PARALLEL STOCHASTIC ASYNCHRONOUS COORDINATE
DESCENT: TIGHT BOUNDS ON THE POSSIBLE PARALLELISM*

YUN KUEN CHEUNGT, RICHARD COLE}, AND YIXIN TAOS$

Abstract. Several works have shown linear speedup is achieved by an asynchronous parallel
implementation of stochastic coordinate descent so long as there is not too much parallelism. More
specifically, it is known that if all updates are of similar duration, then linear speedup is possible
with up to @(Lmax\/ﬁ/Lm) processors, where Lmax and Lyss are suitable Lipschitz parameters.
This paper shows the bound is tight for almost all possible values of these parameters.

Key words. stochastic asynchronous coordinate descent, parallelism bound

AMS subject classifications. 90C25, 68W10, 60G50, 68Q99

1. Introduction. Very large scale optimization problems have arisen in many
areas such as machine learning. A natural approach for solving these huge problems is
to employ parallel and more specifically asynchronous parallel algorithms. As common
wisdom suggests, when a small number of processors are used in these algorithms,
(linear) speedup can be achieved; but when too many processors are involved and
when they are not properly coordinated, there may be undesirable outcomes. (Recall
that speedup is defined as the ratio of the algorithm’s execution time on a single core
and its parallel execution time. Linear speedup means the speedup is linear in the
number of cores.)’ Typically, the bound on the number of processors is implicit and
is expressed in terms of the maximum number ¢ of basic iterations, namely single
coordinate updates, that can overlap. In many scenarios ¢ will be a small multiple
of the number of processors or cores. In many earlier works the notation 7 was used
instead of ¢.2

This paper considers asynchronous implementations of stochastic coordinate de-
scent (SCD) applied to smooth convex functions f : R™ — R. Several recent works [3,
2, 1] quantify how large ¢ can be in this context while guaranteeing linear speedup.®
More precisely, they showed: if at any time at most ¢ < ¢ updates can overlap, then
linear speedup is guaranteed. The goal in these works was to demonstrate as large
a value of ¢ as possible. Note that these results provide lower bounds on the actual
value of q.

*Submitted to the editors DATE. Authors are listed in alphabetical order.

Funding: Yun Kuen Cheung would like to acknowledge Singapore NRF 2018 Fellowship NRF-
NRFF2018-07 and MOE AcRF Tier 2 Grant 2016-T2-1-170. The work of Richard Cole and Yixin
Tao was supported in part by NSF Grants CCF-1527568 and CCF-1909538.

fRoyal Holloway University of London (yunkuen.cheung@rhul.ac.uk, http://cs.rhul.ac.uk/
~cheung/) Part of the work done while this author was a postdoctoral fellow at Max-Planck In-
stitute for Informatics, Saarland Informatics Campus and Singapore University of Technology and
Design, and also during two visits to the Courant Institute, NYU in the summers of 2017 and 2018.

fCourant Institute, NYU (cole@cs.nyu.edu, https://cs.nyu.edu/cole/)

8Courant Institute, NYU (yt851@nyu.edu, https://tomtao26.github.io/). Yixin Tao is now a
postdoc at LSE.

n optimization, we compare the times of two executions that achieve a given level of accuracy.

2We chose the notation q to emphasize its likely similarity to p, the number of processors.

3Many of these results hold for composite functions, i.e., functions of the form f(x) = g(x) +
> b1 ¥i(xk), where g : R — R is a convex function with a continuous gradient, and each Wy, :
R — R is a univariate convex function, but may be non-smooth.

1

This manuscript is for review purposes only.

mailto:yunkuen.cheung@rhul.ac.uk
http://cs.rhul.ac.uk/~cheung/
http://cs.rhul.ac.uk/~cheung/
mailto:cole@cs.nyu.edu
https://cs.nyu.edu/cole/
mailto:yt851@nyu.edu
https://tomtao26.github.io/

46

ot Ot Ot Ot Ot Ot
Y UL R W N =

60

61
62

66

2 Y. K. CHEUNG, R. COLE, AND Y. TAO

The best existing lower bound is § = Q(yv/NLmax/Liss), where L.y and Liss
are Lipschitz parameters defined in Section 2.* Intuitively, one can view this as a
lower bound on the possible parallelism supporting linear speedup; for if there are p
processors at hand, and if the durations of the updates vary by at most a factor of d,
then ¢ < (d+1)(p — 1), so achieving linear speedup with up to ¢ updates overlapping
implies linear speedup occurs with p =1+ ¢/(d + 1) processors.

We present the first work concerning the inverse problem: to identify a value g,
such that if ¢ > g, then this can lead to an undesirable outcome.

Main result: The lower bound of Q(\/nLmax/Lzss) is asymptotically tight.
(An undesirable outcome can occur if § > ¢ v/nLmax/ Lres
for a sufficiently large constant ¢.)

We will present an adversarial family of functions with the following property: if
q exceeds O(y/nLyax/Liss) significantly, then there is an asynchronous schedule for
which with high probability very rapid divergence occurs for a very long time. The

function family uses a dimensionless parameter ¢ = O(T LW%), which is approxi-
max

mately the inverse of the possible parallelism.
We use the following function family, f. : R — R:

n

(11) F) =) + 5 <Z> 7

i=1
for any e satisfying 4/n < e < 1. As we shall see, Lyax = 1 and Lz = Q(ey/n) for
this function family; thus the existing lower bound on the parallelism achieving linear
speedup is Q(v/nLmax/Liss) = Q(1/€). To obtain bounds using arbitrary values of
Lax one can simply multiply f. by Lyax, which also increases Liss by an L.« factor.

Next, we discuss more precisely how we achieve this result. Recall that the per-
formance of a sequential SCD algorithm is expressed in terms of its convergence rate.
On strongly convex functions, it has a linear convergence rate, meaning that each
update reduces the expected value of the difference f(x)— f* by at least an (1 —a/n)
multiplicative factor, for some constant o > 0, where f* denotes the minimum value
of the function. Consequently,

(12) (i) -] = (1-2) () - 7).

For our proposed function f., which is strongly convex, we will show that for a suitable
initial point x°, for some constant o/ > a,

* CV/ ‘ *
(1.9 Bl - £] = (1-2) () - £2).
and hence sequential SCD achieves no more than a linear convergence rate in general.

For the function f., we will show that o = % and o’ = 2.

To achieve linear speedup with a parallel algorithm means that the same conver-
gence rate holds, up to constant factor, i.e., the a might be reduced by a constant

factor ¢ > 1, but no more:
«

(1) E[f) -1 < (1-2) (6 -).

cn

4Here, we focus on the case where the step-size used in the asychronous SCD algorithm is 1/ Lmax;
we will discuss the cases with smaller step-sizes later in the introduction.

This manuscript is for review purposes only.

b I B B B |
U = W N

=~

-3
1

TIGHT PARALLELISM BOUNDS FOR ASYNCHRONOUS SCD 3

where ¢ is now the overall number of iterations performed by the various cores.” This
means that to guarantee a particular accuracy, the total number of iterations for a
parallel execution is no more than a constant multiple of the number of iterations
needed on a single core (so long as o < n/2).

Prior work has shown that linear speedup is achieved when ¢ < é/nLyayx/ Liss for
some constant ¢ > 0. To achieve our main result, we show that for the function family
fes when q > €/nLyayx/Liss for some constant ¢ > ¢, as an adversary, it is possible
to pick asynchronous schedules such that for all + < n'® (or more generally, for any
constant ¢ > 1, for all ¢ < né)7

E[f(x") —] > Q@Y7) - (f(x°) - f7)

for large enough n (in general, when n = Q(c*)). This indicates that when ¢ is too
large, linear speedup cannot be achieved in worst-case scenarios.

The above upper bound on ¢ holds when the step-size is 1/Lyax. One might
wonder what would happen if we reduced the step-size to 1/T" for some T' > Lyax.
Would the permissible parallelism bound increase significantly, thereby improving the
overall speedup? In fact, we show that the upper bound on ¢ increases to at most
O(T\/n/ Lyes), for any Lyax < T' < O(Lyesy/n). Since this increase is by a factor of
at most O(I'/Liax), but the step-size is reduced by a factor of I'/ Lyax, the overall
speedup cannot improve by more than a constant factor. This upper bound is also
asymptotically tight, as there were matching lower bounds for these choices of step-
sizes [1].

Prior Work and Asynchrony Models. First, note that the bound on ¢ is ensuring
the asynchrony is bounded, and so we call it g-bounded asynchrony. Some require-
ment of this sort is unavoidable, otherwise there could be updates of arbitrarily long
duration, which, when they commit, could undo an arbitrary amount of progress.

In addition to the g-bounded asynchrony assumption, we need to specify how the
asynchronous environment affects the read operations. There are two models con-
cerning how coordinates are read in asynchronous environments, namely “consistent”
and “inconsistent” reads. Our upper bound applies to both models. Next, we discuss
their differences.

Liu et al. [3] gave the first bound on the parallel performance of asynchronous SCD
on convex functions, showing linear speedup when ¢ = O(y/nLpax/Lyes) assuming a
consistent read model, where L5 is another Lipschitz parameter defined in Section 2.
We note that L,os = Ls for the function family f. we will be analyzing in this paper.
In fact, as we shall see, Lys is equal to L. on all quadratic functions f, i.e., f is
of the form x"Ax + b"x + constant, where A is an n x n matrix, and b is an n-
vector. In the consistent read model, all the coordinate values a processor reads when
performing a single update on one coordinate may be out of date, but they must have
been simultaneously current at some moment. To make this more precise, we view
the updates as committing at integer times ¢t = 1,2,..., and we write x* to be the
value of x after the update at time ¢. The consistent reads model requires the vector
of x values used by the time ¢ update to be of the form x'~7 for some 7 > 1.

Consistent reads create a substantial constraint on the asynchrony, and so subse-
quent works sought to avoid this assumption. To this end, Liu and Wright [2] proposed

5Liu et al. [3] and Liu and Wright [2] call this near-linear speedup, reserving the term linear
speedup for the case when ¢ = 1.

This manuscript is for review purposes only.

112
113
114

132

134
135
136
137
138
139
140

141
142

143
144
145

146

147
148

4 Y. K. CHEUNG, R. COLE, AND Y. TAO

the inconsistent reads model. Allowing inconsistent reads means that the x values
used by the time ¢ update can be any collection of the form (2t~ ™, ... 2!~ 7), where
the 7;’s can be distinct; the ¢g-bounded asynchrony assumption implies that 1 < 7; <g¢
for each j. Liu and Wright showed that linear speedup (including the more general
case of composite functions) can be achieved for g = O(n1/4\/Lmax/\/Lres), i.e., the
square root of the previous bound. There remained several constraints on the pos-
sible asynchrony, in addition to the g-bounded asynchrony, as pointed out by Mania
et al. [4] and subsequently by Sun et al. [5]. The latter works also gave analyses
removing some or all of these constraints, but at the cost of reducing the bound on
g. Finally, Cheung, Cole and Tao [1] gave an analysis achieving linear speedup for
q = O(y/nLmax/Lzss), again for composite functions, with the only constraint being
the g-bounded asynchrony.

In this paper we show the bounds in [3] and [1] are asymptotically tight for almost
all possible values of Lyax, Lres, and Lyss for the function family (1.1).

2. Notation. Let e; denote the n-vector in which the j-th entry is 1 and every
other entry is 0.

DEFINITION 2.1. For any coordinates j, k, the function f is Ljj-Lipschitz-smooth
if for anyx € R™ andr € R, |V f(x+7-€;)=Vif(x)| < Lji-|r|; it is Lyes-Lipschitz-
smooth if, for all j, |V f(x+7-€;) =V f(x)|| < Lyes-|r|. Finally, Lyax = max; Lj;

. N\ /2
and Lyss = maxy (ijl(ij))

Observe that for the function f. we are considering,
(2.1) Vifex) = (1—€) - zj+e- Y
i=1

Consequently, Lyax = 1, and Ligs = /1 4 (n — 1)e2 = O(ey/n), for e = Q(1/4/n).

The difference between L..s and Ltss. In general, Lyss > Lics. Lres = Liss when
the rates of change of the gradient are constant, as for example in quadratic functions
such as xTAx + bTx + c¢. We refer the reader to [1] for a discussion of why Lyes is
needed in general for the analysis in [1].

Next, we define strong convexity.
DEFINITION 2.2. Let f : R™ — R be a convex function. f is strongly convex with
parameter p > 0, ’LffO?” all x,Y, f(y) - f(‘r) 2 < Vf(.’l)) y Y — T > + %u”y - ‘er

A simple calculation shows that the parameter p for our function f. has value
(1 —€); see Lemma A.1 in Appendix A.

The update rule. Recall that in a standard coordinate descent, be it sequential
or parallel and synchronous, the update rule, applied to coordinate j, first computes
the accurate gradient V; f(x'~!), and then performs the update given below.

_ V,f(xt=1)
t—1

and for all k # j, i « xz_l, where I' > L.« is a parameter controlling the step
size.

This manuscript is for review purposes only.

149
150
151
152

153

TIGHT PARALLELISM BOUNDS FOR ASYNCHRONOUS SCD)

However, in an asynchronous environment, an updating processor might retrieve
outdated information % instead of x*~!, so the gradient the processor computes will
be V; f(X), instead of the accurate value V; f(x'~1). Hence the update rule is in the
asynchronous environment is

t t-1_ Vj f (i)

We want to show that for any fixed constants ci,co > 1, fo(x!) — f* is rapidly

growing for ¢ < ¢ - n§ with probability at least 1 — 1/n°2.

2.1. The Stochastic Asynchronous Coordinate Descent (SACD) Algo-
rithm. The coordinate descent process starts at an initial point x° = (29, 29,--- ,29).
Multiple processors then iteratively update the coordinate values, and for our analysis
we assume that at each time, there is exactly one coordinate value being updated,

which we can do, as we are choosing the asynchronous schedule.

Algorithm 2.1 SACD Algorithm for Smooth Functions.

Input: The initial point x° = (29,29, ,20).

Multiple processors use a shared memory. Each processor iteratively repeats the
following four-step procedure, with no global coordination among them:

Step 1: Choose a coordinate j € {1,2,--- ,n} uniformly at random.
Step 2: Retrieve coordinate values Z from the shared memory.
Step 3: Compute the gradient V, f(%).

Step 4: Update coordinate j using rule (2.3) by atomic addition.

2.2. Asynchrony Assumptions, Basic Set-up and Terminology Used in
the Construction. In our construction, updates are made in phases. In each phase,
q updates are made in parallel by ¢ processors. As in Step 1 of Algorithm 2.1, each
processor chooses a coordinate to update. Since these processors are uncoordinated,
they choose coordinates randomly and independently, and thus it is possible that some
of them choose the same coordinate within a phase. Then, for every coordinate, each
processor retrieves the value that was up to date at the end of the previous phase.

Note that x9¢ denote the up-to-date values immediately after the ¢-th phase. The
starting point x° can be viewed as the up-to-date values following the (non-existent)
0-th phase. For each ¢ > 0, in the (¢4 1)-st phase, each of the ¢ processors performs
the following sequence of steps:

e it picks a coordinate k randomly and independently to update;

e it retrieves x% and then computes Vy, f(x%);

e it increases the value of zj in the main memory by —V f(x%)/T", using an
atomic addition operation.

Note that in a single phase a particular coordinate might be chosen two or more
times. If coordinate k is chosen b times in the (¢ 4+ 1)-st phase, the value of x) after
the (¢ + 1)-st phase is xze —b- Vi f(x)/T.

3. The Result. Cheung, Cole and Tao [1] showed the following upper bound
on the performance of asynchronous stochastic coordinate descent on strongly convex

This manuscript is for review purposes only.

182
183

184

185

186
187

188
189
190
191
192
193
194
195
196
197
198
199

202
203
204

6 Y. K. CHEUNG, R. COLE, AND Y. TAO

functions, where x* is a minimum point for the convex function.

THEOREM 3.1. i. Suppose the asynchronous updating is run for exactly t updates.

Vi Ty
2707 270 Lyes

Also suppose that q¢ < min{
then

}. If f is strongly convex with parameter p,

B [x) ~ 76 < (1 g 1) (F0) = f0)

1. This result holds for all ¢ < 11;\L/rﬁe if the asynchronous schedule obeys the Strong
Common Value assumption.

The Strong Common Value assumption, specified in [1], captures a substantial
class of asynchronous schedules including the consistent read constraint from [3], and
all the schedules to which the analysis of Liu and Wright [2] apply, and more. The
complementary construction in this paper observes the consistent reads condition,
which is the most restrictive of these constraints. Consequently, our goal is to show
that for ¢ = Q(I;—ﬁ) convergence with linear speed-up is not guaranteed. In fact, we
will show that there is no convergence for most values of ¢ obeying this constraint.
To achieve this it suffices to show there is a single asynchronous schedule observing
the consistent read condition for which there is no convergence.

First, in Appendix A, we will prove the following theorem, which shows that the
sequential stochastic coordinate descent on our function f. when starting at the point
x0 = (=1,41,—1,+1,...) achieves a convergence rate that is at most a constant
factor faster than the convergence rate given in Theorem 3.1. Recall that y =1 —€
for fe.

PROPOSITION 3.2. Let x° be the point with even-indexed coordinates equal to +1
and odd-indexed coordinates equal to —1. Suppose the sequential stochastic coordinate
descent is run for t steps on function f. starting at point 2°. Then

E[f.(x}) - f.(x")] > (1— 21

2 050) (6 - 1),

This result shows that for the function f., the speedup guaranteed by Theorem 3.1
is indeed a linear speedup of the performance of the sequential SCD.

Now, we come to our main results.

Our analyses look at phases of ¢ successive updates when the coordinate descent
(Lres)2_1

in Algorithm 4 is applied to the function f = Lyax - fe in (1.1) with € = Fmax s
The first result states that the expected value of f(x) — f* grows by at least a factor
of 4 from phase to phase.

THEOREM 3.3. Suppose that Lies > Lmax (1+8/n) and q > %. Then

there is an asynchronous schedule for which the coordinate descent diverges when
applied to the function f. Specifically, for every t = rq, with r > 1 an integer,

E[f(x') = f] = 4W970 (F(x%) = f7).

If Lies > 2Lmax (i.e. € > +/3/(n — 1)), the constraint on q becomes q > jgz/js'

This manuscript is for review purposes only.

235
236
237
238
239
240
241
242

243

244
245
246

TIGHT PARALLELISM BOUNDS FOR ASYNCHRONOUS SCD 7

When L.os > 2Lax, Theorem 3.3 states that once ¢ exceeds the bound in The-
orem 3.1(ii) by a constant factor, in order to have any possibility of convergence,
let alone linear convergence, I' has to increase at the same rate as ¢q. Note that the
upper bound on the rate of convergence decreases linearly with I', so this says that
increasing ¢, the number of parallel updates, beyond this bound cannot increase the
parallel runtime by more than a constant factor at best.

However, one might wonder if this divergence in expectation is a low probability
event. Our next result shows that for most values of ¢ < n it is in fact a high
probability event.

THEOREM 3.4. Let c1,co > 1 be constants, let ¢ = ¢1 + co, and suppose that

€Lmax’ € log n

n
Z>g> max{ 8T 10(c+1) logn })
e

q

For each c1,co > 1, with probability at least 1 — 1/n2, there is an asynchronous
schedule for which the coordinate descent diverges for at least q - n°* updates when
applied to the function f. Specifically, for every t = rq with 1 <r < n° an integer,

Fh) =1 > AW (p(x0) —).

If Lies > 2Lmax, the conditions % >q > max{i/ﬁgl;\r/z, 200(c$:1§)LLr:ax\/ﬁ} and n >

‘ 5/2
(7544\(/?1) . —%"af) suffice.

Thus the comments in the paragraph after Theorem 3.3 apply here too, so long as
the stated bounds on n hold.

Finally, one might wonder what happens to the value f(x) — f* during a phase.
Could it be small at any time? As it happens, with our schedule the value oscillates
a lot, but the next and final result shows that with high probability it remains large
at all times.

THEOREM 3.5. Let ¢1,co > 1 be constants, let ¢ = ¢y + c2, and suppose that
Lies > 2Lmax, n > 400c*(c + 2)°, and

8T'v/n L Al
\/gLres Lmax

o3

qumax{ , 200(0—1—2)}.

For each c1,co > 1, with probability at least 1 — 1/n2, there is an asynchronous
schedule for which the coordinate descent diverges for at least q - n°* updates when
applied to the function f. Specifically, for every 1-n°,

PO = > Al (p(x0) —),

n

Once more, the comments in the paragraph after Theorem 3.3 apply.

The three theorems incorporate general choices of I'; ¢; and ¢y. In Theorems 3.4
and 3.5, if we pick ¢, ¢y to be large enough constants (for example, both are 10 —
which corresponds to a 1/n'? failure probability over the course of ¢-n'® updates), the
conditions on n and ¢ reduce to n > O(1) and n/e > q > O(I'v/n/Lyes), respectively.

This manuscript is for review purposes only.

260
261
262
263
264
265
266
267
268

269
270

275
276
277
278
279
280
281
282
283
284
285

286

287
288

8 Y. K. CHEUNG, R. COLE, AND Y. TAO

4. Analysis. We consider running SACD with ¢ processors on the function

n

n 2
109 = e | 5 3w 4 5 (3o |

i=1

for any e satisfying 4/n < e < 1. We prove each theorem in turn.

We choose the initial point to be the all ones point, x° = (+1,+1,...,+1). For
¢ >0, let y* denote the up-to-date values of the coordinates immediately after the
(-th phase, i.e. y* = x%. Also, let

Gt

n

Eyﬁ‘ and M2 max |yi.
=1,2,,n

k=1

4.1. Proof of Theorem 3.3. The key claim, implying exponential growth in
the value of f(x) at the end of each successive phase of ¢ updates, is given by the
following lemma.

LEMMA 4.1. Ife > % and q > Efi then for all ¢/, E [GZ] > 2(@G0,

Proof. The proof is by induction. The claim clearly holds for ¢ = 0.

Now suppose the result holds for some ¢ > 0. Without loss of generality, we assume
Z;L:I yf > 0; the other case will be symmetric. In the (¢ + 1)-st phase, there are ¢
updates. Each update picks a coordinate k; by Equation (2.1), the update reduces its
value by

n
(=i +ed y

j=1

-)yt + eGl] .

r

Lmax
r

:| _ Lmax

The expected reduction due to ¢ updates is at least

Lmax 1 3q€Lmax
a I‘a . [eGé— n(l—e)Gz] > %~G€ (as ne > 4)
> 3G* (as ¢ > EL‘fax).

Thus, E [GTHG'] > [E[Y,_, yﬁ+1|Ge]| > (3 —1)G* = 2G*; therefore E [G*T1] >
2-E [Gz], demonstrating the inductive claim.]

Proof of Theorem 3.3. We begin by showing that f(y°) — f* < e-(G°)?, assuming
that € > 4/n, which we justify in the next paragraph. To see this, note that G° = n
and f(y%)—f* = 3(1—e)n+4en?. Ase > 4/n, wesee that f(y°)—f* < §-en’+3en? <
€(G°)?. Next, immediately after Phase ¢, f(y‘)— f* > §-(G%)?. Then, by the Cauchy-
Schwarz inequality and Lemma 4.1, E [f(y‘) — f*} >E [% . (Ge)z] > 5 E [G€]2 >
47 (GO 2 4 -),

It remains to show that € > 4/n. Recall that €212, = (L%, — L2..)/(n —1).
Together, these imply (L2, — L2,.) > 16(n —1)/n?- L2 .. It suffices to have L,es >
Lyax(1+ 8/n), proving the theorem. d

4.2. Proof of Theorem 3.4. The idea of the construction is to show that if
we can bound M?* by %eGe , then we can show the bound G! > 2¢Gy holds absolutely
and not just in expectation. We will show that M*¢ < ier with high probability.

This manuscript is for review purposes only.

289
290
291
292
293
294
295
296

297

323
324

325

TIGHT PARALLELISM BOUNDS FOR ASYNCHRONOUS SCD 9

Our construction uses a parameter b which we will specify later. We will need that
in each phase, each coordinate is chosen at most b times. In Lemma 4.2 and Corol-
lary 4.3 below, we show that this occurs with high probability when b is suitably
large.

LEMMA 4.2. In one phase, the probability that each coordinate is chosen at most b
times by the q processors is at least 1 —n(eq/(b+1))**/n®T1 where e = 2.71828.. . ..

Proof. Let k be one of the coordinates, and let £(k) denote the event that coordi-
nate k is chosen more than b times. Note that

E(k) = U {coordinate k is chosen by all the processors with labels in S}.
S:8C{1,2,,q}
|S|=b+1

Thus, by the union bound, the probability that £(k) holds is at most (bil) . (%)b+1
which is at most (eq/(b+1))?*! /n’*! by a well-known formula for bounding binomial

coefficients.

)

By the union bound again, the probability that U?_, £(k) holds is at most n(eq/(b+
1))b*+1/nb+L. The lemma follows. |

COROLLARY 4.3. [Events & and &;] Suppose that ¢ < 2, c1,¢c0 > 1, and b > e—1;

also, let A = 1o,::>;o(i7q)' Then the probability that in each of the first nt phases each

coordinate is chosen at most b times by the q processors is at least 1 —nc 1= (O+1/A
Furthermore,

a. [Event &1] if b> (c1 + c2 + 1)/A, the probability is at least 1 —1/n°; and

b. [Event £]] if n > 2 and b > (c1 +co +2)/A, the probability is at least 1 —1/n2H1 >
1—1/2nc.
Next, we show the inductive bounds on M ¢ and GY. Recall that ¢ = ¢1 + ¢s.
LEMMA 4.4. For any fized c¢1,co > 1, conditioned on &1, if € > % and T > q >
max{eLgr ,10(‘?1) . llggﬁ}, then for ¢ = 0,1,2,...,n°, G* > 2!G° and M’ <
q

eG*/4.

Proof. Suppose the lemma holds for some ¢ > 0, and without loss of generality,
assume that Z?Zl yf is positive; the other case will be symmetric. As in Lemma 4.1,
consider an update in the (¢+ 1)-st phase that picks coordinate k; the update reduces
its value by

Lmax [(1 — e)yﬁ + EGK] > Lnax [—(1 — M’ + eGe] > 3€Lmax G*.

r r - 4T

Thus, immediately after the (£+1)-st phase, 37, yf“ <> yi—q- Selmax Gt =
3eqLuax \ (1l ar

)
max

- 3eqL
4.1 G+ _ ’ li+1‘ > 2€4Emax 1\ o
(4.1) G j;y] > T G

On the other hand, for each coordinate k, if it is chosen by by processors in the
(¢ + 1)-st phase, then the value of yi ™ is

Lmax
o~ b [0 o+).

This manuscript is for review purposes only.

341

342
343

344

w
>
ot

346
347
348
349
350

10 Y. K. CHEUNG, R. COLE, AND Y. TAO

For each ¢ we consider, we apply Corollary 4.3(a). Note that + = logn ~ Conditioned
q

log
on &, by < +(c+1). Also, since |yj| < M* < eG*/4 and Ly <T,
1 L €
2 ot Loy B (€ gty o)
|y, |_4 A(c+1) T 1 G"+eG

G+
5

(1 . %(c + 1) Linax '
(4.2) = <4 t——r eG*.

Given Equations (4.1) and (4.2), to guarantee that G**! > 2G*, having ?’Gqf% -
1 > 2 suffices. We satisfy this by imposing ¢ > - T Or equivalently Wﬁ% > 2,
which is slightly stronger than needed, but will help improve the next constraint on
q. To guarantee that M**t! < eG**!/4, the following condition suffices:

€ [3€eqLmax . 1 5-5(c+1)Lmax ;
. - | e > (-4 —A— .
(4.3) 1 { T 1}6Y > <4+ T eG

€qLmax 2€qLmax 5-(c+1)Limax s 10(c+1) logn
As g > 2, we see that =L > < suffices; i.e. ¢ > e TosT

suffices. O

Proof of Theorem 3.4. This theorem follows from Lemma 4.4, which requires that
Event & hold. So the following conditions suffice:

62é and nzqzmax{ 8T ’10(c+1)_10gn}.
€ max

n e € log %

If Lyes > 2Lmax (implying 1 < M), the final condition becomes

V3Lyes
V3Lyes V/3Lres log o
We focus on the second constraint, namely ¢ > 20(0%{1@““ _ llgggg Let C —
% The constraint becomes ¢ > Cllggg;;, or glog? > Clogn, where the

RHS is independent of ¢q. Note that qlog% is an increasing function for 1 < ¢ < 2.
Therefore, if suffices to seek a ¢ > 1 such that ¢log(n/q) > Clogn; then ¢ > ¢ implies
that the second constraint holds for ¢ < n/e.

Consider ¢§ = 10C. Then Glog(n/G) > Clogn is equivalent to the inequality
9Clogn > 10C log(10C), and hence to n® > (10C)!°. Substituting for C, we obtain

200(c+1) Lunax >1° , <200(c+ 1) Lmax>5/2
9

n’ > . -\/n , or equivalently, n > .

- (V3 Lyes v E Y V3 Lyes

2
We also need § = 10C < n/e; n > <%jgl) : LLL:") suffices.]

4.3. Proof of Theorem 3.5.

LEMMA 4.5. Conditioned on Event & defined in Corollary 4.3, if Lyes > 2Lmax,
n > 400¢2(c + 2)2, and

r 4cl
qzmaX{S\/ﬁ c

+
\/gL res L max

, 20c(c + 2)}

This manuscript is for review purposes only.

361

362
363
364
365

366

378
379
380
381
382
383
384
385
386

388

389
390
391
392
393
394

TIGHT PARALLELISM BOUNDS FOR ASYNCHRONOUS SCD 11

then Mt < %CGZ and G¢ > QZGO, for1 < ¢ <n%

Proof. We follow the inductive argument in the proof of Lemma 4.4 closely. In the
spirit of deriving (4.3), we apply Corollary 4.3(b) instead of Corollary 4.3(a), causing
the ¢ 4+ 1 term to be replaced by a ¢ + 2 term. Then, it suffices that

1 [3eqLmax y 1 5-(c+2)Lmax logn y
— | — 1G> = . G".
dc [AT } = (4 + AT log? | ©

20c(c+2) logn

3 Tog 1 SO it suffices
q

The above constraint is equivalent to ¢ > - L -+ 321:12)(+

that ¢ > max{L‘lF (% + c) ,10¢(c+2) - fgggz }

We focus on the second constraint. As argued in the proof of Theorem 3.4, it
suffices to find a lower bound ¢ on ¢, such that ¢log % > Clogn, where C £ 10c(c+2).
4 = 2C suffices if n > (26)2
(4.1) yields G+ > 2G*. O

LEMMA 4.6. [Event &] Let T = [—5=G*, ;=G*]. Suppose all the conditions im-

posed in Lemma 4.5 hold. Then, with probability at least 1 — 1/n2, for 0 < £ < n°,
at every time during phase £ + 1, at least one coordinate has a value outside T.

Proof. We condition on Event &, which by Corollary 4.3, occurs with probability
at least 1 — 1/2n°2.

As before, without loss of generality, we assume that), yt > 0.

We start by showing that at the start of the (¢+ 1)-st phase at least 2¢ coordinates
have values larger than 5-G*. Note that Y, . wleT yf < 1G'. By Lemma 4.5, M* <
iGé. Thus, at the start of Phase ¢ + 1, at least %GZ/EGZ = 2c coordinates have

value greater than ﬁGe, proving this claim.
Next, we observe that an update to a coordinate with value in I changes its value
to be smaller than —LG‘“] For the largest value resulting from such an update
[1 — (1 —¢) Lmax] Ge @GG‘Z. By assumption, ﬁ < ieq < ien; therefore
% >4 =~. We deduce the update value is at most — (% — %) G*, which demonstrates
the claim.

In order for all the coordinates to end up in Z during Phase £ + 1, we need that
there be no coordinates less than ——Ge initially, and that there be no updates to
the coordinates in Z until all the other coordinates enter Z, assuming this is possible.
This requires some k > 2c¢ updates to these at least 2¢ coordinates.

The probability that these updates happen first is at most

k! < (2e)! < 2¢\ %

nk = p2 = \(n ’
and this is bounded by 1/(2n)¢ if n > 8¢?. Summed over all n! phases, this gives a
total failure probability of (significantly) less than 1/2n°2.

Taking into account the 1/2n° probability that Event &£ does not occur, we see
that the overall probability of Event &; is at least 1 — 1/n°, as claimed.]

Proof of Theorem 3.5. Conditioned on Event &, throughout phase ¢ + 1, at least
one coordinate has a value outside the interval Z defined in Lemma 4.6. Thus f(x) >

G 2 g (6 2 4

This manuscript is for review purposes only.

409

410

411

S
wro

414
415
416

418
119
420
421

12 Y. K. CHEUNG, R. COLE, AND Y. TAO

Note that f(x°) = 15¢-n+ §n? < en? as, by assumption, e > L. We deduce that
f(x) > £ - 4% f(x°) throughout this phase. d

5. Discussion. We have shown a tight asymptotic upper bound on the possible
parallelism for achieving linear speedup when using asynchronous coordinate descent
for almost the whole range of ﬁ This upper bound holds even for composite
functions. Furthermore, it holds even in the somewhat restrictive consistent read
model, and thus it holds for the inconsistent read model too.

Acknowledgments. We thank the referees for their thoughtful and incisive com-
ments.

Appendix A. Missing Proofs.

LEMMA A.1. The strong convexity parameter of fe is (1 —¢€).

Proof.

Fo) — fo) ~ (V1) y -2)
2 T [(T - ()]

)

—(1—€)) (wyi —a7) —6[(2%)(2}% —sz)}

% i i

> 1;62(%24—96?—2%%)-#;{(Zyi)Q—k (le)2—2zx12yl]

% %

> 12fz(yi_xi)2+§{zi:yi—zxir

i i

1—ce¢
2

Iy — | |*. 0

Y

Proof of Proposition 3.2. Recall that f.(x*) = 0. Also, recall that the SCD
process starts at the all ones point. Let C; denotes the even index coordinates, and
C_; those of odd index. Consider the following random variables:

Si(t) = Zxé S_1(t) = Z (—ab) S(t) = Si(t) +S_1(t).

jE€C jeEC_1

Note that S1(0) = S_1(0) = n/2 and S(0) = n.

Next, we derive a recurrence which, conditioned on S(t), computes the expected
value of S(t 4+ 1) — S(t). Recall that if coordinate j is chosen to be updated at time
t+ 1, then

This manuscript is for review purposes only.

123

426

427

428

429
430
431

432

433
434
435
436

437

438
439

440
441

443

444
145

4146

447
448
449
450
451
452
453

TIGHT PARALLELISM BOUNDS FOR ASYNCHRONOUS SCD 13

Thus,
1 l—e , €
E [S(t +1) - S(t)] S(t)} - 1 < — 2t — = [Su(t) - 5_1(75)])
jeC1
1—ce¢ €
b2 (e £ 110 - 5.0)])
jeC_1
1 1—e¢ 1—e¢
= (s - 5 sa0)
1—ce€
= - t).
T 5)
The second equality above holds because |Cy| = |C_1], leading to cancellation of the
terms £ -[S1(t) — S—_1(t)]. Thus, E[S(t+ 1) | S(t)] = S(t)- (1 — 15¢). Iterating this

recurrence yields

(A1) E[S(t)] = n- (1 _ 1n_re)t.

Next, observe that for any fixed Si(t),S—_1(t), by the Power-Mean Inequality,

ec (@h)? > M and -, o (24)? > M On the other hand, for any

fixed S(t), which equals $o S1(t) + S_1(¢), the sum |S‘7(f)|2 + ‘S‘ln(t)lQ is minimized
when S1(t) = S_1(t) = S(¢)/2. Thus,

E[fe(xt)] > E 1;62(;)2 > (1—¢€)-E |Sl7(lt)‘2 + |Sfln(t>|2
> 12_n€-1E[S(t)2].

Finally, we complete the proof by using the Cauchy-Schwarz inequality and Equa-
tion (A.1):

1—ce¢ 1—e¢ 2 (1—¢e)n 1—e*
SoEls@? 2 sl = S50 (1-13)
(1—e)n 21 —e)\"
Z T (1 ol)
- - (1- 259
REFERENCES

[1] Y. K. CHEUNG, R. COLE AND Y. TAO, Fully asynchronous stochastic coordinate descent: A
tight lower bound on the parallelism achieving linear speedup, Math. Program. Series A, (to
appear).

[2] J. Liu AND S. J. WRIGHT, Asynchronous stochastic coordinate descent: Parallelism and conver-
gence properties, STAM J. Optim., 25 (2015), pp. 351-376.

[3] J. Liu, S. J. WRicHT, C. RE, V. BITTORF AND S. SRIDHAR, An asynchronous parallel stochastic
coordinate descent algorithm, J. Mach. Learn. Res., 16 (2015), pp. 285-322.

This manuscript is for review purposes only.

14 Y. K. CHEUNG, R. COLE, AND Y. TAO

[4] H. Mania, X. PaN, D. S. PApaILIoOPOULOS, B. RECHT, K. RAMCHANDRAN AND M. I. JORDAN,
Perturbed iterate analysis for asynchronous stochastic optimization, STAM J. Optim., 27
(2017), pp. 2202-2229.

[5] T. SuN, R. HANNAH AND W. YIN, Asynchronous coordinate descent under more realistic as-
sumptions, Advances in Neural Information Processing Systems, (2017), pp. 6182-6190.

This manuscript is for review purposes only.

	Introduction
	Notation
	The Stochastic Asynchronous Coordinate Descent (SACD) Algorithm
	Asynchrony Assumptions, Basic Set-up and Terminology Used in the Construction

	The Result
	Analysis
	Proof of thm::simplest-lower-bound
	Proof of thm::high-prob-phase-lower-bound
	Proof of thm::all-times-lower-bound

	Discussion
	Appendix A. Missing Proofs
	References

