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Convection-diffusion problems Gopalakrishnan, 2012), leading to unconditionally stable FE approximations. Remarkably,

by using C° or Raviart-Thomas trial spaces, the optimal discontinuous test functions can
be computed in a completely decoupled element-by-element fashion.

To establish the error estimators we present two approaches: (i) following the
classical approach of Becker and Rannacher (Becker and Rannacher, 2001), i.e., the
dual solution is sought in the (broken) test space, and (ii) introducing an alternative
approach in which we seek C°, or Raviart-Thomas, AVS-FE approximations of the dual
solution by using the underlying strong form of the dual boundary value problem (BVP).
Various numerical verifications for 2D convection-dominated diffusion BVPs show that
the estimates of the approximation error by the new alternative method are highly
accurate, while the classical approach leads to error estimates of poor quality. Lastly,
we present an algorithm for h-adaptive processes based on control of the numerical
approximation error via the new alternative approach. Numerical verifications show that
the estimator maintains high accuracy as the error converges to zero.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In adaptive mesh refinement algorithms, a posteriori error estimation [1,2] is needed to provide quantified assessments
of the numerical approximation error, as well as error indicators to guide the adaptive process. Residual-based goal-
oriented error estimates have been developed for multiple applications and FE methods, e.g., see [3-7]. It involves the
solution of a dual problem, which for Bubnov-Galerkin and Petrov-Galerkin methods [8-12] suffers from the same
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numerical instabilities as the primal problem in the presence of convection. Thus, the FE meshes for the dual problem have
to be refined so as to adequately capture any boundary or internal layers and thereby avoid any numerical instabilities.
It makes the classical methods unsuitable for goal-oriented error estimation for this class of problems.

However, goal-oriented error estimates have been successfully applied to conditionally stable FE methods by several
authors for convection-diffusion problems [13-17]. In these works, stabilization schemes such as the streamlined-upwind
Petrov-Galerkin (SUPG) [18] method are used to stabilize both the primal and dual problems. The reported effectivity of
the estimates varies based on the stabilization chosen, type of error to be estimated (approximation vs. modeling), and the
Quantity of interest (Qol) used. In [15,17], Schwegler et al. explicitly investigate the stabilization of the dual problem and
its influence on the estimate. Stabilized discontinuous Galerkin (DG) methods have also been applied to goal-oriented
error estimates for convection-diffusion problems with success, we refer to [19] and references therein. While these
error estimation efforts have been successful, the conditionally stable nature of the methods do require a priori analyses
to properly establish the parameters needed to achieve stability which can be extremely arduous and have to be done on
a problem-by-problem basis.

Unconditionally stable FE methods such as the least squares FE method (LSFEM) [20] and the DPG method [21-25]
resolve the issue of conditional numerical instability. However, these methods generally use a built-in a posteriori error
estimator based on the error in the energy norm induced by its bilinear form to drive adaptivity (see, e.g., [22,25-27]).
The simplicity and quality of this type of estimator make it the most commonly employed for residual minimization
techniques such as the DPG method and LSFEM. In [28], Keith et al. introduce the concept of goal-oriented adaptive mesh
refinement for the DPG method. However, their goal is not so much to estimate the errors in FE computations but rather
the introduction of a new duality theory that is used as a vessel for new adaptive mesh refinement strategies. In [29], the
least squares functional is modified by adding terms incorporating Qols to enhance the quality of the built-in estimator
used to drive the adaptive mesh refinement. A similar approach is taken by Cai, Ku et al. in [30-32] to both estimate
errors and drive mesh refinements.

While the error estimation in the aforementioned references has been successful, the stabilization efforts required
can be arduous by demanding in-depth a priori error analyses on a problem-by-problem basis. In addition, to our best
knowledge there are no published results for the DPG method that state the effectivity of goal-oriented a posteriori
error estimates for convection-diffusion problems. Goal-oriented error estimation in the LSFEM for convection-dominated
diffusion problems is less attractive due to the highly diffusive nature of its FE approximations for coarse meshes which
can lead to estimates with poor accuracy. Our goal is therefore to introduce a new framework for the goal-oriented
a posteriori error estimation for the automatically stable AVS-FE method that delivers highly accurate predictions of the
error in user defined Qols.

The AVS-FE method introduced by Calo, Romkes and Valseth [33] provides a functional setting to analyze singu-
larly perturbed problems, such as convection-dominated diffusion. The AVS-FE method is a hybrid between the DPG
method [21-25] and the classical mixed FE methods in the sense that the trial space consists of globally continuous
functions, while the test space consists of piecewise discontinuous functions. Attractive features of the AVS-FE method
are its unconditional numerical stability property (regardless of the underlying differential operator), its highly accurate
flux approximations, and the ability to compute optimal test functions element-by-element.

In the following, we limit our focus to stationary scalar-valued convection-diffusion problems. In Section 2, we
introduce the model problem of 2D scalar-valued convection-dominated diffusion, used notations, as well as a review
of the AVS-FE methodology. Goal-oriented a posteriori error estimates are introduced in Sections 3 and 4. In Section 3,
we introduce the goal-oriented error estimates for the AVS-FE method following the classical approach of Becker and
Rannacher [4], i.e., the dual solution is sought in the (broken) test space, and present a numerical verification for the
Laplace BVP. In Section 4, we present a new alternative approach to goal-oriented error estimation in which we seek
C° or Raviart-Thomas AVS-FE approximations of the dual solution by using the underlying dual BVP. Numerical verifi-
cations investigating the effectivity and robustness of the new estimator are also presented in Section 4. Goal-oriented
adaptive mesh refinements and numerical verifications are presented in Section 5. Lastly, conclusions and future work
are discussed in Section 6.

2. Variationally stable analysis for finite element computations

In this section, we introduce our convection-diffusion model problem and briefly present a review of the AVS-FE
method. A more detailed introduction can be found in [33,34].

2.1. Model problem and notation

Let £2 C R? be an open bounded domain with Lipschitz boundary 82 and outward unit normal vector n. The boundary
052 consists of open subsections I'p, I'y C 952, such that I, N I'y = @ and 352 = I'p U I'y. For our model problem, we
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consider the following linear convection-diffusion PDE in £2 with homogeneous Dirichlet conditions on I'p and (possibly)
non-homogeneous Neumann conditions on ['y:

Find u such that:
-V.-DVu)+b-Vu = f, in £, ()
u = 0, on Ip,
DVu-n = g, on [y,

where D denotes the second order diffusion tensor, with symmetric and elliptic coefficients D € L®°(£2); b € [L®($2)]?
the convection coefficient; f € L?(£2) the source function; and g € H~='/?(I'y) the Neumann data.

2.2. The AVS-FE weak formulation

For the sake of brevity, we only mention the few key points here of the derivation of a weak formulation for the
AVS-FE method. We refer to [33,34] for a more detailed treatment. We start by introducing a regular partition &7, of 2
into elements K, such that:

2=int( | ) Kn). KnNK,, m#n.
Kme 2y

The partition 27, is such that any discontinuities in D; or b are restricted to the boundaries of each element 9K,. We
introduce an auxiliary flux variable q = {qy, qy}T = DVu, and recast (1) as a system of first-order PDEs:

Find (u, q) € H!(£2) x H(div, £2) such that:
DVu—-q = 0, in £,
-V.q+b-Vu = f, in £, (2)
u = 0, on Ip,
q-n = g, on [y.

By weakly enforcing the system of PDEs (2) locally on each element K, € 4, applying Green’s identity to the
term including the divergence of q, applying Dirichlet and Neumann conditions on 0K, N I'p and 9K, N I'y, respec-
tively, and subsequently summing all the local contributions we arrive at the following equivalent global variational
formulation:

Find (u, q) € U(£2) such that:
(3)
B((u, q); (v,w)) = F(v), V(v,w) e V(%).

Here, the bilinear form, B : U(§2) x V(#,) — R, and linear functional, F : V(£;) — R, are defined as follows:

def

B((u, @) (v, W) = Y {/ [(DVu—q) Wo + q- Vop + (b.Vu)vm] dx
Km

Kme 2y
_f Yo (@) Vo' (Um) ds}v (4)
AKm\TpUTy
OEDY { fumax+ ¢ gyg"(vm)ds} ,
Kme 2y, Km oKmNIy

where the trial and test function spaces, U(£2) and V(27,), are:

U E {(u, ) € H'($2) x H(div, 2) : yg"(u)r, = 0}’

def )
V(o) = {(va) € H'(24) x [L2(2)1 = y{"(vm)jskmnry, = 0, VKm € Wh},

in which the broken H! space is defined as:

HY(z,) & {v e [A(2): v, € H'(Kn), YK € gvh}, (6)
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and norms ||-|ly¢e) : U(£2)—>[0, 0o) and ||-ly(z,) : V(£1)—>[0, co0):

1w, @)llue) déf\// [Vu.Vu+u2 +(V-q) +q-q} dx.
2

(v, W)llv(zy) = Z / |:h2 Vo - Vg 4+ v2 4+ wy, - wm} dx,

Kme 22y

where h,, = diam(K,). The operators y" : H'(Ky,) :—> H'?(39Ky) and ™ : H(div, K,,) — H™'/?(dK,,) denote the local
trace and normal trace operators (e.g., see [35]). Note that we employ an engineering notation convention here by using
an integral representation of the boundary integrals rather than that of a duality pairing. The variational formulation (3)
is essentially a DPG formulation in which only the space V(7,) is broken.

Lemma 2.1. Letf € (H'(2%)) and g € H~'/?(I'y). Then, the weak formulation (3) is well posed and has a unique solution.

Proof. We provide only an outline of this proof as similar proofs are available in literature. We first note that the kernel of
the underlying convection-diffusion differential operator is trivial and introduce an equivalent norm on U($2), the energy
norm:
def [B((u, q); (v, W)
Iu, @)llz = sup 8)
wwev(@ao.0) (v, Wy,

In the philosophy of the DPG method, we identify an optimal test space, spanned by functions that are solutions of a Riesz
representation problem:

(B8 (0. W)y, = BlW.q): (v, W), V(v, W)€ V(). (9)

Then, B(-, -) satisfies the conditions of the Babuska Lax-Milgram Theorem [36] in terms of the energy norm (8) as the
action of the bilinear form is equivalent to an inner product (9). We refer to the important results of [37], in the analysis
of broken Hilbert spaces and variational formulations. In particular, it is shown that broken variational formulations based
on differential operators with trivial kernels inherit the stability of their unbroken counterparts. O

Remark 2.1. It is possible to derive other variational statements in which the trial space is continuous and the test space
is discontinuous. These will be considered in a forthcoming paper.

2.3. AVS-FE discretization

The AVS-FE method seeks numerical approximations (u", q") of (u, q) of the variational formulation (3) by using
classical FE bases for the trial functions (u”, q"), i.e., we represent the approximations as linear combinations of the trial
basis functions (e'(x), (E’( ), Ef(x))) € U"(£2) and their corresponding degrees of freedom:

N N N
=Y ulex), qix)=) @UE®X). X =) qrE). (10)
i=1 j=1 k=1

Since the solution space U(£2) concerns H'(£2) and H(div, £2) spaces, the FE discretizations can employ classical C°(£2)
or Raviart-Thomas functions.

The test space V(2%), however, is discontinuous, allowing us to construct piecewise discontinuous optimal test func-
tions that yield unconditionally stable discretizations. These functions are constructed by employing the DPG philosophy
[21-25] in which optimal test functions are defined by global weak problems Thus, for the trial functions e(x), E4(x), and
E"( x), the corresponding global optimal test functions (&', E‘) (ei, E %), and (e l‘) are the solutions of the following Riesz
representatlon problems [33,34], respectively:

(0.2 (é",Ei)) vy = BUEORCLD) V2 eV(:). i=1..N.
Ph)
(ro:@B), = BO.EO:E2). VrDeV#). j=1...N. ()
h
(2 @B)) = BO.OE):rD) YrzeV(#) k=1...N.
V()
where ((-,-); (*, -))y( s, denotes the broken inner product on V(2), defined by:
((r,2): (v, W))y(,) = def Z / [hanrm -V + Tm Um + Zm -wm] dx. (12)
Kme 22y, Km
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Remark 2.2. Remarkably, the broken nature of the test space V(7,) allows us to compute numerical approximations of
the local restrictions of the optimal test functions in a completely decoupled fashion (see [33,34] for details). Thus, we
solve local restrictions of (11), e.g.,

0mﬂ%ﬂ&w):smwmeu V(r,2) € V(Kn),
(ro: @, By), = Bral©EO:rD).  Vr.2)e V(K (13)
(2@ B, = Bl©.O.E)r.2).  ¥r.2)e V(K

where By, (+; -) denotes the restriction of B(; -) to the element K;,. Hence, while the optimal test functions are defined by
global weak statements, their numerical computation can be performed element-by-element (see, e.g., [38] for a detailed
discussion on this element-wise assembly process).

Remark 2.3. Numerical verifications reveal that the local test functions can be computed by using a degree of
approximation that is identical to the degree of approximation of their corresponding trial functions.

Remark 2.4. The choice of C° or Raviart-Thomas trial functions has the consequence that the optimal test functions have
the same support as the trial functions [33,34].

Finally, we introduce the FE discretization of (3) governing the AVS-FE approximation (u", q") € U(£2) of (u, q) :

Find (u", q") € U"(£2) such that:
(14)

B((u", q"); (v*, W*)) = F(v*), V(v*, w*) € V(2),

where the finite dimensional subspace of test functions V*(2%,) C V(2%) is spanned by the numerical approximations of
Ehe)test functions {(&}, E} )}Y ,, {(&),. Ex,) ]Nzl, and {(é’;h, E;(h)}lly:v as computed from the test function problems (11) and
13).

Since we use the DPG methodology here to construct the optimal test space V*(2%,), the discrete problem (14) satisfies
the conditions of the Babuska Lax-Milgram Theorem with continuity and inf-sup constants of the continuous problem (3)
scaled by the continuity constant of a Fortin type operator [39] . It is therefore unconditionally stable for any choice of
mesh parameters h;,, and p,,. The corresponding global stiffness matrices are symmetric and positive definite.

In the following sections we derive error estimates in terms of user defined Qols of the solution. The Qols are
represented in terms of continuous linear functionals Q; : U(£2) - R,i= 1,2, ..., Ng, for example:

1
o= [ uex (15)
ol Jo
Thus, the goal is to estimate the error Q(u — u", q — q"). We introduce residual based a posteriori estimates by taking
two distinctive approaches to the solution of the dual problem. The first follows the approach introduced by Becker and
Rannacher [4] and therefore seeks a dual solution in the broken primal test space V(£%,). The second approach concerns

an alternative approach in which the AVS-FE solution of the underlying strong form of the dual problem is sought in a
H'(£2) x H(div, £2) subspace of the primal test space.

3. Goal-oriented error estimation — classical approach

Following Becker and Rannacher [3,4,7] we state the following classical lemma of goal-oriented error estimation:

Lemma 3.1. Let (u, q) be the exact solution of the first-order system (2), (u", q") the AVS-FE approximation of (u, q) per (14),
and (p;, r;) € V(2?,) a dual solution for each Qol, governed by:

Find (p;, ;) € V(2,) such that: (16)
B((v, w); (pi, 1i)) = Qi(v, w),  V(v, w) € U(£2).
Then, the error in the QoI &;(u", ") = Qi(u — u", q — q"), is governed by the identity:
£, ¢ L @, 6 (i 1)), (17)
where %((-, -); (-, -)) is the residual functional:
Z2n((u, q); (v, w)) = F(v) — B((u, q); (v, w)). (18)
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Table 1

Error estimation results for the Laplace problem with Qol (22) using the classical approach, i.e., through (19) and (20).
Primal dofs Qu,q) — Q(u", q") Dual dofs Nest Tofp
27 —9.2601e+00 48 —1.0601e+01 1.145
75 2.3191e—02 147 —7.5337e—02 —0.325
243 1.8610e—02 507 3.4581e—02 1.858
867 —3.7844e—05 1875 —3.8616e—04 10.204
3267 —2.5778e—05 7203 —5.3075e—05 2.059

Remark 3.1. Analogous to the well-posedness of the primal problem (3) (see Lemma 2.1), the dual problems (16) are
well posed (since the kernel of the adjoint operator of B(-, -) is also trivial).

To compute estimates of the error &;(u”, q") through (17), we compute approximations of the dual solutions (pf’, r?)
by following the classical approach of [3,4,40]. Thus, for a given Qol, the approximate dual solution (p", r") is governed
by:

Find (p", r") € V*(2,) such that: (19)
19
B((v", wh); (p", t")) = Q(v", wh),  V(u", wh) € U"(£2).

We seek (p", r'") in the discrete, broken space V*(#7,) spanned by (&, EL ) of the local Riesz representation problems (13).
Hence, we use the same element partition 2, of £2 as we used for the primal problem to compute (p", r). However, due
to the Galerkin orthogonality condition of the numerical approximation error, the approximate dual solution has to be
sought by using polynomial approximations that are of higher order than the trial functions used to solve the discrete
primal problem (14). We choose p+ 1. Hence, the unconditional numerical stability of the AVS-FE methodology will allow
the computation of approximate dual solutions (p?, r?) for any choice of mesh parameters hp, and pp,. The estimated error
nest iN the quantity of interest is then computed by:

Nest ~ &P, q") = (", q"); (p!', 1)) (20)

This classical approach has been shown to be very successful in a wide range of applications, especially those in which
the differential operator is self-adjoint (e.g., see [3,40]).

As a numerical verification of this estimator, we consider the Laplace problem on the unit square £2 = (0, 1) x(0, 1) C
R? with homogeneous Dirichlet boundary conditions:

—Au=f, in 2,

(21)
u=020, on 052.
The source function f, is chosen such that the exact solution is given by:
2_ 2_
u(x.y) = Q500002 y]
The Qol is chosen to be the average of the solution u in the region w = (0.5, 1) x (0.5, 1) C £2:
1
Qu,q) = —/ u dx. (22)
ol Jo

To estimate the error in this Qol (22) we apply the AVS-FE discretization to the primal and dual problem with
polynomial degrees of approximation of 2 and 3, respectively. As in [33], we use C° continuous bases for both trial
variables u" and q" of the same polynomial degree, while for p" and r" we use the optimal bases determined by the Riesz
representation problems (11). The mesh initial mesh partition used consists of a single quadrilateral element. Subsequent
meshes are a sequence uniformly refined from the initial single element. To assess the quality of the error estimate, we
introduce the effectivity index:

Nest

7= Q@) — e g’
In Table 1, we present the error estimates for increasingly refined meshes. It appears that the magnitude of the estimated
error decreases monotonically. However, the results for the effectivity index .7y reveal that the estimates generally
have poor accuracy nor exhibit any consistent evolution during the uniform h-refinements. We suspect that since the
continuity of the dual solution is enforced weakly in (16), it prohibits from adequately resolving the discretization of
the dual solution on the used meshes. We suspect that without drastically changing the formulation using jump and/or
average operators on the mesh skeleton as one would in, e.g., discontinuous Galerkin methods the discontinuous solutions
will not provide adequate resolution of the dual solution. Comparison of the approximate solution p" in Fig. 1 to an
overkill approximation of p in Fig. 1(b), reveals internal oscillations in p" in each element as well as along the global

(23)
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(a) Dual solution in the classical approach. (b) Overkill solution.
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Fig. 1. Dual solution p".

boundaries. The overkill solution is obtained using a Galerkin FE method for the underlying known dual BVP on a highly
refined uniform mesh of quadratic quadrilateral elements. While bounded, these contribute to the poor quality of the
error estimates. These observed oscillations show no consistent behavior during mesh refinements. This behavior persists
for numerical verifications in which the degree of approximation for the dual problem is pgua = Pprimat + 2, Pprimat + 3
etc. Another factor that plays a role here can be deduced from DPG* techniques [41] since the dual problem (19) can be
interpreted as a modified DPG* form. In particular, it is shown in [41] that the regularity of the domain £2 is a crucial
factor in the accuracy of the dual solution.

4. Goal-oriented error estimation — alternative approach

Since we suspect that the poor accuracy of the estimator via the classical approach is likely caused by the discontinuous
character of the numerical approximation of the dual solutions (p", r'), we propose an alternative approach for computing
(p", r"). Instead of seeking discontinuous discrete approximations of the dual solution by using the corresponding dual
weak formulation (16) of the primal problem (3), we rather reconsider the underlying strong form of each dual problem,
ie,

Find (p;, r;) € H'(£2) x H(div, £2) such that:

-1 +Vp;, = 0, in £, (24)
-V. (Dl‘,‘) —b- Vp,- = 6, in £,
pi = 0, on ds2,

where 6; € U’(£2) is such that (9,~, (u, q)>u,XU = Q;(u, q). Comparison of (24) and the first order system for the primal
problem (2) shows that the diffusion tensor has shifted and the signs in the vector valued PDE have changed. The reason
is that (24) is the natural form of the distributional first order dual BVP when derived from the AVS-FE weak formulation.
We subsequently derive a weak statement governing (p;, r;) by using the same approach as the applied to the derivation
of the weak statement of the primal problem (see Section 2). Thus, we seek p; € H!(£2), r; € H(div, £2) and employ test
spaces for the dual problem that are broken. Hence, p; and r; belong to the same globally (weakly) continuous function
spaces as the primal solution (u, q). To derive the dual weak statement, we follow the derivation in [33] and enforce the
system (24) weakly on each element K, € 22, apply Green’s Identity, enforce boundary conditions, and arrive at the
following weak statement:

Find (p;, 1;) € U($2) such that: (25)
B((v. w): (pi. 1)) = Qi(v. W), V(v W) € W(2,),

where:

B((v, w); (pi 1)) = Y {/ |:(Vpi — ) Wpn + Dri- Vo, — (b-VPi)Um] dx
Kme 22y, Kin (26)

_% 7V;T(Dri)yom(vm) ds},
IKm\352
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Table 2

Error estimation results for the Laplace problem with Qol (22) using the new alternative approach, i.e., through (25)

and (20).
Primal dofs Qu,q) — Q(u", q") Dual dofs Tlest o
27 —9.2601e+-00 48 —1.0601e+-01 1.145
75 2.3192e—02 147 3.4410e—02 1.484
243 1.8610e—02 507 1.8602e—02 0.999
867 —3.7845e—05 1875 —3.6160e—05 0.956
3267 —2.5778e—05 7203 —2.3479e—05 0911

and:
def
W(2n) = {(v,W) € H'(2n) x [L(2)1 : 73" (vm)jakcnrie = 0, VKn € e@n}. (27)

It should be noted here that f?(-; -) and B(-; -) differ in the sign in front of the convection vector b due to the non-self
adjoint character of the differential operator of (1). Now, to ensure the unconditional stability of the discrete dual problem
we use optimal discontinuous test functions (&', E'), (&, Ex), and (&}, EY) for the dual problem that are solutions of the
following (Riesz) weak problems:

((x,z);(é",ﬁi))v(%) = B((x 2): (¢, 0)), Vix.z) e V(2,), i=1,....N,

(0n2) @ B) B((x.2):(0.(E,,0), ¥xz)eV(#), j=1.....N, (28)

V(2h)

((x,z); (&, E';))V(%) B((x,2): (0,(0,E)), V(x.2) e V(#), k=1,...,N.

Remark 4.1. The vector valued dual solution Dr; belongs to H(div, £2) due to the boundary integral g%,(m\a—g Yo' (Dr;)
Y (vm) ds in (25). For this integral to be Lebesgue integrable, Dr; has to belong to H~'/?(dK,,) which implies Dr; €
H(div, £2).
We then establish the error estimator 75 by using the new dual solutions:
flest ~ 61", q") = (", q"): (pf', 1)) (29)

Having established the new alternative error estimates, we propose to employ an error indicator €, corresponding to
the restriction of the goal-oriented error estimate 7, in mesh adaptive refinements, i.e,

em = Znli, (U, q"); (P, ). (30)

Remark 4.2. We note that the philosophy we advocate here for the dual problem was also proposed for the consideration
of adjoint equations in inverse FE methods by considering the strong form of the adjoint equation by Bramwell in [42].

4.1. Numerical verification — diffusion problem

We again solve (21) using identical meshes and degrees of approximation as in Section 3, i.e., quadratic primal and
cubic dual approximations, respectively. In this alternative approach, we seek C° continuous solutions to both the primal
and dual problems in which the scalar and flux variables are of the same polynomial degree. Again, we assess the quality
of the error estimate with the effectivity index:

j _ ;]ESI
T Qg - Q' q")
In Table 2, we show the results for the error estimates for uniform mesh refinements. As in Section 3, the magnitude of
the error decreases monotonically. However, the effectivity index now shows that the estimates have very good accuracy

with values close to unity. Furthermore, comparison of Fig. 2 of the dual AVS-FE solution to an overkill solution reveals
that there are no oscillations at element interiors and global boundaries.

(31)

4.2. Numerical verifications — convection-dominated diffusion

Next, we consider a more challenging case of a convection-dominated diffusion problem. In this subsection, we consider
a simplified form of our model problem (1) on the unit square with homogeneous Dirichlet boundary conditions:

1
—— Vu= in 2 =
PeAu+b u=f, in 2 =(0,1) x (0, 1), (32)

u=0, on d0£2,
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(a) Surface view. (b) Top view.

Fig. 2. C° dual solution p" obtained by the new alternative approach through (25) on a uniform mesh with 3267 dofs.
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Fig. 3. Exact solution u of the simplified model problem (32) with b = {1, 1}7 and Pe = 100.

where the Péclet number Pe = 100 is and b = {1, 1}7 the convection coefficient. We consider the case of (32) in which
the above source function f is chosen such that the exact solution is given by:

epe.bx.x 1 el’e-by-y -1
ux,y) = [x—i— oo } [y—l— by ] : (33)

Thus, the solution exhibits boundary layers along x = 1 and y = 1 with a width of Pie = 0.01, as shown in Fig. 3.

4.2.1. Uniform meshes

First, we consider uniform meshes consisting of quadrilateral elements. The first Qol is chosen as in (22), i.e., the average
solution u in the top right quadrant of the unit square. In Fig. 4, we show the corresponding overkill solution p of the dual
problem. The dual solution, similar to the primal, exhibits boundary layers. However, as the direction of the convection
is reversed from the primal problem, the layers are at opposite edges of the domain. To verify the new estimator 7jes
we employ AVS-FE discretizations of the primal and dual problem with polynomial degrees of approximation of 2 and
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(a) Surface view. (b) Top view.

Fig. 4. Overkill solution p of the dual problem with b = {1, 1}7 and Pe = 100.

Table 3

Results for the convection-dominated diffusion problem (32) with Qol (22) for uniform mesh refinements and Pe = 100.
Primal dofs Q(u,q) — Qu", q") Dual dofs Tlest For
243 2.8825e—01 507 1.6140e—01 0.599
867 1.7711e—-01 1875 1.5010e—01 0.848
3267 6.7393e—02 7203 6.5077e—02 0.966
12675 1.3225e—02 28227 1.3158e—02 0.995
49923 1.3918e—03 111747 1.3909e—03 0.999
198147 1.0321e—04 444675 1.0321e—04 0.999

Table 4

Results for the convection-dominated diffusion problem (32), with Qol (34) for uniform mesh refinements and Pe = 100.
Primal dofs Q(u,q) — Q(u", q") Dual dofs Test o
867 —3.6294e—01 3267 1.9153e—01 —0.5277
3267 —1.826e—01 12675 —2.1098e—03 0.0157
12675 —6.8810e—02 49923 —4.3560e—02 0.6881
49923 —1.7803e—02 198147 —1.1682e—02 0.9448

3, respectively. The corresponding numerical results are illustrated in Table 3. The effectivity indices show that the error
estimator accurately measures the approximation error.

For initial, coarse, meshes the effectivity index may not be very close to unity, but is of the same order of magnitude as
the exact error. As the uniform meshes are further refined, the estimate converges to the exact error and delivers highly
accurate predictions of the error with the effectivity index J;ff very close to unity. The rate of convergence of the error
estimate in Table 3 approaches the often observed superconvergence rate of 4 for bounded linear Qols as reported by
Giles and Siili in [5].

The second Qol we consider is the average flux in the x-direction in the same quadrant of the unit square as before,
i.e, w = (0.5, 1) x (0.5, 1). First, we consider the derivative of the base variable u:

. 1 ou
ol J, Ox

Q(u, q) dx, (34)

and second, the flux variable:

1
Quq) = — / gx dx. (35)
ol /.,

The polynomial degrees of approximation are now 1 and 2 for the primal and dual problem, respectively. As shown
in Tables 4 and 5, the errors in a Qol in terms of a derivative are slightly higher than those of the preceding numerical
verification for the former case, which is to be expected (see [33,34]). The results in the latter are superior, again this is
to be expected since the approximation of derivatives is generally less accurate. While for coarse meshes the estimate in
terms of the Qol with the derivative does not accurately assess the error, it does capture the right order of magnitude
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Table 5

Results for the convection-dominated diffusion problem (32), with Qol (35) for uniform mesh refinements and Pe = 100.
Primal dofs Q(u, q) — Q(u", q") Dual dofs Tlest Lo
867 8.7745e—03 3267 1.1171e—-02 1.3346
3267 2.7558e—03 12675 3.8641e—03 1.4021
12675 7.3292e—04 49923 8.4109e—04 1.1476
49923 1.8478e—04 198147 1.8759e—04 1.0152

Table 6

Results for the convection-dominated diffusion problem (32), with Qol (36) for uniform mesh refinements and Pe = 10.
Primal dofs Q(u,q) — Qu", q") Dual dofs Tlest Foff
867 —3.0174e—04 3267 —7.1583e—05 0.2372
3267 —2.0855e—05 12675 —1.6377e—05 0.7853
12675 —1.3401e—06 49923 —1.3090e—06 0.9768
49923 —8.4335e—08 198147 —8.5814e—08 1.0175

Table 7

Results for the convection-dominated diffusion problem (32), with Qol (22) for uniform mesh refinements of a skewed
initial mesh partition and Pe = 200.

Primal dofs Q(u, q) — Qu", q") Dual dofs Tlest o

867 1.9480e—01 1875 2.5397e—-01 1.304
3267 3.9104e—02 7203 4.6311e—02 1.184
12675 4.0197e—03 28227 4.2989e—03 1.069
49923 1.7641e—04 111747 1.7937e—04 1.017
198147 5.0934e—06 444675 5.0988e—06 1.001

and improves significantly upon mesh refinements as the effectivity indices f;ff approach unity. However, the estimate
in terms of the flux variable exhibits significant accuracy even for coarse meshes.

The final numerical verification we consider for uniform mesh partitions is a Qol that is the average flux in the
x-direction along the line segment on the left edge of the unit square, i.e., w is the line segment from y = 0.5 to
y =0.75:

1
Qu,q) = —/ qx dx. (36)
lw] Jo

This type of Qol is particularly important in engineering design applications where fluxes or stresses and strains are critical
design parameters. Furthermore, for such quantities, classical methods often require enhancement techniques to achieve
adequate accuracy such as the biharmonic smoothing introduced in [5]. Furthermore, to show that the error estimate
remains highly accurate when the error in the Qol becomes very small we pick Pe = 10. The polynomial degrees of
approximation are 2 and 3 for the primal and dual problem, respectively.

The results in Table 6 show that the alternative approach is capable of estimating the error in terms of local Qols
pertaining to fluxes across boundaries. As the meshes become finer, the estimate becomes more accurate. However, for
the coarsest mesh, i.e., the first row in Table 6, the estimate is still within an order of magnitude of the exact error. As the
error becomes very small, the new alternative method still provides accurate estimates without the need for additional
enhancement techniques.

4.2.2. Non-uniform mesh

So far, we have only considered rectangular uniform meshes. To provide a more realistic scenario, as encountered in
engineering applications, we consider a mesh in which the elements are skewed and the element edges do not align with
the direction of the convection (see Fig. 5). We consider the same convection-dominated diffusion PDE (32), but now with
Pe = 200. The Qol is again the average of the solution u in the region w = (0.5, 1) x (0.5, 1) (i.e., see (22)).

In Table 7, we list the results for the case in which the primal degree of approximation is 2, and the dual degree of
approximation is 3. After each computation of the primal and dual solutions, all elements in the mesh are uniformly
refined. As in previous examples, the effectivity index is close to unity, indicating that the estimator can be successfully
employed for skewed meshes.

4.2.3. Raviart-Thomas approximation of fluxes

Until this point, we have used C° approximations for both trial variables, as our experience has shown this to
yield good approximations [33]. Because q € H(div, £2), the C° approximations have an overly restrictive regularity.
Commonly, in mixed FE methods, Raviart-Thomas rather than C°(£2) approximations are used. To show our approach
also provides reliable estimates for such approximations we now consider the case in which we use a Raviart-Thomas
approximation [35,43,44] for the variables in H(div, £2) (i.e., q and r). We again consider the case where b = {1, 1}7,
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X

Fig. 5. Poorly constructed skewed mesh.

Table 8
Results for the convection-dominated diffusion problem (32), with Qol (22) for uniform mesh refinements with a C°
approximation for both variables and Pe = 100.

Primal dofs Q(u, q)— Q(u", q") la— q"lli2e) Dual dofs Tlest Feff

243 3.1381e—-01 8.3021e—02 507 1.7312e—-01 0.552

867 1.9449e—01 5.7260e—02 1875 1.5716e—01 0.808

3267 7.3123e—02 3.3955e—02 7203 7.2499e—02 0.991

12675 1.3955e—02 1.4723e—02 28227 1.4085e—02 1.009

49923 1.4397e—03 4.6769e—03 111747 1.4432e—03 1.002
Table 9

Results for the convection-dominated diffusion problem (32), with Qol (22) for uniform mesh refinements with a
Raviart-Thomas approximation of fluxes and Pe = 100.

Primal dofs Qu,q) —Q(u", ¢") la —q"llze Dual dofs st Sugp

257 3.5772e—01 9.0700e—02 529 1.8006e—01 0503
961 2.3563e—01 6.1567e—02 2017 1.7260e—01 0.733
3713 9.9548e—02 3.7049e—02 7873 9.5166e—02 0.956
14593 2.0993e—02 1.7127e—02 31105 2.1050e—02 1.003
57857 2.2705e—03 5.7263e—03 123649 2.2741e—03 1.001

Pe = 100, and choose the same Qol (22), i.e., the average solution u in the top right quadrant of the unit square. To
approximate the error in the Qol, we now use tetrahedral elements in which u", p" are discretized with C° polynomials,
while q", r" are discretized using Raviart-Thomas bases. The initial mesh consists of two triangles which are refined
uniformly after each computation using orders of approximation of 2 for the primal and 3 for the dual problems,
respectively.

For the same element partition, we achieve slightly higher accuracy at a slightly lower number of degrees of freedom
for C° approximations versus Raviart-Thomas approximations for q", as evident from Tables 8 and 9. Comparison of the
results in these tables also reveal that there is no significant difference between the two approximations in terms of the
accuracy of the error estimates. Raviart-Thomas approximations are used in mixed FE methods as they result in stable
FE approximations, as well as consistency of the approximations. Contrarily, C® approximations for H(div, £2) variables
cannot be employed in the same straightforward manner for mixed FE methods and will lead to a violation of discrete inf-
sup conditions [44]. However, in the AVS-FE method, this stability problem is avoided by employing the DPG philosophy
and optimal test functions that ensure the discrete inf-sup condition.

5. Adaptive mesh refinement

To demonstrate application of the new alternative error estimate (20) and the resulting error indicators (30) in an
h-adaptive process, we use the same form of our model problem, i.e, b = {1, 1}7 and Pe = 100. As the adaptive strategy
for goal-oriented mesh refinement we use the method by Oden and Prudhomme [45], i.e.,

€
_ leml > 8, then refine element m, (37)
Maxg,,e o [€ml
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Fig. 6. Element-wise distribution of the error indicators ¢, (30) on a coarse mesh.
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Fig. 7. Solution on a uniform 16 x 16 mesh.

where § is the tolerance for refinement, i.e., 0 < § < 1. In the following numerical verification, we pick § = 0.5. The Qol
we consider is again the average of u in the upper right quadrant (see (22)). The primal problem is approximated using
C° continuous polynomials of degree 2, whereas the dual problem is approximated using p + 1 = 3.

The initial mesh consists of 2 triangular elements and is too coarse to resolve the boundary layers in both primal and
dual solutions leading to poor error indicators. This effect is shown in Fig. 6, where the error indicators are largest in the
corner of the dual boundary layer which would result in mesh refinements at the ‘wrong’ location. To avoid initial mesh
refinements that are poorly suited to reduce the error in the Qol, we initially perform uniform mesh refinements until
the error estimate 7,5, begins to decrease and indicate that the error indicators €, (30) have become reliable.

This can for example be seen in Fig. 7, where we show the solution and element-wise error indicators on a uniform
mesh of 16 x 16 elements, the last mesh that has been uniformly refined and 7 started to decrease. Here, we see that
indicators in corner of the primal boundary layer are now of a magnitude that result in local mesh refinements in the right
locations. In Fig. 8, we show the error indicators for an intermediate (step 9) and the final (step 18) step of the adaptive
process. In both cases, the mesh has been refined such that the boundary layers in both primal and dual problems are
sufficiently resolved to yield error indicators that are highest in the region of the Qol. The corresponding final adapted
mesh is shown in Fig. 9. As expected from the current choice of Qol, the mesh refinements have been focused near the
primal boundary layer and the Qol. Lastly, we present the convergence history of the error estimator 7,5 and the effectivity
index J;ff in Fig. 10. The plot of estimated error and ||u — uhIILz(Q) in Fig. 10(a) shows that while the adaptive process
ensures a small error in the Qol, the global error in the L?(£2) norm is several orders of magnitude larger as expected since
the adaptive process is targeting to reduce the error in the Qol rather than [ju — u”|| 12()- The effectivity index shown in
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Fig. 9. Final mesh of the goal-oriented h-adaptive refinements.

Fig. 10(b) demonstrates that the proposed alternative approach to goal-oriented error estimation delivers highly accurate
estimates even when the error becomes very small.

As a final numerical verification we consider the flux gy across the line between y = 0.5 and y = 0.75 on the left edge
of the unit square in (36), and we keep the same physical parameters as the corresponding verification, i.e., b = {1, 1}7
and Pe = 10. The primal problem is approximated using C° continuous polynomials of degree 2, whereas the dual problem
is approximated using the same type polynomials at degree p+ 1 = 3. The initial mesh consists of 512 triangle elements,
we employ the adaptive strategy as in (37) with identical tolerance as well, and we perform 10 mesh refinements here.
This initial mesh is chosen to be sufficiently fine to adequately resolve the boundary layers to reduce pollution effects. In
Fig. 11(a), the convergence history of the error indicator as well as the global L? error in u. The corresponding effectivity
index in Fig. 11(b) shows that the estimate remains highly accurate during the adaptive process. Lastly, the final adapted
mesh shown in Fig. 12 shows that the refinements are focused near the Qol as expected for the current refinement
criterion.

6. Conclusions

We have presented goal-oriented a posteriori error estimates for the AVS-FE method. This method is a hybrid Petrov-
Galerkin method which uses classical C%(£2) or Raviart-Thomas FE trial basis functions, while the test space consists of
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Fig. 11. Convergence history for goal-oriented adaptive mesh refinement using a flux Qol (36).

1.0 T T

0.8

0.4 i

0.2 1

0.0 - -
0.0 0.2 0.4 0.6 0.8 1.0
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functions that are discontinuous across element edges. The broken topology of the test space allows us to employ the
DPG philosophy and compute optimal test functions element-by-element, i.e., completely locally. In an effort to derive
a posteriori error estimates of the AVS-FE computations we have introduced two types of goal-oriented error estimates.
The first estimate follows the classical approach of [4] where, by duality, the dual solution is sought in the test space V,
which in the case of the AVS-FE method is a broken Hilbert space. However, we show that through numerical verifications
of the classical Laplace BVP that this approach yields error estimates with poor accuracy. To resolve this, we introduce
a second estimate based on consideration of the PDE that governs the dual solution. The estimate is then established by
computing C°(£2) or Raviart-Thomas AVS-FE approximations of this PDE. Numerical verifications involving pure diffusion
as well as convection-dominated diffusion problems show that the new alternative error estimate is capable of accurately
predicting errors for different Qols and mesh partitions.

In order to employ the new a posteriori error estimation methodology in mesh adaptivity we also here derived error
indicators to guide any h-adaptive process. The error indicators essentially are the element-wise restriction of the residual
operator (30). Numerical verifications show that when the error indicators used with classical refinement strategies [45],
they lead to a mesh adaptive process able to reduce the error in the Qol within a defined accuracy while at the same time
delivering highly accurate predictions of the error in the Qol even when the error is small. In a previous paper [33], the
results presented are all computed using C° approximations for both trial variables. Here, we also presented results in
which the fluxes are computed by using Raviart-Thomas approximations. These results indicate that C° approximations
yield results that are of the same quality in terms of both error estimation, and result in slightly higher accuracy for the
flux variable at a slightly lower number of degrees of freedom. Hence, the use of C° approximations for both variables
remains attractive due to its lower computational cost, and ease of implementation in existing FE software.

Note that the domains considered in the verifications in Section 4.2.3 are convey, it is likely that for non-convex do-
mains the consistency of Raviart-Thomas approximations will be preferable over our C° approximations. This investigation
is postponed to future research efforts. The poor performance of the classical method reported in Section 3 appears to be
related to regularity of the dual solution as suggested by DPG* literature. Hence, in future efforts we will pursue analyses of
the dual problem within a framework similar to the DPG* method to fully understand the intricacies of the dual solution.

In a forthcoming paper, we intend to extend the AVS-FE method and the new alternative error estimates to other
problems such as the nonlinear Cahn-Hilliard equation, as well as alternative error indicators as proposed in, e.g., [46].
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