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relevant grain despite their large pixel-level errors, and they showed the lowest biodiversity errors. The
province simulation provided the best balance identifying both affected species composition and the area
of impact.
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This work presents evidence of the importance of incorporating information regarding the purpose of the
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9 Abstract

10 Context Evaluation of Land cover change (LCC) is

11 commonly done at the pixel level; however, the

12 model’s purpose may be relevant at a different grain

13 size. Thus, the same model may be good for one

14 purpose but inappropriate for another. For conserva-

15 tion applications, it is crucial to assess land change

16 simulations’ at the grain relevant for the assessment of

17 biodiversity impacts.

18 Objectives Evaluate land cover change scenarios in

19 Bolivia, at the pixel-level and grain relevant to

20 biodiversity, to inform LCC models for biodiversity

21 assessments.

22 Methods We created six deforestation simulations

23 that varied deforestation allocation based on forest

24 management units (national, province, and munici-

25 pality), ecoregions, and carbon stocks. We evaluated

26 the simulations at the pixel level, and the objective’s

27 relevant grain size through stratified error

28decomposition. We assessed biodiversity impacts by

29comparing the quantity of reference and simulated

30deforestation within species ranges.

31Results The spatial distribution of deforestation

32differed across simulations; however, their pixel-level

33error was similar. The province and municipality land

34change simulations had the lowest allocation errors at

35the relevant grain despite their large pixel-level errors,

36and they showed the lowest biodiversity errors. The

37province simulation provided the best balance identi-

38fying both affected species composition and the area

39of impact.

40Conclusions This work presents evidence of the

41importance of incorporating information regarding the

42purpose of the simulation during model evaluation and

43selection. Error decomposition allowed ignoring irrel-

44evant errors, translating into meaningful assessments

45of biodiversity impacts. As opposed to pixel-level

46metrics, stratified errors identified models that char-

47acterized biodiversity impacts best.

48Keywords Land change modeling � Biodiversity �

49Bolivia � Deforestation � Model evaluation

50Introduction

51Human-induced landscape changes, such as defor-

52estation, are the leading cause of worldwide
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53 biodiversity extinctions (Brondizio et al. 2019; Sala

54 et al. 2000). Dirzo et al. (2014) suggested an estimate

55 of 11,000 to 58,000 species lost per year (Dirzo et al.

56 2014). The study of land use and land cover change

57 predictions and impacts was identified as one of the

58 top 10 key research areas in landscape ecology (Wu

59 2013). Deforestation affects biodiversity by modify-

60 ing habitat quantity, quality, connectivity, and

61 metapopulation dynamics (Ferraz et al. 2007). The

62 relationship between habitat quantity and biodiversity

63 has been well studied, where larger habitats support

64 more biodiversity, lower extinction rates, and an

65 overall lower impact of disturbances. Moreover,

66 deforestation from human activities, such as agricul-

67 tural development or urbanization, creates a matrix

68 habitat (Ricketts 2001) that can have negative (De-

69 binski and Holt 2000) or positive effects (Norton et al.

70 2000), depending on species adaptiveness to that

71 matrix. Deforestation processes impact landscape

72 structure by increasing edges, reducing patch area,

73 modifying the matrix, and isolating forest patches.

74 These structural changes in habitat can double the

75 impact of deforestation on biodiversity, compared to

76 the effects caused by direct habitat loss alone (Barlow

77 et al. 2016; Pfeifer et al. 2017). With the rapid increase

78 in global deforestation, there is an increased interest in

79 applying land cover change models to predict defor-

80 estation scenarios and their impacts.

81 Assessment of the impacts of land cover change on

82 biodiversity and ecosystem services relies on the

83 evaluation and extrapolation of historical changes

84 through simulation models (Armenteras et al. 2019;

85 Liang and Liu 2017; Pérez-Vega et al. 2012; Pickard

86 et al. 2017b; Reidsma et al. 2006; Sangermano et al.

87 2012; Sharma et al. 2018). As varying landscape

88 patterns may result in different biodiversity implica-

89 tions, models must be evaluated for their capacity to

90 identify impacts before creating future deforestation

91 scenarios. This evaluation is, however, rarely done.

92 Model evaluation is a critical component of land

93 change modeling, as it allows assessing the quality of

94 the simulation and inform possible model improve-

95 ments. Notwithstanding, a meta-analysis of land cover

96 change publications (van Vliet et al. 2016) found that

97 31% of published manuscripts did not report the model

98 evaluation. Even though the spatial pattern of land

99 cover changes may be more critical than pixel-level

100 accuracy when studying environmental and biodiver-

101 sity impacts (Prestele et al. 2016), few studies (23%

102according to van Vliet et al. (2016)) incorporate the

103assessment of deforestation pattern as complementary

104to pixel-level assessments. Still, pixel-level metrics

105are the most commonly reported means of model

106evaluation in land change model assessments.

107Lack of alignment between the objective of a

108simulation and the evaluation method can cause

109scientists to focus on results that are not relevant to

110the research question or the model’s intended appli-

111cation. For conservation applications, pixel-level

112accuracy is not as important as evaluating the model’s

113capacity to simulate impacts, as multiple deforestation

114scenarios with different pixel-level accuracy may

115result in a similar reduction in species habitat.

116Moreover, a model selected based on pixel-level

117metrics is not guaranteed to simulate impacts

118correctly.

119This work assesses six business-as-usual land cover

120change scenarios for Bolivia that varied the regional-

121ization of demand-for-land and allocation model

122components. The work’s main objective was to

123identify the impact of the evaluation gain on selecting

124land change modeling simulations developed to assess

125biodiversity impacts, as well as to and inform land

126change simulation improvements. We evaluated the

127six different scenarios through quantity and allocation

128error decomposition, error assessment at the pixel

129level, error stratification at the grain appropriate for

130the evaluation of biodiversity impacts, and errors on

131the assessment of biodiversity impacts.

132Methods

133Study area

134The study region (Fig. 1) encompasses forested areas

135within the country of Bolivia. This country was chosen

136as a case study as it presents the second-highest rate of

137deforestation in Latin America (Killeen et al. 2007;

138Sangermano et al. 2012). The country is subdivided

139into four administrative levels: departments, pro-

140vinces, municipalities, and cantons. Deforestation in

141Bolivia presents regional differences (Steininger et al.

1422001), and it is related to economic growth, expansion

143of mechanized agriculture, and cattle ranching (Kill-

144een et al. 2008). Under Evo Morales’ presidency, land

145reform policies emphasize the principle of social and

146economic function of the land. This principle requires
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147 owners to demonstrate that their property is socially

148 and economically productive and not abandoned to

149 preserve their ownership rights (Bottazzi and Dao

150 2013; Redo et al. 2011). Under fear of land expropri-

151 ation, owners seek to demonstrate land use, leading to

152 an increase in deforestation in the region (Redo et al.

153 2011). Bolivia has decentralized its management of

154 natural resources, giving regional autonomous units

155 power to execute conservation policies. This decen-

156 tralization is complex and spatially discordant since

157 natural resources are managed at the national, depart-

158 mental, municipality, and regional levels. As such, this

159 decentralization affects the distribution of deforesta-

160 tion within the country.

161 Land change modeling overview

162 Empirical models of land cover change identify

163 historical changes, relate those changes with a set of

164 predictors of change, and use those relationships to

165 extrapolate future deforestation simulations. Land

166 change modeling usually consists of five steps

167 (Fig. 2). Step one consists of identifying land changes

168 between a land cover map in an initial time (T1) and a

169 land cover map in a subsequent (T2) time. In step two,

170 the land suitability to change is established through a

171model that relates those land changes and predictor

172variables. Step three consists of calculating the

173quantity of change expected on an evaluation date,

174while step four focuses on the spatial allocation of that

175quantity, generating a simulated land cover (T3s).

176Finally, in step five, the simulated land cover (T3s) is

177evaluated through a comparison to a reference land

178cover (T3r). The method used to establish the land

179suitability to change is called the transition potential

180model. The calculation of the future quantity of

181deforestation is called the demand-for-landmodel, and

182the method used to allocate that amount of change

183spatially is called the allocation model. Together,

184these three models define the simulated pattern of

185deforestation.

186Historical deforestation and drivers of change

187A land cover map for Bolivia for the year 2001 at 30 m

188resolution was obtained from Killeen et al. (2007).

189This land cover map was updated with deforestation

190information from the Global Forest Change

1912000–2014 data product version 1.2 (Hansen et al.

1922013), to produce land cover maps for the years 2005,

1932010, and 2014. If an area was deforested before 2001,

194it was assumed to remain deforested until 2014, thus

Fig. 1 Study area map showing the distribution of deforestation across ecoregions and departments

AQ2
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195 ignoring reforestation or regeneration. The final land

196 cover maps were upscaled to 990 m and projected to

197 UTM-20s following Sangermano et al. (2012) (Online

198 Resource Fig. S1).

199 Deforestation predictors included variables previ-

200 ously identified to be associated with deforestation in

201 Bolivia (Sangermano et al. 2012). These variables

202 encompassed: cost distance to populated places, cost

203 distance to the city of Santa Cruz, precipitation

204 seasonality, euclidean distance to roads, and euclidean

205 distance to previously deforested areas. The variable

206 cost distance to the city of Santa Cruz was considered

207 independently from populated places, as being the

208 central hub for the National Railroad System is a proxy

209 for access to export markets, and deforestation is

210 mostly related to large scale mechanized agriculture

211 for soy production (Müller et al. 2012). On the other

212 hand, the distance to populated places reflects access

213 to local markets. A global map of accessibility (Nelson

214 2008) was used as a friction layer to calculate cost

215 distances. Distance to already deforested areas was

216 considered a dynamic variable (Sangermano et al.

217 2012).

218Transition potential modeling

219Land cover maps for 2005 (T1) and 2010 (T2) were

220used to identify the historical deforestation used to

221train the transition potential and demand-for-land

222models. The land cover map for the year 2014 (T3r)

223was used as a reference to evaluate the simulated land

224cover maps.

225We simulated the transition potential based on a

226single algorithm, the Multi-Layer Perceptron Neural

227Network (MLP), as it has demonstrated to be

228successful in simulations of land change across

229multiple study areas (e Silva et al. 2020; Kim 2010;

230Mirici et al. 2017; Sangermano et al. 2012). The MLP

231network consisted of a hidden layer with three nodes.

232Following Sangermano et al. (2012), MLP was trained

233using a starting learning rate of 0.001 and an ending

234learning rate of 0.0001. The use of a dynamic learning

235rate allowed to decrease fluctuations in the adjust-

236ments of network weights. Activation layers were

237standardized to a 0 to 1 range using a sigmoidal

238function (sigmoid constant a = 1). The output of the

239MLP transition potential model is an image with

240values ranging from 0 to 1 representing the suitability

Fig. 2 Manuscript workflow scheme. T1: land cover 2005, T2: land cover 2010, T3r: reference land cover 2014, T3s: 2014 simulated

change
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241 of the land to experience change. The transition

242 potential model was developed using TerrSet software

243 (Eastman 2016).

244 Demand for land and allocation models

245 Land change models are commonly developed based

246 on the calculation of constant demand-for-land for

247 each transition; however, spatial differences in defor-

248 estation rates may exist due to regional policy changes

249 and deforestation practices. We generated six defor-

250 estation scenarios for 2014 that differ on the regions

251 used to define the demand-for-land and allocation

252 (Table 1). In the national-level land change scenario

253 allocation of deforestation is performed at the country

254 level and assumes a uniform demand-for-land to

255 transition from forest to non-forest across the study

256 area; this is the most common demand for land and

257 allocation model used in the land change modeling

258 literature. We regionalized the demand-for-land and

259 allocation models on administrative units, generating

260 the department-level, province-level, and municipal-

261 ity-level scenarios. These scenarios represent the scale

262 of Bolivia’s natural resource management practices.

263To represent differences in demand-for-land across

264forest with different carbon content, we regionalized

265the demand-for-land and allocation models using a

266carbon density map (Saatchi et al. 2011) classified into

267ten equal-intervals bins. Finally, a regionalization

268based on ecoregions (Olson et al. 2001) was done to

269represent differences in demand-for-land across forest

270with different environmental characteristics and eco-

271logical dynamics.

272The regional demand-for-land models use the

273annual rate of deforestation between 2005 and 2010

274to predict the quantity of deforestation in the year 2014

275for each region defined above (national-level, depart-

276ment-level, province-level, municipality-level, car-

277bon-level, and ecoregion-level). The predicted amount

278of deforestation between 2010 and 2014 for each

279region (d) was calculated as (AT2d - AT1d)/(tT2–T1) 9

280(tT3–T2), where AT2d - AT1d is the area deforested

281between 2005 and 2010 for region d, tT2-T1 is the

282reference period (5 years), and tT3–T2 is the prediction

283period (4 years) rounded to the nearest integer since

284the allocation of less than a pixel is not possible. This

285linear demand-for-land model assumes stationary

286rates of change. A common practice in land change

Table 1 Description of each of the six land change scenarios developed by changing the regionalization of the demand-for-land and

allocation models

Scenario

name

Demand-for-land model

DFLd ¼
AT2d

�AT1d

tT2�T1
� tT3�T2

Rationale Allocation model

National-

level

Regionalization d defined

by national boundaries

Standard approach in land change modeling.

Assumes demand-for-land is uniform across

the study area

Pixels with the highest transition

potential at the country level are

allocated to deforestation

Department-

level

Regionalization d defined

by departmental

boundaries

Assumes demand-for-land varies across

departments due to different management

practices

Deforestation is allocated to the

highest transition potential within

each department

Province-

level

Regionalization d defined

by province boundaries

Assumes demand-for-land varies across

provinces due to different management

practices

Deforestation is allocated to the

highest transition potential within

each province

Municipality-

level

Stratum d defined by

municiplaity

boundaries

Assumes demand-for-land varies across

municipality due to different management

practices

Deforestation is allocated to the

highest transition potential within

each municipality

Carbon-level Regionalization d defined

by carbon stocks

Assumes a non-homogeneous forest, with

demand-for-land varying depending on forest

productivity

Deforestation is allocated to the

highest transition potential within

each forest carbon class

Ecoregion-

level

Regionalization d defined

by ecoregion

boundaries

Assumes a non-homogeneous forest with

demand-for-land varying with the ecoregion

where the forest is present

Deforestation is allocated to the

highest transition potential within

each ecoregion

DFLd is the demand for land calculated for each region d, AT1d is the area deforested in 2005 within the region d, AT2d is the area

deforested in 2010 within the region d, tT2–T1 is the reference period (5 years), and tT3–T2 is the prediction period (4 years)
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287 modeling is to avoid modeling demand for land by

288 using the reference quantity of deforestation. How-

289 ever, this practice only allows evaluating the transition

290 potential model, and thus, assessment of the demand-

291 for-land model is ignored. Modeling demand for land

292 using a simple linear model allows assessing if

293 deforestation rates vary over time and their implica-

294 tions on future deforestation projections.

295 Deforestation scenarios (T3s) were created by

296 allocating the predicted quantity of deforestation for

297 2014 in each region using a top-rank approach. In this

298 approach, after ranking the transition potentials inde-

299 pendently for each region, deforestation is allocated to

300 the pixels with the highest transition potential (East-

301 man et al. 2005).

302 Model evaluation

303 The change between 2010 (T2) and the land cover in

304 2014 (T3r) was used as a reference to evaluate the

305 transition potentials and regional allocation models.

306 We evaluated the transition potentials using the area

307 under the total operating characteristics curve (TOC-

308 AUC, (Pontius and Si 2014)). TOC-AUC identifies the

309 relationship between ranked deforestation suitability

310 and the reference deforestation between 2010 (T2) and

311 2014 (T3r). High TOC-AUC values indicate that areas

312 deemed highly suitable for deforestation were defor-

313 ested in the reference, while areas that did not

314 experience deforestation occur in locations of low

315 deforestation suitability. TOC-AUC ranges from zero

316 to one, where values above 0.5 represent better than

317 random predictions.

318 Using the Figure of Merit (FOM) metric (Chen and

319 Pontius 2011; Pontius et al. 2007, 2008a, 2018), we

320 compared the deforestation between T2 and T3r,

321 called herein the reference change, with the defor-

322 estation between T2 and T3s, called herein the

323 simulated change. FOM is widely used for validation

324 of land change models and is the recommended

325 evaluation metric for Verified Carbon Standards

326 methodology for avoided unplanned deforestation

327 (VCS 2012). FOM is computed by identifying hits,

328 misses, and false alarms at the pixel level. Hits are

329 pixels correctly predicted to change, false alarms are

330 pixels predicted to change that remained unchanged in

331 the reference, and misses are pixels incorrectly

332 predicted to remain unchanged. FOM is the ratio of

333 hits to the sum of misses, hits, and false alarms

334(Pontius et al. 2008a), and provides a value ranging

335from zero to one that summarizes the simulation

336performance at the pixel level. Here, we will call the

337FOM, the Pixel-level Figure of Merit (PFOM), to

338acknowledge the grain at which the evaluation is done.

339Land change models can have errors of two types:

340quantity and allocation. Quantity errors relate to the

341demand-for-land model, indicating if the model over-

342estimates or underestimates the amount of deforesta-

343tion. In contrast, allocation errors refer to

344misspecification of the actual change locations and

345are related to the transition potential and allocation

346models. PFOM incorporates both misses and false

347alarms into a single index; therefore, PFOM fails to

348reveal whether errors derive from the model of

349deforestation quantity or allocation. Distinguishing

350between these types of errors is essential for the

351interpretation and comparison of simulations. If a

352simulation predominantly has quantity error, then the

353modeler may want to assess the demand-for-land

354model. If a simulation mostly has allocation error, then

355the modeler may wish to evaluate the parameterization

356of the transition potential model (e.g., the variables

357used or model fit), or the allocation model.

358Pixel-level metrics used for assessing land change

359models, such as the PFOM, cannot identify the

360appropriateness of a model for a particular purpose,

361as it only provides information at an artificially defined

362unit. Pixel level metrics can identify a simulation as

363completely erroneous if, for example, the predicted

364deforested pixel is neighboring the reference location

365of deforestation. The error in such simulation may not

366be meaningful for a particular objective, such as

367identifying species intersecting deforestation and

368could still be useful for biodiversity assessments.

369Thus, errors happening within the objective’s relevant

370grain size are considered irrelevant for that objective,

371while errors happening beyond the objective’s grain

372size are deemed meaningful.

373To overcome the limitations of pixel-level metrics,

374we implemented a stratified evaluation method,

375allowing the assessment of the six land change

376simulation models (national-level, department-level,

377province-level, municipality-level, carbon-level, and

378ecoregion-level) at the grain size appropriate for the

379objective of assessing biodiversity impacts. Given that

380biodiversity impacts were evaluated using IUCN

381species range polygons (explained in the section

382below), we defined the evaluation strata (ES) as a
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383 100 km 9 100 km grid, which is the grain size that

384 balances accuracy and detail in the IUCN biodiversity

385 data (Hurlbert and Jetz 2007; Kreft and Jetz 2010).

386 This evaluation grain size is conservative as larger

387 errors in the IUCN species range database have been

388 reported reaching 2.78 decimal degrees for south

389 American anurans (Hughes 2019).

390 For each land change simulation, we report cor-

391 rectly predicted deforestation (hits, Eq. 1) as well as

392 the presence of quantity errors (Eqs. 2, 3, 4), stratum

393 errors (Eqs. 5, 6, 7), and pixel-level errors (Eqs. 8, 9,

394 10).

395 Hits are calculated as:

Pixel Hits ¼
X

D

d¼1

Hd; ð1Þ

397397 where Hd is the number of pixel Hits in stratum d, D is

398 the number of strata. Hits are calculated at the pixel

399 level and indicate the model’s capacity to correctly

400 classify change at the resolution of the simulation

401 (990 m in this case).

402 Quantity errors indicate the ability of the demand-

403 for-land model to estimate the amount of deforesta-

404 tion. Quantity error is calculated as:

Quantity Error ¼ Underprediction

þ Overprediction; ð2Þ

406406 where:

Under Prediction ¼ MAXIMUM 0;

X

D

d¼1

Md � Fdð Þ

" #

;

ð3Þ

408408

Over Prediction ¼ MAXIMUM 0;

X

D

d¼1

Fd �Mdð Þ

" #

;

ð4Þ

410410 and where Fd is the number of False Alarm pixels in

411 stratum d, and Md is the number of Misses in stratum

412 d. If misses are larger than false alarms, the demand-

413 for-land model is underpredicting deforestation. If

414 false alarms are larger than misses, the demand-for-

415 land model is overpredicting deforestation. As

416 defined, underprediction and overprediction of quan-

417 tity apply to the totality of the study area extent;

418 therefore, a model cannot underpredict and overpre-

419 dict quantity at the same time.

420The Stratum Allocation Error represents allocation

421errors among the evaluation strata, which was defined

422in this work as the effective resolution of the IUCN

423species range data. Stratum Allocation Error is

424calculated as:

StratumAllocation Error ¼ StratumMisses

þ StratumFalse Alarms;

ð5Þ

426426StratumFalse Alarms ¼ StratumMisses; ð6Þ

428428

StratumMisses ¼ MINIMUM
X

D

d¼1

Md;

X

D

d¼1

Fd

 !

�
X

D

d¼1

MINIMUM Md;Fdð Þ:

ð7Þ

430430Stratum Allocation Error is positive when misses

431and false alarms are not equal within each stratum,

432meaning that at least one stratum has more misses than

433false alarms, while at least one other stratum has fewer

434misses than false alarms. Thus, Stratum Allocation

435Errors are those occurring beyond the objective’s

436grain size, and therefore are considered meaningful.

437Pixel Allocation Error refers to total pixel-level

438error within the evaluation strata, and is calculated as:

Pixel Allocation Error ¼ PixelMisses

þ Pixel False Alarms; ð8Þ

440440

PixelMisses ¼
X

D

d¼1

MINIMUM Md;Fdð Þ; ð9Þ

442442Pixel False Alarms ¼ PixelMisses: ð10Þ

444444Pixel Allocation Errors indicate that although the

445model allocated deforestation at the incorrect pixel, it

446did it within the correct stratum. Pixel Allocation

447Errors are positive when misses and false alarms exist

448within any single stratum. As pixel allocation errors

449are those that happen within the relevant grain size of

450the objective, they can be considered irrelevant for the

451modeling purpose.

452The above components of errors allow the inter-

453pretation of sources of errors within the simulated

454map, and can be summarized into single metrics.

455PFOM (Pontius et al. 2008a, 2018) can be calculated

456from the components as:
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457 The Stratum Figure of Merit (SFOM), ignore the

458 irrelevant pixel allocation errors within the evaluation

459 strata and can be calculated from the previously

460 defined error components as:

461 Two models may produce the same PFOM regard-

462 less of the spatial distribution of allocation errors;

463 therefore, PFOM does not allow for the discrimination

464 of a model with meaningful allocation errors (those

465 across the evaluation strata) versus irrelevant alloca-

466 tion errors (those within the evaluation strata). More

467 details on the interpretation of these figures can be

468 found in the online supporting information.

469 Evaluation of biodiversity impacts

470 Each simulation’s expected biodiversity impacts were

471 assessed by intersecting the reference and simulated

472 change maps with the IUCN species ranges of

473 mammals, amphibians, and birds endemic to Bolivia

474 (IUCN 2018), which were rasterized to the resolution

475 of the land change simulations (990 m). From all

476 IUCN species ranges endemic to Bolivia, a total of 93

477 species (fourteen mammals, nine birds, and seventy

478 amphibians) intersected the reference and simulated

479 change. A forest specialist species may be negatively

480 affected by deforestation, while a generalist species

481 may be affected positively by the presence of agricul-

482 ture. In this work, we focused on the models’ capacity

483 to identify the species affected by deforestation and

484 their area without evaluating the direction of the

485 impact (positive or negative). To assess the capacity of

486 each of the six land change simulations to detect the

487 species affected by deforestation, we compared the

488 species composition overlapping the simulated and

489 reference change through the Jaccard similarity index

490(JSI). The Jaccard similarity index is calculated as the

491number of species in common within the reference and

492simulated change, divided by the total species in the

493reference and simulated change areas. A Jaccard

494similarity of 1 indicates that species composition in

495areas simulated to change is the same as the species

496composition in the reference change areas. The lower

497the Jaccard similarity index, the lower the species

498shared between the simulated and reference defor-

499estation areas. To assess the simulation ability to

500capture the area of species ranges affected by defor-

501estation, we calculated each species’ area range that

502was deforested in the simulated and the reference

503change maps. The amount of deforestation between

5042012 and 2014 within each IUCN species range was

505extracted for the reference and land change simula-

506tions. The Mean Absolute Error (MAE, Eq. 13) and its

507quantity and allocation components (Pontius et al.

5082008b) were calculated. MAE is the sum of the

509allocation disagreement component and quantity dis-

510agreement component. The Allocation Disagreement

511component of MAE (AE, Eq. 14), represents defor-

512estation simulated in an incorrect species range and is

513calculated as the MAE minus the quantiy disagree-

514ment. The quantity disagreement component of MAE

515(QE, Eq. 15) is the absolute value of the mean error

516(ME, Eq. 16) and represents the average quantity of

517error across all species ranges. MAE and its compo-

518nents are calculated as:

MAE ¼

Pn
i¼1 yi � xijj

n
; ð13Þ

520520AE ¼ MAE�QE; ð14Þ

522522

PixelFOM ¼
Pixel Hits

Under Prediction þ StratumAllocation Error þ Pixel Allocation Error þ Pixel Hitsþ Over Prediction
: ð11Þ

StratumFOM ¼
Pixel Allocation Error þ Pixel Hits

Under Predictionþ StratumAllocation Error þ Pixel Allocation Error þ Pixel Hitsþ Over Prediction
:

ð12Þ
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QE ¼

Pn
i¼1 yi � xi

n

�

�

�

�

�

�

�

�

; ð15Þ

524524
ME ¼

Pn
i¼1 yi � xi

n
; ð16Þ

526526 where yi is the area of simulated change within the

527 species range i, and xi is the area of reference change

528 within the species range i, and n is the total number of

529 species considered in the evaluation.

530 Results

531 An area of 16,230 Km2 was deforested in Bolivia in

532 the period 2005 to 2014. This deforestation was

533 distributed particularly surrounding the city of Santa

534 Cruz, along the Yungas, and in the department of

535 Pando bordering Peru (Fig. S1).

536 Evaluation of regional-level simulations at pixel

537 and stratum level

538 The transition potential generated by the MLP model

539 was good, with a goodness of fit of 79.34%, and TOC-

540 AUC of 0.86 (Fig. S3). Partitioning of errors into

541 components (Fig. 3) revealed an underprediction of

542 the quantity of deforestation across all regional

543 simulations (Table 2), comprising about 25% of all

544 errors. The remaining errors were divided into pixel

545 and stratum allocation error components. Aggregated

546allocation errors (pixel allocation error plus stratum

547allocation errors) were similar across all six land

548change scenarios.

549The spatial distribution of deforestation was differ-

550ent across simulations, as can be seen in the spatial

551distribution of hits and false alarms (Fig. 4). A high

552proportion of misses in Fig. 4 are a reflection of the

553underprediction of deforestation. Despite this, the

554pixel-level Figure of Merit (Table 2) showed low

555variability across models, with values ranging from

5565.5 to 8%. These similarities in PFOM values were due

557to the similar numbers of hits, reference change, and

558simulated change across all regional simulations. The

559province-level and municipality-level simulations

560presented the most substantial pixel-level allocation

561errors, indicating that the model failed to simulate the

562actual locations of deforestation within the evaluation

563stratum. The stratified error allowed identifying

564misses and false alarms happening across the 10,000

565km2 evaluation scale. At this grain size, province-level

566and municipality-level simulations presented the

567lowest stratum errors, resulting from a distribution of

568misses and false alarms more balanced within the

569evaluation strata, when compared to the other regional

570simulations. This can be seen in Fig. 4 where the

571spatial distribution of false alarms is similar to that of

572the misses for the province-level and municipality-

573level land change simulations.

574The stratified evaluation results indicate that for the

575province-level and municipality-level simulations,

576pixel-level errors were within the spatial resolution

Fig. 3 Partition of errors across regional simulations. Underprediction ? Stratum Misses ? Pixel Misses represent the Total Misses;

Pixel False Alarms ? Stratum False Alarms (? Overprediction, which is null in this case) represent the Total False Alarms
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577 of biodiversity data and thus could be ignored when

578 evaluating biodiversity impacts. On the other hand, the

579 national-level simulation presented the most substan-

580 tial stratum allocation error, representing a high

581 unbalance of misses and false alarms within the

582 evaluation strata (Fig. 4), and indicating that, after

583 removing the effect of quantity, misses and false

584 alarms occurred in different strata. These errors act

585 beyond the valid grain size of the biodiversity data and

586 could affect the assessment of impacts. The carbon-

587 level land change simulation had the highest hits;

588 however, stratum allocation errors were also high,

589 indicating that although this land change simulation

590 was the best identifying pixels that correctly changed

591 with a stratum, misses and false alarms happened

592 beyond the grain relevant for the objective, thus,

593 presenting the highest meaningful errors for the

594 purpose of the land change model. The ecoregion-

595 level land change simulation presented an intermedi-

596 ate performance across all evaluation metrics. Pro-

597 vince-level and municipality-level simulations

598 showed the highest SFOM at the grain size relevant

599 for the analysis of biodiversity, meaning that a large

600 proportion of pixel-level errors could be ignored for

601 this objective.

602 Simulation impact evaluation

603 From all the species included in the study, thirteen

604 birds, eight mammals, and nineteen amphibians inter-

605 sected the reference or the simulated change maps (see

606online resources for a comprehensive list of species

607and areas of change within these ranges). The

608municipality-level simulation resulted in an impact

609on species composition most similar to the reference

610(JSI = 0.44), capturing 80% of the species intersecting

611the reference deforestation. The second best simula-

612tion was the province-level, with the second-highest

613JSI (JSI = 0.38) and capturing 70% of the species

614intersecting the reference deforestation.

615All simulations underpredicted the amount of

616species ranges affected by deforestation, indicated

617by the negative sign of the mean error (ME, Table 3).

618As all land change simulations underestimated the

619total quantity of deforestation, this result was

620expected. The absolute of the ME indicates the

621quantity error. The carbon-level land change simula-

622tion had the smallest quantity error but presented the

623highest allocation error component (AE), indicating

624that deforestation was allocated to the incorrect

625species range. When removing the species Akodon

626dayi (Fig. 5), which has the most extensive overlap

627with the study region, the carbon-level land change

628simulation presented the second smallest quantity

629error after the municipality-level. After removing A.

630dayi from the analysis, the carbon-level simulation

631remained the worst simulation based on deforestation

632allocation to the correct species range (highest AE,

633Online resource Fig. S4).

634The municipality-level simulation presented the

635lowest mean absolute error (MAE), followed by the

636province-level simulation (Table 3, Fig. 5). The

Table 2 Tabulation of errors

Regional

simulation

Reference

change

Simulated

change

Quantity

ERRORS

Pixel alloc.

error

Stratum alloc.

errors

PFOM

(%)

SFOM

(%)

National 7261 4457 2804 2094 5304 6.9 18.2

Ecoregion 7261 4458 2803 4030 3504 6.3 30.0

Carbon 7261 4457 2804 3878 3304 8.0 31.5

Department 7261 4457 2804 2876 4700 6.1 21.9

Province 7261 4456 2805 6044 1392 6.7 47.3

Municipality 7261 4461 2800 7044 650 5.5 54.5

Reference change equals Under Prediction ? Stratum Misses ? Pixel Misses ? Pixel Hits; Simulated change equals Pixel

Hits ? Pixel False Alarms ? Stratum False Alarms ? Over Prediction (which is null in this case); Pixel Allocation errors are Pixel

Misses ? Pixel False Alarms; Stratum Allocation Errors are Stratum Misses ? Stratum False Alarms. Pixel Figure of Merit (PFOM)

equals Hits / (Under Prediction ? Stratum Allocation Error ? Pixel Allocation Error ? Pixel Hits ? Over Prediction); Stratum

Allocation Errors are (Hits ? Pixel Allocation Error)/(Under Prediction ? Stratum Allocation Error ? Pixel Allocation

Error ? Pixel Hits ? Over Prediction)
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Fig. 4 Spatial distribution

of Hits (first column), Total

Misses (Second Column),

and Total False Alarms

(third column) per

evaluation strata. Values

range from 0 to 1 and

indicate the proportion in

relation to Hits ? Total

Misses ? Total False

Alarms. The higher

proportion of Misses

indicates the

underestimation of quantity

across all simulations
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637 province-level simulation had a smaller AE than the

638 municipality-level simulation, indicating that, even

639 though it underpredicted the amount of deforestation

640 affecting species ranges, it was the model that best

641 described the distribution of deforestation across

642 species ranges. These relationships did not change

643 by excluding Akodon dayi (Online resource Fig. S4).

644 Thus, the province-level simulation reflects a right

645 balance between recognizing the species composition

646 affected by deforestation and the area of impact within

647 those species.

648 Discussion

649 PFOM allows assessing simulations at the pixel-level;

650 however, some errors are more critical when evaluat-

651 ing impacts than others. By identifying error compo-

652 nents, we could discern between quantity errors, and

653 irrelevant and meaningful allocation errors.

654 In this study, allocation errors not relevant for

655 assessing biodiversity impacts are pixel-level errors

656 happening within the biodiversity data’s valid grain.

657 On the other hand, meaningful allocation errors are

658 those occurring beyond the proper grain size of the

659 biodiversity data (100 9 100 km2 in this study) and

660 are identified through the stratum allocation errors.

661 The presence of stratum allocation errors could

662 indicate the transition potential model’s misspecifica-

663 tion, for example, through variables not being

664 weighted properly within each region. In this work,

665 the spatial distribution of transition potentials was

666 dominated by the influence of the variable ‘‘Distance

667 to Santa Cruz’’, as most of the change during the

668 training period (2005–2010) happened around this

669city. However, this variable is expected to be less

670relevant for other provinces, for example, in northern

671Bolivia. Models could potentially be improved by

672developing independent transition potential models

673for each region (e.g., for each province), accounting

674for spatial non-stationarity of the relationships

675between deforestation and factors of change (Mas

6762016).

677Temporal non-stationarity includes both deforesta-

678tion rates and temporal variations in the importance of

679drivers of change (Mas et al. 2004). In this study,

680quantity errors uncovered that the linear extrapolation

681of demand-for-land underestimated the total change.

682The amount of expected change in 2014 was estimated

683using a linear function based on the rate of deforesta-

684tion between 2005 and 2010, thus assuming a constant

685rate of change. However, the rate of deforestation

686between 2010 and 2014 was higher than in the

687reference period, indicating that linear extrapolation

688is not representative of future demand-for-land for this

689case study. As Bolivia presents volatility of year-to-

690year deforestation rates that are strongly linked to

691National policy changes, these high quantity errors are

692expected. The constitutional reform of Morales

693administration in 2006, contributed to the increasing

694deforestation, as the conversion of forest to agriculture

695became the most compelling justification to demon-

696strate the economic and social function of the land

697needed to avoid land redistribution (Müller et al.

6982014). In 2013 the Morales administration announced

699pardons for illegal deforestation, which fomented

700speculation and encouraged ranchers and settlers to

701encroach illegally into the forest to achieve legaliza-

702tion during the regularization process (Müller et al.

7032014). Legal deforestation has also increased with the

Table 3 Assessment of deforestation impacts

Regional simulation JSI % Species agreement MAE ME AE

National 0.20 26.7 134.9 - 95.0 39.0

Ecoregion 0.26 36.7 114.9 - 93.2 21.7

Carbon 0.33 56.7 119 - 72.6 46.4

Department 0.35 63.3 129.5 - 84.7 44.8

Province 0.38 70.0 109.5 - 96.7 12.8

Municipality 0.44 80.0 105.3 - 90.4 14.9

JSI Jaccard similarity index (higher is better), % species in agreement (higher better), MAE mean absolute error (lower is better), ME

mean error (lower is better), AE allocation error (lower is better)
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704 increase in permits given by the Forest and Land

705 Authority of Bolivia that almost doubled from 2010 to

706 2014. Deforestation rates are expected to increase

707 even further. In July 2019 Morales administration

708 amended a Decree (Supreme Decree 26075) that

709 foments the expansion of the agricultural frontier in

710Santa Cruz Beni’s provinces by authorizing land-use

711changes relating to farming and controlled burning.

712Results from the quantity error components

713uncover the presence of varying deforestation rates

714in Bolivia that depend on changes in policies. Thus, it

715reveals uncertainties in the demand-for-land model

Fig. 5 Scatterplots of reference area of change within species

range (x) vs. simulated area of change within species range (y),

for each model: a national-level, b ecoregion-level, c carbon-

level, d department-level, e province-level, fmunicipality-level.

Province and municipality-level simulations show closer

alignment to the 1:1 identity line, resulting in lower MAE

values. The lower allocation error for the province-level

simulation is reflected by points residing mostly on one side

of the identity line. White marker corresponds to the species

Akodon dayi. Figures and statistics excluding this observation

are provided in the online materials (Fig. S4)
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716 that can affect future projections of deforestation.

717 Future projections of deforestation can incorporate the

718 uncertainty related to the difficulties of modeling

719 deforestation quantity, by creating multiple deforesta-

720 tion scenarios based on varying development trajec-

721 tories (Sangermano et al. 2012). Some land change

722 modeling practices ignore quantity errors by setting

723 the predicted quantity to the reference quantity. Model

724 evaluation in those cases can only assess the transition

725 potential model, missing the demand-for-land model

726 component. By partitioning model errors, we can

727 acknowledge both quantity and allocation model

728 errors that uncover, and allow to account for, uncer-

729 tainty in applying the land change model to predict

730 future deforestation.

731 The assessment of simulations was profoundly

732 affected by the evaluation metric used. Land cover

733 change models are commonly evaluated at the pixel

734 level (van Vliet et al. 2016). In this case study, a pixel-

735 level assessment would have led to selecting the

736 carbon-level land change simulation as the best

737 representation of deforestation. This simulation, how-

738 ever, presented the highest errors in the evaluation of

739 biodiversity impacts. On the other hand, the munic-

740 ipality-level land change simulation, even though it

741 showed high pixel-level errors, resulted in a small

742 proportion of stratum errors. Thus, even though the

743 municipality-level simulation did not identify pre-

744 cisely where pixels were going to change, misses and

745 false alarms fell within the grain relevant for the study

746 of biodiversity. This relationship is also reflected in

747 the assessment of biodiversity impacts.

748 In Bolivia, biodiversity impacts vary with the

749 spatial distribution of deforestation due to differences

750 in species composition between the humid forest and

751 the dry Chiquitano forest ecoregion (Fig. 1). The

752 national-level simulation allocated most of the defor-

753 estation within the Chiquitano Dry Forest. In contrast,

754 the municipality-level and provincial-level simula-

755 tions were more similar to the reference, identifying

756 higher amounts of deforestation in humid forest

757 ecoregions, thus better-representing biodiversity

758 impacts. Sangermano et al. (2012) predicted defor-

759 estation to the year 2050 to evaluate biodiversity

760 impacts based on a national-level allocation. This

761 work indicates that their biodiversity assessment could

762 be inaccurate due to a mismatch between pixel-level

763 evaluation and the objective’s relevant grain. The

764 stratified evaluation approach, together with the

765evaluation of impacts, uncovered that deforestation

766simulations to analyze biodiversity in Bolivia should

767be developed at the province- level. Moreover,

768simulations of future deforestation could be improved

769by modeling transition potentials independently for

770each province and creating different deforestation

771quantity scenarios.

772Sensitivity analysis of land change simulation

773models is rarely done, with only 12% of the models

774evaluated by Van Vliet et al. (2016) assessing model

775sensitivity. This work demonstrates the importance of

776sensitivity analysis when developing land change

777models, by modifying the type of demand for land and

778allocation model, we found substantial variability in

779deforestation’s spatial distribution and resulting

780impacts. Developing and evaluating multiple models

781allowed identifying the best demand-for-land and

782allocation model to assess land cover change impact

783on biodiversity in Bolivia.

784The literature of land change modeling distin-

785guishes between near and far errors (Chen and Pontius

7862010; Pontius et al. 2008a, 2011) calculated through

787multiresolution analysis, and where far errors are

788considered more important than near ones. However,

789the determination of error importance depends on the

790purpose of the simulation. It is crucial to evaluate land

791change models with a method fit for the model

792purpose. Although multiresolution evaluation of

793errors allows identifying the grain size at which a

794simulation could be applied, it is not directly linked to

795the simulation objective. In this work, the evaluation

796strata was a regularly sized grid signifying the valid

797grain of the IUCN species range data used in

798biodiversity assessments; however, for other modeling

799purposes, this evaluation strata could take irregular

800shapes. For example, for applications of land change

801models for Reduced Emissions from Deforestation

802and Forest Degradation (REDD), the deforestation

803model could be assessed using carbon stock strata. In

804that example, misses and false alarms balanced within

805the same carbon stock could be ignored, as they will

806produce the same carbon emission impacts. On the

807other hand, stratum errors, happening whenmisses and

808false alarms are not balanced within the carbon stock,

809would be relevant for REDD, as they could potentially

810overestimate or underestimate the amount of modeled

811carbon emissions.

812Some land cover change applications (23%, Van

813Vliet et al. 2016), have incorporated pattern analysis as
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814 a means for linking model evaluation to the model

815 purpose. A limitation of configuration based evalua-

816 tion approaches is that they rely on choosing pattern

817 metrics, and more work is needed to identify the ones

818 more relevant for assessing landscape configuration

819 (Pickard and Meentemeyer 2019). Similar to the

820 findings in this study, the increased interest in

821 developing pattern-based evaluation metrics of land

822 change models recognizes the need to move beyond

823 pixel-level assessments (Chen et al. 2014; Pickard

824 et al. 2017a, b; Pickard and Meentemeyer 2019).

825 Conclusions

826 Land cover change models are increasingly used to

827 evaluate biodiversity and ecosystem impacts. How-

828 ever, for those assessments to be meaningful, careful

829 model evaluation is needed. This work presents

830 evidence of the importance of incorporating informa-

831 tion regarding the simulation’s purpose during model

832 evaluation and selection. By decomposing errors, it is

833 possible to assess their sources, allowing ignoring

834 irrelevant ones. The distinction of quantity errors,

835 pixel allocation errors, and stratum allocation errors

836 allows identifying patterns not evident when using

837 pixel-level metrics alone. This information permits

838 making better-informed decisions on model selection,

839 translating into meaningful assessments of model

840 impacts.

841 To increase transparency and allow more robust

842 applications of land change models to assess biodi-

843 versity and ecosystem impacts, we urge scientists to

844 (1) link the evaluation method to the model purpose,

845 (2) decompose errors to inform model assessment and

846 improvement, and (3) perform a sensitivity analysis, to

847 select the simulations more appropriate for the iden-

848 tified model objective.

849 We conclude that a pixel-level assessment of errors

850 fails to represent our models’ accuracy for their

851 intended purpose. Moreover, selecting models based

852 on pixel-level assessment metrics leads to the incor-

853 rect characterization of impacts. On the other hand,

854 stratified evaluation metrics, with strata related to the

855 purpose of the land change simulation, allowed for

856 identifying the model that represented biodiversity

857 impacts best.
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