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We develop the spectroscopy of cc̄cc̄ and other all-heavy tetraquark states in the dynamical diquark
model. In the most minimal form of the model (e.g., each diquark appears only in the color-triplet
combination; the nonorbital spin couplings connect only quarks within each diquark), the spectroscopy is
extremely simple. Namely, the S-wave multiplets contain precisely three degenerate states (0þþ, 1þ−, 2þþ)
and the seven P-wave states satisfy an equal-spacing rule when the tensor coupling is negligible. When
comparing numerically to the recent LHCb results, we find the best interpretation is assigning Xð6900Þ to
the 2S multiplet, while a lower state suggested at about 6740 MeV fits well with the members of the 1P
multiplet. We also predict the location of other multiplets (1S, 1D, etc.) and discuss the significance of the
cc open-flavor threshold.
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I. INTRODUCTION

The LHCb Collaboration has recently presented evi-
dence [1] for the observation of at least one resonance in the
J=ψ -pair spectrum at about 6900 MeV and the likely
presence of at least one additional resonance lying below
this mass but above the 6200 MeV J=ψ-pair threshold.
Such states are naturally assigned the valence-quark con-
tent cc̄cc̄, making them the first all-heavy multiquark
exotic candidates claimed to date in the experimental
literature.
Theoretical studies of cc̄cc̄ states have a much longer

history, dating indeed to a time only two years after the
discovery of the J=ψ [2] and followed by a smattering of
papers in the 1980s [3–5]. The current interest in cc̄cc̄
states, starting in 2011 [6,7] and particularly ramping up
since 2016 [8–27], emerged from the expectation of
dedicated searches at the LHC.
A notable feature of the all-heavy multiquark exotics

Q1Q̄2Q3Q̄4 (Qi ¼ c or b), in contrast to the known exotics
QQ̄qq̄0 [28] (q; q0 ∈ fu; dg), is the lack of a plausible
molecular structure for the states. The lightness of the
quarks q; q̄0 in the QQ̄qq̄0 case suggests the possibility of
ðQq̄0ÞðQ̄qÞ molecules, bound by the exchange of light
mesons with valence content ðqq̄0Þ and possessing a spatial
extent at least as large as the light-meson wave function, of

order 1=ΛQCD ≃Oð1Þ fm. If the state lies especially close
to the ðQq̄0ÞðQ̄qÞ threshold [e.g., Xð3872Þ], then its spatial
extent is determined by the inverse of the binding energy
and can be quite substantial, possibly as large as several fm.
Moreover, Yukawa-like light-meson binding exchanges as
an explanation for such near-threshold states begin to
appear implausibly fine-tuned, and instead threshold
rescattering effects (loop exchanges of virtual particles
between the constituent mesons that numerically enhance
the amplitude near the threshold) provide a mechanism for
binding the state. In contrast, the case of all-heavy
Q1Q̄2Q3Q̄4 states lacks a light-meson exchange mecha-
nism, both for Yukawa-type exchanges and for threshold
effects. The Xð6900Þ is noted [1] to lie in the vicinity of the
χc0χc0 and χc1χc0 thresholds, but to our knowledge no
calculation has yet suggested the ability of such a threshold
rescattering to produce a strong resonance.
In general, one expects the lowest-lying Q1Q̄2Q3Q̄4

states to exhibit comparable distances between all
four heavy quarks. If, say, the Q1Q̄2 and Q3Q̄4 pairs are
formed with substantially smaller internal separations than
the distance between the two pairs, then one expects
the immediate formation of two free conventional
quarkonium states rather than a single resonance, even if
both pairs are in color octets and require gluon exchange
(which has a range comparable to that of light-meson
exchange) in order for Q1Q̄2 and Q3Q̄4 to hadronize as
color singlets.
As a result, the most common models for Q1Q̄2Q3Q̄4

states assume a diquark-antidiquark ½ðQ1Q3ÞðQ̄2Q̄4Þ�
structure, typically exploiting the attractive color-antitriplet
quark-quark coupling. One should keep in mind, however,
that if all four quarks have comparable separations (as is
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anticipated for the ground states), then a combination
of different color structures should be expected to appear
for those states (e.g., as in the lattice simulation of
Ref. [12]).
Beyond the ground states, the separations between the

quarks can become differentiated. As noted above, closer
association of the QQ̄ pairs is expected to lead to an
immediate dissociation into quarkonium pairs, while the
configuration ðQ1Q3ÞðQ̄2Q̄4Þ with color-triplet diquarks
becomes the only one that features an attractive interaction
between the component constituents (the quarks within the
diquarks), but must still remain bound due to confinement,
independent of the exchange of any number of gluons.
These features define the dynamical diquark picture of
multiquark exotics [29,30]. In the original picture, the
diquark separation is a consequence of the production
process; for example, cc̄qq̄0 tetraquarks can be manifested
due to the large momentum release between the cc̄ pair in
B-meson decays into a ðcqÞðc̄q̄0Þ structure. To be more
precise, the diquark-antidiquark state couples most strongly
to the portion of the four-quark momentum-space wave
function for which the relative momentum between the
quasiparticles δ≡ ðQ1Q3Þ and δ̄≡ ðQ̄2Q̄4Þ is significantly
larger than the relative momenta within them.
The dynamical diquark picture is elevated to a full model

by identifying its mass eigenstates with those of the gluon
field connecting the diquarks [31]. Explicitly, confinement
limits the eventual separation of the δ-δ̄ pair even though
they may form with a large relative momentum, and the
specific stationary states of the full system are supplied by
the quantized modes of the gluon field stretching between
the two heavy, (eventually) nearly stationary sources δ, δ̄.
This approach uses the Born-Oppenheimer (BO) approxi-
mation in precisely the same manner as is done for
simulations of heavy-quark hybrids on the lattice (e.g.,
Refs. [32–36]). Indeed, the specific form of the static
potential VΓðrÞ between the heavy sources for a particular
BO glue configuration Γ is precisely the same one
computed in each lattice simulation just referenced. The
corresponding coupled Schrödinger equations were first
numerically solved for cc̄qq̄0 states in Ref. [37].
Typical diquark models approximate the quasiparticles δ,

δ̄ to be pointlike, even though they are expected to have
spatial extents comparable to those of mesons carrying the
same valence-quark flavor content. Nevertheless, model
calculations in Ref. [38] for cc̄qq̄ states show that finite
diquark size has a surprisingly mild effect on the spectrum
for a δ ¼ ðcqÞ radius as large as 0.4 fm.
The dynamical diquark model also selects a very specific

set of spin-dependent couplings as the ones deemed most
physically significant. In this model, the δ, δ̄ pair form
distinguishable, separate entities within the full state, so
that the dominant spin-spin couplings are taken to be the
ones between quarks within each diquark [39], while
typical existing models for cc̄cc̄ states (e.g., Refs. [6,7])

treat all quark spin-spin interactions on equal footing, or
consider only couplings to full diquark spins (e.g.,
Ref. [18]). The more restrictive paradigm used here leads
to very simple predictions for the spectrum of cc̄cc̄ states,
particularly in S-wave multiplets, which will become
immediately testable once the quantum numbers of the
cc̄cc̄ states are known.
On the other hand, the dominant operators in this model

for cc̄cc̄ states carrying orbital angular momentum depend-
ence (relevant to P- and higher-wave states) are taken to
couple only to the diquarks as units, since δ, δ̄ are assumed
to have no internal orbital excitation for all low-lying cc̄cc̄
states.1 The resultant spin-orbit and tensor operators for the
low-lying spectrum are the same as those used in Ref. [18],
but differ from those used in Ref. [20], which instead are
chosen to couple to all individual quark spins. Again, a very
simple spectrum arises in this model for the P-wave states,
the degree of validity for which will become immediately
apparent with further data.
Our purpose in this paper is therefore not to compete

with detailed calculations of spectra that are based upon
assuming specific forms for all operators contributing to the
Hamiltonian of cc̄cc̄ states (e.g., using a one-gluon-
exchange potential to obtain an explicit functional form
for the coefficient for every operator, as in Ref. [18]).
Rather, we describe the most significant features in the
spectrum parametrically, identifying particular spin-spin,
spin-orbit, or tensor terms to pinpoint their origin, while
remaining agnostic as to the precise dynamical origin of
these operators. We nevertheless also present an initial fit to
the cc̄cc̄ spectrum, using numerical values for the
Hamiltonian parameters obtained from the analogous
operators in other sectors of exotics to which the model
has previously been applied. Specifically, the strength of
the spin-spin operator is obtained from a recent fit to cc̄ss̄
candidates [41], and the spin-orbit and tensor strengths are
taken from a recent fit to P-wave cc̄qq̄0 candidates [40].
This paper is organized as follows. In Sec. II, we review

the spectroscopy of the model for S- and P-wave
Q1Q̄2Q3Q̄4 states, identifying quantum-number restric-
tions arising from spin statistics. Section III presents the
Hamiltonian and tabulates all matrix elements for the
allowed states, and we identify features of the spectrum
that appear based upon their parametric analysis. In Sec. IV,
we present a numerical prediction for the cc̄cc̄ spectrum,
using as described above the results of previous work; and
in Sec. V we conclude.

1In contrast, the tensor operator for P-wave cc̄qq̄0 states in
Ref. [40], owing its origin to a pionlike exchange within the state,
was chosen to couple only to the light-quark spins within the
diquarks. Nevertheless, the matrix elements for an alternative
tensor operator that couples only to the full diquark spins (as to be
used here) are also computed in that work.
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II. SPECTROSCOPY OF QQ̄QQ̄ EXOTICS

The spectroscopy of δ-δ̄ states in which the diquarks δ, δ̄
contain no internal orbital angular momentum, but that
allows for arbitrary orbital excitation and gluon-field
excitation between the δ-δ̄ pair, is presented in Ref. [31].
For the all-heavy states with distinguishable quarks in δ and
δ̄ (i.e., bb̄cc̄, or for that matter, cc̄ss̄), precisely the same
enumeration of states occurs. The core states, expressed in
the basis of good diquark-spin eigenvalues with labels such
as 1δ, are given by

JPC ¼ 0þþ∶ X0 ≡ j0δ; 0δ̄i0; X0
0 ≡ j1δ; 1δ̄i0;

JPC ¼ 1þþ∶ X1 ≡ 1ffiffiffi
2

p ðj1δ; 0δ̄i1 þ j0δ; 1δ̄i1Þ;

JPC ¼ 1þ−∶ Z≡ 1ffiffiffi
2

p ðj1δ; 0δ̄i1 − j0δ; 1δ̄i1Þ;

Z0 ≡ j1δ; 1δ̄i1;
JPC ¼ 2þþ∶ X2 ≡ j1δ; 1δ̄i2; ð1Þ

with the outer subscripts on the kets indicating total quark
spin S. On their own, these six states fill the lowest
multiplet Σþ

g ð1SÞ within the BO approximation for the
gluon-field potential connecting the δ-δ̄ pair. Higher BO
potentials (like Σ−

u , where standard BO quantum-number
labels such as these are defined in Ref. [31]) produce the
multiquark analogues to hybrid mesons and thus are
expected to lie about 1 GeV above the Σþ

g ð1SÞ ground
states. For phenomenological reasons to be discussed in
Sec. IV, we do not discuss such states further here.
The diquarks δ, δ̄ in this model transform as color (anti)

triplets, which are antisymmetric under quark-color
exchange. If the quarks within δ or δ̄ are identical, then
the space-spin wave function of the corresponding diquark
must be symmetric in order to satisfy Fermi statistics for the
complete δ or δ̄ wave function; however, since the model
assumes no orbital excitation within the diquarks, their
spatial wave function and hence also their spin wave
function alone must be symmetric, which thus requires
the corresponding diquark spin to equal unity: only 1δ and
1δ̄ survive. In the cc̄cc̄ or bb̄bb̄ case, one immediately sees
from Eq. (1) that the states X0, X1, and Z are forbidden by
spin statistics.2 The ground-state multiplet Σþ

g ð1SÞ is thus
halved: only the three states X0

0 (0þþ), Z0 (1þ−), and X2

(2þþ) survive. An identical analysis applies to all radial-
excitation multiplets Σþ

g ðnSÞ.

One immediate conclusion of this model becomes
evident: if the full state wave function contains a compo-
nent that allows either diquark to appear in the (symmetric)
color sextet, then that diquark in the low-lying states must
appear in the antisymmetric spin-0 combination 0δ or 0δ̄. In
that case, the full spectrum of six states from Eq. (1), most
notably a state with JPC ¼ 1þþ, must appear. The obser-
vation of a 1þþ cc̄cc̄ state in the lowest multiplet (or any
S-wave multiplet) would provide direct evidence of dynam-
ics lying outside the most restrictive diquark models.
The addition of a nonzero orbital-excitation quantum

number L is now straightforward. Since the intrinsic parity
factor (−1) for an antiquark appears twice, the parity
eigenvalue of the full state is just given by the usual spatial
factor ð−1ÞL. All S-wave, D-wave, etc. states therefore
have P ¼ þ, and all P-wave, F-wave, etc. states have
P ¼ −: Starting with the S-wave “core” states X0

0, Z
0, and

X2 of Eq. (1), one invokes the usual angular momentum
addition rules to produce states of good total J (indicated
by a superscript “(J),” using the notation developed in
Ref. [31]). Explicitly, the seven P-wave cc̄cc̄ states,
accompanied by their JPC eigenvalues, are

X0ð1Þ
0P ð1−−Þ; Z0ð0Þ

P ð0−þÞ; Z0ð1Þ
P ð1−þÞ; Z0ð2Þ

P ð2−þÞ;
Xð1Þ
2P ð1−−Þ; Xð2Þ

2P ð2−−Þ; Xð3Þ
2P ð3−−Þ: ð2Þ

For completeness, we note that each of the D-wave,
F-wave, etc. multiplets contain precisely nine cc̄cc̄ states.
In particular, the Σþ

g ð1DÞ multiplet is the lowest one to

contain a 1þþ state, Xð1Þ
2D.

III. MASS HAMILTONIAN

The full mass spectrum of all states in the dynamical
diquark model is computed by the following procedure.
First, a particular BO potential Γ (¼ Σþ

g , Πu, etc.) that gives
rise to a multiplet of states [Σþ

g ð1PÞ, Πuð2PÞ, etc.] is
specified. The corresponding potentials VΓðrÞ have been
computed numerically on the lattice [32–36]. One specifies
a diquark mass mδ;δ̄ (or in the case of pentaquarks, a color-
triplet triquark mass as well) and solves the resulting
Schrödinger equation for this Hamiltonian H0 numerically
[37],3 giving rise to a multiplet-average mass eigenvalue
M0ðnLÞ for particular radial (n) and orbital (L) quantum
numbers attached to the particular BO potential Γ. In this
paper, we are interested only in the Σþ

g potential and
primarily in the levels within the lowest multiplets Σþ

g ð1SÞ,
Σþ
g ð1PÞ, and Σþ

g ð2SÞ.
The next step is to identify and compute fine-structure

corrections to the spectrum of each such multiplet. In the

2One may also consider truly exotic states like bb̄bc̄, in which
0δ is forbidden but 0δ̄ is allowed, in which case only the state X0

is eliminated. For such states, C also ceases to be a good quantum
number, so that X1 and Z become the same 1þ state, thus leaving
a total of four states in the multiplet Σþ

g ð1SÞ. In contrast, the case
bb̄cc̄ (considered in, e.g., Ref. [18]) retains the C quantum
number and all six Σþ

g ð1SÞ states.

3In some cases, the BO potentials mix, leading to coupled
Schrödinger equations that require a more involved numerical
solution technique.
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dynamical diquark model, the dominant spin-dependent,
isospin-independent operator is taken to be the spin-spin
coupling between quarks in the diquark, and between the
antiquarks in the antidiquark. In the case of QQ̄qq̄0 states
(where q; q0 ∈ fu; dg), the model also includes a spin-
dependent, isospin-dependent operator that mimics the
form present in pion exchange. The analysis of the
Σþ
g ð1SÞ multiplet of cc̄qq̄0 states in Ref. [38] uses a

Hamiltonian consisting only of H0 and the two operators
thus described,

H ¼H0 þ 2κqQðsq · sQ þ sq̄0 · sQ̄Þ þV0τq · τq̄0σq · σq̄0 ; ð3Þ

where of course Q ¼ c, and κqQ is assumed to be isospin
symmetric. This very simple Hamiltonian is used to great
effect in Ref. [38], where it provides a natural explanation
for the 1þþ Xð3872Þ being the lightest observed state in the
Σþ
g ð1SÞ multiplet and for the appearance of the preferential

decay patterns Zcð3900Þ → J=ψ and Zcð4020Þ → hc. In
the intermediate case of cc̄ss̄ states in Ref. [41], as well as
in the all-heavy case QQ̄QQ̄ considered here (or more
generally, Q1Q̄2Q3Q̄4), the isospin-dependent term V0 is
absent. In addition, the coefficients κqQ, κsQ, and κQQ refer
to spin couplings within diquarks containing increasingly
heavy quarks, and therefore the diquarks are expected to be
increasingly spatially compact. Since the fundamental
quark spins thus interact at increasingly close range, one
may expect the numerical size of these couplings to
increase for heavier quark combinations, a point to which
we return in Sec. IV.
The S-wave Hamiltonian for QQ̄QQ̄ therefore contains

only one new parameter,

H ¼ H0 þ 2κQQðsQ · sQ þ sQ̄ · sQ̄Þ; ð4Þ

where the two factors of sQ and of sQ̄ are each understood
to apply to a separate heavy quark. The eigenvalues of H
are trivially computed in the basis of good diquark spin,

M ¼ M0 þ κQQ½sδðsδ þ 1Þ þ sδ̄ðsδ̄ þ 1Þ − 3�: ð5Þ

Since as noted above, sδ ¼ sδ̄ ¼ 1 in any state for which
diquarks have negligible coupling to the color-sextet
channel, we immediately obtain a strong result. The three
states of each Σþ

g ðnSÞ multiplet, 0þþ, 1þ−, and 2þþ, are
degenerate in this model, with a common mass eigenvalue
given by

MðnSÞ ¼ M0 þ κQQ; ð6Þ

where of course bothM0 and κQQ may vary with the radial
excitation number n. The measurement of nonzero mass
splittings between these three states would therefore
provide direct evidence that the quarks within different
diquarks have nonnegligible spin-spin couplings between

them.4 In comparison, one does not expect this degeneracy
in the Ξcc ground states, since although sδ is still con-
strained to equal 1, the (light) third quark is not spatially
separated from δ, so that one still expects distinct couplings
to the 1

2

þ and 3
2

þ ground states.
Turning now to L > 0 states, the new operators appear-

ing in the Hamiltonian are pure orbital [L2, which is the
same for all states in the Σþ

g ðnLÞ multiplet and therefore
provides a contribution to M0], spin-orbit, and tensor
operators. Both of the latter operators are considered in
Ref. [40] for P-wave cc̄qq̄0 states.
The spin-orbit operator in this model appears as

ΔHLS ¼ VLSL · ðsδ þ sδ̄Þ ¼ VLSL · S; ð7Þ

where S is the total spin carried by the quarks [the state
subscripts in Eqs. (1), or 1 for Zð0Þ], which trivially gives the
matrix elements

ΔMLS¼
VLS

2
½JðJþ1Þ−LðLþ1Þ−SðSþ1Þ�: ð8Þ

Note that according to Eq. (7) the model treats all four
quarks on the same footing, each interacting with the same
total L operator since the individual diquarks are assumed
to have no internal excitation. Thus, only one separation
coordinate (rδ − rδ̄) and only one orbital angular momentum
operator L is relevant.5

The final operator in the model for L > 0 states is the
tensor coupling S12 between the δ-δ̄ pair, defined by

ΔHT ¼ VTS12; ð9Þ

where

S12 ≡ 3σ1 · rσ2 · r=r2 − σ1 · σ2: ð10Þ

σ here and below denotes twice the canonically normalized
spin operator of the full entity coupling to the tensor force.
In the study of P-wave cc̄qq̄0 states in Ref. [40], the tensor
operator is assumed to originate as an analogue to the
corresponding operator in nucleon-nucleon interactions
arising from pion exchange, and therefore σ couples only
to the light quarks within δ and δ̄, just as for the spin-spin
V0 operator in Eq. (3). The assumption of coupling only to
the light quarks rather than to the full δ, δ̄ as units is viable
in the dynamical diquark model because again, the diquarks
are not treated as completely pointlike. Nevertheless, the

4This result is parametrically apparent from the first equations
of Sec. IIB in Ref. [7] (setting their κþ ¼ 0). However, since all
spin-spin couplings are numerically comparable in their model,
this feature was not commented upon there.

5Alternate cc̄cc̄ tetraquark models (e.g., Refs. [5,20]) have
been presented in which all four quarks and their three relative
separations are significant for a full description of the state.
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alternative hypothesis of coupling the isospin-dependent
spin-spin and tensor operators to δ, δ̄ as units was also
studied in Refs. [38,40] and found to be incompatible with
known phenomenology [e.g., in predicting a degenerate
I ¼ 1 partner to the Xð3872Þ, which is known not to exist].
In the all-heavy case, one not only expects that δ, δ̄ are

more compact than in the QQ̄qq̄0 case, but also notes that
the privileged position of light quarks with respect to
isospin no longer occurs. In this case, the spin operators σ
in the tensor operator of Eq. (10) refer to the fullQQ or Q̄ Q̄
diquark spins. The matrix elements in that case are
computed in Appendix A of Ref. [40],

hL0; S0; JjS12jL; S; Ji

¼ ð−1ÞSþJ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30½L�½L0�½S�½S0�

p �
J S0 L0

2 L S

��
L0 2 L

0 0 0

�

×

8<
:

sδ sδ̄ S

sδ0 sδ̄0 S0

1 1 2

9=
;hsδ0 jjσ1jjsδihsδ̄0 jjσ2jjsδ̄i; ð11Þ

where ½j�≡ 2jþ 1. The reduced matrix elements of the
angular momentum generators are given by

hj0jjjjjji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð2jþ 1Þðjþ 1Þ

p
δj0j: ð12Þ

The tensor operator of Eq. (10) does not change individual
diquark spins [as is evident from Eq. (12)] and vanishes if
sδ ¼ 0 or sδ̄ ¼ 0 [as is evident from the 9j symbol in
Eq. (11)]. It does however allow the total quark spin S to
change, as well as the orbital excitation L.
In summary, the full Hamiltonian of the dynamical

diquark model for all-heavy states QQ̄QQ̄ (and with small
modifications, for general all-heavy states Q1Q̄2Q3Q̄4) is
given by the sum of Eqs. (4), (7), and (9),

H ¼ H0 þ 2κQQðsQ · sQ þ sQ̄ · sQ̄Þ þ VLSL · Sþ VTS
ðδδ̄Þ
12 :

ð13Þ

Only the first two terms are required for Σþ
g ðnSÞ states,

while the latter two terms are needed for L > 0 states. The
matrix elements (i.e., mass eigenvalues) for the three
S-wave states are degenerate and are given in Eq. (6),
while those for the seven P-wave states are presented in
Table I. The latter are listed in a particular order that
recognizes another interesting feature of this model: If
VLS ≫ VT , then the P-wave states fill an equal-spaced
multiplet. Assuming that VLS > 0 (as occurs in Ref. [40])
means that the states in Table I may be expected to
appear in order of increasing mass. This ordering almost
precisely matches the corresponding (unmixed) numbers in
Ref. [20], despite the fact that the latter calculation includes

not only tensor terms, but also couplings between all
of the quarks.6

The only Σþ
g ð1PÞ states degenerate in JPC are the 1−−

pair Xð1Þ
2 and X0ð1Þ

0 . In that case, for VT ≠ 0, the states form
a 2 × 2 mass matrix whose diagonal values are given in
Table I and whose off-diagonal element is

ΔM
Xð1Þ
2
−X0ð1Þ

0

¼ þ 8ffiffiffi
5

p VT: ð14Þ

IV. NUMERICAL ANALYSIS

LHCb analyzes the results of their observations [1] by
providing fits to two model scenarios which are as follows:

(I) Xð6900Þ has m ¼ 6905� 11 MeV and Γ ¼ 80�
19 MeV The second resonance, hereinafter labeled
Xð6500Þ, lies at 6490� 15 MeV.7 The mass split-
ting between these states is ΔmI ¼ 415� 19 MeV.

(II) Xð6900Þ has m ¼ 6886� 11 MeV and Γ ¼ 168�
33 MeV The second resonance, hereinafter labeled
Xð6740Þ, has m ¼ 6741� 6 MeV and Γ ¼ 288�
16 MeV The mass splitting between these states
is ΔmII ¼ 145� 15 MeV.

We now show that the scenario of Model II appears to
support a much more favorable interpretation within the
dynamical diquark model.
For this analysis, we first assume that Xð6900Þ is not a

1S state, because it would then lie 700 MeVabove the J=ψ -
pair threshold, which would represent an astonishing mass
gap for the appearance of the lowest cc̄cc̄ resonances.
Similar conclusions appear in Refs. [20–26]. We discuss
the fate of the 1S states in our model later in this section; the
subsequent multiplets in order of increasing mass turn out
to be 1P, 2S, 1D, 2P, and 2D, as confirmed below.

TABLE I. Mass eigenvalues of the seven Σþ
g ðnPÞ states, which

assume the simple forms M ¼ M0 þ κQQ þ ΔMLS þ ΔMT . The

two 1−− states Xð1Þ
2 , X0ð0Þ

1 also have an off-diagonal mixing term
given by Eq. (14).

State JPC ΔMLS ΔMT

Xð1Þ
2

1−− −3VLS − 28
5
VT

Z0ð0Þ 0−þ −2VLS −8VT

Z0ð1Þ 1−þ −VLS þ4VT

Xð2Þ
2

2−− −VLS þ 28
5
VT

X0ð1Þ
0

1−− 0VLS 0VT

Z0ð2Þ 2−þ þVLS − 4
5
VT

Xð3Þ
2

3−− þ2VLS − 8
5
VT

6In their full calculation, Ref. [20] also includes color-sextet
combinations.

7This value is not stated in Ref. [1], but rather is estimated by
us using their Fig. 3(b).
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The next required input of the analysis is a reliable value
of the internal diquark spin-spin coupling κcc appearing in
Eqs. (4)–(6). The closest available analogue to cc̄cc̄ state is
found with cc̄ss̄ candidates such as Xð4140Þ, which have
been analyzed using this model very recently in Ref. [41].
In that work, κcs is found to be quite large (114.2 MeV)
compared to the fit value for κcq or κbq (17.9–22.5 MeV).
We observed in Ref. [41] that this pattern is explained by
the diquark coupling being strongly dependent upon the
lighter quark flavor (κcs vs κcq) and much less sensitive to
the heavy-quark flavor (κcq vs κbq). We argued that the s
quark, being much heavier than u or d, has less Fermi
motion within δ, permitting δ to be substantially more
compact and thus enhancing the strength of spin couplings
within it. Therefore, it is reasonable to assume that the (cc)
diquark has a similarly large spin-spin coupling (and
possibly even larger, if s is insufficiently heavy to reach
the point of flavor independence for the lighter quark in δ).
Hence, for all states in this fit, we take the spin-spin
coupling to be

κcc ¼ 114.2 MeV: ð15Þ

Note from Eq. (6) or Table I that such a large value of κcc
leads to the interesting consequence of predicting M0, and
hence the diquark mass mδ, to be rather smaller than in fits
from other works.
We now possess sufficient information to study S-wave

multiplet masses, as well as P-wave multiplet masses
ignoring for the moment the spin-orbit and tensor terms.
Two natural assignments for Xð6900Þ may be considered:
as a Σþ

g ð1PÞ or as a Σþ
g ð2SÞ state. One then calculates for

each case the mass splittings to lower multiplets, in order to
confirm whether one or both of these assignments matches
the mass splittings ΔmI and/or ΔmII between peaks from
LHCb’s Model I or II, respectively.
First, we investigate the possibility that Xð6900Þ is a

Σþ
g ð1PÞ state. Since the J=ψ pair has C ¼ þ, Table I

suggests that the lightest allowed candidate (assuming
VLS; VT > 0, as is used below) is Z0ð0Þð0−þÞ. To be
quantitative, we adopt the numerical results obtained from
the P-wave cc̄qq̄ states in Ref. [40]. Specifically, we use
values obtained from Cases 3 and 5 of Ref. [40] for VLS and
VT , which are

VLS ¼ 42.9 MeV; VT ¼ 5.5 MeV ð16Þ

and

VLS ¼ 49.0 MeV; VT ¼ 3.8 MeV; ð17Þ

respectively. These cases were deemed in Ref. [40] to be
the ones most likely to accurately represent the true P-wave
cc̄qq̄0 spectrum. Their application to the cc̄cc̄ system
deserves some discussion. The spin-orbit term in this

model connects two separated heavy diquarks in either
case [(cq) or (cc)], and therefore we assume the size of the
coupling VLS to depend upon the source only through its
spin and not its flavor content, so long as the diquarks are
heavy. The tensor term, on the other hand, is an entirely
different matter. In Ref. [40], the tensor operator was
chosen to couple only to light-quark spins [see the
discussion below Eq. (10)], while the cc̄qq̄0 analogue to
the form of Eq. (9) used here for cc̄cc̄ was found to be
phenomenologically irrelevant. We therefore take as our
final assumption that VT for cc̄cc̄ is numerically no larger
than the VT values obtained from cc̄qq̄0.
Using the values for κcc, VLS, VT in Eqs. (15)–(17), one

then needs only the mass expressions in Table I and Eqs. (6)
and (14). Fixing the Z0ð0Þ mass eigenvalue to the (Model I)
Xð6900Þ mass, we implement the Schrödinger equation-
solving numerical techniques applied to lattice-calculated
potentials, as described in Ref. [37]. We thus obtain

M0ð1PÞ ¼ 6931.3 MeV and 6954.0 MeV; ð18Þ

using the inputs of Eqs. (16) and (17), respectively.8 Further
computingM0ð1SÞ andM0ð2SÞ in the same calculation, we
obtain the M0 mass differences,

Δm1P−1S ¼ þ343.3 MeV;

Δm1P−2S ¼ −156.9 MeV; ð19Þ

using Eq. (16). The corresponding values obtained using
Eq. (17) are hardly changed, being þ343.2 and
−156.7 MeV, respectively. In comparison with the
LHCb results, the first of Eq. (19) is too small to match
Model I (i.e., Δm1P−1S < ΔmI), especially since M0ð1PÞ
lies rather higher than the Z0ð0Þ mass we fix to Xð6900Þ,
while the second has the right magnitude but the wrong
sign to match Model II (i.e., ΔmII ≈ −Δm1P−2S), since we
predict that 2S states lie above 1P states. We therefore
conclude that the assignment of Xð6900Þ as a Σþ

g ð1PÞ state
is heavily disfavored in the dynamical diquark model.
We therefore turn to the alternate possibility that

Xð6900Þ is one of the states in the multiplet Σþ
g ð2SÞ (which

again, are degenerate in this model). Then using Eqs. (6),
(15), and the Model-II mass value, we obtain

M0ð2SÞ ¼ 6771.8 MeV: ð20Þ

Once again implementing the techniques developed in
Ref. [37], we calculate the M0 mass differences.

8The variation of these particular eigenvalues with the lattice
potentials obtained in Refs. [32–36] amounts to only about
0.07 MeV. The specific values presented here use Ref. [35].
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Δm2S−1P ¼ 160.4 MeV;

Δm2S−1S ¼ 505.7 MeV: ð21Þ

In this case, we observe that the latter mass splitting is too
large to agree with Model I (i.e., Δm2S−1S > ΔmI), but the
former agrees very well with Model II (i.e., Δm2S−1P ≈
ΔmII). Therefore, assuming that LHCb’s Model II is con-
firmed to be the correct interpretation of the data, we find
that Xð6900Þ is favored in the dynamical diquark model to
be a Σþ

g ð2SÞ state and Xð6740Þ a Σþ
g ð1PÞ state.

Concluding from these calculations that Xð6900Þ is
indeed a Σþ

g ð2SÞ state with M0ð2SÞ given by Eq. (20),
the corresponding diquark masses are computed to be

mδ ¼ mδ̄ ¼ 3126.4 − 3146.4 MeV; ð22Þ

which is only slightly larger than mJ=ψ . Using this value of
mδ, we further obtain

M0ð1SÞ ¼ 6264.0 − 6266.1 MeV;

M0ð1PÞ ¼ 6611.4 MeV;

M0ð1DÞ ¼ 6860.5 − 6862.4 MeV;

M0ð2PÞ ¼ 7010.8 − 7013.0 MeV: ð23Þ

The variation here arises from using the differing lattice
results of Refs. [32–36]. The prediction for M0ð1SÞ
deserves special discussion, because the expected spatial
size of a 1S state according to this model is calculated to be
hri ≈ 0.3 fm, the same magnitude as (or even smaller than)
J=ψ states. In this scenario, all four of the quarks have
comparable spatial separation, a configuration that runs
afoul of the original separated-diquark motivation of the
dynamical diquark model. At present, the LHCb data in the
∼6300 MeV mass region are not yet sufficiently resolved
to discern particular structures, so it will be interesting to
see how well the model works even in situations for which
it is expected to fail.
Having identified Xð6900Þ with one of the (degenerate)

Σþ
g ð2SÞ states, we use the values of VLS and VT given by

Eqs. (16) and (17) and the expressions in Table I and
Eq. (14) to compute the full Σþ

g ð1PÞ spectrum. The results
are presented in Table II. One notes that the variation in
mass for any given state between the two fits [excepting

Xð2Þ
2 ð2−−Þ] is ≲13 MeV, and that the ordering of the states

in mass is nearly identical to the one expected parametri-
cally from the equal-spacing rule identified in Table I, even
though the equal spacing itself is numerically not so well
supported. Since the values of VT in Eqs. (16) and (17) are
based upon a naive assumption, the equal-spacing rule
might turn out to be much better in practice if the actual VT
value is smaller.
An interesting feature of LHCbModel II is the enormous

width Γ ¼ 288 MeV given for Xð6740Þ (twice the width of

ρ, for example). From Table II, we note that all P-wave
states that could decay to a J=ψ pair (C ¼ þ) have masses
consistent with appearing within this wide peak, meaning
that the broad Xð6740Þ peak could easily turn out to be a
superposition of several narrower 1P-state peaks.
Finally, a notable enhancement in the LHCb data appears

slightly above 7200 MeV. This value coincides with the
Ξcc-Ξ̄cc threshold 7242.4 MeV, at which sufficient energy
becomes available to create the lightest hadronic state
containing both cc̄cc̄ and an additional light qq̄ valence
pair, namely, the baryon pair ðccqÞðc̄ c̄ q̄Þ. Above this
threshold, one expects no further narrow resonances
decaying dominantly to J=ψ pairs, since new open-flavor
decay channels become kinematically available. This
prediction is particularly easy to see in the dynamical
diquark model; it is the point at which the gluon flux tube
connecting the δ-δ̄ pair gains enough energy to fragment
through qq̄ pair creation and was anticipated in Ref. [29]
for cc̄qq̄ states to occur at the Λþ

c -Λ̄−
c threshold.

Interestingly, we find the 2D states to have a common
multiplet mass of

M0ð2DÞ ¼ 7213.3 − 7216.7 MeV; ð24Þ

meaning that the enhancement in the data above 7200 MeV
may be a combination of some 2P and/or 2D cc̄cc̄ states
[not forgetting the large mass offset due to κcc from
Eqs. (13) and (15)] with threshold effects in the form of
rescattering of Ξcc-Ξ̄cc pairs to J=ψ pairs. In addition, the
cc̄cc̄ states in higher BO multiplets than Σþ

g (i.e., analogues
to hybrid mesons) would also occur at or above the Ξcc-Ξ̄cc
threshold.

V. CONCLUSIONS

The recent LHCb discovery of resonancelike structures
in the J=ψ-pair spectrum opens a whole new arena for
hadronic spectroscopy. The Xð6900Þ represents the first

TABLE II. Mass eigenvalues (in MeV) of the 7 Σþ
g ð1PÞ states,

using the expressions given in Table I and Eq. (14). M0ð1PÞ is
obtained from the same numerical fit identifying Xð6900Þ as a
Σþ
g ð2SÞ state (specifically, using the lattice simulation of

Ref. [35]), κcc is given in Eq. (15), and the columns represent
two different choices for VLS and VT values.

State JPC Equation (16) Equation (17)

Xð1Þ
2

1−− 6563.70 6556.22

Z0ð0Þ 0−þ 6595.79 6597.19

Z0ð1Þ 1−þ 6704.69 6691.79

Xð2Þ
2

2−− 6713.49 6687.87

X0ð1Þ
0

1−− 6727.98 6726.68

Z0ð2Þ 2−þ 6764.09 6771.55

Xð3Þ
2

3−− 6802.59 6817.51
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clear candidate for a multiquark exotic hadron that contains
only heavy valence quarks. This paper and multiple prior
works referenced here suggest that numerous other such
states, carrying a variety of quantum numbers, await
discovery as experimental observations are refined.
Furthermore, the all-heavy sector is particularly interesting
from a theoretical point of view, since the molecular
binding paradigm popular for light-flavor containing multi-
quark states like Xð3872Þ is much less viable (particularly
for states that lie so far above the J=ψ-pair threshold),
leaving a diquark-antidiquark binding structure as the
leading candidate.
This paper has explored the basic spectroscopic proper-

ties of the all-heavy four-quark states Q1Q̄2Q3Q̄4 in the
dynamical diquark model. Its defining features for this
system are (1) the dominance of the color-triplet binding
between δ≡Q1Q3 and between δ̄≡ Q̄2Q̄4, which for the
identical-quark cases cc̄cc̄ or bb̄bb̄ leads to the absence of
1þþ S-wave states; (2) the dominance of spin-spin cou-
plings within δ and within δ̄, but not between quarks and
antiquarks, which leads to the degeneracy of all three states
in each QQ̄QQ̄ S-wave multiplet; and (3) a spin-orbit
coupling for L > 0 that couples to all quarks with the same
strength. If the strength of the tensor coupling is substan-
tially smaller than the spin-orbit coupling, then the seven
states of the P-wave QQ̄QQ̄multiplet exhibit a remarkable
equal-spacing spectrum. These features clearly provide
simple and immediate tests of various aspects of the model.
We have also produced numerical predictions of the

full spectrum for the 1S, 1P, and 2S multiplets, and

multiplet-averaged masses for 1D, 2P, and 2D, using
lattice-calculated confining potentials, the spin-spin cou-
pling obtained from cc̄ss̄ candidate states, and the spin-
orbit and tensor couplings obtained from P-wave cc̄qq̄0
states, all using this model. In attempting different assign-
ments for the Xð6900Þ, we find that the only one compat-
ible with the model is to identify Xð6900Þ with a state or
states within the 2S multiplet, and the lower structure at
about 6740 MeV from LHCb’s “Model II” being some
combination of the C ¼ þ states within the 1P multiplet.
Evidence for the 1S multiplet is obscure, possibly because
it is predicted to occur at masses at which the δ-δ̄ structure
is no longer viable, since all interquark distances become
comparable not far above the J=ψ -pair threshold, while 1D
states could easily be obscured by the large Xð6900Þ peak,
and some 2P and 2D states are predicted to lie at or above
the Ξcc-Ξ̄cc threshold (which coincides with a structure in
the LHCb results), at which point the cc̄cc̄ states are
expected to become much wider.
The resolution of the newly observed J=ψ-pair structures

(possibly into several peaks) and the measurement of
specific JPC quantum numbers will contribute immeasur-
ably to an understanding of the structure of these states.
Future studies of other charmonium-pair structures (includ-
ing χc, hc, and ηc) will be no less valuable in this regard.
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