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Abstract Context:

Evaluation of Land cover change (LCC) is commonly done at the pixel level; however, the model’s
purpose may be relevant at a different grain size. Thus, the same model may be good for one purpose but
inappropriate for another. For conservation applications, it is crucial to assess land change simulations’ at
the grain relevant for the assessment of biodiversity impacts.

Objectives:

Evaluate land cover change scenarios in Bolivia, at the pixel-level and grain relevant to biodiversity, to
inform LCC models for biodiversity assessments.

Methods:

We created six deforestation simulations that varied deforestation allocation based on forest management
units (national, province, and municipality), ecoregions, and carbon stocks. We evaluated the simulations
at the pixel level, and the objective’s relevant grain size through stratified error decomposition. We
assessed biodiversity impacts by comparing the quantity of reference and simulated deforestation within
species ranges.

Results:

The spatial distribution of deforestation differed across simulations; however, their pixel-level error was
similar. The province and municipality land change simulations had the lowest allocation errors at the
relevant grain despite their large pixel-level errors, and they showed the lowest biodiversity errors. The
province simulation provided the best balance identifying both affected species composition and the area
of impact.

Conclusions:

This work presents evidence of the importance of incorporating information regarding the purpose of the
simulation during model evaluation and selection. Error decomposition allowed ignoring irrelevant errors,
translating into meaningful assessments of biodiversity impacts. As opposed to pixel-level metrics,
stratified errors identified models that characterized biodiversity impacts best.
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Abstract

Context Evaluation of Land cover change (LCC) is
commonly done at the pixel level; however, the
model’s purpose may be relevant at a different grain
size. Thus, the same model may be good for one
purpose but inappropriate for another. For conserva-
tion applications, it is crucial to assess land change
simulations’ at the grain relevant for the assessment of
biodiversity impacts.

Objectives Evaluate land cover change scenarios in
Bolivia, at the pixel-level and grain relevant to
biodiversity, to inform LCC models for biodiversity
assessments.

Methods We created six deforestation simulations
that varied deforestation allocation based on forest
management units (national, province, and munici-
pality), ecoregions, and carbon stocks. We evaluated
the simulations at the pixel level, and the objective’s
relevant grain size through stratified error
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decomposition. We assessed biodiversity impacts by 28
comparing the quantity of reference and simulated 29
deforestation within species ranges. 30
Results The spatial distribution of deforestation 31
differed across simulations; however, their pixel-level 32
error was similar. The province and municipality land 33
change simulations had the lowest allocation errors at 34
the relevant grain despite their large pixel-level errors, 35
and they showed the lowest biodiversity errors. The 36
province simulation provided the best balance identi- 37
fying both affected species composition and the area 38
of impact. [ AQ1 Y
Conclusions This work presents evidence of the 40
importance of incorporating information regarding the 41
purpose of the simulation during model evaluation and 42
selection. Error decomposition allowed ignoring irrel- 43
evant errors, translating into meaningful assessments 44
of biodiversity impacts. As opposed to pixel-level 45
metrics, stratified errors identified models that char- 46
acterized biodiversity impacts best. 47
Keywords Land change modeling - Biodiversity - 48
Bolivia - Deforestation - Model evaluation 49
Introduction 50
Human-induced landscape changes, such as defor- 51
estation, are the leading cause of worldwide 52
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biodiversity extinctions (Brondizio et al. 2019; Sala
et al. 2000). Dirzo et al. (2014) suggested an estimate
of 11,000 to 58,000 species lost per year (Dirzo et al.
2014). The study of land use and land cover change
predictions and impacts was identified as one of the
top 10 key research areas in landscape ecology (Wu
2013). Deforestation affects biodiversity by modify-
ing habitat quantity, quality, connectivity, and
metapopulation dynamics (Ferraz et al. 2007). The
relationship between habitat quantity and biodiversity
has been well studied, where larger habitats support
more biodiversity, lower extinction rates, and an
overall lower impact of disturbances. Moreover,
deforestation from human activities, such as agricul-
tural development or urbanization, creates a matrix
habitat (Ricketts 2001) that can have negative (De-
binski and Holt 2000) or positive effects (Norton et al.
2000), depending on species adaptiveness to that
matrix. Deforestation processes impact landscape
structure by increasing edges, reducing patch area,
modifying the matrix, and isolating forest patches.
These structural changes in habitat can double the
impact of deforestation on biodiversity, compared to
the effects caused by direct habitat loss alone (Barlow
et al. 2016; Pfeifer et al. 2017). With the rapid increase
in global deforestation, there is an increased interest in
applying land cover change models to predict defor-
estation scenarios and their impacts.

Assessment of the impacts of land cover change on
biodiversity and ecosystem services relies on the
evaluation and extrapolation of historical changes
through simulation models (Armenteras et al. 2019;
Liang and Liu 2017; Pérez-Vega et al. 2012; Pickard
et al. 2017b; Reidsma et al. 2006; Sangermano et al.
2012; Sharma et al. 2018). As varying landscape
patterns may result in different biodiversity implica-
tions, models must be evaluated for their capacity to
identify impacts before creating future deforestation
scenarios. This evaluation is, however, rarely done.

Model evaluation is a critical component of land
change modeling, as it allows assessing the quality of
the simulation and inform possible model improve-
ments. Notwithstanding, a meta-analysis of land cover
change publications (van Vliet et al. 2016) found that
31% of published manuscripts did not report the model
evaluation. Even though the spatial pattern of land
cover changes may be more critical than pixel-level
accuracy when studying environmental and biodiver-
sity impacts (Prestele et al. 2016), few studies (23%
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according to van Vliet et al. (2016)) incorporate the
assessment of deforestation pattern as complementary
to pixel-level assessments. Still, pixel-level metrics
are the most commonly reported means of model
evaluation in land change model assessments.

Lack of alignment between the objective of a
simulation and the evaluation method can cause
scientists to focus on results that are not relevant to
the research question or the model’s intended appli-
cation. For conservation applications, pixel-level
accuracy is not as important as evaluating the model’s
capacity to simulate impacts, as multiple deforestation
scenarios with different pixel-level accuracy may
result in a similar reduction in species habitat.
Moreover, a model selected based on pixel-level
metrics is not guaranteed to simulate impacts
correctly.

This work assesses six business-as-usual land cover
change scenarios for Bolivia that varied the regional-
ization of demand-for-land and allocation model
components. The work’s main objective was to
identify the impact of the evaluation gain on selecting
land change modeling simulations developed to assess
biodiversity impacts, as well as to and inform land
change simulation improvements. We evaluated the
six different scenarios through quantity and allocation
error decomposition, error assessment at the pixel
level, error stratification at the grain appropriate for
the evaluation of biodiversity impacts, and errors on
the assessment of biodiversity impacts.

Methods
Study area

The study region (Fig. 1) encompasses forested areas
within the country of Bolivia. This country was chosen
as a case study as it presents the second-highest rate of
deforestation in Latin America (Killeen et al. 2007;
Sangermano et al. 2012). The country is subdivided
into four administrative levels: departments, pro-
vinces, municipalities, and cantons. Deforestation in
Bolivia presents regional differences (Steininger et al.
2001), and it is related to economic growth, expansion
of mechanized agriculture, and cattle ranching (Kill-
een et al. 2008). Under Evo Morales’ presidency, land
reform policies emphasize the principle of social and
economic function of the land. This principle requires
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Fig. 1 Study area map showing the distribution of deforestation across ecoregions and departments

owners to demonstrate that their property is socially
and economically productive and not abandoned to
preserve their ownership rights (Bottazzi and Dao
2013; Redo et al. 2011). Under fear of land expropri-
ation, owners seek to demonstrate land use, leading to
an increase in deforestation in the region (Redo et al.
2011). Bolivia has decentralized its management of
natural resources, giving regional autonomous units
power to execute conservation policies. This decen-
tralization is complex and spatially discordant since
natural resources are managed at the national, depart-
mental, municipality, and regional levels. As such, this
decentralization affects the distribution of deforesta-

16( A tion within the country.
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Land change modeling overview

Empirical models of land cover change identify
historical changes, relate those changes with a set of
predictors of change, and use those relationships to
extrapolate future deforestation simulations. Land
change modeling usually consists of five steps
(Fig. 2). Step one consists of identifying land changes
between a land cover map in an initial time (T1) and a
land cover map in a subsequent (T2) time. In step two,
the land suitability to change is established through a

model that relates those land changes and predictor
variables. Step three consists of calculating the
quantity of change expected on an evaluation date,
while step four focuses on the spatial allocation of that
quantity, generating a simulated land cover (T3s).
Finally, in step five, the simulated land cover (T3s) is
evaluated through a comparison to a reference land
cover (T3r). The method used to establish the land
suitability to change is called the transition potential
model. The calculation of the future quantity of
deforestation is called the demand-for-land model, and
the method used to allocate that amount of change
spatially is called the allocation model. Together,
these three models define the simulated pattern of
deforestation.

Historical deforestation and drivers of change

A land cover map for Bolivia for the year 2001 at 30 m
resolution was obtained from Killeen et al. (2007).
This land cover map was updated with deforestation
information from the Global Forest Change
2000-2014 data product version 1.2 (Hansen et al.
2013), to produce land cover maps for the years 2005,
2010, and 2014. If an area was deforested before 2001,
it was assumed to remain deforested until 2014, thus
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change

ignoring reforestation or regeneration. The final land
cover maps were upscaled to 990 m and projected to
UTM-20s following Sangermano et al. (2012) (Online
Resource Fig. S1).

Deforestation predictors included variables previ-
ously identified to be associated with deforestation in
Bolivia (Sangermano et al. 2012). These variables
encompassed: cost distance to populated places, cost
distance to the city of Santa Cruz, precipitation
seasonality, euclidean distance to roads, and euclidean
distance to previously deforested areas. The variable
cost distance to the city of Santa Cruz was considered
independently from populated places, as being the
central hub for the National Railroad System is a proxy
for access to export markets, and deforestation is
mostly related to large scale mechanized agriculture
for soy production (Miiller et al. 2012). On the other
hand, the distance to populated places reflects access
to local markets. A global map of accessibility (Nelson
2008) was used as a friction layer to calculate cost
distances. Distance to already deforested areas was
considered a dynamic variable (Sangermano et al.
2012).

@ Springer

Transition potential modeling

Land cover maps for 2005 (T1) and 2010 (T2) were
used to identify the historical deforestation used to
train the transition potential and demand-for-land
models. The land cover map for the year 2014 (T3r)
was used as a reference to evaluate the simulated land
cover maps.

We simulated the transition potential based on a
single algorithm, the Multi-Layer Perceptron Neural
Network (MLP), as it has demonstrated to be
successful in simulations of land change across
multiple study areas (e Silva et al. 2020; Kim 2010;
Mirici et al. 2017; Sangermano et al. 2012). The MLP
network consisted of a hidden layer with three nodes.
Following Sangermano et al. (2012), MLP was trained
using a starting learning rate of 0.001 and an ending
learning rate of 0.0001. The use of a dynamic learning
rate allowed to decrease fluctuations in the adjust-
ments of network weights. Activation layers were
standardized to a O to 1 range using a sigmoidal
function (sigmoid constant a = 1). The output of the
MLP transition potential model is an image with
values ranging from O to 1 representing the suitability
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of the land to experience change. The transition
potential model was developed using TerrSet software
(Eastman 2016).

Demand for land and allocation models

Land change models are commonly developed based
on the calculation of constant demand-for-land for
each transition; however, spatial differences in defor-
estation rates may exist due to regional policy changes
and deforestation practices. We generated six defor-
estation scenarios for 2014 that differ on the regions
used to define the demand-for-land and allocation
(Table 1). In the national-level land change scenario
allocation of deforestation is performed at the country
level and assumes a uniform demand-for-land to
transition from forest to non-forest across the study
area; this is the most common demand for land and
allocation model used in the land change modeling
literature. We regionalized the demand-for-land and
allocation models on administrative units, generating
the department-level, province-level, and municipal-
ity-level scenarios. These scenarios represent the scale
of Bolivia’s natural resource management practices.

To represent differences in demand-for-land across
forest with different carbon content, we regionalized
the demand-for-land and allocation models using a
carbon density map (Saatchi et al. 2011) classified into
ten equal-intervals bins. Finally, a regionalization
based on ecoregions (Olson et al. 2001) was done to
represent differences in demand-for-land across forest
with different environmental characteristics and eco-
logical dynamics.

The regional demand-for-land models use the
annual rate of deforestation between 2005 and 2010
to predict the quantity of deforestation in the year 2014
for each region defined above (national-level, depart-
ment-level, province-level, municipality-level, car-
bon-level, and ecoregion-level). The predicted amount
of deforestation between 2010 and 2014 for each
region (d) was calculated as (Atay — At12)/(tT2-T1) X
(tt3_t2), wWhere A1,y — Aty is the area deforested
between 2005 and 2010 for region d, trp.1; is the
reference period (5 years), and tt3_t- is the prediction
period (4 years) rounded to the nearest integer since
the allocation of less than a pixel is not possible. This
linear demand-for-land model assumes stationary
rates of change. A common practice in land change

Table 1 Description of each of the six land change scenarios developed by changing the regionalization of the demand-for-land and

allocation models

Scenario Demand-for-land model ~ Rationale Allocation model
name DFLy =50 s o
National- Regionalization d defined Standard approach in land change modeling. Pixels with the highest transition
level by national boundaries Assumes demand-for-land is uniform across potential at the country level are
the study area allocated to deforestation
Department-  Regionalization d defined Assumes demand-for-land varies across Deforestation is allocated to the
level by departmental departments due to different management highest transition potential within
boundaries practices each department
Province- Regionalization d defined Assumes demand-for-land varies across Deforestation is allocated to the
level by province boundaries provinces due to different management highest transition potential within
practices each province
Municipality- Stratum d defined by Assumes demand-for-land varies across Deforestation is allocated to the
level municiplaity municipality due to different management highest transition potential within
boundaries practices each municipality

Carbon-level Regionalization d defined
by carbon stocks

productivity

Ecoregion-
level

Regionalization d defined
by ecoregion
boundaries

Assumes a non-homogeneous forest, with
demand-for-land varying depending on forest

Assumes a non-homogeneous forest with
demand-for-land varying with the ecoregion
where the forest is present

Deforestation is allocated to the
highest transition potential within
each forest carbon class

Deforestation is allocated to the

highest transition potential within
each ecoregion

DFL, is the demand for land calculated for each region d, Aty, is the area deforested in 2005 within the region d, A, is the area
deforested in 2010 within the region d, tt, 1, is the reference period (5 years), and tr3_r; is the prediction period (4 years)
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modeling is to avoid modeling demand for land by
using the reference quantity of deforestation. How-
ever, this practice only allows evaluating the transition
potential model, and thus, assessment of the demand-
for-land model is ignored. Modeling demand for land
using a simple linear model allows assessing if
deforestation rates vary over time and their implica-
tions on future deforestation projections.

Deforestation scenarios (T3s) were created by
allocating the predicted quantity of deforestation for
2014 in each region using a top-rank approach. In this
approach, after ranking the transition potentials inde-
pendently for each region, deforestation is allocated to
the pixels with the highest transition potential (East-
man et al. 2005).

Model evaluation

The change between 2010 (T2) and the land cover in
2014 (T3r) was used as a reference to evaluate the
transition potentials and regional allocation models.
We evaluated the transition potentials using the area
under the total operating characteristics curve (TOC-
AUC, (Pontius and Si 2014)). TOC-AUC identifies the
relationship between ranked deforestation suitability
and the reference deforestation between 2010 (T2) and
2014 (T3r). High TOC-AUC values indicate that areas
deemed highly suitable for deforestation were defor-
ested in the reference, while areas that did not
experience deforestation occur in locations of low
deforestation suitability. TOC-AUC ranges from zero
to one, where values above 0.5 represent better than
random predictions.

Using the Figure of Merit (FOM) metric (Chen and
Pontius 2011; Pontius et al. 2007, 2008a, 2018), we
compared the deforestation between T2 and T3r,
called herein the reference change, with the defor-
estation between T2 and T3s, called herein the
simulated change. FOM is widely used for validation
of land change models and is the recommended
evaluation metric for Verified Carbon Standards
methodology for avoided unplanned deforestation
(VCS 2012). FOM is computed by identifying hits,
misses, and false alarms at the pixel level. Hits are
pixels correctly predicted to change, false alarms are
pixels predicted to change that remained unchanged in
the reference, and misses are pixels incorrectly
predicted to remain unchanged. FOM is the ratio of
hits to the sum of misses, hits, and false alarms

@ Springer

(Pontius et al. 2008a), and provides a value ranging
from zero to one that summarizes the simulation
performance at the pixel level. Here, we will call the
FOM, the Pixel-level Figure of Merit (PFOM), to
acknowledge the grain at which the evaluation is done.

Land change models can have errors of two types:
quantity and allocation. Quantity errors relate to the
demand-for-land model, indicating if the model over-
estimates or underestimates the amount of deforesta-
tion. In contrast, allocation errors refer to
misspecification of the actual change locations and
are related to the transition potential and allocation
models. PFOM incorporates both misses and false
alarms into a single index; therefore, PFOM fails to
reveal whether errors derive from the model of
deforestation quantity or allocation. Distinguishing
between these types of errors is essential for the
interpretation and comparison of simulations. If a
simulation predominantly has quantity error, then the
modeler may want to assess the demand-for-land
model. If a simulation mostly has allocation error, then
the modeler may wish to evaluate the parameterization
of the transition potential model (e.g., the variables
used or model fit), or the allocation model.

Pixel-level metrics used for assessing land change
models, such as the PFOM, cannot identify the
appropriateness of a model for a particular purpose,
as it only provides information at an artificially defined
unit. Pixel level metrics can identify a simulation as
completely erroneous if, for example, the predicted
deforested pixel is neighboring the reference location
of deforestation. The error in such simulation may not
be meaningful for a particular objective, such as
identifying species intersecting deforestation and
could still be useful for biodiversity assessments.
Thus, errors happening within the objective’s relevant
grain size are considered irrelevant for that objective,
while errors happening beyond the objective’s grain
size are deemed meaningful.

To overcome the limitations of pixel-level metrics,
we implemented a stratified evaluation method,
allowing the assessment of the six land change
simulation models (national-level, department-level,
province-level, municipality-level, carbon-level, and
ecoregion-level) at the grain size appropriate for the
objective of assessing biodiversity impacts. Given that
biodiversity impacts were evaluated using TUCN
species range polygons (explained in the section
below), we defined the evaluation strata (ES) as a
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100 km x 100 km grid, which is the grain size that
balances accuracy and detail in the IUCN biodiversity
data (Hurlbert and Jetz 2007; Kreft and Jetz 2010).
This evaluation grain size is conservative as larger
errors in the [UCN species range database have been
reported reaching 2.78 decimal degrees for south
American anurans (Hughes 2019).

For each land change simulation, we report cor-
rectly predicted deforestation (hits, Eq. 1) as well as
the presence of quantity errors (Egs. 2, 3, 4), stratum
errors (Egs. 5, 6, 7), and pixel-level errors (Egs. 8, 9,
10).

Hits are calculated as:

D
Pixel Hits =Y _ Hy, (1)
d=1

where H, is the number of pixel Hits in stratum d, D is
the number of strata. Hits are calculated at the pixel
level and indicate the model’s capacity to correctly
classify change at the resolution of the simulation
(990 m in this case).

Quantity errors indicate the ability of the demand-
for-land model to estimate the amount of deforesta-
tion. Quantity error is calculated as:

Quantity Error = Underprediction
+ Overprediction, (2)

where:

Under Prediction = MAXIMUM

D
07Z(Md - Fd)],

d=1
(3)

0, (Fa— Mﬂ] :
d=1
(4)

and where F; is the number of False Alarm pixels in
stratum d, and M is the number of Misses in stratum
d. If misses are larger than false alarms, the demand-
for-land model is underpredicting deforestation. If
false alarms are larger than misses, the demand-for-
land model is overpredicting deforestation. As
defined, underprediction and overprediction of quan-
tity apply to the totality of the study area extent;
therefore, a model cannot underpredict and overpre-
dict quantity at the same time.

Over Prediction = MAXIMUM

The Stratum Allocation Error represents allocation
errors among the evaluation strata, which was defined
in this work as the effective resolution of the ITUCN
species range data. Stratum Allocation Error is
calculated as:

Stratum Allocation Error = Stratum Misses
+ Stratum False Alarms,

(5)

Stratum False Alarms = Stratum Misses, (6)

D D
Stratum Misses = MINIMUM <Z Mgy Fd>
d=1 d=1

D
— > MINIMUM(M,, Fy).
d=1

(7)

Stratum Allocation Error is positive when misses
and false alarms are not equal within each stratum,
meaning that at least one stratum has more misses than
false alarms, while at least one other stratum has fewer
misses than false alarms. Thus, Stratum Allocation
Errors are those occurring beyond the objective’s
grain size, and therefore are considered meaningful.

Pixel Allocation Error refers to total pixel-level
error within the evaluation strata, and is calculated as:

Pixel Allocation Error = Pixel Misses
+ Pixel False Alarms,  (8)

D
Pixel Misses = »  MINIMUM(My, Fy), (9)
d=1

Pixel False Alarms = Pixel Misses. (10)

Pixel Allocation Errors indicate that although the
model allocated deforestation at the incorrect pixel, it
did it within the correct stratum. Pixel Allocation
Errors are positive when misses and false alarms exist
within any single stratum. As pixel allocation errors
are those that happen within the relevant grain size of
the objective, they can be considered irrelevant for the
modeling purpose.

The above components of errors allow the inter-
pretation of sources of errors within the simulated
map, and can be summarized into single metrics.
PFOM (Pontius et al. 2008a, 2018) can be calculated
from the components as:
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Pixel Hits

PixelFOM =

(11)

Under Prediction + Stratum Allocation Error + Pixel Allocation Error + Pixel Hits + Over Prediction

The Stratum Figure of Merit (SFOM), ignore the
irrelevant pixel allocation errors within the evaluation
strata and can be calculated from the previously
defined error components as:

(JSI). The Jaccard similarity index is calculated as the
number of species in common within the reference and
simulated change, divided by the total species in the
reference and simulated change areas. A Jaccard

Pixel Allocation Error + Pixel Hits

Stratum FOM =

Under Prediction + Stratum Allocation Error + Pixel Allocation Error + Pixel Hits + Over Prediction”

(12)

Two models may produce the same PFOM regard-
less of the spatial distribution of allocation errors;
therefore, PFOM does not allow for the discrimination
of a model with meaningful allocation errors (those
across the evaluation strata) versus irrelevant alloca-
tion errors (those within the evaluation strata). More
details on the interpretation of these figures can be
found in the online supporting information.

Evaluation of biodiversity impacts

Each simulation’s expected biodiversity impacts were
assessed by intersecting the reference and simulated
change maps with the IUCN species ranges of
mammals, amphibians, and birds endemic to Bolivia
(IUCN 2018), which were rasterized to the resolution
of the land change simulations (990 m). From all
TUCN species ranges endemic to Bolivia, a total of 93
species (fourteen mammals, nine birds, and seventy
amphibians) intersected the reference and simulated
change. A forest specialist species may be negatively
affected by deforestation, while a generalist species
may be affected positively by the presence of agricul-
ture. In this work, we focused on the models’ capacity
to identify the species affected by deforestation and
their area without evaluating the direction of the
impact (positive or negative). To assess the capacity of
each of the six land change simulations to detect the
species affected by deforestation, we compared the
species composition overlapping the simulated and
reference change through the Jaccard similarity index

@ Springer

similarity of 1 indicates that species composition in
areas simulated to change is the same as the species
composition in the reference change areas. The lower
the Jaccard similarity index, the lower the species
shared between the simulated and reference defor-
estation areas. To assess the simulation ability to
capture the area of species ranges affected by defor-
estation, we calculated each species’ area range that
was deforested in the simulated and the reference
change maps. The amount of deforestation between
2012 and 2014 within each IUCN species range was
extracted for the reference and land change simula-
tions. The Mean Absolute Error (MAE, Eq. 13) and its
quantity and allocation components (Pontius et al.
2008b) were calculated. MAE is the sum of the
allocation disagreement component and quantity dis-
agreement component. The Allocation Disagreement
component of MAE (AE, Eq. 14), represents defor-
estation simulated in an incorrect species range and is
calculated as the MAE minus the quantiy disagree-
ment. The quantity disagreement component of MAE
(QE, Eq. 15) is the absolute value of the mean error
(ME, Eq. 16) and represents the average quantity of
error across all species ranges. MAE and its compo-
nents are calculated as:

n
MAE:Zi:]‘yl xl|7

n

AE = MAE — QE,
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n
i=1Yi — Xi

E = |="“———— 1

0p = [FE = (15)

ME = 2= % =% (16)
n

where y; is the area of simulated change within the
species range i, and x; is the area of reference change
within the species range i, and n is the total number of
species considered in the evaluation.

Results

An area of 16,230 Km? was deforested in Bolivia in
the period 2005 to 2014. This deforestation was
distributed particularly surrounding the city of Santa
Cruz, along the Yungas, and in the department of
Pando bordering Peru (Fig. S1).

Evaluation of regional-level simulations at pixel
and stratum level

The transition potential generated by the MLP model
was good, with a goodness of fit of 79.34%, and TOC-
AUC of 0.86 (Fig. S3). Partitioning of errors into
components (Fig. 3) revealed an underprediction of
the quantity of deforestation across all regional
simulations (Table 2), comprising about 25% of all
errors. The remaining errors were divided into pixel
and stratum allocation error components. Aggregated

allocation errors (pixel allocation error plus stratum
allocation errors) were similar across all six land
change scenarios.

The spatial distribution of deforestation was differ-
ent across simulations, as can be seen in the spatial
distribution of hits and false alarms (Fig. 4). A high
proportion of misses in Fig. 4 are a reflection of the
underprediction of deforestation. Despite this, the
pixel-level Figure of Merit (Table 2) showed low
variability across models, with values ranging from
5.5 to 8%. These similarities in PFOM values were due
to the similar numbers of hits, reference change, and
simulated change across all regional simulations. The
province-level and municipality-level simulations
presented the most substantial pixel-level allocation
errors, indicating that the model failed to simulate the
actual locations of deforestation within the evaluation
stratum. The stratified error allowed identifying
misses and false alarms happening across the 10,000
km? evaluation scale. At this grain size, province-level
and municipality-level simulations presented the
lowest stratum errors, resulting from a distribution of
misses and false alarms more balanced within the
evaluation strata, when compared to the other regional
simulations. This can be seen in Fig. 4 where the
spatial distribution of false alarms is similar to that of
the misses for the province-level and municipality-
level land change simulations.

The stratified evaluation results indicate that for the
province-level and municipality-level simulations,
pixel-level errors were within the spatial resolution

National

Ecoregion | [

| === sEnEEEaE RARRRARRRAT)

Carbon I

Department |

Province |

Municipality I |

0 2000 4000

6000 8000 10000 12000

Amount of error (humber of pixels)

[ Under Prediction
[ Pixel Hits

O Stratum Misses

/B Pixel False Alarms

O Pixel Misses

[ Stratum False Alarms

Fig. 3 Partition of errors across regional simulations. Underprediction + Stratum Misses + Pixel Misses represent the Total Misses;
Pixel False Alarms + Stratum False Alarms (+ Overprediction, which is null in this case) represent the Total False Alarms
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Table 2 Tabulation of errors

Regional Reference Simulated Quantity Pixel alloc. Stratum alloc. PFOM SFOM
simulation change change ERRORS error errors (%) (%)
National 7261 4457 2804 2094 5304 6.9 18.2
Ecoregion 7261 4458 2803 4030 3504 6.3 30.0
Carbon 7261 4457 2804 3878 3304 8.0 315
Department 7261 4457 2804 2876 4700 6.1 219
Province 7261 4456 2805 6044 1392 6.7 47.3
Municipality 7261 4461 2800 7044 650 55 54.5

Reference change equals Under Prediction + Stratum Misses + Pixel Misses + Pixel Hits; Simulated change equals Pixel
Hits + Pixel False Alarms + Stratum False Alarms + Over Prediction (which is null in this case); Pixel Allocation errors are Pixel
Misses + Pixel False Alarms; Stratum Allocation Errors are Stratum Misses 4 Stratum False Alarms. Pixel Figure of Merit (PFOM)
equals Hits / (Under Prediction + Stratum Allocation Error + Pixel Allocation Error + Pixel Hits + Over Prediction); Stratum
Allocation Errors are (Hits 4+ Pixel Allocation Error)/(Under Prediction 4+ Stratum Allocation Error + Pixel Allocation

Error + Pixel Hits + Over Prediction)

of biodiversity data and thus could be ignored when
evaluating biodiversity impacts. On the other hand, the
national-level simulation presented the most substan-
tial stratum allocation error, representing a high
unbalance of misses and false alarms within the
evaluation strata (Fig. 4), and indicating that, after
removing the effect of quantity, misses and false
alarms occurred in different strata. These errors act
beyond the valid grain size of the biodiversity data and
could affect the assessment of impacts. The carbon-
level land change simulation had the highest hits;
however, stratum allocation errors were also high,
indicating that although this land change simulation
was the best identifying pixels that correctly changed
with a stratum, misses and false alarms happened
beyond the grain relevant for the objective, thus,
presenting the highest meaningful errors for the
purpose of the land change model. The ecoregion-
level land change simulation presented an intermedi-
ate performance across all evaluation metrics. Pro-
vince-level and municipality-level simulations
showed the highest SFOM at the grain size relevant
for the analysis of biodiversity, meaning that a large
proportion of pixel-level errors could be ignored for
this objective.

Simulation impact evaluation
From all the species included in the study, thirteen

birds, eight mammals, and nineteen amphibians inter-
sected the reference or the simulated change maps (see
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online resources for a comprehensive list of species
and areas of change within these ranges). The
municipality-level simulation resulted in an impact
on species composition most similar to the reference
(JSI = 0.44), capturing 80% of the species intersecting
the reference deforestation. The second best simula-
tion was the province-level, with the second-highest
JST (JSI = 0.38) and capturing 70% of the species
intersecting the reference deforestation.

All simulations underpredicted the amount of
species ranges affected by deforestation, indicated
by the negative sign of the mean error (ME, Table 3).
As all land change simulations underestimated the
total quantity of deforestation, this result was
expected. The absolute of the ME indicates the
quantity error. The carbon-level land change simula-
tion had the smallest quantity error but presented the
highest allocation error component (AE), indicating
that deforestation was allocated to the incorrect
species range. When removing the species Akodon
dayi (Fig. 5), which has the most extensive overlap
with the study region, the carbon-level land change
simulation presented the second smallest quantity
error after the municipality-level. After removing A.
dayi from the analysis, the carbon-level simulation
remained the worst simulation based on deforestation
allocation to the correct species range (highest AE,
Online resource Fig. S4).

The municipality-level simulation presented the
lowest mean absolute error (MAE), followed by the
province-level simulation (Table 3, Fig. 5). The

Journal : Medium 10980
Article No. : 1251
MS Code : LAND-D-20-00282R2

1
~

Dispatch :  21-4-2021 Pages : 17
O LE O TYPESET
¥ cp * DISK

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636



Author Proof

Landscape Ecol

Fig. 4 Spatial distribution
of Hits (first column), Total
Misses (Second Column),
and Total False Alarms
(third column) per
evaluation strata. Values
range from O to 1 and
indicate the proportion in
relation to Hits + Total
Misses + Total False
Alarms. The higher
proportion of Misses
indicates the
underestimation of quantity
across all simulations
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Table 3 Assessment of deforestation impacts

Regional simulation JSI % Species agreement MAE ME AE
National 0.20 26.7 134.9 —95.0 39.0
Ecoregion 0.26 36.7 114.9 - 932 21.7
Carbon 0.33 56.7 119 — 72.6 46.4
Department 0.35 63.3 129.5 — 84.7 44.8
Province 0.38 70.0 109.5 —96.7 12.8
Municipality 0.44 80.0 105.3 —90.4 14.9

JSI Jaccard similarity index (higher is better), % species in agreement (higher better), MAE mean absolute error (lower is better), ME

mean error (lower is better), AE allocation error (lower is better)

province-level simulation had a smaller AE than the
municipality-level simulation, indicating that, even
though it underpredicted the amount of deforestation
affecting species ranges, it was the model that best
described the distribution of deforestation across
species ranges. These relationships did not change
by excluding Akodon dayi (Online resource Fig. S4).
Thus, the province-level simulation reflects a right
balance between recognizing the species composition
affected by deforestation and the area of impact within
those species.

Discussion

PFOM allows assessing simulations at the pixel-level;
however, some errors are more critical when evaluat-
ing impacts than others. By identifying error compo-
nents, we could discern between quantity errors, and
irrelevant and meaningful allocation errors.

In this study, allocation errors not relevant for
assessing biodiversity impacts are pixel-level errors
happening within the biodiversity data’s valid grain.
On the other hand, meaningful allocation errors are
those occurring beyond the proper grain size of the
biodiversity data (100 x 100 km? in this study) and
are identified through the stratum allocation errors.
The presence of stratum allocation errors could
indicate the transition potential model’s misspecifica-
tion, for example, through variables not being
weighted properly within each region. In this work,
the spatial distribution of transition potentials was
dominated by the influence of the variable “Distance
to Santa Cruz”, as most of the change during the
training period (2005-2010) happened around this
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city. However, this variable is expected to be less
relevant for other provinces, for example, in northern
Bolivia. Models could potentially be improved by
developing independent transition potential models
for each region (e.g., for each province), accounting
for spatial non-stationarity of the relationships
between deforestation and factors of change (Mas
2016).

Temporal non-stationarity includes both deforesta-
tion rates and temporal variations in the importance of
drivers of change (Mas et al. 2004). In this study,
quantity errors uncovered that the linear extrapolation
of demand-for-land underestimated the total change.
The amount of expected change in 2014 was estimated
using a linear function based on the rate of deforesta-
tion between 2005 and 2010, thus assuming a constant
rate of change. However, the rate of deforestation
between 2010 and 2014 was higher than in the
reference period, indicating that linear extrapolation
is not representative of future demand-for-land for this
case study. As Bolivia presents volatility of year-to-
year deforestation rates that are strongly linked to
National policy changes, these high quantity errors are
expected. The constitutional reform of Morales
administration in 2006, contributed to the increasing
deforestation, as the conversion of forest to agriculture
became the most compelling justification to demon-
strate the economic and social function of the land
needed to avoid land redistribution (Miiller et al.
2014). In 2013 the Morales administration announced
pardons for illegal deforestation, which fomented
speculation and encouraged ranchers and settlers to
encroach illegally into the forest to achieve legaliza-
tion during the regularization process (Miiller et al.
2014). Legal deforestation has also increased with the
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Fig. 5 Scatterplots of reference area of change within species
range (x) vs. simulated area of change within species range (y),
for each model: a national-level, b ecoregion-level, ¢ carbon-
level, d department-level, e province-level, f municipality-level.
Province and municipality-level simulations show closer
alignment to the 1:1 identity line, resulting in lower MAE

increase in permits given by the Forest and Land
Authority of Bolivia that almost doubled from 2010 to
2014. Deforestation rates are expected to increase
even further. In July 2019 Morales administration
amended a Decree (Supreme Decree 26075) that
foments the expansion of the agricultural frontier in

values. The lower allocation error for the province-level
simulation is reflected by points residing mostly on one side
of the identity line. White marker corresponds to the species
Akodon dayi. Figures and statistics excluding this observation
are provided in the online materials (Fig. S4)

Santa Cruz Beni’s provinces by authorizing land-use
changes relating to farming and controlled burning.
Results from the quantity error components
uncover the presence of varying deforestation rates
in Bolivia that depend on changes in policies. Thus, it
reveals uncertainties in the demand-for-land model
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that can affect future projections of deforestation.
Future projections of deforestation can incorporate the
uncertainty related to the difficulties of modeling
deforestation quantity, by creating multiple deforesta-
tion scenarios based on varying development trajec-
tories (Sangermano et al. 2012). Some land change
modeling practices ignore quantity errors by setting
the predicted quantity to the reference quantity. Model
evaluation in those cases can only assess the transition
potential model, missing the demand-for-land model
component. By partitioning model errors, we can
acknowledge both quantity and allocation model
errors that uncover, and allow to account for, uncer-
tainty in applying the land change model to predict
future deforestation.

The assessment of simulations was profoundly
affected by the evaluation metric used. Land cover
change models are commonly evaluated at the pixel
level (van Vliet et al. 2016). In this case study, a pixel-
level assessment would have led to selecting the
carbon-level land change simulation as the best
representation of deforestation. This simulation, how-
ever, presented the highest errors in the evaluation of
biodiversity impacts. On the other hand, the munic-
ipality-level land change simulation, even though it
showed high pixel-level errors, resulted in a small
proportion of stratum errors. Thus, even though the
municipality-level simulation did not identify pre-
cisely where pixels were going to change, misses and
false alarms fell within the grain relevant for the study
of biodiversity. This relationship is also reflected in
the assessment of biodiversity impacts.

In Bolivia, biodiversity impacts vary with the
spatial distribution of deforestation due to differences
in species composition between the humid forest and
the dry Chiquitano forest ecoregion (Fig. 1). The
national-level simulation allocated most of the defor-
estation within the Chiquitano Dry Forest. In contrast,
the municipality-level and provincial-level simula-
tions were more similar to the reference, identifying
higher amounts of deforestation in humid forest
ecoregions, thus better-representing biodiversity
impacts. Sangermano et al. (2012) predicted defor-
estation to the year 2050 to evaluate biodiversity
impacts based on a national-level allocation. This
work indicates that their biodiversity assessment could
be inaccurate due to a mismatch between pixel-level
evaluation and the objective’s relevant grain. The
stratified evaluation approach, together with the
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evaluation of impacts, uncovered that deforestation
simulations to analyze biodiversity in Bolivia should
be developed at the province- level. Moreover,
simulations of future deforestation could be improved
by modeling transition potentials independently for
each province and creating different deforestation
quantity scenarios.

Sensitivity analysis of land change simulation
models is rarely done, with only 12% of the models
evaluated by Van Vliet et al. (2016) assessing model
sensitivity. This work demonstrates the importance of
sensitivity analysis when developing land change
models, by modifying the type of demand for land and
allocation model, we found substantial variability in
deforestation’s spatial distribution and resulting
impacts. Developing and evaluating multiple models
allowed identifying the best demand-for-land and
allocation model to assess land cover change impact
on biodiversity in Bolivia.

The literature of land change modeling distin-
guishes between near and far errors (Chen and Pontius
2010; Pontius et al. 2008a, 2011) calculated through
multiresolution analysis, and where far errors are
considered more important than near ones. However,
the determination of error importance depends on the
purpose of the simulation. It is crucial to evaluate land
change models with a method fit for the model
purpose. Although multiresolution evaluation of
errors allows identifying the grain size at which a
simulation could be applied, it is not directly linked to
the simulation objective. In this work, the evaluation
strata was a regularly sized grid signifying the valid
grain of the IUCN species range data used in
biodiversity assessments; however, for other modeling
purposes, this evaluation strata could take irregular
shapes. For example, for applications of land change
models for Reduced Emissions from Deforestation
and Forest Degradation (REDD), the deforestation
model could be assessed using carbon stock strata. In
that example, misses and false alarms balanced within
the same carbon stock could be ignored, as they will
produce the same carbon emission impacts. On the
other hand, stratum errors, happening when misses and
false alarms are not balanced within the carbon stock,
would be relevant for REDD, as they could potentially
overestimate or underestimate the amount of modeled
carbon emissions.

Some land cover change applications (23%, Van
Vliet et al. 2016), have incorporated pattern analysis as

Journal : Medium 10980
Article No. : 1251

1
~

MS Code : LAND-D-20-00282R2

Dispatch :  21-4-2021 Pages : 17
O LE O TYPESET
¥ cp * DISK

765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813



Author Proof

814
815
816
817
818
819
820
821
822
823
824

825

826
827
828
829

Landscape Ecol

a means for linking model evaluation to the model
purpose. A limitation of configuration based evalua-
tion approaches is that they rely on choosing pattern
metrics, and more work is needed to identify the ones
more relevant for assessing landscape configuration
(Pickard and Meentemeyer 2019). Similar to the
findings in this study, the increased interest in
developing pattern-based evaluation metrics of land
change models recognizes the need to move beyond
pixel-level assessments (Chen et al. 2014; Pickard
et al. 2017a, b; Pickard and Meentemeyer 2019).

Conclusions

Land cover change models are increasingly used to
evaluate biodiversity and ecosystem impacts. How-
ever, for those assessments to be meaningful, careful
model evaluation is needed. This work presents

83(™evidence of the importance of incorporating informa-
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tion regarding the simulation’s purpose during model
evaluation and selection. By decomposing errors, it is
possible to assess their sources, allowing ignoring
irrelevant ones. The distinction of quantity errors,
pixel allocation errors, and stratum allocation errors
allows identifying patterns not evident when using
pixel-level metrics alone. This information permits
making better-informed decisions on model selection,
translating into meaningful assessments of model
impacts.

To increase transparency and allow more robust
applications of land change models to assess biodi-
versity and ecosystem impacts, we urge scientists to
(1) link the evaluation method to the model purpose,
(2) decompose errors to inform model assessment and
improvement, and (3) perform a sensitivity analysis, to
select the simulations more appropriate for the iden-
tified model objective.

We conclude that a pixel-level assessment of errors
fails to represent our models’ accuracy for their
intended purpose. Moreover, selecting models based
on pixel-level assessment metrics leads to the incor-
rect characterization of impacts. On the other hand,
stratified evaluation metrics, with strata related to the
purpose of the land change simulation, allowed for
identifying the model that represented biodiversity
impacts best.
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