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We argue that the complex transformation relating the Schwarzschild to the Taub-NUT metric,
introduced by Talbot, is in fact an electric-magnetic duality transformation. We show that at null infinity,
the complex transformation is equivalent to a complexified Bondi-Metzner-Sachs supertranslation, which
rotates the supertranslation and the dual (magnetic) supertranslation charges. This can also be seen from the
cubic coupling between the classical source and its background, which for Taub-NUT is given by a
complex phase rotation acting on gravitational minimal couplings. The same phase rotation generates
dyons from electrons at the level of minimally coupled amplitudes, manifesting the double copy relation
between the two solutions.
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I. INTRODUCTION

A solution-generating technique known in the literature
as the complex coordinate transformation provides a set of
maps between different solutions of general relativity.
Newman and Janis [1] were the first to observe that
one can rederive the Kerr metric by complexifying the
Schwarzschild solution in null polar coordinates and then
performing a shift. The construction was later extended to a
class of solutions including the Kerr-Newman black hole
and the Taub-NUTmetric [2]. However, while the technical
algorithm that defines this set of maps has been known for
many decades, the underlying physical mechanism behind
it remains obscure.
Recently, progress in understanding the map from the

Schwarzschild solution to the Kerr metric was made in [3].
The authors of [3] argued that this complex shift originates
from the exponentiation of spin operators in the minimally
coupled three-point amplitude of a spinning particle and a
graviton. This was demonstrated by computing the impulse
imparted to a test particle by the Kerr black hole. In
particular, it was shown that the exponentiation induces a
complex shift to the impact parameter, transforming the

impulse of a Schwarzschild black hole to that of Kerr.
This complex shift was also shown to be related by the
double copy1 structure, which identifies solutions of the
Einstein equations as the square of Yang-Mills gauge theory
solutions, to a similar exponentiation of spin operators in the
minimal coupling of spinning particles to a photon. More
generally, the Newman-Janis link between the Reissner-
Nordström and Kerr-Newman black holes was also con-
nected to minimal coupling and spinning particles [5].
There is another exponentiation that one can apply to

minimal coupling: a pure phase rotation. For the case of
coupling to photons, the rotation is an electric-magnetic
duality transformation that maps an electrically charged
particle to a dyon. The gravitational counterpart of this
phase shift can be argued to map the Schwarzschild
solution to the Taub-NUT metric. Indeed, as was shown
by one of the authors [6], the Taub-NUT metric admits a
double copy structure whose “square root” is precisely the
electromagnetic dyon. This suggests that the exponentiated
phase shift once again is related to some complex coor-
dinate transformation which can be identified as some form
of a gravitational electric-magnetic duality. We depict this
picture in Fig. 1.
That scattering amplitudes can be used to understand the

dynamics of magnetically charged particles was recently
emphasized by Caron-Huot and Zahraee [9]. It is worth
emphasizing that in our application, the perturbative
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expansion parameter is not the product of charges, which is
quantized, but rather the ratio of this product to a classical
angular momentum. In other words, we expand in a small
scattering angle. Thus, the usual obstruction to amplitudes
for magnetically charged particles is not present. Another
interesting fact is that, in the presence of a magnetic charge,
the scattering amplitudes themselves are not gauge invari-
ant [9]. However, the observable which we will construct
from the amplitude is fully gauge invariant as it must be.
The complex coordinate transformation that maps the

Schwarzschild and Taub-NUT solutions into each other
was studied by Talbot [2], who generalized the Newman-
Janis algorithm and provided a set of mappings between
solutions obeying a generalized Kerr-Schild form. This
includes a map between the Schwarzschild metric, which is
given by

ds2 ¼ −fSchðrÞdt2 þ
1

fSch
dr2 þ r2ðdθ2 þ sin2θdφ2Þ;

fSchðrÞ ¼ 1 −
2m
r

; ð1:1Þ

and the Taub-NUT metric

ds2 ¼ −fNUTðdt − 2l cos θdφÞ2

þ 1

fNUT
dr2 þ ðr2 þ l2Þðdθ2 þ sin2θdφ2Þ;

fNUTðrÞ ¼
r2 − 2mr − l2

r2 þ l2
; ð1:2Þ

where m is the Arnowitt-Deser-Misner (ADM) mass
parameter and l is the Newman-Tamburino-Unti (NUT)
charge. The map between the two solutions is given by the
following complex coordinate transformation

u → uþ 2il log sin θ; r → r − il; ð1:3Þ

accompanied by a map of the parameters

m → m − il: ð1:4Þ

For more information about the complex coordinate trans-
formation we refer the reader to [10–16].
Our main goal in this paper is to understand the physical

origin of the complex coordinate transformation (1.3) and
relate it to the phase rotation of the three-point amplitude
between massive particles and gravitons. First, we show
that the complex coordinate transformation (1.3) is in fact
a Bondi-Metzner-Sachs (BMS) supertranslation transfor-
mation with a complex parameter. The complex parameter
renders the transformation a map rather than a symmetry.
We then show that under this map the supertranslation
charge TðfÞ of the Schwarzschild black hole transforms
into a complex linear combination of standard and dual
supertranslations

TðfÞ → TðfÞ − iMðfÞ; ð1:5Þ
where MðfÞ is the dual supertranslation charge of the
Taub-NUT metric [17]. In particular, the global parts of the
charges, which are given by Tglobal ¼ m and Mglobal ¼ l,
transform as (1.4). This result provides a physical explan-
ation for the map between the Schwarzschild and Taub-
NUT solutions as a duality transformation.
Finally, we demonstrate that the impulse imparted to a

test particle is indeed reproduced by the phase rotation of
the minimally coupled amplitude. We first demonstrate it
in the electromagnetic case for a probe particle moving
under the influence of the background dyon fields. In the
gravitational case, the double copy structure of the three
point amplitude implies that the phase shift is doubled, and
accordingly we show that the resulting minimal coupling
indeed reproduces the impulse of a test particle moving in
the Taub-NUT background, as computed from the classical
geodesic equations. While the double copy structure is
manifest in the amplitude description, it is less apparent
from the classical equations of motion. We use our analysis
to demonstrate how the double copy structure relates the
geodesic equations to the electromagnetic Lorentz force
experienced by the probe particle.
The Taub-NUT solution is known in the literature as the

gravitational analogue of an electromagnetic dyon, where
the ADM mass and NUT charge correspond to the electric
and magnetic charges of the dyon, respectively. In this
paper we further elaborate on the analysis of [6] and show
that this correspondence is not merely just an analogy but
rather a map that is dictated by the double copy structure.
The double copy maps the large electric and magneticUð1Þ
charges in QED into the standard and dual supertranslation
charges in gravity, respectively. As a consequence, the
duality (1.5) is therefore mapped into the electric-magnetic
duality in Yang-Mills theory.
This paper is organized as follows. In Sec. II we

show that the complex coordinate transformation (1.3) that
maps Schwarzschild to Taub-NUT is a complex BMS

FIG. 1. The maps from the Schwarzschild solution to the Taub-
NUT and to Kerr metrics. The underlying physical mechanism
behind these two maps is different. In the first case the map is a
duality operation while in the later case it results from expo-
nentiation of spin operators [3]. It would be interesting to extend
this diagram and understand the full set of maps between
solutions in the Plebanski-Demianski family [7,8].
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supertranslation transformation. In Sec. III we show that
this complex transformation rotates the standard and dual
supertranslation charges into each other, and therefore we
interpret the transformation as a duality operation. In
Sec. IV we compute the impulse on a test particle in the
presence of a dyon, in the electromagnetic case, and due to
its motion on the Taub-NUT background, in the gravita-
tional case. We perform the computation in twoways: using
the three-point amplitude, and using the classical equations
of motion. The double copy structure is manifest from the
amplitude perspective and we use our results to show how it
arises in the classical equations of motion. We conclude in
Sec. V with a discussion followed by Appendixes review-
ing the standard complex coordinates transformation algo-
rithm and some technical computational details.

II. COMPLEX BMS SUPERTRANSLATIONS

In this section we show that the transformation (1.3) is in
fact an imaginary BMS supertranslation transformation to
leading order in the asymptotic expansion. We first review
some standard notation. It will be convenient for us to use
complex coordinates z and z̄ on the sphere, related to the
standard angle variables by

z ¼ tan

�
θ

2

�
eiφ: ð2:1Þ

Indices on the sphere are raised and lowered with the
standard round metric γzz̄ on the unit sphere S2, given in
these coordinates by

γzz̄ ¼
2

ð1þ zz̄Þ2 : ð2:2Þ

We denote the covariant derivatives on the sphere by Dz,
Dz̄. It is helpful to note that the only two nonvanishing
Christoffel symbols on the sphere are

Γz
zz ¼ γzz̄∂zγzz̄ ¼ −γzz̄∂zγ

zz̄ ¼ −
2z̄

1þ zz̄
;

Γz̄
z̄ z̄ ¼ γzz̄∂ z̄γzz̄ ¼ −γzz̄∂ z̄γ

zz̄ ¼ −
2z

1þ zz̄
: ð2:3Þ

In particular, these results imply that the action of the
covariant derivative on a vector in the sphere’s directions is

DzVz ¼ ∂zVz − Γz
zzVz;

DzVz̄ ¼ ∂zVz̄; ð2:4Þ

and similarly for Dz̄. The generalization to higher rank
tensors is straightforward. In particular, it is useful to note
that the action of the double covariant derivative on a scalar
function Sðz; z̄Þ is given by

D2
zS ¼ ∂2

zS − Γz
zz∂zS ¼ γzz̄∂zðγzz̄∂zSÞ ¼ γzz̄∂z∂ z̄S: ð2:5Þ

Finally, let us also mention that the only nonvanishing
components of the Ricci and Riemann tensors are

Rzz̄ ¼ γzz̄;

Rzz̄ z̄ z ¼ Rz̄zzz̄ ¼ −Rzz̄zz̄ ¼ −Rz̄zz̄z ¼ γ2zz̄: ð2:6Þ

The expansion of asymptotically flat metrics around
future null infinity Iþ in the Bondi gauge is given by

ds2 ¼ −du2 − 2dudrþ 2r2γzz̄dzdz̄þ
2mB

r
du2

þ rCzzdz2 þ rCz̄ z̄dz̄2 − 2Uzdudz − 2Uz̄dudz̄

þ � � � ; ð2:7Þ

where u is the retarded time,

Uz ¼ −
1

2
DzCzz; ð2:8Þ

and the dots indicate subleading terms in the expansion
around r ¼ ∞. The symbol mB denotes the Bondi mass
aspect. The Bondi news, given by

Nzz ¼ ∂uCzz; ð2:9Þ

characterizes gravitational radiation. At spatial infinity the
radiative data are given by

CzzjIþ
−
¼ D2

zCðz; z̄Þ; ð2:10Þ

where Cðz; z̄Þ is a complex scalar function called the
boundary graviton [17–19].
The metric (2.7) is invariant under the BMS group.

Here we will focus on one component of this group, known
as the BMS supertranslations, whose generator is given
by [20]

TðfÞ ¼ 1

4πG

Z
Iþ
−

d2zγzz̄fðz; z̄ÞmB: ð2:11Þ

Here fðz; z̄Þ is a real transformation parameter. The
action of supertranslations on the metric is described by
the vector field

ξf ¼ f∂u −
1

r
ðDzf∂z þDz̄f∂ z̄Þ þDzDzf∂r þOðr−2Þ;

f ¼ fðz; z̄Þ: ð2:12Þ

In particular, it implies that the radiative data and the
boundary graviton transform as

LfCzz ¼ f∂uCzz − 2D2
zf;

LfCz̄ z̄ ¼ f∂uCz̄ z̄ − 2D2
z̄f;

LfC ¼ −2f: ð2:13Þ
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Note that supertranslation transformations are symmetries
only when fðz; z̄Þ is a real function.
In [17] it was shown that the Taub-NUT metric,

Eq. (1.2), can be brought to the Bondi form (2.7) with

Czz ¼ ilγzz̄
1þ jzj4

z2
ð2:14Þ

everywhere except at the location of the string singularity.
This implies that the boundary graviton is given by

Cðz; z̄Þ ¼ 4il log
1þ jzj2
2jzj : ð2:15Þ

(The normalization of the argument inside the logarithm is
completely arbitrary; we choose the factor 2 for conven-
ience.) This result suggests that Talbot’s complex coor-
dinate transformation (1.3) may be related to a BMS
supertranslation transformation with an imaginary param-
eter given by

fðz; z̄Þ ¼ −2il log
1þ jzj2
2jzj ¼ 2il log sin θ: ð2:16Þ

Indeed, the coordinate transformation (2.12), with fðz; z̄Þ
given by (2.16), takes the form

ξl ¼ ð2il log sin θÞ∂u − ðilÞ∂r −
4il
r

cot θ∂θ þOðr−2Þ:
ð2:17Þ

Up to the orderOðr−1Þ term, which is needed only in order
to preserve the Bondi gauge, this transformation precisely
coincides with (1.3). We therefore conclude that Talbot’s
complex coordinate transformation (1.3) is equivalent to a
BMS supertranslation transformation with an imaginary
parameter given by (2.16). We would like to emphasize that
with an imaginary parameter, the supertranslation trans-
formation describes a map rather than a symmetry. In
particular, it is not a diffeomorphism.

III. DUALITY TRANSFORMATION

Asymptotically flat spacetimes are invariant under the
BMS group which contains supertranslations and Lorentz
transformations. Recently it was found that spacetimes
which are locally asymptotically flat possess a larger
symmetry group that contains, in addition, a dual super-
translation symmetry [17,21,22]. The new symmetry
defines a conserved dual supertranslation charge

MðεÞ ¼ i
16πG

Z
Iþ
−

d2zεðz; z̄Þγzz̄ðD2
z̄Czz −D2

zCz̄ z̄Þ; ð3:1Þ

which is akin to the large magnetic Uð1Þ charge in quan-
tum electrodynamics (QED). By the same analogy, the

supertranslation charge is akin to the large electric Uð1Þ
charge in QED. In the following we will relate the complex
coordinate transformation discussed in the previous sec-
tions to a duality operation on these asymptotic charges.
First of all, we use standard techniques to decompose the

supertranslation charge (2.11) into soft and hard parts

TðεÞ ¼ TsoftðεÞ þ ThardðεÞ; ð3:2Þ

where the soft part of the charge receives contributions
from zero-energy graviton modes only. This is done using
the uu component of the Einstein equations Guu ¼ 8πTM

uu,

∂umB ¼ 1

4
ðD2

zNzz þD2
z̄N

z̄ z̄Þ − Tuu;

Tuu ¼ 4πG lim
r→∞

ðr2TM
uuÞ þ

1

4
NzzNzz; ð3:3Þ

where TM
uu is the uu component of the stress-energy tensor.

The supertranslation charge (2.11) is given by an integral
over the two sphere at spatial infinity. Using the Einstein
equation (3.3) we can invert it into a three-dimensional
integral that includes the null coordinate u as well. The
resulting hard and soft contributions to the supertranslation
charge are then given by

ThardðεÞ ¼
1

4πG

Z
Iþ

dud2zεðz; z̄Þγzz̄Tuu;

TsoftðεÞ ¼ −
1

16πG

Z
Iþ

dud2zεðz; z̄Þγzz̄ðD2
z̄Nzz þD2

zNz̄ z̄Þ:

ð3:4Þ

Using this decomposition one can now show that under
the transformation (2.12) the supertranslation charge trans-
forms as

TðεÞ → TðεÞ þ 1

4πG

Z
Iþ
−

d2zεðz; z̄Þγzz̄D2
zD2

z̄fðz; z̄Þ: ð3:5Þ

We now promote fðz; z̄Þ to a complex function. The
transformation of the metric (2.13) per se does not make
sense anymore because it results in a complex metric.
Indeed, the algorithm for generating solutions using
complex coordinate transformations involves some non-
rigorous guesswork and reality conditions on the metric
(see Appendix A for more details). Our goal here, however,
is not to provide a rigorous alternative prescription for
reconstructing the metric. Instead, we will argue that the
action of the complex shift on the asymptotic charges is
physically meaningful. Specifically, when fðz; z̄Þ is given
by (2.16) (such that D2

zD2
z̄f ¼ −ilγ2zz̄), we find

TðεÞ → TðεÞ − i
l

4πG

Z
Iþ
−

d2zγzz̄εðz; z̄Þ: ð3:6Þ
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It is now evident that under the coordinate transformation
(2.12) with a complex parameter (2.16) the supertranslation
charge receives a complex contribution. This complex
contribution precisely coincides with the dual supertrans-
lation charge of the Taub-NUT solution, as was found in
[17]. Therefore the supertranslation charge transforms as

TðεÞ → TðεÞ − iMNUTðεÞ ð3:7Þ

under the complex coordinate transformation. The param-
eter l is known as the NUT charge or equivalently as the
magnetic mass aspect. The global parts of the charges,
described by a constant parameter ε, are given by Tglobal ¼
m
G and Mglobal ¼ l

G, which therefore transform as

m → m − il: ð3:8Þ

We therefore see that the complex coordinate transforma-
tion (1.3) in fact generates a duality transformation that
mixes the standard and dual supertranslation charges, or
equivalently the mass and the magnetic mass aspects.
This provides a physical explanation for why the complex
coordinates transformation defines a map between different
solutions. We can now define a complex charge whose real
and imaginary parts are given by the standard and dual
supertranslation charges

QðεÞ≡ TðεÞ − iMðεÞ≡ CðεÞeiθðεÞ: ð3:9Þ

Duality transformations therefore simply correspond to
rotations of the phase θ.
Let us comment that from this perspective the complex

transformation function (2.16) is not unique. Different
complex transformation functions will give rise to different
NUT-type solutions characterized by their dual supertrans-
lation charges (in addition, of course, to their supertrans-
lation charges). While the function (2.16) describes an
infinite gravitomagnetic string, different functions will give
rise to conical singularities of different types. For example,
the function

fðz; z̄Þ ¼ −2il logð1þ jzj2Þ ¼ 4il log cos
θ

2
ð3:10Þ

will describe a semi-infinite string pointing in the direction
θ ¼ π (corresponding to z ¼ ∞). More generally we can
have a structure of multiple isolated singularities on the
celestial sphere corresponding to several semi-infinite
strings pointing in different directions.
We now want to study the effect of the duality trans-

formation on the Coulomb part of the gravitational field,
when the spacetime is asymptotically flat and obeys the
falloff conditions of [23,24]. For this purpose we will use
the Newman-Penrose (NP) formalism [25,26], in which the
curvature invariants are grouped into five complex scalars

Ψn; n ¼ 0;…; 4: ð3:11Þ

The five complex scalars decay at infinity as Ψn ∼ r−5þn,
and they classify spacetime into five different zones
according to their decay rate. These zones are analogous
to the near, intermediate, and far zones in electrodynamics,
except that in gravity there are five zones. The Coulomb
component of the gravitational field is described by the
complex scalarΨ2, in the same way that in electrodynamics
the Coulomb potential is dominant in the intermediate
zone. The scalars Ψ3 and Ψ4 describe radiative modes
while Ψ0 and Ψ1 describe near-field modes. For the
Schwarzschild metric the Coulomb component takes
the form

Ψ2 ¼
m
r3
: ð3:12Þ

Now under the duality transformation the Coulomb com-
ponent transforms into

Ψ2 ¼
m − il
ðr − ilÞ3 ; ð3:13Þ

which is precisely the value of Ψ2 in the Taub-NUT
background.
We have therefore shown that the complex coordinate

transformation (1.3) generates a duality transformation that
maps the charges and the Coulomb potential of the
Schwarzschild solution into those of the Taub-NUT
solution.

IV. THE ON-SHELL PHASE ROTATION

In the previous sections we have seen that the com-
plex shift generated by BMS supertranslations transforms
the Schwarzschild solution into the Taub-NUT solution.
Furthermore, when viewed from the point of view of con-
served charges, it induces a phase rotation between the
“electric” and the “magnetic” BMS charges. In the follow-
ing we will demonstrate this phenomenon directly using
on-shell observables. In particular, we will compute the
impulse on a probe in the classical background. This can be
captured [27] from the 2 → 2 scattering of the probe off a
very heavy, static particle sourcing the classical back-
ground. At leading order, the classical impulse is

Δpμ
1 ¼

1

4m1m2

Z
d̂4qδ̂ðq · u1Þδ̂ðq · u2Þe−iq·biqμM4

× ð1; 2 → 10; 20Þjq2→0; ð4:1Þ

where particle 1 is the probe while particle 2 is the classical
source, and u1, u2 are their proper velocities. The momen-
tum transfer between the two particles is labeled by q. The
kinematic setup is shown in Fig. 2. As one can see, we will
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be interested in the q2 → 0 limit of the 2 → 2 scattering
since we are interested in long range effects.
The fact that the long range behavior of black holes can

be well captured by minimally coupled particles can be
attributed to the no hair theorem, where the classical
solutions are labeled by the same set of quantum numbers
as elementary particles: mass, charge, and spin. Similarly,
the Taub-NUT metric is described by just two quantum
numbers: the mass and the NUT charge. Indeed, it was
recently shown that the effective stress-energy tensor for
the Kerr and the Kerr-Newman black holes are given by the
classical-spin limit of minimally coupled (charged) spin-
ning particles [3,28–30]; see also [5]. Note that while a
consistent description of isolated higher spin particles
beyond spin 2 is not known, the notion of minimal coupling
at three points can be defined in a purely kinematic fashion
[31]. In particular, the coupling of a spin S particle to a
photon or graviton is given by

ð4:2Þ

where h ¼ ð1; 2Þ and g ¼ ðκ
2
;

ffiffiffi
2

p
eÞ, for positive photons

and gravitons, respectively. Here κ is related to Newton’s
constant by κ2 ¼ 32πG.
At leading order in couplings, the impulse is derived

from the tree-level 2 → 2 scattering amplitude, whose
q2 → 0 limit is captured by the product of the three-point
amplitudes. Thus fundamental features of the classical
solution are determined by the structure of the three-
point amplitude. Indeed the correspondence between the
Newman-Janis complex shift and the exponentiation of the
spin in three point amplitudes is a prominent example of
such a relation. Here wewill consider the case where S ¼ 0,
and instead apply a complex phase shift

gðxmÞh → gðxeiθmÞh: ð4:3Þ
As mentioned in the Introduction, for photon couplings,
this will correspond to a electric-magnetic duality trans-
formation that rotates an electrically charged particle into
a dyon. We will first demonstrate this by matching the
impulse derived via Eq. (4.1), using h ¼ 1 in Eq. (4.3), and
that from the Lorentz force sourced by the dyon solution.
Next, we will take h ¼ 2 in Eq. (4.3) instead, and show that
the result matches the impulse resulting from geodesic
motion in the Taub-NUT background. This reaffirms the
double copy relation between Taub-NUT and dyon sol-
utions derived in [6]. Furthermore, the fact that the Taub-
NUT impulse is generated as an electric-magnetic duality
transformation acting on the minimal coupling of a scalar
source is completely in accordance with the behavior of our
supertranslation map, Eq. (2.16).

A. The electromagnetic dyon impulse

Let us first consider the impulse a minimally coupled
three point amplitude, with complex charge, imparts on a
probe particle. Without loss of generality, we take probe
particle 1 to have electric charge e1 ¼ n1e and no magnetic
charge, which can always be achieved via a duality rotation.
Thus we have the three-point coupling of particles 1 and 2
given as

Mðq�110Þ ¼
ffiffiffi
2

p
e1m1x�1

1 ; Mðq�220Þ ¼
ffiffiffi
2

p
e2m2x�2 e

�iθ;

ð4:4Þ
where we identify the real and imaginary parts of e2 ×
expðiθÞ ¼ Qþ iQ̃ with the dyon’s electric and magnetic
chargesQ and Q̃, respectively. We also take e2 ¼ n2e to be
an integer multiple of the fundamental charge. This will be
justified when compared to the classical computation. Note
that the phase picks up an extra sign depending on the
photon helicity. The x1;2 variables denote the proportion-
ality factor for the massless spinors. Due to momentum
conservation,

ðp1 þ qÞ2 ¼ p02
1 ⇒ p1 · q ¼ 0 ⇒ x1λαq ¼

ðp1Þα _αλ̃q _α
m1

;

ð4:5Þ
where we have used the bispinor representation of the
massless momentum qα _α ¼ λαqλ̃

_α
q. Given the three-point

amplitudes, their product gives the residue for the 2 → 2

scattering in Fig. 2 in the limit where q2 → 0:

M4ð1;2→ 10;20Þjq2→0 ¼ 2
m1m2e1e2

q2

�
x1
x2

e−iθ þ x2
x1

eiθ
�

¼ 2e2
m1m2n1n2

q2

�
x1
x2

e−iθ þ x2
x1

eiθ
�
:

ð4:6Þ

q

2 1

1
2

FIG. 2. We consider the gravitational and electromagnetic
impulses imparted on a probe particle 1 via the source particle
2, at leading order in coupling. The effect is captured by the one
graviton or photon exchange, respectively.
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As we explicitly show in Appendix B, the ratios of x
variables are

x1
x2

¼ coshwþ iϵðη; u1; q; u2Þ
q · η

; ð4:7Þ

x2
x1

¼ coshw −
iϵðη; u1; q; u2Þ

q · η
; ð4:8Þ

where the proper velocities u1 and u2 are, as usual, defined
by uμ ¼ pμ=m and w is the rapidity: coshw ¼ u1 · u2. We
have also defined

ϵða; b; c; dÞ≡ ϵμνρσaμbνcρdσ:

Thus we find

M4ð1; 2 → 10; 20Þjq2→0

¼ 4m1m2e1
q2

�
Q coshwþ Q̃

ϵðη; u1; q; u2Þ
q · η

�
: ð4:9Þ

Substituting this into Eq. (4.1), we obtain the impulse

Δpμ
1 ¼ ie1

Z
d̂4qδ̂ðq · u1Þδ̂ðq · u2Þe−iq·b

qμ

q2

×

�
Q coshwþ Q̃

ϵðη; u1; q; u2Þ
q · η

�
: ð4:10Þ

A peculiarity of this expression for the physical impulse
is that it apparently depends on the unphysical vector η.
This phenomenon is an artifact of the particular form of the
expression, and we may remove η by resolving the vector
qμ on a particular basis. To do so, let us first introduce a
shorthand notation

ϵμða; b; cÞ≡ ϵμνρσaνbρcσ:

Then consider the basis given by ϵμðη; u1; qÞ, ϵμðu1; q; u2Þ,
ϵμðq; u2; ηÞ, and ϵμðu2; η; u1Þ. In view of the delta function
constraint, we find that

qμ ¼ q · η
ϵðη; u1; q; u2Þ

ϵμðu1; q; u2Þ þOðq2Þ: ð4:11Þ

We may neglect the q2 correction as it leads to a
contribution to the impulse localized at bμ ¼ 0, outside
the domain of validity of our calculation. So, we learn that
the impulse is

Δpμ
1 ¼ ie1

Z
d̂4qδ̂ðq · u1Þδ̂ðq · u2Þe−iq·b

1

q2

× ½Qqμ coshw − Q̃ϵμðu1; u2; qÞ�: ð4:12Þ

It is interesting that the unphysical vector η does not
disappear from the amplitude (4.9). This is consistent with

the observations in Caron-Huot and Zahraee’s work on
magnetic amplitudes [9]. The observable cannot depend on
such an arbitrary choice, and indeed it does not.
Now we turn to purely classical methods, with the aim of

reproducing our result, Eq. (4.12), for the impulse due to a
dyon. We begin with the Lorentz force experienced by the
probe particle 1,

dpμ
1

dτ
¼ e1F

μν
2 u1ν; ð4:13Þ

where once again uν1 is the proper velocity of the probe,
and F2 is the field strength sourced by the dyon. Consider
the source in its rest frame so that its proper velocity is
uμ2 ¼ ð1; 0; 0; 0Þ. In the rest frame the electric and magnetic
field of the dyon is given by

F0i
2 ¼ Ei ¼ Q

4πjrj3 r
i; Fij

2 ¼ −ϵijkBk ¼ −ϵijk
Q̃

4πjrj3 rk:

ð4:14Þ

For later reference we would like to emphasize that the
spatial components of the Lorentz force then take the form

dp1

dτ
¼ e1γðEþ v ×BÞ; ð4:15Þ

where γ is the relativistic Lorentz factor. Let x1 ¼ u1τ and
x2 ¼ bþ u2τ. Upon Fourier transforming, we learn that

F̃μν
2 ¼ iδðq · u2Þe−iq·b

1

q2
ðQq½μuν�2 − Q̃ϵμνρσu2ρqσÞ: ð4:16Þ

Then the impulse is simply, with x1ðτÞ ¼ u1τ,

Δpμ
1 ¼

Z
dτ

dpμ
1

dτ
¼ e1

Z
dτ

Z
d4qe−iq·xF̃μν

2 u1ν

¼ ie1

Z
d4qδ̂ðq · u1Þδ̂ðq · u2Þe−iq·b

1

q2

× ½Qqμðu1 · u2Þ − Q̃ϵμðu1; u2; qÞ�; ð4:17Þ

which indeed agrees with Eq. (4.12). We have therefore
confirmed that the phase rotation of minimal coupling with
a photon gives the electromagnetic field sourced by the
dyon at leading order of the electric and magnetic charges.

B. The Taub-NUT impulse

We now turn to compute the gravitational impulse
induced by the corresponding phase shift. First, we com-
pute it using the formula (4.1) and the three-point amplitude
(4.2). The relevant four-point amplitude is now
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M4ð1; 2 → 10; 20Þjq2→0 ¼
κ2

4

m1m2

q2

�
x21
x22

e−i2θ þ x22
x21

ei2θ
�

¼ κ2

4

m1m2

q2
ðe−i2θe2w þ ei2θe−2wÞ;

ð4:18Þ

where we have expressed the ratios of x’s in terms of
rapidity to simplify the double copy; see Appendix B.
We see that the manifest double copy feature of the three-
point amplitude implies that the gravitational impulse is
simply given by doubling the phase θ and rapidity w of
the electromagnetic case, along with

ffiffiffi
2

p
e → κ

2
. Under the

double copy structure the electric charges ei therefore
map into

ei ¼ nie ⟷ Mi ≡ κ

2
ffiffiffi
2

p mi; for i ¼ 1; 2: ð4:19Þ

We then define the gravitational analogues of the dyon’s
electric and magnetic charges,

Q ¼ e2 cos θ ⟷ QG ¼ M2 cos 2θ;

Q̃ ¼ e2 sin θ ⟷ Q̃G ¼ M2 sin 2θ: ð4:20Þ

QG and Q̃G are the mass and dual (or magnetic) mass
aspects of particle 2 (the background), respectively. The
impulse is then given by2

Δpμ
1 ¼ iM1

Z
d4qδðq · u1Þδðq · u2Þe−iq·b

qμ

q2

× ðQG cosh 2w − iQ̃G sinh 2wÞ: ð4:21Þ

Next we compute the impulse using the classical
equation of motion of a massive test particle, namely the
geodesic equation, moving in the Taub-NUT background.
We will show that it matches the result derived from the
three-point amplitude (4.21) and will provide a new
perspective on the double copy structure. A test particle
of mass M1 is described by its four-momentum

pμ
1 ¼ M1u

μ
1; ð4:22Þ

which is given in terms of the four-velocity

uμ1 ¼
dxμ1
dτ

¼ γð1; vÞ: ð4:23Þ

The motion of the massive particle is described by the
geodesic equation

d2xμ1
dτ2

¼ −Γμ
νρ
dxν1
dτ

dxρ1
dτ

: ð4:24Þ

The spatial components of the geodesic equation are
given by

dp1

dτ
¼ −M1γ

2ðΓi
00 þ 2Γi

0jv
j þ Γi

jkv
jvkÞ; ð4:25Þ

where we have used that γ ¼ dt
dτ ¼ ð1 − v · vÞ−1=2. We now

wish to evaluate the geodesic equation on the Taub-
NUT background (1.2) in the leading post-Minkowskian
approximation. We will soon relate the standard para-
metrization of the Taub-NUT metric in terms of the mass
m and the NUT parameter l to the mass and dual-mass
aspects of the background (4.20), respectively. In the post-
Minkowskian approximation the metric is expanded around
flat spacetime

gμν ¼ ημν þ hμν; ð4:26Þ
where ημν is the flat metric and at leading order the Taub-
NUT background, in Cartesian coordinates, is given by

h00 ¼
2m
r

;

h0i ¼
2lz

rðr2 − z2Þ

0
B@

þy

−x
0

1
CA;

hij ¼
2mxixj

r3
: ð4:27Þ

In polar coordinates we have h0idxi ¼ −2l cos θdφ.
The Christoffel symbols appearing in the geodesic equa-
tion (4.25) then take the form

Γi
00 ¼ −

1

2
∂ih00;

Γi
0j ¼

1

2
ηikð∂kh0j − ∂jh0kÞ;

Γi
jk ¼

2mxi

r3
δjk −

3mxixjxk
r5

: ð4:28Þ

Notice that the first and third terms in the geodesic
equation (4.25) are proportional to the mass aspect of
the background metric while the second term is propor-
tional to its NUT charge. We will soon see that accordingly
the first and third terms will contribute to the “electric”
component of the force while the second term will
contribute to the “magnetic” component.
We can bring the geodesic equation to a form similar to

the Lorentz force in gauge theory by defining

ϕ≡ −
1

2
h00;

Ai ≡ −
1

4
h0i: ð4:29Þ

2Note that there are actually two solutions for the on-shell
factorization condition, corresponding to w ↔ −w. Due to the
sinh 2w piece, the two solutions do not give the same result. This
is a reflection of the presence of Dirac string for monopole
solutions. See [9].
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The potentials ϕ and A are the analogues of the scalar and
vector potentials in electrodynamics. Finally, we arrive at
the following expression for the geodesic equation in terms
of the potentials

dp1

dτ
¼ M1γ

�
2γ2 − 1

γ
Eþ 4γv ×Bþ FT þ Fv

�
; ð4:30Þ

where the electric and magnetic fields are given by

E ¼ ∇ϕ ¼ −
m
r3
r;

B ¼ ∇ ×A ¼ l
2r3

r: ð4:31Þ

In addition to the electric and magnetic forces we also find
transient and velocity forces. The transient force is given by

ðFTÞi ¼
d
dτ

�
1

2γ
ηijvkhjk

�
; ð4:32Þ

which can be expressed in terms of the electric field

FT ¼ d
dτ

�ðv · rÞ
γ2

E

�
: ð4:33Þ

The velocity force is given by

Fv ¼ −
1

γ

ðv · rÞðE · rÞ
r2

v ð4:34Þ

and is also proportional to the electric field. In the above
derivation we have used that to leading order in the post-
Minkowskian approximation the velocity is constant.
Let us now comment on the geodesic equation (4.30)

that we have derived. First of all, in the post-Newtonian
(PN) approximation, where velocities are small (γ → 1),
it reduces to the form of the Lorentz force in electrody-
namics (4.15)

dp1

dτ

����
PN

¼ M1ðEþ 4v ×BÞ; ð4:35Þ

where the charge of the test particle is replaced by minus its
mass. Note that, in particular, both transient and the
velocity forces vanish in this approximation. In this case
there is a factor of 4 in front of the magnetic force with
respect to the electromagnetic case. This result, including
the factor of 4, was established long ago [32] and by now
appears in many standard texts (for example [33]). More
generally, the electric and magnetic forces appear with
coefficients that depend on the Lorentz factor γ, and there
are two additional forces. The transient force FT is a total
derivative with respect to τ, and therefore its contribution to
the impulse vanishes since the force decays to zero at the
boundaries. The velocity force Fv is not a total derivative

but its contribution to the impulse is zero as well. This can
be seen by considering the transformation law of the
integrated force

Z
dτFv ¼ −m

Z
ðdr · rÞ v

γ2r3
ð4:36Þ

under the discrete CPT symmetry (charge conjugation,
parity and time reversal) which takes r → −r and t → −t.
The expression above is odd under CPT and therefore
vanishes. Both forces FT and Fv represent transient, short-
lived, effects that do not contribute to the impulse.
Finally, we are now in a good position to compute the

impulse using the geodesic equation and compare with the
result derived from the three-point amplitude (4.21). Recall
that the Lorentz factor can be expressed in terms of the
rapidity

γ ¼ coshw;
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q
¼ sinhw;

2γ2 − 1 ¼ cosh 2w; 2γ
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q
¼ sinh 2w; ð4:37Þ

such that the geodesic equation now takes the form

dp1

dτ
¼ M1γ

�
cosh 2w
coshw

Eþ 2
sinh 2w
sinhw

v ×Bþ FT þ Fv

�
:

ð4:38Þ

Comparing the geodesic equation (4.38) with the Lorentz
force (4.15), we can now repeat the derivation of the
impulse word by word as in the electromagnetic case,
taking into account the w-dependent coefficients, the factor
of 2 in front of the magnetic force, and the vanishing
contribution of the transient forces to the impulse. The
result is

Δpμ
1 ¼ iM1

Z
d4qδ̂ðq · u1Þδ̂ðq · u2Þe−iq·b

qμ

q2

× ðQG cosh 2w − iQ̃G sinh 2wÞ; ð4:39Þ

where we have identified the parameters m and l with the
mass and dual mass aspects (4.20) as follows:

QG ¼ M2 cos 2θ ¼ 4πm;

Q̃G ¼ M2 sin 2θ ¼ 4πl: ð4:40Þ

The impulse computed using the geodesic equation agrees
with the result from the amplitude’s perspective (4.21).
Amazingly, the coefficients in front of the electric and
magnetic forces in the geodesic equation (4.38) precisely
account for the replacement w → 2w as anticipated from
the double copy structure of the three-particle amplitude.
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V. DISCUSSION

The generalized Newman-Janis complex shift, review in
Appendix A, is given in terms of a nonrigorous algorithm
that involves some guesswork and that a priori is not
guaranteed to produce a new solution. Nevertheless, in the
early days of finding solutions of general relativity, the
algorithm provided a method of constructing ansatz that
could be verified (or excluded) explicitly as solutions of the
equations of motion. In this paper we do not attempt to
provide a rigorous derivation of the technique. Instead, we
aim to shed some light on its physical origin for the case
of the Talbot shift [2]. The Talbot shift transforms the
Schwarzschild black hole solution into the Taub-NUT
metric, much in the spirit of the original Newman-Janis
[1] shift for Kerr black holes. We argued that this complex
shift corresponds to an electric-magnetic duality trans-
formation, in which the Taub-NUT metric is the “dyonic”
version of the Schwarzschild solution.
This was demonstrated on two fronts. First, we reinter-

preted the Talbot shift as a complex BMS supertranslation.
Since the transformation parameter is complex instead of
real, it is not a symmetry of the asymptotic metric, but
rather transforms the Schwarzschild solution to that of the
Taub-NUT. We showed that such complex transformations
mix the supertranslation charge with its dual, introduced in
[17,21,22], where the dual charge is proportional to the
NUT parameter. Therefore the complex translation is
interpreted as an electric-magnetic duality rotation acting
on the standard and dual supertranslation charges.
This picture can also be nicely captured from the on-

shell S-matrix point of view, where the Taub-NUT and
the dyonic solution are related via the double copy in a
transparent matter. In particular, we argued that their
representations as three-point amplitudes between a probe
and a background source are given by a phase rotation
acting on the gravitational and electromagnetic minimal
coupling, respectively. We confirmed this interpretation by
computing the impulse imparted on a probe particle in the
background of the classical sources. We proceeded by first
extracting it from the 2 → 2 scattering amplitude with
single photon or graviton exchange. In view of our interest
in long range effects, we took the q2 → 0 limit where q is
the momentum transfer, so that the four-point amplitude is
determined by the minimally coupled three-point ampli-
tudes. Comparing the result with that computed from the
Lorentz force and geodesic equations, respectively, we
found an exact match.
The interpretation of the complex Talbot shift as an

electric-magnetic duality provides a physical explanation
for its origin. However, it does not provide a rigorous
derivation of the algorithm nor an explicit method for
reconstructing the Taub-NUT metric. A full derivation of
the algorithm still remains a desirable goal. Perhaps this
goal could be achieved using the following idea. It is
plausible to assume that given a set of charges,

accompanied by a full specification of the structure of
singularities, the solution is determined uniquely. If this
assumption can be proven rigorously, then together with the
duality operation discussed in this paper one could provide
a full derivation of Talbot’s complex shift algorithm. It
would be very interesting to explore this suggestion further,
and we leave it for future work.
We would like to emphasize that in this work we

considered the conical singularity of the Taub-NUT metric
as a physical cosmic string and studied the impulse
imparted to a probe particle moving on the string’s back-
ground. We made no attempt to address the question of how
to eliminate the string singularity, for example via Misner’s
interpretation of the Taub-NUT metric. In this way we
avoid having to discuss the pathologies associated with
Misner’s interpretation, such as the appearance of closed
timelike curves. In this context we would like to mention
the work of [34], in which an alternative to Misner’s
approach is presented. It would be interesting to repeat the
computation of the impulse for the background solution
presented in [34], which is free of any string singularities
and also devoid of closed timelike curves.
The existence of a string singularity implies that the

topology of the Taub-NUT spacetime (R × S3) is dif-
ferent from the topology of the Schwarzschild black hole
(R2 × S2). This topology change is encoded in Talbot’s
complex transformation by the logarithmic singularities of
the transformation parameter (2.16) at θ ¼ 0; π, exactly
where the string is located. Note that the logarithmic
singularity in fðz; z̄Þ does not describe a coordinate sin-
gularity but rather a conical singularity [17]. Similarly, one
can encode different string configurations by a different
structure of logarithmic singularities in the transformation
parameter fðz; z̄Þ [see, for example, Eq. (3.10) and the
discussion around it].
Talbot’s complex shift therefore describes a map from

the Schwarzschild metric into a class of Taub-NUT metrics
characterized by their structure of conical singularities.
The domain of the map is a point (the spherically
symmetric Schwarzschild metric) and its target space is
the space of Taub-NUT metrics. One could generalize this
map by considering as a domain the space of solutions
generated by a nonspherically symmetric mass distribution
[mB ¼ mBðz; z̄Þ in (2.11)]. The target space of this map
would then be the space of metrics with a nonspherically
symmetric distribution of dual supertranslation charge
[namely, a nonconstant charge density in (3.1)]. This could
be achieved by promoting the NUT parameter l in the com-
plex transformation (2.16) into an angle-dependent distri-
bution lðz; z̄Þ of gravitomagnetic charge. Note, however,
that only the monopole moment of the gravitomagnetic
charge distribution is associated with the string singularity
[17]. This map is then equivalent to an electric-magnetic
duality between nonspherically symmetric charge distribu-
tions in electrodynamics. It would be interesting to explore
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such a generalization further, and we leave it for
future work.
Let us now comment on the implications of the double

copy structure and how it relates charges in gauge theory to
gravitational charges. In [17] it was argued that the standard
and dual supertranslation charges, (2.11) and (3.1), are
analogous to the large electric and magnetic charges in
electrodynamics

QðεÞ ¼ 1

e2

Z
ε � F;

MðεÞ ¼ 1

2π

Z
εF; ð5:1Þ

respectively. We are now in a position to show that, at least
in the case of the dyon and the Taub-NUT metric, the
charges are not just analogous but in fact are related by the
double copy. The large electric and magnetic charges of the
dyon, whose fields are defined in (4.14), are given by

QðεÞ ¼ 1

e2
Q
4π

Z
S2
d2zγzz̄εðz; z̄Þ;

MðεÞ ¼ Q̃
4π

Z
S2
d2zγzz̄εðz; z̄Þ: ð5:2Þ

On the other hand, the standard and dual supertranslation
charges of the Taub-NUT metric are given by

TðεÞ ¼ m
4πG

Z
S2
d2zγzz̄εðz; z̄Þ ¼

1

4πG
QG

4π

Z
S2
d2zγzz̄εðz; z̄Þ;

MðεÞ ¼ l
4πG

Z
S2
d2zγzz̄εðz; z̄Þ ¼

1

4πG
Q̃G

4π

Z
S2
d2zγzz̄εðz; z̄Þ:

ð5:3Þ

Using the map between the charges (4.20), which is implied
by the double copy structure, we can now draw a map
between the large gauge charges and the large gravitational
charges

4πGTðεÞ ⇔ e2QðεÞ;
4πGMðεÞ ⇔ MðεÞ: ð5:4Þ

This map generalizes to any metric that admits the double
copy structure

gμν ¼ ημν þ 2κϕkμkν; ð5:5Þ

from which a gauge field that solves the Yang-Mills
equations can be defined,

Aμ ¼ ϕkμ: ð5:6Þ

To see this we first write the Bondi mass andUz component
in terms of the metric representation in (5.5):

mB ¼ lim
r→∞

r
2κ

ðguu − ηuuÞ ¼ lim
r→∞

rϕkuku ¼ lim
r→∞

rkuAu;

Uz ¼
1

κ
lim
r→∞

ðguz − ηuzÞ ¼ lim
r→∞

2ϕkukz ¼ lim
r→∞

2kuAz: ð5:7Þ

We now use that ku ¼ 1 [6] and rewrite the standard (2.11)
and dual (3.1) supertranslation charges as

ð4πGÞ × TðfÞ ¼
Z
Iþ
−

d2zγzz̄fðz; z̄Þ lim
r→∞

rAu;

ð4πGÞ ×MðfÞ ¼
Z
Iþ
−

d2zγzz̄fðz; z̄Þ lim
r→∞

ð∂zAz̄ − ∂ z̄AzÞ;

ð5:8Þ

FIG. 3. The Taub-NUTmetric admits a double copy structure which relates it to the electromagnetic dyon [6]. We show that the double
copy structure relates the standard and dual supertranslation charges to the large electric and magnetic charges of the dyon. This result
implies that the duality (1.5) between the standard and dual supertranslation charges is related to the electric-magnetic duality in QED by
the double copy structure.
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which are precisely the expressions for the large electric
and magneticUð1Þ charges; see [35–37]. The map between
the large gauge charges and the large gravitational charges
is described in Fig. 3.
Finally, the analysis of this paper suggests that the more

general Kerr-Taub-NUT solution should be generated from
the phase rotation on the minimally coupled spinning
particle, for which the classical limit of the spin induces
an exponentiation effect in terms of spin operators [3]. An
additional observable, the angular impulse (total change in
spin) during scattering, is available in this more general
case, providing more sensitivity to the detailed structure
of the metric. This angular impulse, such as the usual
linear impulse we discussed above, can be computed from
scattering amplitudes [38,39]. It would be interesting to
verify this conjectural link to Kerr-Taub-NUT by compar-
ing the classical linear and angular impulses with those
computed via geodesic equations, utilizing the simplifica-
tions in the post-Minkowskian expansion discussed in this
paper. As a further step, one could consider solutions of the
combined Einstein-Maxwell equations which again con-
nect to minimally coupled scattering amplitudes [5]. Indeed
considerations from the Weyl spinor formulation of the
classical double copy [40] suggest that similar ideas apply
to the full Plebanski-Demianski [7,8] class of solutions,
which include not only spin, electric and magnetic charges,
masses, and NUT parameters, but also an acceleration
parameter as well as a cosmological constant.
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APPENDIX A: COMPLEX COORDINATES
TRANSFORMATIONS

Newman and Janis [1] found that the Kerr solution of a
spinning black hole can be derived from the Schwarzschild
solution using a complex coordinate transformation.
Talbot [2] had generalized their results, and in particular
he found a complex coordinates transformation that maps
Schwarzschild into Taub-NUT. We start by reviewing the
general algorithm for the map between different solutions
(for recent reviews and works on the subject see [11–16]).
The algorithm is based on the NP formalism, which is

defined using a set of complex null tetrads,

Zμ
a ¼ flμ; nμ; mμ; m̄μg; ðA1Þ

where m̄μ ¼ ðmμÞ�. Note that while the tetrads are complex
in the NP formalism, the metric is always real and at this
point the spacetime coordinates are still real as well. The
inverse metric is given by

gμν ¼ ηabZμ
aZν

b ðA2Þ

with

ηab ¼

0
BBB@

0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0

1
CCCA; ðA3Þ

such that

gμν ¼ −lμnν − lνnμ þmμm̄ν þmνm̄μ: ðA4Þ

The map is defined using the following algorithm:

1. The seed metric

The seed metric is given by

ds2 ¼ −fðrÞdu2 − 2dudrþ r2dΩ2; ðA5Þ

where u is a null coordinate and r is a radial coordinate. The
null tetrads of the metric are

lμ ¼ δμr ; nμ ¼ δμu −
f
2
δμr ; mμ ¼ 1ffiffiffi

2
p

r

�
δμθ þ

i
sin θ

δμϕ

�
:

ðA6Þ

We will take the seed metric to be Schwarzschild, namely

fðrÞ ¼ 1 −
2m
r

: ðA7Þ

2. Complexification of two coordinates

We now allow the coordinates u and r to take complex
values while insisting that the metric remains real (namely
lμ and nμ must still be real and mμ and m̄μ must still be
complex conjugates of each other). In addition, the function
fðrÞ is transformed to

fðrÞ → fðr; r̄Þ ¼ 1 −
m
r
−
m̄
r̄
: ðA8Þ

There are many ways to complexify the wrap function. The
choice above proved to produce good solutions, but
generally speaking this step is arbitrary and it is not known
if there is a rigorous way to prove it.
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3. Complex coordinates transformation

Once we allowed the coordinates to take complex values
we can perform a complex coordinate transformation

u ¼ u0 − ia cos θ þ 2il log sin θ;

r ¼ r0 þ ia cos θ − il; ðA9Þ

accompanied by the following map of the mass parameter:

m ¼ m0 − il: ðA10Þ

Under this transformation the wrap function takes the form

f ¼ 1 −
2mr0 þ 2lðl − a cos θÞ

ρ2
;

ρ2 ¼ r02 þ ðl − a cos θÞ2; ðA11Þ
and the tetrads, which transform as vectors

Z0μ
a ¼ ∂x0μ

∂xν Z
ν
a; ðA12Þ

are now given by

lμ ¼ δμr ; nμ ¼ δμu0 −
f
2
δμr0 ;

mμ ¼ 1ffiffiffi
2

p ðr0 þ ia cos θ − ilÞ

�
δμθ þ

i
sin θ

δμϕ þ iða sin θ þ 2l cot θÞδμu0 − ia sin θδμr0

�
: ðA13Þ

We now impose that the coordinates u0 and r0 take real values.

4. Reconstructing the metric

Having the new tetrad basis at hand we can reconstruct the inverse metric and then invert it to get

ds2 ¼ −f
�
du0 þ Ωdϕþ r02 þ a2 þ l2 þ aΩ

Δ
dr0

�
2

þ ρ2

Δ
dr02

þ ρ2
�
dθ2 þ σ2sin2θ

�
dϕþ a

Δ
dr0

�
2
�

2

; ðA14Þ

where

Ω ¼ −2l cos θ − ð1 − f−1Þasin2θ; Δ ¼ r02 − 2mr0 þ a2 − l2; σ2 ¼ Δ
fρ2

: ðA15Þ

5. Boyer-Lindquist coordinates

Finally, using the following change of coordinates:

u0 → u0 −m log ðr02 − 2mr0 − l2 þ a2Þ − 2
m2 þ l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 −m2 − l2
p arctan

r0 −mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 −m2 − l2

p ;

ϕ → ϕ −
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 −m2 − l2
p arctan

r0 −mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 −m2 − l2

p ; ðA16Þ

one can transform the metric into the more standard Boyer-
Lindquist form

ds2 ¼ −fðdu0 þ dr0 þΩdϕÞ2 þ ρ2

Δ
dr02

þ ρ2ðdθ2 þ σ2sin2θdϕ2Þ2: ðA17Þ

The metric (A17) describes the Taub-NUT-Kerr solution.
Let us stress that the use of the tetard formalism is

essential for the algorithm to work. The complex change of

coordinates is not applied directly on the metric but rather
on the tetrads.

APPENDIX B: x1
x2
AND RAPIDITY

In this Appendix we derive to express the little group
invariant the ratio of x1

x2
in terms of momentum factors.

First, from the definition of x in Eq. (4.5) we have

x1 ¼
hηjp1jq�
m1hηqi

;
1

x2
¼ ½η̃jp2jqi

m2½η̃q�
; ðB1Þ
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where jηi and jη̃� are some auxiliary spinors such that hηqi and ½η̃q� ≠ 0, and we have ηα _α ¼ jηi½η̃j. Putting the two together,
we have

x1
x2

¼ −
1

m1m2

hηjp1jq�
hηqi

hqjp2jη�
½qη� ¼ −

1

m1m2

Tr½ð1 − γ5Þηp1qp2�
4ðq · ηÞ

¼ −
ðη · p1Þðq · p2Þ − ðη · qÞðp2 · p1Þ þ ðη · p2Þðp1 · qÞ − iϵðηp1qp2Þ

m1m2ðq · ηÞ

¼ ðp2 · p1Þ
m1m2

þ iϵðηp1qp2Þ
m1m2ðq · ηÞ ; ðB2Þ

where coming to the last line we used the fact that
ðq · p2Þ ¼ ðq · p1Þ ¼ 0.
Finally, it is useful to convert the above in terms of

rapidity for the purpose of double copy. Using

ϵðηp1qp2Þ2 ¼ m2
1m

2
2ðq · ηÞ2

�
1 −

ðp2 · p1Þ2
m2

1m
2
2

�
ðB3Þ

we see that

x1
x2

¼ ðp2 · p1Þ
m1m2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ðp2 · p1Þ

m1m2

�
2

− 1

s

¼ coshw� sinhw ¼ e�w; ðB4Þ

where coshw ¼ ðp2·p1Þ
m1m2

. Note that in terms of rapidity, there
are two solutions. As discussed in the text for magnetic
charges, the amplitude will have nontrivial dependence on
this sign, reflecting the presence of the Dirac string.
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