
PARALLEL STOCHASTIC ASYNCHRONOUS COORDINATE1

DESCENT: TIGHT BOUNDS ON THE POSSIBLE PARALLELISM∗2

YUN KUEN CHEUNG† , RICHARD COLE‡ , AND YIXIN TAO§3

Abstract. Several works have shown linear speedup is achieved by an asynchronous parallel4
implementation of stochastic coordinate descent so long as there is not too much parallelism. More5
specifically, it is known that if all updates are of similar duration, then linear speedup is possible6
with up to Θ(Lmax

√
n/Lres) processors, where Lmax and Lres are suitable Lipschitz parameters.7

This paper shows the bound is tight for almost all possible values of these parameters.8

Key words. stochastic asynchronous coordinate descent, parallelism bound9

AMS subject classifications. 90C25, 68W10, 60G50, 68Q9910

1. Introduction. Very large scale optimization problems have arisen in many11

areas such as machine learning. A natural approach for solving these huge problems is12

to employ parallel and more specifically asynchronous parallel algorithms. As common13

wisdom suggests, when a small number of processors are used in these algorithms,14

(linear) speedup can be achieved; but when too many processors are involved and15

when they are not properly coordinated, there may be undesirable outcomes. (Recall16

that speedup is defined as the ratio of the algorithm’s execution time on a single core17

and its parallel execution time. Linear speedup means the speedup is linear in the18

number of cores.)1 Typically, the bound on the number of processors is implicit and19

is expressed in terms of the maximum number q of basic iterations, namely single20

coordinate updates, that can overlap. In many scenarios q will be a small multiple21

of the number of processors or cores. In many earlier works the notation τ was used22

instead of q.223

This paper considers asynchronous implementations of stochastic coordinate de-24

scent (SCD) applied to smooth convex functions f : Rn → R. Several recent works [3,25

2, 1] quantify how large q can be in this context while guaranteeing linear speedup.326

More precisely, they showed: if at any time at most q ≤ q̃ updates can overlap, then27

linear speedup is guaranteed. The goal in these works was to demonstrate as large28

a value of q̃ as possible. Note that these results provide lower bounds on the actual29

value of q̃.30

∗Submitted to the editors DATE. Authors are listed in alphabetical order.
Funding: Yun Kuen Cheung would like to acknowledge Singapore NRF 2018 Fellowship NRF-

NRFF2018-07 and MOE AcRF Tier 2 Grant 2016-T2-1-170. The work of Richard Cole and Yixin
Tao was supported in part by NSF Grants CCF-1527568 and CCF-1909538.
†Royal Holloway University of London (yunkuen.cheung@rhul.ac.uk, http://cs.rhul.ac.uk/

∼cheung/) Part of the work done while this author was a postdoctoral fellow at Max-Planck In-
stitute for Informatics, Saarland Informatics Campus and Singapore University of Technology and
Design, and also during two visits to the Courant Institute, NYU in the summers of 2017 and 2018.
‡Courant Institute, NYU (cole@cs.nyu.edu, https://cs.nyu.edu/cole/)
§Courant Institute, NYU (yt851@nyu.edu, https://tomtao26.github.io/). Yixin Tao is now a

postdoc at LSE.
1In optimization, we compare the times of two executions that achieve a given level of accuracy.
2We chose the notation q to emphasize its likely similarity to p, the number of processors.
3Many of these results hold for composite functions, i.e., functions of the form f(x) = g(x) +∑n

k=1 Ψk(xk), where g : Rn → R is a convex function with a continuous gradient, and each Ψk :
R → R is a univariate convex function, but may be non-smooth.

1

This manuscript is for review purposes only.

mailto:yunkuen.cheung@rhul.ac.uk
http://cs.rhul.ac.uk/~cheung/
http://cs.rhul.ac.uk/~cheung/
mailto:cole@cs.nyu.edu
https://cs.nyu.edu/cole/
mailto:yt851@nyu.edu
https://tomtao26.github.io/

2 Y. K. CHEUNG, R. COLE, AND Y. TAO

The best existing lower bound is q̃ = Ω(
√
nLmax/Lres), where Lmax and Lres31

are Lipschitz parameters defined in Section 2.4 Intuitively, one can view this as a32

lower bound on the possible parallelism supporting linear speedup; for if there are p33

processors at hand, and if the durations of the updates vary by at most a factor of d,34

then q ≤ (d+ 1)(p− 1), so achieving linear speedup with up to q updates overlapping35

implies linear speedup occurs with p = 1 + q/(d+ 1) processors.36

We present the first work concerning the inverse problem: to identify a value q,37

such that if q ≥ q, then this can lead to an undesirable outcome.38

Main result : The lower bound of Ω(
√
nLmax/Lres) is asymptotically tight.

(An undesirable outcome can occur if q ≥ c̄ ·
√
nLmax/Lres

for a sufficiently large constant c̄.)
39

We will present an adversarial family of functions with the following property: if40

q exceeds Θ(
√
nLmax/Lres) significantly, then there is an asynchronous schedule for41

which with high probability very rapid divergence occurs for a very long time. The42

function family uses a dimensionless parameter ε = Θ(Lres

Lmax
√
n

), which is approxi-43

mately the inverse of the possible parallelism.44

We use the following function family, fε : Rn → R:45

(1.1) fε(x) =
1− ε

2
·
n∑
i=1

(xi)
2 +

ε

2
·

(
n∑
i=1

xi

)2

,46

for any ε satisfying 4/n ≤ ε < 1. As we shall see, Lmax = 1 and Lres = Ω(ε
√
n) for47

this function family; thus the existing lower bound on the parallelism achieving linear48

speedup is Ω(
√
nLmax/Lres) = Ω(1/ε). To obtain bounds using arbitrary values of49

Lmax one can simply multiply fε by Lmax, which also increases Lres by an Lmax factor.50

Next, we discuss more precisely how we achieve this result. Recall that the per-51

formance of a sequential SCD algorithm is expressed in terms of its convergence rate.52

On strongly convex functions, it has a linear convergence rate, meaning that each53

update reduces the expected value of the difference f(x)−f∗ by at least an (1−α/n)54

multiplicative factor, for some constant α > 0, where f∗ denotes the minimum value55

of the function. Consequently,56

(1.2) E
[
f(xt)− f∗

]
≤

(
1− α

n

)t
·
(
f(x0)− f∗

)
.57

For our proposed function fε, which is strongly convex, we will show that for a suitable58

initial point x0, for some constant α′ ≥ α,59

(1.3) E
[
fε(x

t)− f∗ε
]
≥

(
1− α′

n

)t
·
(
fε(x

0)− f∗ε
)
,60

and hence sequential SCD achieves no more than a linear convergence rate in general.61

For the function fε, we will show that α = 1
3 and α′ = 2.62

To achieve linear speedup with a parallel algorithm means that the same conver-63

gence rate holds, up to constant factor, i.e., the α might be reduced by a constant64

factor c ≥ 1, but no more:65

(1.4) E
[
f(xt)− f∗

]
≤

(
1− α

cn

)t
·
(
f(x0)− f∗

)
,66

4Here, we focus on the case where the step-size used in the asychronous SCD algorithm is 1/Lmax;
we will discuss the cases with smaller step-sizes later in the introduction.

This manuscript is for review purposes only.

TIGHT PARALLELISM BOUNDS FOR ASYNCHRONOUS SCD 3

where t is now the overall number of iterations performed by the various cores.5 This67

means that to guarantee a particular accuracy, the total number of iterations for a68

parallel execution is no more than a constant multiple of the number of iterations69

needed on a single core (so long as α ≤ n/2).70

Prior work has shown that linear speedup is achieved when q ≤ c̃
√
nLmax/Lres for71

some constant c̃ > 0. To achieve our main result, we show that for the function family72

fε, when q ≥ c̄
√
nLmax/Lres for some constant c̄ > c̃, as an adversary, it is possible73

to pick asynchronous schedules such that for all t ≤ n10 (or more generally, for any74

constant ĉ ≥ 1, for all t ≤ nĉ),75

E
[
fε(x

t)− f∗ε
]
≥ Ω(4t/q) · (fε(x0)− f∗ε)76

for large enough n (in general, when n = Ω(c4)). This indicates that when q is too77

large, linear speedup cannot be achieved in worst-case scenarios.78

The above upper bound on q holds when the step-size is 1/Lmax. One might79

wonder what would happen if we reduced the step-size to 1/Γ for some Γ ≥ Lmax.80

Would the permissible parallelism bound increase significantly, thereby improving the81

overall speedup? In fact, we show that the upper bound on q increases to at most82

O(Γ
√
n/Lres), for any Lmax ≤ Γ ≤ O(Lres

√
n). Since this increase is by a factor of83

at most O(Γ/Lmax), but the step-size is reduced by a factor of Γ/Lmax, the overall84

speedup cannot improve by more than a constant factor. This upper bound is also85

asymptotically tight, as there were matching lower bounds for these choices of step-86

sizes [1].87

Prior Work and Asynchrony Models. First, note that the bound on q is ensuring88

the asynchrony is bounded, and so we call it q-bounded asynchrony. Some require-89

ment of this sort is unavoidable, otherwise there could be updates of arbitrarily long90

duration, which, when they commit, could undo an arbitrary amount of progress.91

In addition to the q-bounded asynchrony assumption, we need to specify how the92

asynchronous environment affects the read operations. There are two models con-93

cerning how coordinates are read in asynchronous environments, namely “consistent”94

and “inconsistent” reads. Our upper bound applies to both models. Next, we discuss95

their differences.96

Liu et al. [3] gave the first bound on the parallel performance of asynchronous SCD97

on convex functions, showing linear speedup when q = O(
√
nLmax/Lres) assuming a98

consistent read model, where Lres is another Lipschitz parameter defined in Section 2.99

We note that Lres = Lres for the function family fε we will be analyzing in this paper.100

In fact, as we shall see, Lres is equal to Lres on all quadratic functions f , i.e., f is101

of the form xTAx + bTx + constant, where A is an n × n matrix, and b is an n-102

vector. In the consistent read model, all the coordinate values a processor reads when103

performing a single update on one coordinate may be out of date, but they must have104

been simultaneously current at some moment. To make this more precise, we view105

the updates as committing at integer times t = 1, 2, . . ., and we write xt to be the106

value of x after the update at time t. The consistent reads model requires the vector107

of x values used by the time t update to be of the form xt−τ for some τ ≥ 1.108

Consistent reads create a substantial constraint on the asynchrony, and so subse-109

quent works sought to avoid this assumption. To this end, Liu and Wright [2] proposed110

5Liu et al. [3] and Liu and Wright [2] call this near-linear speedup, reserving the term linear
speedup for the case when c = 1.

This manuscript is for review purposes only.

4 Y. K. CHEUNG, R. COLE, AND Y. TAO

the inconsistent reads model. Allowing inconsistent reads means that the x̃ values111

used by the time t update can be any collection of the form (xt−τ11 , · · · , xt−τnn), where112

the τj ’s can be distinct; the q-bounded asynchrony assumption implies that 1 ≤ τj ≤ q113

for each j. Liu and Wright showed that linear speedup (including the more general114

case of composite functions) can be achieved for q = O(n1/4
√
Lmax/

√
Lres), i.e., the115

square root of the previous bound. There remained several constraints on the pos-116

sible asynchrony, in addition to the q-bounded asynchrony, as pointed out by Mania117

et al. [4] and subsequently by Sun et al. [5]. The latter works also gave analyses118

removing some or all of these constraints, but at the cost of reducing the bound on119

q. Finally, Cheung, Cole and Tao [1] gave an analysis achieving linear speedup for120

q = O(
√
nLmax/Lres), again for composite functions, with the only constraint being121

the q-bounded asynchrony.122

In this paper we show the bounds in [3] and [1] are asymptotically tight for almost123

all possible values of Lmax, Lres, and Lres for the function family (1.1).124

2. Notation. Let ej denote the n-vector in which the j-th entry is 1 and every125

other entry is 0.126

Definition 2.1. For any coordinates j, k, the function f is Ljk-Lipschitz-smooth127

if for any x ∈ Rn and r ∈ R, |∇kf(x+r ·ej)−∇kf(x)| ≤ Ljk ·|r|; it is Lres-Lipschitz-128

smooth if, for all j, ‖∇f(x+r ·ej)−∇f(x)‖ ≤ Lres · |r|. Finally, Lmax := maxj Ljj129

and Lres := maxk

(∑n
j=1(Lkj)

2
)1/2

.130

Observe that for the function fε we are considering,131

(2.1) ∇jfε(x) = (1− ε) · xj + ε ·
n∑
i=1

xi.132

Consequently, Lmax = 1, and Lres =
√

1 + (n− 1)ε2 = Θ(ε
√
n), for ε = Ω(1/

√
n).133

The difference between Lres and Lres. In general, Lres ≥ Lres. Lres = Lres when134

the rates of change of the gradient are constant, as for example in quadratic functions135

such as xTAx + bTx + c. We refer the reader to [1] for a discussion of why Lres is136

needed in general for the analysis in [1].137

Next, we define strong convexity.138

Definition 2.2. Let f : Rn → R be a convex function. f is strongly convex with139

parameter µ > 0, if for all x, y, f(y)− f(x) ≥ 〈 ∇f(x) , y − x 〉+ 1
2µ||y − x||

2.140

A simple calculation shows that the parameter µ for our function fε has value141

(1− ε); see Lemma A.1 in Appendix A.142

The update rule. Recall that in a standard coordinate descent, be it sequential143

or parallel and synchronous, the update rule, applied to coordinate j, first computes144

the accurate gradient ∇jf(xt−1), and then performs the update given below.145

(2.2) xtj ← xt−1
j − ∇jf(xt−1)

Γ
146

and for all k 6= j, xtk ← xt−1
k , where Γ ≥ Lmax is a parameter controlling the step147

size.148

This manuscript is for review purposes only.

TIGHT PARALLELISM BOUNDS FOR ASYNCHRONOUS SCD 5

However, in an asynchronous environment, an updating processor might retrieve149

outdated information x̃ instead of xt−1, so the gradient the processor computes will150

be ∇jf(x̃), instead of the accurate value ∇jf(xt−1). Hence the update rule is in the151

asynchronous environment is152

(2.3) xtj ← xt−1
j − ∇jf(x̃)

Γ
.153

We want to show that for any fixed constants c1, c2 ≥ 1, fε(x
t) − f∗ε is rapidly154

growing for t ≤ q · nc1 with probability at least 1 − 1/nc2 .155

2.1. The Stochastic Asynchronous Coordinate Descent (SACD) Algo-156

rithm. The coordinate descent process starts at an initial point x0 = (x0
1, x

0
2, · · · , x0

n).157

Multiple processors then iteratively update the coordinate values, and for our analysis158

we assume that at each time, there is exactly one coordinate value being updated,159

which we can do, as we are choosing the asynchronous schedule.160

Algorithm 2.1 SACD Algorithm for Smooth Functions.

Input: The initial point x0 = (x0
1, x

0
2, · · · , x0

n).

Multiple processors use a shared memory. Each processor iteratively repeats the
following four-step procedure, with no global coordination among them:

Step 1: Choose a coordinate j ∈ {1, 2, · · · , n} uniformly at random.
Step 2: Retrieve coordinate values x̃ from the shared memory.
Step 3: Compute the gradient ∇jf(x̃).
Step 4: Update coordinate j using rule (2.3) by atomic addition.

2.2. Asynchrony Assumptions, Basic Set-up and Terminology Used in161

the Construction. In our construction, updates are made in phases. In each phase,162

q updates are made in parallel by q processors. As in Step 1 of Algorithm 2.1, each163

processor chooses a coordinate to update. Since these processors are uncoordinated,164

they choose coordinates randomly and independently, and thus it is possible that some165

of them choose the same coordinate within a phase. Then, for every coordinate, each166

processor retrieves the value that was up to date at the end of the previous phase.167

Note that xq` denote the up-to-date values immediately after the `-th phase. The168

starting point x0 can be viewed as the up-to-date values following the (non-existent)169

0-th phase. For each ` ≥ 0, in the (`+ 1)-st phase, each of the q processors performs170

the following sequence of steps:171

• it picks a coordinate k randomly and independently to update;172

• it retrieves xq` and then computes ∇kf(xq`);173

• it increases the value of xk in the main memory by −∇kf(xq`)/Γ, using an174

atomic addition operation.175

Note that in a single phase a particular coordinate might be chosen two or more176

times. If coordinate k is chosen b times in the (` + 1)-st phase, the value of xk after177

the (`+ 1)-st phase is xq`k − b · ∇kf(xq`)/Γ.178

3. The Result. Cheung, Cole and Tao [1] showed the following upper bound179

on the performance of asynchronous stochastic coordinate descent on strongly convex180

This manuscript is for review purposes only.

6 Y. K. CHEUNG, R. COLE, AND Y. TAO

functions, where x∗ is a minimum point for the convex function.181

Theorem 3.1. i. Suppose the asynchronous updating is run for exactly t updates.182

Also suppose that q ≤ min
{√

n
270 ,

Γ
√
n

270Lres

}
. If f is strongly convex with parameter µ,183

then184

E
[
f(xt)− f(x∗)

]
≤
(

1− 1

3n
· µ

Γ

)t (
f(x0)− f(x∗)

)
.185

ii. This result holds for all q ≤ Γ
√
n

12Lres
if the asynchronous schedule obeys the Strong186

Common Value assumption.187

The Strong Common Value assumption, specified in [1], captures a substantial188

class of asynchronous schedules including the consistent read constraint from [3], and189

all the schedules to which the analysis of Liu and Wright [2] apply, and more. The190

complementary construction in this paper observes the consistent reads condition,191

which is the most restrictive of these constraints. Consequently, our goal is to show192

that for q = Ω(Γ
√
n

Lres
) convergence with linear speed-up is not guaranteed. In fact, we193

will show that there is no convergence for most values of q obeying this constraint.194

To achieve this it suffices to show there is a single asynchronous schedule observing195

the consistent read condition for which there is no convergence.196

First, in Appendix A, we will prove the following theorem, which shows that the197

sequential stochastic coordinate descent on our function fε when starting at the point198

x0 = (−1,+1,−1,+1, . . .) achieves a convergence rate that is at most a constant199

factor faster than the convergence rate given in Theorem 3.1. Recall that µ = 1 − ε200

for fε.201

Proposition 3.2. Let x0 be the point with even-indexed coordinates equal to +1202

and odd-indexed coordinates equal to −1. Suppose the sequential stochastic coordinate203

descent is run for t steps on function fε starting at point x0. Then204

E
[
fε(x

t)− fε(x∗)
]
≥
(

1− 2

n
· 1− ε

Γ

)t (
fε(x

0)− fε(x∗)
)
.205

This result shows that for the function fε, the speedup guaranteed by Theorem 3.1206

is indeed a linear speedup of the performance of the sequential SCD.207

Now, we come to our main results.208

Our analyses look at phases of q successive updates when the coordinate descent209

in Algorithm 4 is applied to the function f ≡ Lmax · fε in (1.1) with ε =

√
(Lres

Lmax
)
2−1

n−1 .210

The first result states that the expected value of f(x)− f∗ grows by at least a factor211

of 4 from phase to phase.212

Theorem 3.3. Suppose that Lres ≥ Lmax (1 + 8/n) and q ≥ 4Γ
√
n√

L2
res−L2

max

. Then213

there is an asynchronous schedule for which the coordinate descent diverges when214

applied to the function f . Specifically, for every t = rq, with r ≥ 1 an integer,215

E
[
f(xt)− f∗

]
≥ 4(t/q)−1 · (f(x0)− f∗).216

If Lres ≥ 2Lmax (i.e. ε ≥
√

3/(n− 1)), the constraint on q becomes q ≥ 8Γ
√
n√

3Lres
.217

This manuscript is for review purposes only.

TIGHT PARALLELISM BOUNDS FOR ASYNCHRONOUS SCD 7

When Lres ≥ 2Lmax, Theorem 3.3 states that once q exceeds the bound in The-218

orem 3.1(ii) by a constant factor, in order to have any possibility of convergence,219

let alone linear convergence, Γ has to increase at the same rate as q. Note that the220

upper bound on the rate of convergence decreases linearly with Γ, so this says that221

increasing q, the number of parallel updates, beyond this bound cannot increase the222

parallel runtime by more than a constant factor at best.223

However, one might wonder if this divergence in expectation is a low probability224

event. Our next result shows that for most values of q < n it is in fact a high225

probability event.226

Theorem 3.4. Let c1, c2 ≥ 1 be constants, let c = c1 + c2, and suppose that227

n

e
≥ q ≥ max

{
8Γ

εLmax
, 10(c+1)

ε
logn

log
n
q

}
.228

For each c1, c2 ≥ 1, with probability at least 1 − 1/nc2 , there is an asynchronous229

schedule for which the coordinate descent diverges for at least q · nc1 updates when230

applied to the function f . Specifically, for every t = rq with 1 ≤ r ≤ nc1 an integer,231

f(xt)− f∗ ≥ 4(t/q)−1 · (f(x0)− f∗).232

If Lres ≥ 2Lmax, the conditions n
e ≥ q ≥ max

{
16Γ
√
n√

3Lres
, 200(c+1)Lmax

√
n√

3Lres

}
and n ≥233 (

544(c+1)√
3
· Lmax

Lres

)5/2

suffice.234

Thus the comments in the paragraph after Theorem 3.3 apply here too, so long as235

the stated bounds on n hold.236

Finally, one might wonder what happens to the value f(x) − f∗ during a phase.237

Could it be small at any time? As it happens, with our schedule the value oscillates238

a lot, but the next and final result shows that with high probability it remains large239

at all times.240

Theorem 3.5. Let c1, c2 ≥ 1 be constants, let c = c1 + c2, and suppose that241

Lres ≥ 2Lmax, n ≥ 400c2(c+ 2)2, and242

n

e
≥ q ≥ max

{
8Γ
√
n√

3Lres

+
4cΓ

Lmax
, 20c(c+ 2)

}
.243

For each c1, c2 ≥ 1, with probability at least 1 − 1/nc2 , there is an asynchronous244

schedule for which the coordinate descent diverges for at least q · nc1 updates when245

applied to the function f . Specifically, for every 1 · nc1 ,246

f(xt)− f∗ ≥ 1

n2
· 4d(t/q)e−1 · (f(x0)− f∗).247

Once more, the comments in the paragraph after Theorem 3.3 apply.248

The three theorems incorporate general choices of Γ, c1 and c2. In Theorems 3.4249

and 3.5, if we pick c1, c2 to be large enough constants (for example, both are 10 —250

which corresponds to a 1/n10 failure probability over the course of q ·n10 updates), the251

conditions on n and q reduce to n ≥ Θ(1) and n/e ≥ q ≥ Θ(Γ
√
n/Lres), respectively.252

This manuscript is for review purposes only.

8 Y. K. CHEUNG, R. COLE, AND Y. TAO

4. Analysis. We consider running SACD with q processors on the function253

f(x) = Lmax ·

1− ε
2
·
n∑
i=1

(xi)
2 +

ε

2
·

(
n∑
i=1

xi

)2
 ,254

for any ε satisfying 4/n ≤ ε < 1. We prove each theorem in turn.255

We choose the initial point to be the all ones point, x0 = (+1,+1, . . . ,+1). For256

` ≥ 0, let y` denote the up-to-date values of the coordinates immediately after the257

`-th phase, i.e. y` = xq`. Also, let258

G` ,
∣∣∣ n∑
k=1

y`k

∣∣∣ and M ` , max
k=1,2,··· ,n

|y`k|.259

4.1. Proof of Theorem 3.3. The key claim, implying exponential growth in260

the value of f(x) at the end of each successive phase of q updates, is given by the261

following lemma.262

Lemma 4.1. If ε ≥ 4
n and q ≥ 4Γ

εLmax
then for all `, E

[
G`
]
≥ 2`G0.263

Proof. The proof is by induction. The claim clearly holds for ` = 0.264

Now suppose the result holds for some ` ≥ 0. Without loss of generality, we assume265 ∑n
j=1 y

`
j > 0; the other case will be symmetric. In the (` + 1)-st phase, there are q266

updates. Each update picks a coordinate k; by Equation (2.1), the update reduces its267

value by268

Lmax

Γ
·
[
(1− ε)y`k + ε

n∑
j=1

y`j

]
=

Lmax

Γ
·
[
(1− ε)y`k + εG`

]
.269

270

The expected reduction due to q updates is at least271

qLmax

Γ
·
[
εG` − 1

n
(1− ε)G`

]
≥ 3qεLmax

4Γ
·G` (as nε ≥ 4)272

≥ 3G` (as q ≥ 4Γ
εLmax

).273
274

Thus, E
[
G`+1|G`

]
≥
∣∣E [∑n

k=1 y
`+1
k |G`

]∣∣ ≥ (3 − 1)G` = 2G`; therefore E
[
G`+1

]
≥275

2 · E
[
G`
]
, demonstrating the inductive claim.276

Proof of Theorem 3.3. We begin by showing that f(y0)−f∗ ≤ ε · (G0)2, assuming277

that ε ≥ 4/n, which we justify in the next paragraph. To see this, note that G0 = n278

and f(y0)−f∗ = 1
2 (1−ε)n+ 1

2εn
2. As ε ≥ 4/n, we see that f(y0)−f∗ ≤ 1

8 ·εn
2+ 1

2εn
2 ≤279

ε(G0)2. Next, immediately after Phase `, f(y`)−f∗ ≥ ε
2 ·(G

`)2. Then, by the Cauchy-280

Schwarz inequality and Lemma 4.1, E
[
f(y`)− f∗

]
≥ E

[
ε
2 · (G

`)2
]
≥ ε

2 · E
[
G`
]2 ≥281

4`−1ε · (G0)2 ≥ 4`−1(f(y0)− f∗).282

It remains to show that ε ≥ 4/n. Recall that ε2L2
max = (L2

res − L2
max)/(n − 1).283

Together, these imply (L2
res − L2

max) ≥ 16(n− 1)/n2 · L2
max. It suffices to have Lres ≥284

Lmax(1 + 8/n), proving the theorem.285

4.2. Proof of Theorem 3.4. The idea of the construction is to show that if286

we can bound M ` by 1
4εG

`, then we can show the bound G` ≥ 2`G0 holds absolutely287

and not just in expectation. We will show that M ` ≤ 1
4εG

` with high probability.288

This manuscript is for review purposes only.

TIGHT PARALLELISM BOUNDS FOR ASYNCHRONOUS SCD 9

Our construction uses a parameter b which we will specify later. We will need that289

in each phase, each coordinate is chosen at most b times. In Lemma 4.2 and Corol-290

lary 4.3 below, we show that this occurs with high probability when b is suitably291

large.292

Lemma 4.2. In one phase, the probability that each coordinate is chosen at most b293

times by the q processors is at least 1− n(eq/(b+ 1))b+1/nb+1, where e = 2.71828294

Proof. Let k be one of the coordinates, and let E(k) denote the event that coordi-295

nate k is chosen more than b times. Note that296

E(k) =
⋃

S:S⊂{1,2,··· ,q}
|S|=b+1

{coordinate k is chosen by all the processors with labels in S}.297

Thus, by the union bound, the probability that E(k) holds is at most
(
q
b+1

)
·
(

1
n

)b+1
,298

which is at most (eq/(b+1))b+1/nb+1 by a well-known formula for bounding binomial299

coefficients.300

By the union bound again, the probability that ∪nk=1E(k) holds is at most n(eq/(b+301

1))b+1/nb+1. The lemma follows.302

Corollary 4.3. [Events E1 and E ′1] Suppose that q ≤ n
e , c1, c2 ≥ 1, and b ≥ e−1;303

also, let Λ = logn
log(n/q) . Then the probability that in each of the first nc1 phases each304

coordinate is chosen at most b times by the q processors is at least 1− nc1+1−(b+1)/Λ.305

Furthermore,306

a. [Event E1] if b ≥ (c1 + c2 + 1)/Λ, the probability is at least 1− 1/nc2 ; and307

b. [Event E ′1] if n ≥ 2 and b ≥ (c1 + c2 +2)/Λ, the probability is at least 1−1/nc2+1 ≥308

1− 1/2nc2 .309

Next, we show the inductive bounds on M ` and G`. Recall that c = c1 + c2.310

Lemma 4.4. For any fixed c1, c2 ≥ 1, conditioned on E1, if ε ≥ 4
n and n

e ≥ q ≥311

max

{
8Γ

εLmax
, 10(c+1)

ε · logn

log
n
q

}
, then for ` = 0, 1, 2, . . . , nc1 , G` ≥ 2`G0 and M ` ≤312

εG`/4.313

Proof. Suppose the lemma holds for some ` ≥ 0, and without loss of generality,314

assume that
∑n
j=1 y

`
j is positive; the other case will be symmetric. As in Lemma 4.1,315

consider an update in the (`+1)-st phase that picks coordinate k; the update reduces316

its value by317

Lmax

Γ
·
[
(1− ε)y`k + εG`

]
≥ Lmax

Γ
·
[
−(1− ε)M ` + εG`

]
≥ 3εLmax

4Γ
G`.318

319

Thus, immediately after the (`+1)-st phase,
∑n
j=1 y

`+1
j ≤

∑n
j=1 y

`
j−q · 3εLmax

4Γ G` =320 (
1− 3εqLmax

4Γ

)
G`. If q ≥ 4Γ

3εLmax
, then321

(4.1) G`+1 =
∣∣∣ n∑
j=1

y`+1
j

∣∣∣ ≥ (
3εqLmax

4Γ
− 1

)
G`.322

On the other hand, for each coordinate k, if it is chosen by bk processors in the323

(`+ 1)-st phase, then the value of y`+1
k is324

y`k − bk ·
Lmax

Γ
·
[
(1− ε)y`k + εG`

]
.325

This manuscript is for review purposes only.

10 Y. K. CHEUNG, R. COLE, AND Y. TAO

For each q we consider, we apply Corollary 4.3(a). Note that 1
Λ = logn

log n
q

. Conditioned326

on E1, bk ≤ 1
Λ (c+ 1). Also, since |y`k| ≤M ` ≤ εG`/4 and Lmax ≤ Γ,327

|y`+1
k | ≤ ε

4
·G` +

1

Λ
(c+ 1) · Lmax

Γ
·
(ε

4
·G` + εG`

)
328

=

(
1

4
+

5 · 1
Λ (c+ 1)Lmax

4Γ

)
εG`.(4.2)329

330

Given Equations (4.1) and (4.2), to guarantee that G`+1 ≥ 2G`, having 3εqLmax

4Γ −331

1 ≥ 2 suffices. We satisfy this by imposing q ≥ 8Γ
εLmax

, or equivalently εqLmax

4Γ ≥ 2,332

which is slightly stronger than needed, but will help improve the next constraint on333

q. To guarantee that M `+1 ≤ εG`+1/4, the following condition suffices:334

(4.3)
ε

4

[
3εqLmax

4Γ
− 1

]
G` ≥

(
1

4
+

5 · 1
Λ (c+ 1)Lmax

4Γ

)
εG`.335

As εqLmax

4Γ ≥ 2, we see that 2εqLmax

4Γ ≥ 5·(c+1)Lmax

ΛΓ suffices; i.e. q ≥ 10(c+1)
ε

logn
log n

q
336

suffices.337

Proof of Theorem 3.4. This theorem follows from Lemma 4.4, which requires that338

Event E1 hold. So the following conditions suffice:339

ε ≥ 4

n
and

n

e
≥ q ≥ max

{
8Γ

εLmax
, 10(c+1)

ε · log n

log n
q

}
.340

If Lres ≥ 2Lmax (implying 1
ε ≤

2Lmax
√
n√

3Lres
), the final condition becomes341

q ≥ max

{
16Γ
√
n√

3Lres

,
20(c+ 1)

√
nLmax√

3Lres

· log n

log n
q

}
.342

343

We focus on the second constraint, namely q ≥ 20(c+1)
√
nLmax√

3Lres
· logn

log n
q

. Let C =344

20(c+1)
√
nLmax√

3Lres
. The constraint becomes q ≥ C logn

log n
q

, or q log n
q ≥ C log n, where the345

RHS is independent of q. Note that q log n
q is an increasing function for 1 ≤ q ≤ n

e .346

Therefore, if suffices to seek a q̂ ≥ 1 such that q̂ log(n/q̂) ≥ C log n; then q ≥ q̂ implies347

that the second constraint holds for q ≤ n/e.348

Consider q̂ = 10C. Then q̂ log(n/q̂) ≥ C log n is equivalent to the inequality349

9C log n ≥ 10C log(10C), and hence to n9 ≥ (10C)10. Substituting for C, we obtain350

n9 ≥
(

200(c+ 1)√
3

· Lmax

Lres
·
√
n

)10

, or equivalently, n ≥
(

200(c+ 1)√
3

· Lmax

Lres

)5/2

.351

We also need q̂ = 10C ≤ n/e; n ≥
(

544(c+1)√
3
· Lmax

Lres

)2

suffices.352

4.3. Proof of Theorem 3.5.353

Lemma 4.5. Conditioned on Event E ′1 defined in Corollary 4.3, if Lres ≥ 2Lmax,354

n ≥ 400c2(c+ 2)2, and355

q ≥ max

{
8Γ
√
n√

3Lres

+
4cΓ

Lmax
, 20c(c+ 2)

}
356

This manuscript is for review purposes only.

TIGHT PARALLELISM BOUNDS FOR ASYNCHRONOUS SCD 11

then M ` ≤ 1
4cG

` and G` ≥ 2`G0, for 1 ≤ ` ≤ nc1 .357

Proof. We follow the inductive argument in the proof of Lemma 4.4 closely. In the358

spirit of deriving (4.3), we apply Corollary 4.3(b) instead of Corollary 4.3(a), causing359

the c+ 1 term to be replaced by a c+ 2 term. Then, it suffices that360

1

4c

[
3εqLmax

4Γ
− 1

]
G` ≥

(
1

4
+

5 · (c+ 2)Lmax

4Γ
· log n

log n
q

)
εG`.361

The above constraint is equivalent to q ≥ 4Γ
3εLmax

+ 4Γc
3Lmax

+ 20c(c+2)
3 · logn

log n
q

, so it suffices362

that q ≥ max
{

4Γ
Lmax

(
1
ε + c

)
, 10c(c+ 2) · logn

log n
q

}
.363

We focus on the second constraint. As argued in the proof of Theorem 3.4, it364

suffices to find a lower bound q̂ on q, such that q̂ log n
q̂ ≥ C log n, where C , 10c(c+2).365

q̂ = 2C suffices if n ≥ (2C)2.366

Since q ≥ 4Γ
εLmax

, following the derivation of (4.1) yields G`+1 ≥ 2G`.367

Lemma 4.6. [Event E2] Let I = [− 1
2nG

`, 1
2nG

`]. Suppose all the conditions im-368

posed in Lemma 4.5 hold. Then, with probability at least 1− 1/nc2 , for 0 ≤ ` < nc1 ,369

at every time during phase `+ 1, at least one coordinate has a value outside I.370

Proof. We condition on Event E ′1, which by Corollary 4.3, occurs with probability371

at least 1− 1/2nc2 .372

As before, without loss of generality, we assume that
∑
i y
`
i > 0.373

We start by showing that at the start of the (`+1)-st phase at least 2c coordinates374

have values larger than 1
2nG

`. Note that
∑
i:y`i∈I

y`i ≤ 1
2G

`. By Lemma 4.5, M ` ≤375

1
4cG

`. Thus, at the start of Phase ` + 1, at least 1
2G

`/ 1
4cG

` = 2c coordinates have376

value greater than 1
2nG

`, proving this claim.377

Next, we observe that an update to a coordinate with value in I changes its value378

to be smaller than − 1
2nG

`. For the largest value resulting from such an update379

is
[
1− (1− ε)Lmax

Γ

]
1

2nG
` − Lmax

Γ εG`. By assumption, Γ
Lmax

≤ 1
4εq ≤

1
4εn; therefore380

εLmax

Γ ≥ 4
n . We deduce the update value is at most −

(
4
n −

1
2n

)
G`, which demonstrates381

the claim.382

In order for all the coordinates to end up in I during Phase ` + 1, we need that383

there be no coordinates less than − 1
2nG

` initially, and that there be no updates to384

the coordinates in I until all the other coordinates enter I, assuming this is possible.385

This requires some k ≥ 2c updates to these at least 2c coordinates.386

The probability that these updates happen first is at most387

k!

nk
≤ (2c)!

n2c
≤
(

2c

n

)2c

,388

and this is bounded by 1/(2n)c if n ≥ 8c2. Summed over all nc1 phases, this gives a389

total failure probability of (significantly) less than 1/2nc2 .390

Taking into account the 1/2nc2 probability that Event E ′1 does not occur, we see391

that the overall probability of Event E2 is at least 1− 1/nc2 , as claimed.392

Proof of Theorem 3.5. Conditioned on Event E2, throughout phase `+ 1, at least393

one coordinate has a value outside the interval I defined in Lemma 4.6. Thus f(x) ≥394 [
1

2nG
`
]2 ≥ 1

4n2 · 4`
(
G0
)2 ≥ 1

4 · 4
`.395

This manuscript is for review purposes only.

12 Y. K. CHEUNG, R. COLE, AND Y. TAO

Note that f(x0) = 1−ε
2 · n+ ε

2n
2 ≤ εn2 as, by assumption, ε > 1

n . We deduce that396

f(x) ≥ 1
4n2 · 4` · f(x0) throughout this phase.397

5. Discussion. We have shown a tight asymptotic upper bound on the possible398

parallelism for achieving linear speedup when using asynchronous coordinate descent399

for almost the whole range of Lres

Lmax
. This upper bound holds even for composite400

functions. Furthermore, it holds even in the somewhat restrictive consistent read401

model, and thus it holds for the inconsistent read model too.402

Acknowledgments. We thank the referees for their thoughtful and incisive com-403

ments.404

Appendix A. Missing Proofs.405

Lemma A.1. The strong convexity parameter of fε is (1− ε).406

Proof.

fε(y)− fε(x)− 〈 ∇fε(x) , y − x 〉407

≥ 1− ε
2

∑
i

y2
i − x2

i +
ε

2

[(∑
i

yi
)2 − (∑

i

xi
)2]

408

− (1− ε)
∑
i

(xiyi − x2
i)− ε

[(∑
i

xi
)(∑

i

yi −
∑
i

xi
)]

409

≥ 1− ε
2

∑
i

(y2
i + x2

i − 2xiyi) +
ε

2

[(∑
i

yi
)2

+
(∑

i

xi
)2 − 2

∑
i

xi
∑
i

yi

]
410

≥ 1− ε
2

∑
i

(
yi − xi

)2
+
ε

2

[∑
i

yi −
∑
i

xi

]2

411

≥ 1− ε
2
||y − x||2.412

413

Proof of Proposition 3.2. Recall that fε(x
∗) = 0. Also, recall that the SCD414

process starts at the all ones point. Let C1 denotes the even index coordinates, and415

C−1 those of odd index. Consider the following random variables:416

S1(t) :=
∑
j∈C1

xtj S−1(t) :=
∑
j∈C−1

(−xtj) S(t) := S1(t) + S−1(t).417

Note that S1(0) = S−1(0) = n/2 and S(0) = n.418

Next, we derive a recurrence which, conditioned on S(t), computes the expected419

value of S(t + 1) − S(t). Recall that if coordinate j is chosen to be updated at time420

t+ 1, then421

xt+1
j − xtj = − ∇jf(xt)

Γ
= − 1− ε

Γ
· xtj −

ε

Γ
· [S1(t)− S−1(t)] .422

This manuscript is for review purposes only.

TIGHT PARALLELISM BOUNDS FOR ASYNCHRONOUS SCD 13

Thus,423

E
[
S(t+ 1)− S(t)

∣∣∣ S(t)
]

=
1

n

∑
j∈C1

(
−1− ε

Γ
· xtj −

ε

Γ
· [S1(t)− S−1(t)]

)
424

+
∑
j∈C−1

(
1− ε

Γ
· xtj +

ε

Γ
· [S1(t)− S−1(t)]

)425

=
1

n

(
−1− ε

Γ
· S1(t)− 1− ε

Γ
· S−1(t)

)
426

= − 1− ε
nΓ

S(t).427
428

The second equality above holds because |C1| = |C−1|, leading to cancellation of the429

terms ± ε
Γ · [S1(t)− S−1(t)]. Thus, E [S(t+ 1) | S(t)] = S(t) ·

(
1− 1−ε

nΓ

)
. Iterating this430

recurrence yields431

(A.1) E [S(t)] = n ·
(

1− 1− ε
nΓ

)t
.432

Next, observe that for any fixed S1(t), S−1(t), by the Power-Mean Inequality,433 ∑
j∈C1

(xtj)
2 ≥ 2|S1(t)|2

n and
∑
j∈C−1

(xtj)
2 ≥ 2|S−1(t)|2

n . On the other hand, for any434

fixed S(t), which equals to S1(t) + S−1(t), the sum |S1(t)|2
n + |S−1(t)|2

n is minimized435

when S1(t) = S−1(t) = S(t)/2. Thus,436

E
[
fε(x

t)
]
≥ E

1− ε
2

n∑
j=1

(xtj)
2

 ≥ (1− ε) · E
[
|S1(t)|2

n
+
|S−1(t)|2

n

]
437

≥ 1− ε
2n
· E
[
S(t)2

]
.438

439

Finally, we complete the proof by using the Cauchy-Schwarz inequality and Equa-440

tion (A.1):441

1− ε
2n
· E
[
S(t)2

]
≥ 1− ε

2n
· E [S(t)]

2
=

(1− ε)n
2

·
(

1− 1− ε
nΓ

)2t

442

≥ (1− ε)n
2

·
(

1− 2(1− ε)
nΓ

)t
443

= fε(x
0) ·
(

1− 2(1− ε)
nΓ

)t
.444

445

REFERENCES446

[1] Y. K. Cheung, R. Cole and Y. Tao, Fully asynchronous stochastic coordinate descent: A447
tight lower bound on the parallelism achieving linear speedup, Math. Program. Series A, (to448
appear).449

[2] J. Liu and S. J. Wright, Asynchronous stochastic coordinate descent: Parallelism and conver-450
gence properties, SIAM J. Optim., 25 (2015), pp. 351–376.451

[3] J. Liu, S. J. Wright, C. Ré, V. Bittorf and S. Sridhar, An asynchronous parallel stochastic452
coordinate descent algorithm, J. Mach. Learn. Res., 16 (2015), pp. 285–322.453

This manuscript is for review purposes only.

14 Y. K. CHEUNG, R. COLE, AND Y. TAO

[4] H. Mania, X. Pan, D. S. Papailiopoulos, B. Recht, K. Ramchandran and M. I. Jordan,454
Perturbed iterate analysis for asynchronous stochastic optimization, SIAM J. Optim., 27455
(2017), pp. 2202–2229.456

[5] T. Sun, R. Hannah and W. Yin, Asynchronous coordinate descent under more realistic as-457
sumptions, Advances in Neural Information Processing Systems, (2017), pp. 6182–6190.458

This manuscript is for review purposes only.

	Introduction
	Notation
	The Stochastic Asynchronous Coordinate Descent (SACD) Algorithm
	Asynchrony Assumptions, Basic Set-up and Terminology Used in the Construction

	The Result
	Analysis
	Proof of thm::simplest-lower-bound
	Proof of thm::high-prob-phase-lower-bound
	Proof of thm::all-times-lower-bound

	Discussion
	Appendix A. Missing Proofs
	References

