workflow as the basis for
formulating mechanistic hypotheses to experimentally test. We
believe that the “Golden Age” of this research program lies in
the not too distant future.
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