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A B S T R A C T

This paper couples a Forward Feature Selection algorithm with Random Forest (FFS-RF) to create a transition
index map, which then guides the spatial allocation for the extrapolation of urban growth using a Cellular Au-
tomata model. We used Landsat imagery to generate land cover maps at the years 1998, 2008, and 2018 for
the Tehran-Karaj Region (TKR) in Iran. The FFS-RF considered the independent variables of slope, altitude, and
distances from urban, crop, greenery, barren, and roads. The FFS-RF revealed temporal non-stationary of drivers
from 1998–2008 to 2008–2018. The FFS-RF detected that altitude and distance from greenery were the most
important drivers of urban growth during 1998–2008, then distances from crop and barren were the most impor-
tant drivers during 2008–2018. We used the Total Operating Characteristic to evaluate the transition index maps.
Validation during 2008–2018 showed that FFS-RF produced a transition index map that had predictive power
no better than an allocation of urban growth near existing urban. Simulation to 2060 extrapolated that Tehran,
Karaj, and their adjacent cities will interconnect spatially to form a gigantic city-region.

1. Introduction

A great deal of literature exists concerning the simulation of ur-
ban growth for various cities around the globe (Gounaridis, Chori-
anopoulos, Symeonakis, & Koukoulas, 2019; Pontius Jr et al.,
2018; Rafiee, Mahiny, Khorasani, Darvishsefat, & Danekar, 2009;
Wang, Derdouri, & Murayama, 2018). These simulations require
an understanding of the growth patterns and their driving forces
(Paegelow, Camacho Olmedo, Houet, Mas, & Pontius Jr, 2013).
Identifying the main forces is a formidable challenge due to the plethora
of possible urban growth drivers. The main objectives of this

paper are to rank independent variables according to their association
with urban growth during calibration and validation time intervals, and
then to extrapolate urban growth over decades in Iran's Tehran-Karaj re-
gion.

The urban growth pattern is a function of various drivers such as
socioeconomic issues, environmental factors, and policy options, which
can operate intricately. Therefore, a diverse spectrum of growth pat-
terns from compact to sprawling might occur. One of the important
forms of urbanization is urban agglomeration, which is a phenomenon
that Geddes (1915) predicted to be the future trend of urbanization.
Studies on the spatial agglomeration of cities began as early as the
1920s, with various terms used to describe this particular urban spatial
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organization. A clear definition of urban agglomeration is still up for de-
bate and researchers have proposed a variety of terms (Howard, 1902).
Literature frequently uses the term “urban agglomeration”, while other
popular synonyms are city clusters, city group, and megalopolis. Ur-
ban agglomeration appears as a result of cooperation and competition
among cities (Fang & Yu, 2017). Urban agglomeration refers to the
extensive continuous expansion of urban areas. In other words, an ur-
ban agglomeration is the result of the coalescence of adjacent cities
(Zhang et al., 2019). This phenomenon has been unprecedentedly in-
creasing at the global level. The importance of urban clusters was re-
flected in the work of Fang and Yu (2017) who reported that the
study of urban clusters increased from very few publications as of 1952
to over thirty-two thousand publications as of 2015. Fast-growing ur-
ban agglomeration can affect the sustainability of urban areas (Zhang
et al., 2019). For example, urban agglomeration has threatened re-
gional ecotopes and changed ecosystem structures and ecological land-
scapes (Zhou, Huang, Yu, & Wang, 2015). Therefore, the detection
of emerging urban agglomerations and understanding their underlying
drivers is critical. Urban agglomerations have been extensively studied
in Asia (Wei, Taubenböck, & Blaschke, 2017; Zhang et al., 2019),
while less attention has been paid to emerging urban clusters in Iran.

Iran is the 17th most populous country in the world with a popu-
lation of more than 79 million in 2016 (Statistical Center of Iran,
2016). On a global scale, Iran has one of the highest urbanization rates,
which is mainly attributed to population growth, economic growth, and
internal migration from rural areas due to inequalities and social differ-
ences (Fanni, 2006). The distribution of Iranian cities shows an unbal-
anced spatial arrangement with vast areas of low urbanization density
and some very congested areas. The patterns of urban growth in densely
populated areas and their impact on their surrounding landscapes are
problems that have been insufficiently studied. The Tehran-Karaj Re-
gion (TKR) is a large urban area in Iran consisting of Tehran, Iran's cap-
ital, and nearby Karaj, the capital of Alborz province. TKR comprises
a cluster of small and large cities that are growing exponentially and
are spatially amalgamated (Shafizadeh-Moghadam, 2019). The re-
gion faces extensive immigration from various parts of Iran, which is
due to the concentration in TKR of industrial activities, service occu-
pations, recreational amenities, welfare facilities, and health services.
These conditions have caused unbridled development of the TKR that
originates from the lack of spatial justice in the Iranian cities, which is
a problem that has exacerbated the population imbalance in the coun-
try. The intensity of migration to the TKR has led to a sharp decline in
gardens and croplands, which transitioned to urban areas. This process
has caused many urban fringes over time. Simultaneously, neighboring
counties have evolved so that the contemporary urban areas cover a
densely populated TKR. Still, the construction process in the TKR is un-
interruptedly on-going; hence, simulation of the future pattern of urban
growth in the TKR can inform urban planning, environmental manage-
ment, and mitigation strategy.

Currently, it is feasible to discover the emerging urban clusters and
envisage their spatial patterns by using spatial models that consider
satellite imageries. Remote sensing data, in particular Landsat images,
are of great importance in providing a spatiotemporal footprint of ur-
ban areas and mapping land cover (Minaei & Kainz, 2016). Hence,
we adopt the Landsat time series to track retrospective land changes in
the TKR and to provide data to simulate the future pattern of growth
in this region. Several models have been developed to connect urban
changes with underlying driving forces, for example, Random Forest
(RF) (Gounaridis et al., 2019; Kamusoko & Gamba, 2015), Ar-
tificial Neural Networks (Pijanowski, Brown, Shellito, & Manik,
2002; Tayyebi & Pijanowski, 2014), Logistic Regression (Feng, Liu,
& Liu, 2017; Lin, Chu, Wu, & Verburg, 2011), and Support Vec-
tor Machine (Rienow & Goetzke, 2015; Shafizadeh-Moghadam, As

ghari, Tayyebi, & Taleai, 2017). Also, Moulds, Buytaert, and Mi-
jic (2015) developed an open-source package for modeling land change
through a variety of spatial models. Recognizing the relevant drivers of
change for these models is not straightforward because drivers can in-
clude redundant variables that interact in complex ways. Identifying and
ignoring non-informative variables from the modeling process is thus
critical (Kuhn & Johnson, 2013). The RF model is appealing because
RF is an approach that accounts for variable interactions, handles com-
plex relationships, and extracts variable importance. Feature selection
can increase the model fit considerably (Meyer, Reudenbach, Hengl,
Katurji, & Nauss, 2018). In our study, we apply an RF model with a
feature selection approach to rank urbanization forces and to simulate
the trajectories of urban growth over time.

2. Data and methods

2.1. Study area

This paper focuses on two adjacent megacities, namely Tehran and
Karaj, and several cities around them. Until 2010, Tehran and Karaj be-
longed to the same province and since then, Karaj has been the capital
of Iran's Alborz province. Both cities and their surrounding settlements
are highly intertwined. Fig. 1 shows the TKR in the south of the Alborz
mountain range. Tehran (35° 41′ N and 51° 23′E) is the largest urban
region in Iran, while Karaj (35°50′ N, 50°56′ E) is the fourth largest.
The population of the metropolitan areas of Tehran and Karaj is ap-
proximately 13 and 3 million, respectively (Statistical Center of Iran,
2016). TKR has 850 people per square km, which is 17 times higher
than the national average.

The trend of growth and urban expansion in agricultural areas south
of Tehran's metropolitan area, along the Karaj River and the Varamin
plain, leads to the conversion of several thousand villages into small, in-
termediate, and large cities (Habibi & Horcad, 2005). Rural areas lo-
cated along the main road networks near Tehran with inexpensive land
and weak regulation have a high potential to become urbanized. Flat-
lands, hills, mountains, and riversides are under construction. Fig. 2
shows a planned development. Physical restrictions cause urban growth
in the northern parts of TKR to be less than in other parts.

Housing has become a major problem in most megacities of Iran, par-
ticularly in Tehran and Karaj. The development of new cities has been
on the agenda to prevent the unbridled growth of existing cities and to
decentralize the population. Several new cities have been created dur-
ing the last two decades, for example, Pardis 30 km east of Tehran, An-
disheh 20 km west of Tehran, and Hashtgerd northwest Karaj. Our ar-
ticle considers a ~ 7600 square km spatial extent, including Karaj and
its adjacent counties, including Fardis, Hashtgerds, and Nazarabad, as
well as Tehran and its nearby counties including Pakdasht, Varamin, Es-
lamshahr, Robatkarim, Shahr-e-Rey, and Shahriar.

2.2. Data preparation

Landsat images of TM (May 1988), ETM+ (May 2008), and OLI
(April 2018) are our main sources of data. All maps were projected to
UTM zone 39 with a spatial resolution of 30 by 30 m. We used an RF
model to classify the pixels then modified the maps based on expert
knowledge and a majority filter to amalgamate isolated cells. Fig. 3
shows the maps of five land cover categories. Topographic maps, aerial
photos, and Google Earth served for error assessment, which measured
urban's omission error intensity and commission error intensity. Omis-
sion error intensity is the size of true urban that the map fails to show
as urban divided by the size of true urban. Commission error intensity
is the size of mapped urban that is truly non-urban divided by the size
of mapped urban. Omission error intensities and commission error in-
tensities were respectively 0% and 8% at 1998, 9% and 4% at 2008,
and 9% and 5% at 2018. Loss of urban during 1998–2018 is negligible,
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Fig. 1. Location of the study area shown on elevation.

Fig. 2. A new planned city, Pardis, to the east of Tehran. Source is www.mehrnews.com

therefore Fig. 4 shows the urban growth but not urban loss. Urban
growth during 1998–2008 and 2008–2018 was 140% and 74% of the
size of urban at the start of the respective decade. Our research consid-
ered seven independent variables, based on knowledge of the driving
forces in the study area (Hu & Lo, 2007; Shafizadeh-Moghadam et
al., 2017). Fig. 5 shows maps of the independent variables as slope,
altitude, and distance from a feature at the start of the time interval.
We include the distance from urban, crop, greenery, barren, and roads.
Road networks of 1998 and 2008 were acquired using digitization of

satellite data and high-resolution imagery. The 2018 roads layer was ob-
tained from the OpenStreetMap. Exclusionary zones are places where
urban growth is not possible due to land cover or legal restrictions (Pi-
janowski et al., 2002). At the beginning of each time interval, exclu-
sionary zones consist of water bodies and greenery, which includes pub-
lic parks and other green spaces. To improve the numerical stability of
some calculations, we standardized each independent variable by sub-
tracting its mean and dividing by its standard deviation (Kuhn & John-
son, 2013).
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Fig. 3. Land cover maps of the Tehran-Karaj Region at a) 1998, b) 2008, and c) 2018.

Fig. 4. Urban growth during 1998–2008 and 2008–2018 in the Tehran-Karaj Region.

2.3. Methods

2.3.1. Flow of methods
Fig. 6 is a flowchart of our methods. We performed two runs of an

RF model. The first run was for calibration based on independent vari-
ables at 1998 and urban growth during 1998–2008. This first run fitted

a transition index map (TIM), where higher index values show greater
transition potential for urban growth after 1998 according to the fitted
RF model. We used the Total Operating Characteristic (TOC) to eval-
uate the fit of the calibration (Pontius Jr & Si, 2014). TOC com-
pared the calibrated fit to the fit of a baseline that has larger index val-
ues closer to urban at 1998. The calibrated TIM was then updated us-
ing independent variables at 2008 to extrapolate urban growth during

4
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Fig. 5. Independent variables at 1998 for model calibration.

Fig. 6. Urban growth modeling flowchart.

2008–2018. We used TOC to validate the predictive power of the extrap-
olation during 2008–2018 and to compare its power to the power of a
baseline that has larger index values closer to urban at 2008. The TIM
that was calibrated for 1998–2008 was updated again using independent
variables at 2018 to extrapolate urban growth during 2018–2060. Cel-
lular Automata (CA) was applied with the TIMs to allocate the cells for
the extrapolated urban growth during 2018–2060. The flowchart shows
this step as the simulation during 2018–2060.

The second run of the RF model analyzes the independent vari-
ables during 2008–2018. The second RF run fitted a relationship be-
tween the independent variables at 2008 and the urban growth during

2008–2018. We performed this second run to see how the fitted rela-
tionship during 2008–2018 compares to the first run during 1998–2008.
The comparison examines the stationary of urban growth factors to re-
veal whether the urban growth drivers during 1998–2008 are the same
as during 2008–2018. The flowchart shows this comparison as the box
labeled “Temporal analysis of independent variables”.

2.3.2. Network plot and density plot
We created a network plot to explore the collinearity between pairs

of explanatory factors. A network plot shows the correlation between
pairs of explanatory variables in which more correlated pairs appear
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closer together and linked by thicker paths. Multidimensional clustering
determines the proximity of the variables within the plot. Additionally,
we created a density plot to visualize the distribution of urban growth
in relation to the independent variables at the beginning of each time
interval. A density plot is an empirical probability density as a function
of the independent variable, for example distance from urban.

2.3.3. Forward Feature Selection – Random Forest (FFS-RF)
Random Forest (RF) is a supervised data-driven algorithm made of

the reimplementation of a base learner called classification and regres-
sion tree (Breiman, 2001). We use RF to regress a binary dependent
variable that distinguishes urban growth from non-urban persistence
versus independent variables, for example, distance from initial urban.
RF is prone to the rise of model complexity as the number of indepen-
dent variables increases (Brennan, Tri, & Marcot, 2019). To alleviate
the complexity, the Forward Feature Selection (FSS) algorithm selects
relevant independent variables, which helps to decrease model complex-
ity and to facilitate interpretation. In our paper, FFS was integrated with
the RF (Meyer et al., 2018). FFS uses a subset of independent vari-
ables to train the model. The FFS re-implements the RF model many
times, which depends on the number of independent variables (Meyer
et al., 2018). Initially, the number of iterations is identical to the num-
ber of possible unique pairs of independent variables. In each iteration,
the RF is implemented and the fitted value is stored. The fit is the ratio
of the number of correctly fitted urban growth pixels to the total number
of reference urban growth pixels. Then, a pair of independent variables
that yield the best fit is selected and other variables are consequently
added to the model. This process continues as long as adding new vari-
ables improves the fit. Thus, the independent variables that collectively
account for the highest possible fit are selected for inclusion in the final
model, which then produces a Transition Index Map (TIM).

To avoid spatial overfitting (Valavi, Elith, Lahoz-Monfort, &
Guillera-Arroita, 2018), a target-oriented approach was used to eval-
uate the fit of the FFS-RF model (Meyer et al., 2018). The number
of folds for cross-validation was set to five (Kuhn & Johnson, 2013)
and the number of randomly selected independent variables to construct
each tree was set to one-third of the number of independent variables
(Breiman, 2001). The modeling process was implemented utilizing the
package Caret in the R language (Williams et al. 2019, Meyer, 2018).

2.3.4. Land allocation using Cellular Automata
In this research, Cellular Automata (CA) was employed to implement

a neighborhood effect when allocating the urban cells to simulate urban-
ization during 2018–2060. CA simulates spatiotemporal processes em-
ploying its four main components: 1 objects in any dimensional space,
2 the state of the object at a particular time point, 3 the neighborhood,
and 4 transition rules (Batty, Couclelis, & Eichen 1997; Couclelis 1985).
The most noticeable feature of the CA is transition rules, which can
influence the simulation of temporal and spatial complexities. We em-
ployed a modified CA using non-stationary transition rules (Mirbagheri
& Alimohammadi, 2017) because the synergy between urban growth
and driving factors behaves differently in different locations (Luo &
Wei 2009) and rules governing the land changes may alter in time and
space (Santé, García, Miranda, & Crecente, 2010). The non-station-
ary transition rules were defined by the transition index derived from
the calibrated FFS-RF model. Non-stationary transition rules are also in
other studies (Feng, Wang, Tong, & Shafizadeh-Moghadam, 2019;
Liu, 2009). Eq. (1) expresses the general concept of a cellular au-
tomata,

(1)

where St+1ij is the state of cell ij at time t + 1, f is a transition func

tion, Stij is the state of cell ij at time t, Ωtij is a function of the neigh-
borhood of cell ij at time t, C denotes the constraints, and N is the num-
ber of cells (Feng, Liu, Tong, Liu, & Deng, 2011). A kernel with a
5 × 5 window was used for dynamically calculating the neighborhood.
The higher the TIM value and the more urban cells neighboring a given
non-urban cell, the more chance the CA will allocate the cell as urban
growth. The annual area during 2008–2018 was used to extrapolate the
quantity of change during 2018–2060. The interval from 2008 to 2018
showed that 635,615 cells converted to urban, therefore, the size of ur-
ban growth during each of the following decades was 635,615 cells.

2.3.5. Evaluating the goodness-of-fit of transition index maps
We used the Total Operating Characteristic (TOC) to assess the TIMs

in terms of the fit of calibration during 1998–2008 and validation during
2008–2018 using the R package by Pontius Jr, Santacruz, Tayyebi,
and Parmentier (2015). The TOC is an improved version of the rela-
tive operating characteristic (ROC). The TOC compared a TIM to a map
that shows urban growth versus non-urban persistence. The TOC con-
siders a variety of thresholds for the TIM values in a sequence from
largest to smallest. Each threshold generates Hits, Misses, False Alarms,
and Correct Rejections. A Hit is a pixel of correctly simulated urban
growth, a Miss is reference urban growth simulated as non-urban per-
sistence, a False Alarm is reference non-urban persistence simulated as
urban growth, and a Correct Rejection is correctly simulated non-urban
persistence (Chen & Pontius Jr, 2010; Kamusoko & Gamba, 2015;
Pontius Jr et al., 2018). The sum of Misses and False alarms equals
the error whereas the sum of Hits and Correct Rejections equals the
agreement (Feng et al., 2019). In each TOC, the non-urban at the start
time is the maximum value on the horizontal axis and the size of urban
growth during the time interval is the maximum value on the vertical
axis. Each threshold produces a point on the TOC curve, which has a
horizontal coordinate corresponding to the size of the simulated urban
growth and a vertical coordinate corresponding to the size of Hits. The
maximum and minimum dashed lines form a parallelogram that defines
the possible space for the TOC curve. The TOC delivers results in terms
of area along the axes and in terms of intensity as the slope of the seg-
ments of the curve, e.g. additional Hit area per additional simulated ur-
ban growth area. Pontius Jr and Si (2014) gives more details regard-
ing TOC.

3. Results

3.1. Data exploration

Fig. 7 is the network plot that shows the correlation between pairs
of driving forces of urban growth. Green connections indicate posi-
tive correlations and red connections indicate negative correlations.
The strongest correlation during 1998–2008 was between distance from
roads and distance from urban, as well as between slope and alti-
tude. Slope and altitude are highly correlated during 1998–2008 and
2008–2018. The distance from road, distance from urban, and distance
from crop also show strong correlations. These relationships notify the
importance of the coupling feature selection in this study because sev-
eral independent variables convey a high degree of redundant informa-
tion.

Fig. 8 shows the urban growth during 1998–2008 and 2008–2018
concerning the independent variables at 1998 and 2008, respectively.
The urban growth was mostly concentrated in lower altitudes and lower
slopes during the first interval, then the urban growth shifted towards
higher altitudes during the second interval. The urban growth is inten-
sive near green spaces during the first time interval then shifts to far-
ther distances during the second time interval. Comparatively, the urban
growth during the second time interval is found around the already ur-
ban areas. Both intervals experience urban growth nearer to the roads
and crops.
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Fig. 7. Network plot to visualize correlations between pairs of independent variables during 1998–2008 and 2008–2018.

Fig. 8. The urban growth during 1998–2008 and 2008–2018 as a function of the independent variables at 1998 and 2008, respectively.

3.2. Behavior of the FFS-RF model

The FFS-RF iterates based on the sequential inclusion of indepen-
dent variables. Fig. 9a and c show the results of this process where the
horizontal axis shows the number of model iterations and the vertical
axis indicates the accuracy of the fit. The modeling process was car-
ried out 36 iterations for the calibration during 1998–2008 and 26 it-
erations for the detection during 2008–2018. Fig. 9a shows that six in-
dependent variables produce the best fit while the addition of the sev-
enth variable decreases the fit, thus Fig. 9b shows six variables. Fig.
8c shows that the inclusion of a third variable does not increase fit sub

stantially during 2008–2018, therefore Fig. 8d shows two variables.
Fig. 9b shows that during 1998–2008 the variables' order of importance
is: distance from greenery, altitude, and distance from crop, urban, road,
and barren. Fig. 9d shows that during 2008–2018, the variables' order
of importance is the distance from crop and barren. The remaining inde-
pendent variables were excluded as either negligible or counterproduc-
tive (Ludwig et al., 2019).

3.3. Transition Index Maps

One of the intermediate results of urban growth simulation models
is the TIM. The TIM gives each pixel a relative index for urban growth

7
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Fig. 9. a) Goodness-of-fit of the FFS-RF model during 1998–2008 calibration, b) the relative importance of variables during 1998–2008, c) goodness-of-fit during 2008–2018 detection,
and d) the relative importance of variables during 2008–2018.

using a continuous range of values from 0 indicating no potential to 1
indicating the full potential of urban growth. Fig. 10a shows the TIM
to extrapolate urban growth between 2008 and 2018. Fig. 10b shows
the TIM to extrapolate urban growth beyond 2018. The earlier derives
from independent variables at 2008, and the latter derives from inde-
pendent variables at 2018. Most of the suitable regions are located in the
south of the study area, particularly in the south of Tehran and Karaj,
and southwest of Tehran. Another striking patch is Lavasan, situated
11 km northeast of Tehran, which has witnessed widespread construc-
tion during recent years. Fig. 9b shows that Lavasan has relatively high
potential, hence the future extrapolation concentrates the urban growth
near Lavasan. A very high index is also observed between Tehran and
Karaj and between other cities in the region such as Pakdasht, Varamin,
Eslamshahr, Robatkarim, Shahr-e-Rey, and Shahriar. High-ranking TIM
values exist southeast of Tehran, including Varamin, Qarechak, Pak-
dasht, and Pishva. The towns surrounding the south and southeast of
Karaj such as Mahdasht, Mohammadshahr, Malard, Andisheh, and Qods
also show relatively high growth potential. Karaj-Hashtgerd in north-
west Karaj has substantial potential for growth, though it is much lower
than in south Karaj. Both maps show that the distance from urban is as-
sociated with the highest growth potential. The TIMs show also the ef-
fect of the distance from roads.

3.4. The goodness of fit using the Total operating characteristic

Fig. 11 shows the TOC curves for (a) calibration during 1998–2008
and (b) validation during 2008–2018. Maps of distance from urban ar-
eas at 2008 and 2018 were considered as TIMs and evaluated using the
TOC to establish a baseline for comparison to the FFS-RF models. The
maximum value on the horizontal axis in Fig. 11a and b is the size
of non-urban at 1998 and 2008, respectively. The size of urban growth

during 1998–2008 and 2008–2018 is 1084 and 573 square km respec-
tively, thus those are the maximum values on the vertical axes. The up-
per left corner of the TOC parallelogram has a horizontal coordinate
that matches the size of the reference urban growth. The point on the
TOC curve at that horizontal coordinate indicates that the sum of Misses
and False Alarms is 3.4 times larger than Hits for the validation of both
FFS-RF and the Baseline. The Area Under the Curve (AUC) is 92% and
82% respectively for the FFS-RF and the Baseline for the calibration dur-
ing 1998–2008. The AUC is 81% and 82% respectively for the FFS-RF
and the Baseline for the validation during 1998–2008. The validation
curves are nearly identical for FFS-RF and Baseline. Fig. 12 superim-
poses the reference maps at 2008 and 2018 with the simulated map at
2018 where the quantity of simulated change equals the quantity of ref-
erence change. The three-map comparison reveals the spatial distribu-
tion of Hits, Misses, False Alarms, and Correct Rejections. Hits and False
Alarms are near the urban at 2008. The simulation missed the urban
growth that was farther from urban at 2008.

3.5. Simulating the future pattern of the Tehran-Karaj Region (TKR)

Fig. 13 shows the simulated urbanization from 2018 to 2060. The
TIMs cause the simulated maps to extrapolate urban from cropland
in the south. Simulated maps show that cropland shrink by 80% by
2060. Tehran, Karaj, and other surrounding cities become spatially in-
terconnected. Tehran's counties experience widespread growth towards
the south and southeast, in counties such as Pakdasht, Varamin, Es-
lamshahr, Robatkarim, Shahr-e-Rey, and Shahriar, Qarechak, and Pak-
dasht. Lavasan expands considerably. Northwest Karaj also grows in
Nazarabad and Hashtgerd. The urban expansion continues in the high
altitudes north and east of Tehran.
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Fig. 10. Transition Index Maps showing (a) the potential of urban growth during 2008–2018 based on variables at 2008, and (b) the potential of urban growth after 2018 based on
variables at 2018. The magenta color indicates the exclusionary zone where no urban growth occurs due to limitations including greenery and water. Readers of the black & white paper
version of this article should access the digital version to see the colors.

4. Discussion

4.1. Monitoring urban growth in the TKR

Scientists have conducted extensive urban agglomeration studies
in North America (Hajrasouliha and Hamidi 2017), Europe (Krehl &
Siedentop, 2019; Salvati & Gargiulo Morelli, 2014), and East Asia
(He et al. 2019), but less attention has been paid to emerging urban
agglomerations in West Asia, specifically Iran's capital, Tehran. Growth
around Tehran emerged in many ways, such as the expansion of sur-
rounding cities, the conversion of villages to cities, and the creation
of cities. Consequently, urban centers around Tehran expanded rapidly.

The economic, social, and physical relationships between Tehran and
neighboring cities entered a new phase that eventually led to the forma-
tion of an emerging urban agglomeration.

Monitoring urbanization in the TKR showed that urban growth dur-
ing the first interval, 1998–2008, was approximately twice that during
the second interval, 2008–2018. Our understanding of the study area
and historical context of the driving forces guided us to select the latter
time interval to extrapolate the amount of change in the future. Growth
during 2008–2018 was 573 km2 per decade, thus the extrapolation be-
yond 2018 assumes an increase in the urban area of 57.3 km2 per year.
We allocated the annual number of pixels by using the transition index
map and the CA model.
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Fig. 11. Total Operating Characteristic for evaluation of urban growth for (a) FFS-RF calibration during 1998–2008 and distance from urban at 1998, and (b) FFS-RF validation during
2008–2018 and distance from urban at 2008.

Fig. 12. The map of accuracy and error by superimposing the reference maps at 2008 and 2018 with the simulated map at 2018.

4.2. Temporal evaluation of driving forces of urban growth in the TKR

The spatiotemporal process of urban growth in the TKR is a prod-
uct of continuous dynamics of centralized and decentralized forces and
is produced and reproduced across various time intervals, due to the
strength or weakness of the influencing factors. These forces during
any given time interval have influenced the process of urban growth
in Tehran's urban agglomeration either due to general principles and
regulations such as the principle of economies of scale and agglomer-
ation, or driven by incentives in the form of policies, plans, and pro-
grams. Driving forces come with the complex interactions between the
social and biophysical features of the region. Previous studies explored
the local operation and spatial non-stationary of urban growth drivers

(Mirbagheri & Alimohammadi, 2017; Shafizadeh-Moghadam &
Helbich, 2015). Our paper investigated the temporal effect of some fac-
tors that affected urbanization during 1998–2008 and 2008–2018.

One of the advantages of using the RF algorithm is the ranking of
the independent variables to explain urban growth. Fig. 9 shows that
the most important variables during the first time interval were in se-
quence of importance: distance from greenery, altitude, distance from
crop, distance from urban, distance from road, and distance from barren.
The slope was not an important independent variable during the first
time interval. Fig. 8 shows that urbanization is relatively more dense
closer to greenery and on lower altitudes. During the second time in-
terval, the most important factors of urban growth were only distance
from crop and distance from barren. This shows there is not a stable
relationship between urban growth over time and the detailed driving
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Fig. 13. Urban growth simulation in the Tehran-Karaj Region from 2018 to 2060.

forces that FFS-RF finds. Results of feature selection during 2008–2018
are consistent with the field observations that construction has occurred
relatively more intensively where barren land was available. Riversides,
hilly areas, and tops of mountains are among the places that have been
intensively constructed during recent years. On the other hand, crops
and gardens have exponentially disappeared in favor of extensive con-
structions. For example, Karaj was previously known for its extensive
gardens and favorable climate, but now, a large portion of previous gar-
dens are urban. These results are confirmed by the land use map (Fig. 3)
and urban growth map (Fig. 4), where urban growth during 1998–2008
showed a pattern of infill, but during 2008–2018 showed a pattern of ex-
pansion to the south and east of Tehran, also between Tehran and Karaj.
Our results are in line with previous studies that high-quality croplands
around cities are consumed by urban expansion (d'Amour et al., 2017;
Jiang, Deng, & Seto, 2013; Liu et al., 2019; Song, Pijanowski, &
Tayyebi, 2015).

4.3. FFS-RF compared to a baseline model

Fig. 11a shows that the FFS-RF model has a slightly better fit to
the calibration data than the baseline model of proximity. This means
that the FFS-RF discovered variables that have a better fit to the cali-
bration data during 1998–2008 than a baseline fit of the distance from
1998 urban. However, Fig. 9 shows the detailed pattern that the FFS-RF
detected during 1998–2008 did not continue into the subsequent time
interval. Therefore, Fig. 11b shows that the FFS-RF model calibrated
during 1998–2008 has predictive power not greater than a baseline
model of distance from urban at 2008. Urban expansion occurred near
the existing urbanized areas during both time intervals. Consequently,
a prediction that urban will grow near the existing urbanized areas has
predictive power slightly greater than the FFS-RF model. In short, the
FFS-RF model detected ephemeral details, thus has predictive power
no better than a much simpler model that assumes future urbanization
will continue to grow near previous urban. Other applications of land

change modeling have found similar results, meaning a simple base-
line model has greater predictive power than a more complex model
(Pontius Jr et al., 2007). Most of the papers we found in the litera-
ture never compare a simple baseline model to the more complex model
that the paper endorses. The baseline model has a larger AUC than the
FFS-RF model during the validation interval, which is one decade. How-
ever, the extrapolation extends beyond four decades, which means the
extrapolation extends into outlying areas (Wilson, Hurd, Civco, Pris-
loe, & Arnold, 2003). The FFS-RF distinguishes among the various
characteristics of areas that are far from the urban at 2018, which are
characteristics that the baseline model does not distinguish.

4.4. Considerations of urban growth in the TKR

The expansion of TKR has always been accompanied by the con-
tinuous influx of population into the peripheral areas and loss of open
and natural spaces. The TKR lacks an efficient and integrated mecha-
nism for controlling urban agglomeration expansion. The natural envi-
ronment around this region has witnessed environmental degradation,
widespread change of agricultural and natural environments, and in-
tensification of types of speculative intrusions and uncontrolled con-
struction (Dadashpoor, Azizi, & Moghadasi, 2019; Daneshpour &
Tarantash, 2017; Ghamami, Khatam, Atahari, & Offsar, 2007; Mi-
naei, Shafizadeh-Moghadam, & Tayyebi, 2018). Due to the mas-
sive scale and speed of urbanization, the environmental problems in
the cities of developing countries are much greater than elsewhere
(Atash, 2007). For example, over-concentration of economic activities
and people, as well as an increasing vehicle fleet has led to air pollution
in cities like Tehran (Atash, 2007). Extrapolation during 2018–2060
shows an urban increase of 2.4 thousand square kilometers. If recent
trends continue through 2060, then these problems will be intensified
in the future considering the emergence of interconnected urban areas
in the TKR according to the simulated map. Urban planners and deci
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sion-makers would have to make bold decisions soon if they want to
avoid the current trajectory.

5. Conclusion

This article integrated a forward feature selection (FFS) algorithm
with the Random Forest (RF) model to examine the driving forces of ur-
ban growth during 1998–2008 and 2008–2018, and then to extrapolate
the growth pattern during 2018–2060 in the TKR, which is an emerg-
ing urban agglomeration area in Iran. The independent variables that
FFS-RF selected during the first time interval were different from the in-
dependent variables during the second time interval, implying that the
FFS-RF found non-stationary urban growth drivers through time. For
comparison to the FFS-RF, a baseline model assumed urban growth oc-
curs simply near the urban at the start of each time interval. TOC valida-
tion through time shows that the predictive power of the FFS-RF model
is no better than a baseline model of an urban expansion near the ex-
isting urban. This demonstrates how the distance to the existing urban
areas can be a desirable approach for simulating urban growth, espe-
cially for regions that lack data concerning the variety of possible dri-
ving forces. One of our limitations is the lack of socio-economic data and
master plans. It is not clear whether such data would have increased the
predictive accuracy of the FFS-RF. An important lesson of our article is
that modelers should always compare a sophisticated model to a base-
line model during extrapolation through a validation time interval that
extends beyond the calibration time interval.

Our model's extrapolation shows that the TKR becomes a gigantic in-
terconnected urban entity by 2060. The model assumes that the recent
driving forces of urban growth will continue during the coming decades.
However, driving forces and their importance have changed over time
and can change again in the future. Thus, policymakers must appreciate
that decisions today can modify trajectories so to attain a future that is
more desirable than the model's extrapolation of recent trends.
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