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Abstract

Envy-freeness and Pareto Efficiency are two major goals in welfare
economics. The existence of an allocation that satisfies both conditions
has been studied for a long time. Whether items are indivisible or
divisible, it is impossible to achieve envy-freeness and Pareto Efficiency
ex post even in the case of two people and two items. In contrast, in
this work, we prove that, for any cardinal utility functions (including
complementary utilities for example) and for any number of items and
players, there always exists an ex ante mixed allocation which is envy-
free and Pareto Efficient, assuming the allowable assignments satisfy
an anonymity property. The problem remains open in the divisible
case.

We also investigate the communication complexity for finding a
Pareto Efficient and envy-free allocation.

Keywords: Pareto Efficient, envy-free, fair allocation, communi-
cation complexity

Classification codes: D630; D610

1 Introduction

How can one partition a collection of indivisible goods so as to achieve both
efficiency and fairness, when the recipients may have non-additive utilities,
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and further the possible allocations may be restricted? By efficiency we mean
Pareto Efficiency and by fairness we intend envy-freeness. We first note
that there is no deterministic allocation achieving both Pareto Efficiency
and envy-freeness, as can be seen by considering the case of allocating one
item among two players, one of whom must end up being envious.

Instead, we allow for randomization in the allocations, and measure the
outcome in terms of expected, i.e. Von Neumann–Morgenstern utility. Of
course, randomness is commonly used in many resource allocation settings.
These include school settings, when it is used to break ties for places in
over-demanded schools; at universities, where it is used to provide an order
or ranking by which students choose over-demanded goods including uni-
versity housing and seats in courses; it is used for assigning potential bads
such as jury service and military call ups. Randomization is used in these
settings because monetary transfers are considered undesirable and because
the goods are indivisible.

Hylland and Zeckhauser [17] solved this problem in the case that the
legal allocations are matchings. Their solution was based on computing a
CEEI equilibrium to allocate fractional shares of the goods, followed by a
suitable randomized rounding procedure that maintained expected utilities.
A subsequent generalization by Budish et al. [8] considered the allocation
of multiple goods subject to restrictions as would be needed for example
in course assignment, where the restrictions correspond to bounds on the
number of courses per student, the room capacities, etc. They showed that
only certain types of restrictions could be managed. In addition, Budish et
al. [7] gave an implementation of a different scheme for course scheduling
based on an approximate CEEI notion.

Hylland and Zeckhauser’s solution determines item prices. This does not
suffice in general, as was noted in [8] and as we illustrate in Example 1.1
below. However, a pricing solution does exist for this example if one uses
bundle prices. Bundle prices tend to be harder to compute, and in what
circumstances they exist is not clear. Our second example below introduces
restrictions on the allowable allocations, and shows that with these restric-
tions there need not be a bundle pricing either. But in both cases Pareto
Efficient and envy-free allocations exist.

Example 1.1. The setting has 3 items, {A,B,C}, and 4 players, {1, 2, 3, 4}.
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The utility for each player is as follows. For any subset T ∈ {A,B,C},

u1(T ) =

{
1 if {A,B} ⊆ T
0 otherwise,

u2(T ) =

{
1 if {B,C} ⊆ T
0 otherwise,

u3(T ) =

{
1 if {A,C} ⊆ T
0 otherwise,

u4(T ) = |T |.

There are many Pareto Efficient and envy-free allocation. For example,
Player 1 receives {A,B} with probability 1

3 , Player 2 receives {B,C} with
probability 1

3 , Player 3 receives {A,C} with probability 1
3 , and in each case

Player 4 receives the remaining item. Another example has Player 1 receiv-
ing {A,B} with probability 1

2 , Player 2 receiving {B,C} with probability 1
2 ,

Player 3 receiving nothing, and Player 4 receiving the remaining item in
each case. 1

However there is no CEEI allocation based on item pricing. To see this,
suppose each player comes with 1 unit of money. We start by considering
equilibria in which the price of a bundle of items is just the sum of the prices
of the individual items. Then, as we show in Lemma A.1 in the appendix,
the only market equilibrium sets the prices of the items to all be equal to 4

3 ,
and allocates bundle {A,B} to Player 1, bundle {B,C} to Player 2, bundle
{C,A} to Player 3, each with 3

8 probability, and everything else to Player 4.
Therefore, the total amount of items received by Player 4, in expectation, is
3
4 .

Next, we show there does not exist a mixed allocation corresponding to
this distribution of bundles. This is because in this distribution, all items
are fully allocated to players and each of Players 1, 2, and 3 receives their
favorite bundle with probability 3

8 and nothing else. However, in any deter-
ministic allocation, if all items are fully allocated to players, Player 4 will
receive at least 1 item when the other three players receive either their pre-
ferred bundle or the empty set. Consequently, in a mixed allocation, which
is a combination of deterministic allocations, Player 4 will receive at least 1
item in expectation, which contradicts the fact that Player 4 receives 3

4 items
in expectation in the CEEI allocation.

1The second example allocation was suggested to us by an anonymous referee.
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But if bundle pricing is allowed, the above allocation is achievable: the
individual item prices remain at 1, while each 2-item bundle is priced at 3.
Now, however, the bundle can be purchased only by paying the bundle price.2

Our construction allows the feasible allocations to be constrained, if we
impose an anonymity limitation on the allowable allocations. This arises
because our construction, when faced with a candidate allocation in which
there is envy, will seek to reduce the envy by performing partial swaps of
the agents’ individual allocations. For this to be possible, every permutation
of a feasible allocation must also be feasible, and this is what we mean by
anonymity.

It is helpful to specify allocations in terms of partitions of the set of
items. Suppose there are n players. Then a partition is a particular division
of the items into n disjoint bundles, but without an allocation of the bundles
to the players. An allocation based on a partition P is a distribution of the
n bundles in P to the n players. Because of the anonymity limitation, as
there are n players, a single partition yields n! possible allocations.

The next example shows that even with partition-independent bundle
pricing, if the collection of allowable allocations is constrained, then there
may be no pricing supporting a Pareto Efficient and envy-free allocation.

Example 1.2. There are 4 players, {1, 2, 3, 4}, 5 items, {A,B,C,D,E},
and two legal partitions: {{A}, {B}, {C}, {D,E}} and {{A}, {B}, {C,D}, {E}}.
Players 1 and 2 are interested in items A and B. Player 3 is interested in
item C or bundle {C,D}. Player 4 is interested in bundle {D,E} or item E.
The utilities are defined as follows: if the partition is {{A}, {B}, {C}, {D,E}},
then

{A} {B} {C} {D,E}
Player 1 14 6 0 0

Player 2 11 9 0 0

Player 3 0 0 10 0

Player 4 0 0 0 10

and if the partition is {{A}, {B}, {C,D}, {E}}, then

2This solution was suggested to us by an anonymous referee.
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{A} {B} {C,D} {E}
Player 1 9 11 0 0

Player 2 4 16 0 0

Player 3 0 0 10 0

Player 4 0 0 0 10

The role of Players 3 and 4 is to create partitions in which the utilities
of each of Players 1 and 2 change. As we show in Claim A in the appendix,
in any Pareto Efficient and envy-free allocation, Player 1 always receives
item A and Player 2 always receives item B. To achieve envy-freeness, both
partitions need to occur with non-zero probability, e.g. each with probability
1/2.

We show in Lemma A.2 in the appendix that there is no partition-
independent bundle pricing supporting any Pareto Efficient and envy-free
allocation. We now explain in more detail what this means. By partition-
independent, we mean that the prices are the same in both partitions. Also,
we envisage a price-based allocation of the following form. The solution spec-
ifies prices and allocations, and thus implicitly also specifies the probabilities
p1 and p2 = 1 − p1 of each of the two partitions. Also each player receives
an allocation that maximizes its utitility over all the allocations the player
could obtain, given these partition probabilities. More precisely, Player i has
a probability p1ij of obtaining bundle j in partition 1 and a probability p2ij
of obtaining bundle j in partition 2. These probabilities satisfy

∑
j p1ij = p1

and
∑

j p2ij = p2; in addition, the expected cost of Player i’s bundle will
be at most 1. These are the only constraints on the bundles Player i could
receive and hence on its maximum possible utility.

However, if we were to allow distinct prices in the different allocations,
then we could provide a pricing supporting a Pareto Efficient and envy-free
allocation.

In contrast, we show that for any partition-based utility functions, includ-
ing negative-valued utilities, one can obtain a Pareto Efficient and envy-free
allocation. Here, partition-based utility functions mean the players’ utilities
can depend on both the allocations they receive and the whole partition.
In addition, we can impose restrictions on the allocations so long as they
remain anonymous.

Our solution works by constructing a mapping from the space of mixed
allocations and weight vectors to itself. We then apply the Kakutani fixed-
point theorem [19] to obtain a fixed point. Finally, we prove that the fixed
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point corresponds to a mixed Pareto Efficient and envy-free allocation. The
proof is inspired by [34, 2, 38].

We conclude the paper by asking how readily one can calculate a Pareto
Efficient and envy-free allocation, in terms of the unavoidable communica-
tion cost, referred to as the communication complexity of the problem. In
particular, we show that even with two players, if their utility functions are
submodular, in general, calculating such an allocation will require Ω(2

m
2 )

bits to be communicated between the players, where m is the number of
items to be allocated, which rapidly becomes infeasible as m increases.

2 Related Work

A detailed survey on fairness and further background can be found in [4, 5,
27].

Research on fair allocation research dates back to at least [33]. A fair
allocation is defined as a Pareto Efficient allocation in which everyone prefers
their own bundle to other players’ bundles, which is exactly the notion of
envy-freeness proposed in [13].

The existence of Pareto Efficient and envy-free allocations has been stud-
ied in both the divisible and indivisible cases.

When items are divisible, previous work showed that Pareto Efficient
and envy-free allocations exist under a variety of assumptions, including
that utility functions are strongly monotone [36, 34, 11], continuously dif-
ferentiable [35], or convex [37]. In contrast, Vohra [37] showed that when
the economy has increasing-marginal-returns, there exist cases such that no
Pareto Efficient and envy-free allocation exists. Also, Maniquet [25] gave
an example with two items and three players for which there is no Pareto
Efficient and envy-free allocation.

In the indivisible setting, for the case of mixed allocations, Bogomolnaia
and Moulin [3] introduced the Probabilistic Serial mechanism and showed
this new mechanism results in an ordinally efficient expected matching
which is envy-free in their setting. Ordinal efficiency is a notion which
is slightly weaker than Pareto Efficiency. Budish et al. [8] gave a Pareto
Efficient and envy-free allocation when the allocation constraints satisfy a
bihierarchy assumption which applies to multi-item allocation problems with
possibly non-linear utility functions.

For the deterministic case, because of the simple counter-example men-
tioned above, researchers have proposed many other notions of fairness. The
two most closely related notions are EF1 (envy-free up to one good) [7] and
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EFX (envy-free up to any good) [9]. Recall that the idea in the definition of
envy-freeness is that each player will compare their bundle to those of the
other players. These alternate notions also have players compare their bun-
dle to the other players’ bundles, but in EF1, players delete their favorite
item from the other bundle before doing the comparison, and in EFX, players
will not envy another bundle after deleting their least favorite item. Lipton
et al. [24] showed that an EF1 allocation always exists. For the EFX allo-
cation, Plaut and Roughgarden [29] showed that in some situations (utility
functions are identical or additive) existence is guaranteed, while for general
utility functions, there exist examples such that no EFX allocation is Pareto
Efficient.

In addition, Dickerson et al. [12] showed that if the number of items is
at least a logarithmic factor larger than the number of players, then with
high probability, an envy-free allocation exists.

Recently, Richter and Rubinstein [32] introduced the Normative Equi-
librium. They considered when deterministic Pareto Efficient and envy-free
allocations exist in this setting.

Other fairness notions include maximizing the product of individual util-
ities [21, 26] which has been variously called Proportional Fairness, Nash
Social Welfare and Maximum Nash Welfare, max-min fairness [18, 22], and
CEEI [36].

Communication complexity provides a lower bound on the cost of com-
puting game theoretic solutions. The first such study, by Nisan and Se-
gal [28], analyzed the cost of maximizing social welfare and the support-
ing prices for indivisible goods, and showed that it could be exponential
in the number of goods. Hart and Mansour [16] showed exponential lower
bounds on the cost of finding Nash Equilibria for n-player games. In another
early work, Conitzer and Sandholm [10] analyzed the cost of various solu-
tion concepts, including Nash Equilibria, for 2-player games. Other studies
considered the costs of auctions [15], of approximate 2-player Nash Equilib-
ria [14, 1], and of cake cutting [6]. Recently, Plaut and Roughgarden [30]
looked at the communication complexity of finding each of a deterministic
envy-free and a proportional division with indivisible goods, identifying set-
tings with respectively polynomial and exponential costs as a function of
the number of goods.
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3 Notation, Results and Examples

There are m items, n players, and T feasible partitions of the set of items:
{Dt}t=1,··· ,T (in Example 1.2 there are two feasible partitions). Each parti-
tion consists of n disjoint subsets of items: Dt = {Dt1, Dt2, · · · , Dtn}, such
that for all b 6= c, Dtb ∩Dtc = ∅ and ∪cDtc ⊆ {1, 2, · · · ,m}.3 Each partition
can be distributed to the players in any way, so long as each agent gets a
distinct single element of the partition. Thus each partition yields n! possi-
ble allocations, and consequently there are k = T · n! feasible allocations in
total. We let A(1), A(2), · · · , A(k) denote these allocations.

Given a feasible partition Dt, a player i who receives element Dtc of the
partition obtains utility ui(Dt;Dtc), which can be any real number. We
note that the utility can depend on the partition, but not on the allocations
of the other players. We also note that this allows utilities which are negative
or altruistic. We call this genre of utilities partition-based utilities.

In order to specify utilities when the allocations of two players are
swapped, we introduce the following notation. Suppose allocation A(j) is

produced by Dt; we let A
(j)
h denote the element of Dt allocated to player

h. With a slight abuse of notation, we define ui(A
(j); i) , ui(Dt;A

(j)
i ) and

ui(A
(j);h) , ui(Dt;A

(j)
h ).

We define a mixed allocation to be a probability distribution on the
possible allocations: p = (p1, p2, · · · , pk) ∈ P such that

∑
j pj = 1 and

pj ≥ 0 for any j. Given p, player i’s expected utility is
∑

j pjui(A
(j); i).

A mixed allocation p is Pareto Efficient (PE) if there is no other mixed
allocation p′ such that for all i,

∑
j p
′
jui(A

(j); i) ≥
∑

j pjui(A
(j); i) and there

exist at least one i for which this inequality is strict.
A mixed allocation p is envy-free (EF) if for every pair i and h of players,∑
j pjui(A

(j); i) ≥
∑

j pjui(A
(j);h).

Now, we present our main theorem.

Theorem 3.1. For any set of partitions and any partition-based utility func-
tions, there always exists a Pareto Efficient and envy-free mixed allocation.

The mixed allocation in Theorem 3.1 creates n mixed bundles. One way
to understand envy-freeness is that each player gets a favorite bundle.

3The union of all subsets in one partition need not be the full set.
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3.1 Examples

We give some examples of settings in which a Pareto Efficient and envy-free
allocation is desired.

Example 3.2 (Scheduling Delivery Volunteers). As described in [23], the
foodbanks in the Pittsburgh area need to collect food gifts from supermarkets
and other donors for delivery to their warehouses. These deliveries are car-
ried out by volunteers using personal vehicles. The foodbanks use a shared,
cooperative system to schedule the volunteers. Volunteers express their pref-
erences via a website and they are then given individual schedules.

The primary goal is to schedule all deliveries. Assuming a sufficiency of
volunteers, one then wants to maximize volunteer satisfaction. It is natural
to seek Pareto Optimal and envy-free solutions w.r.t. expected utility, par-
ticularly given that volunteers will mostly be repeatedly participating and so
their actual utility over time is likely close to their expected utility. We note
that in practice, the scheduling system will be implicitly or explicitly using
an inferred utility.

In this case, we give a concrete example to explain the terms, items
and partitions, used above. Suppose there are two donors, {DN1,DN2}, two
warehouses, {WH1,WH2}, and two volunteers. Each donor wants to donate
one box of food; each warehouse wants to receive one box of food; and volun-
teers can deliver the food from any one of the two donors to any one of the
two warehouses. In this example, volunteers are the players, and items are
the possible deliveries from donors to warehouses, {Del11,Del12,Del21,Del22},
where Delst represents the delivery from Donor s to Warehouse t. Since
we want all the food on the donor side to be delivered to the warehouse
side by volunteers, there are 4 partitions: D1 = {{Del11}, {Del22}}, D2 =
{{Del12}, {Del21}}, D3 = {{Del11,Del22}, ∅}, and D4 = {{Del12,Del21}, ∅}.
Here D1 represents one volunteer delivering food from Donor 1 to Ware-
house 1 and another volunteer delivering food from Donor 2 to Warehouse
2. D2 is similar to D1. D3 represents one volunteer delivering food from
Donor 1 to Warehouse 1 and delivering food from Donor 2 to Warehouse 2
and another volunteer doing nothing; D4 is similar to D3. Each volunteer
will have a utility which is a function of their schedule. Our main result
proves that there exists a randomized schedule for the deliveries which is
Pareto Efficient and envy-free for all volunteers.

We finish with a brief discussion of some types of utility functions that
seem natural. Volunteers may have preferences based on their total travel
time (i.e. the time to get from their start point to the relevant donor location,
the time for each delivery, and the time from the relevant warehouse to their
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final destination). Also, depending on their available time, volunteers may
prefer to make a single delivery or to make several deliveries back to back.
(One might expect that in real settings there would be considerably more than
two donors and more than two warehouses.)

Our next example shows that we can relax the anonymity constraint at
the cost of somewhat limiting the envy-free condition.

Example 3.3 (Allocating Places in Universities). This example is intended
to capture the scenario in which there are two populations, men and women,
and each has a strong preference that there be a sufficiently large number of
the population of the other sex, say that they constitute at least 45% of the
total.

Let’s suppose there are two universities, Ua and Ub, each with 1000 places
(this is just for concreteness; we could have different numbers of places in
the two universities). Suppose there are m men and w women seeking these
places. We suppose that m+ w ≤ 2000 (we discuss later how to handle the
case m+ w > 2000).

Suppose each student’s utility for a place in each university is a function
of (i) the number of men at the university, (ii) the number of women at the
university, and (iii) the university. Note that these utility functions are not
partitioned-based in general: for a single student’s utility for the seat they
have been allocated may change on permuting the seats allocated to other
students, as this can alter the numbers of men and women in each university.
Note that here there is a single partition, comprising the partitioning of the
set of 2000 places into 2000 subsets each comprising one place; if the utility
function were partition-based, the utility of one student for a given place
would be independent of the allocations of the other students.

We can show that there is a Pareto Efficient allocation in which there is
no envy among the men and no envy among the women, but a man could
envy a woman and a women could envy a man. This is achieved by means
of a reduction to an anonymous setting, which is a larger game to which our
game is mapped in a way that preserves allocations.

The larger game has the following form. There are two universities A′

and B′. Now there are 2000 places in each university, of which 1000 are
men-places and 1000 are women-places. We have the same m men and w
women as before, and intuitively they have the same utilities as before —
more on this in a moment. We introduce two more players, Ha and Hb (H
is short for Huge). Ha desires one subset of 1000 + y places in university
Ua, with 0 ≤ y ≤ 1000, and all such subsets are equally attractive; similarly,
Hb desires one subset of 1000+z places in university Ub, 0 ≤ z ≤ 1000. The
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subset taken by Ha determines a partition of university Ua’s places into a mix
of x men-places and 1000−x− y women-places, plus a set of the remaining
1000 + y places. In addition, each allowable partition must include subsets
of the university Ua and university Ub places so that between them they leave
exactly m men-places and w women-places; i.e. m + w = 1000 − y − z and
there are m men-places and w women-places available. As each distinct pair
of subsets specifies a distinct partition, this construction allows the students
to have utilities that are a function of the male and female populations at
their university while achieving anonymity in the larger game.

We extend the utility functions for the men to have large negative values,
−r say, on women-places and on each large subset, and similarly for the
women. Finally, we set the utilities of Ha and Hb to be very negative except
on their desired subsets, where their utilities are set to 1.

In Lemma A.4 in the appendix we show that all Pareto Efficient and
envy-free allocations in the larger game have all men allocated to men-places
and women to women-places. Consequently, there is a 1–1 correspondence
between Pareto Efficient and envy-free allocations in the two games.

To handle the case the m + w > 2000 we introduce a third university
in the larger game, corresponding to not being assigned a place in the two
actual universities; we then also need a third player Hc. We leave the details
to the interested reader. Also, this example is readily extended to having
more than two groups of agents, with utilities that can depend on the group
sizes, but without the ability to exclude cross-group envy.

As we shall see, our construction requires all utilities to be strictly pos-
itive; however, it is straightforward to extend it to allow negative utilities:
simply add a sufficiently large constant to each original utility so that the
resulting utilities are all strictly positive. Note that if the empty set could be
allocated, then it now has a strictly positive utility. Thus our construction
can handle the allocation of bads.

Example 3.4 (Allocating Bads). Some or all players have negative utility;
examples includes jury duty assignments and military service.

3.2 Communication Complexity

Next, we will look at the communication complexity of finding a Pareto
Efficient and envy-free allocation. For this result, we will assume that the
set of partitions includes all possible partitions of the items and players’
utilities depend only on the bundle they receive. Accordingly, for simplicity,
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in the communication setting, we let ui(S) denote player i’s utility when
receiving bundle S.

The setting We assume that the players only know their own utility func-
tions; they have no knowledge of others’ utility functions. The problem is to
determine the minimum number of bits they need to communicate with each
other in order to calculate a Pareto Efficient and envy-free allocation, which
means that, after communication and individual calculation, every player
will agree on one allocation which is both Pareto Efficient and envy-free.

In this setting, we assume that for every S and i, ui(S) can be repre-
sented with a polynomial number of bits. Given this assumption, one easy
conclusion is that there always exists a protocol which uses an exponential
number of bits (exponential in the number of items) and outputs an allo-
cation which is Pareto Efficient and envy-free. This is true because there
would be no difficulty for all players to calculate one Pareto Efficient and
envy-free allocation if each player knew everyone else’s utility function. An
exponential number of bits of communication suffices to achieve this.

Our question is whether there exists a protocol that needs only a poly-
nomial number of bits. We show the following negative result.

Theorem 3.5. Any protocol that calculates Pareto Efficient and envy-free
allocation for two players with submodular uility functions needs an expo-
nential number of bits.

The definition of a submodular utility function follows.

Definition 3.6. u(·) is a submudular function if and only if for any X ⊆ Y
and any element e,

u(X ∪ {e})− u(X) ≥ u(Y ∪ {e})− u(Y ).

4 Proof of Theorem 3.1

WLOG, we assume that 1 ≤ ui(xi) ≤ 2 for all i and xi.
4 We will use a fixed

point argument. To this end, we construct a correspondence Φ between
P ×Wε and itself. Here, P is the set of mixed allocations and Wε is the set
of weighted vectors {w = (w1, w2, · · · , wn)|

∑
iwi = 1 and wi ≥ ε}, where

ε > 0 is a sufficiently small value that is a function of the utilities. We will

4Note that every utility function can be rescaled into [1, 2] without affecting the defi-
nition of Pareto Efficiency and envy-freeness.
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specify ε precisely later. Φ maps (p,w) to (P(w), $(p,w)), where P(w) is
a subset of P and $(p,w) ∈Wε.

P(w) =
{

p′
∣∣p′ ∈ P and p′ ∈ arg max

∑
iwi
∑

jp
′
jui(A

(j); i)
}

;

$(p,w) = projWε
(ν(p,w)); (1)

where νi(p,w) = wi +
maxh

∑
j pjui(A

(j);h)∑
i′ maxh

∑
j pjui′(A

(j);h)
−

∑
j pjui(A

(j); i)∑
i′
∑

j pjui′(A
(j); i′)

.

(2)

Note that if p is envy free, then maxh
∑

j pjui′(A
(j);h) =

∑
j pjui′(A

(j); i′)
for all i, and so νi(p,w) = wi for all i.

We first show that a fixed point exists.

Lemma 4.1. There exists a fixed point, (p∗,w∗), such that p∗ ∈ P(w∗)
and $(p∗,w∗) = w∗.

It’s not hard to see that, for any fixed point (p∗,w∗), p∗ is a Pareto
Efficient allocation.

Claim 4.2. If (p∗,w∗) is a fixed point of Φ, then p∗ is a Pareto Efficient
allocation.

Proof. Note that the fact that p∗ ∈ P(w∗) means p∗ maximizes∑
iw
∗
i

∑
j p
∗
jui(A

(j); i). So there cannot be another p such that for every i,∑
j pjui(A

(j); i) ≥
∑

j p
∗
jui(A

(j); i), with the inequality being strict for some
i.

The following two lemmas imply that, for any fixed point (p∗,w∗), p∗ is
also envy-free.

Lemma 4.3. If (p∗,w∗) is a fixed point of Φ and ν(p∗,w∗) ∈Wε, then p∗

is an envy-free allocation.

Lemma 4.4. If ε is small enough (the threshold being defined in terms of
ui only) and (p∗,w∗) is a fixed point of Φ, then ν(p∗,w∗) is in Wε.

With these lemmas, Theorem 3.1 follows readily.

Proof of Theorem 3.1. By Lemma 4.1, the mapping Φ has a fixed point
(p∗,w∗). By Lemma 4.4, ν(p∗,w∗) ∈ Wε. The theorem now follows from
Claim 4.2 and Lemma 4.3.
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4.1 Proof of Lemma 4.1, the Existence of a Fixed Point

We prove Lemma 4.1 via the following two claims.

Claim 4.5. Let A(w) = {j|A(j) maximizes
∑

iwiui(A
(j); i) over all allocations}.

Then, P(w) is a simplex on A(w); i.e. for any p′′ ∈ P(w), p′′j > 0 only if
j ∈ A(w) (and, of course

∑
j p
′′
j = 1 and p′′j ≥ 0 for all j):

P(w) =
{

p′′
∣∣∣ (p′′j > 0→ j ∈ A(w)

)
∩
(
∀j. p′′j ≥ 0

)
∩
(∑

jp
′′
j = 1

)}
.

Furthermore, A(w) is non-empty, and P(w) is non-empty and convex.

Proof. It’s not hard to see that in the definition of P(w), we can rewrite∑
iwi

∑
j p
′
jui(A

(j); i) as
∑

j p
′
j

∑
iwiui(A

(j); i). So any probability p′j > 0

on an allocation A(j) that does not maximize
∑

iwiui(A
(j); i) will contradict

the definition of P(w).
A(w) is non-empty because it is a set of maximizers, and thus P(w) is

also non-empty. Finally, a simplex is a convex set, and so P(w) is convex.

We use the Maximum Theorem to prove the next claim.

Theorem 4.6 (Maximum). Let X and Θ be topological spaces, f : X×Θ→
R be a continuous function on the product X × Θ, and C : Θ ⇒ X be a
compact-valued correspondence such that C(θ) 6= ∅ for all θ ∈ Θ. Define the
marginal function (or value function) f∗ : Θ→ R by

f∗(θ) = sup{f(x, θ) : x ∈ C(θ)}

and the set of maximizers C∗ : Θ⇒ X by

C∗(θ) = arg sup{f(x, θ) : x ∈ C(θ)} = {x ∈ C(θ) : f(x, θ) = f∗(θ)}.

If C is continuous at θ, then ∀θt ∈ Θ, ∀x ∈ X and ∀xt ∈ C∗(θt)

lim
t→∞

θt = θ, lim
t→∞

xt = x =⇒ x ∈ C∗(θ).

Claim 4.7. For any series (w(t),p(t)) with limt→∞w(t) = w and limt→∞ p(t) =
p, if for every t, p(t) ∈ P(w(t)), then p ∈ P(w). In other words, P(w) has
a closed graph.
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Proof. Recall that P denotes the entire space of mixed allocations. We set
Θ = Wε, X = P , f(x, θ) = f(p,w) =

∑
iwi

∑
j pjui(A

(j); i) and C(θ) =
C(w) = P . Then it’s clear that at any point w ∈ W , C is compact valued
and continuous, C(w) 6= ∅, and C∗(w) = P (w). The claim follows on
applying the Maximum Theorem.

Proof of Lemma 4.1. For each (p,w), the mapping Φ(p,w) = (P(w), $(p,w))
is a convex set as P(w) is convex by Claim 4.5 and $(p,w) is a single point.
It is non-empty as A(w) is non-empty, and by Claim 4.5 the corresponding
P(w) is non-empty. By Claim 4.7, Φ has a closed graph. Hence Kakutani’s
fixed point theorem can be applied.

4.2 Proof of Lemma 4.3: a Sufficient Condition for Envy
Freeness

We begin by constructing an envy graph (V,E) based on p∗. V is the set of
players and there is a directed edge (i, i′) from i to i′ if and only if i envies
i′, which means that

∑
j p
∗
jui(A

(j); i) <
∑

j p
∗
jui(A

(j); i′).
The following claim uses the anonymity property, namely that all per-

mutations of an allocation are feasible and changing the allocations of two
players does not alter anyone else’s utilities.

Claim 4.8. Suppose p∗ is a Pareto Efficient mixed allocation. The corre-
sponding envy graph is acyclic.

Proof. If the graph has a cycle, then we can improve everyone’s utility func-
tions in this cycle by exchanging the allocations along the cycle, contradict-
ing Pareto Efficiency.

Given the Pareto Efficient mixed allocation p∗, we define the set of envy-
free players to be F(p∗) = {i | player i does not envy player h for all h}.

Claim 4.9. Suppose p∗ is a Pareto Efficient mixed allocation. Then F(p∗)
is not empty.

Proof. This follows from the fact that the envy graph is acyclic.

For the following claim, recall (2).

Claim 4.10. Let p∗ be a Pareto Efficient mixed allocation. Then, for any
i in F(p∗), νi(p

∗,w∗) ≤ w∗i , or equivalently,

maxh
∑

j p
∗
jui(A

(j);h)∑
i′ maxh

∑
j p
∗
jui′(A

(j);h)
≤

∑
j p
∗
jui(A

(j); i)∑
i′
∑

j p
∗
jui′(A

(j); i′)
,
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and equality holds for at least one i ∈ F(p∗) if and only if p∗ is envy-free.

[34] gives a result similar to Claim 4.10. Here we provide a simple proof
for completeness.

Proof of Claim 4.10. The inequality follows from the following two facts:

• for all players i′, maxh
∑

j p
∗
jui′(A

(j);h) ≥
∑

j p
∗
jui′(A

(j); i′);

• for any i ∈ F(p∗), maxh
∑

j p
∗
jui(A

(j);h) =
∑

j p
∗
jui(A

(j); i).

Equality holds if and only if for all players, maxh
∑

j p
∗
jui′(A

(j);h)

=
∑

j p
∗
jui′(A

(j); i′) and thus no one envies anyone else.

Proof of Lemma 4.3. It is not hard to see that if ν(p∗,w∗) ∈Wε and (p∗,w∗)
is a fixed point, then w∗ = $(p∗,w∗) = ν(p∗,w∗), and consequently for all

i,
maxh

∑
j p
∗
jui(A

(j);h)∑
i′ maxh

∑
j p
∗
jui′ (A

(j);h)
=

∑
j p
∗
jui(A

(j);i)∑
i′
∑
j p
∗
jui′ (A

(j);i′)
. In addition, by Claim 4.2, p∗

is a Pareto Efficient allocation and so by Claim 4.10, p∗ is envy-free.

4.3 Lemma 4.4: The Sufficient Condition Holds at Every
Fixed Point

We will show Lemma 4.4 by a proof by contradication: if (p∗,w∗) is a fixed
point and ν(p∗,w∗) is not in Wε, then we deduce that w∗ 6= $(p∗,w∗),
which causes a contradiction. In particular, we will show that there exists
an i such that $i(p

∗,w∗) < w∗i .
The fact that ν(p∗,w∗) /∈Wε does not immediately yield a contradiction.

Recall that the construction of ν(p∗,w∗) ensures that if p∗ is envy-free, then
ν(p∗,w∗) = w∗. As ν(p∗,w∗) /∈Wε implies ν(p∗,w∗) 6= w∗, one immediate
conclusion is that p∗ is not envy-free. We can argue that there must be
a player in the set F(p∗), the set of envy-free players, as the envy graph
is acyclic. In addition, for this player i, the inequality in Claim 4.10 is
strict as p∗ is not envy-free, which implies νi(p

∗,w∗) < w∗i . However, as
$(p∗,w∗) = projW (ν(p∗,w∗)), conceivably $i(p

∗,w∗) = w∗i . In fact, this
is not possible. We deduce this conclusion via the following two claims.

Claim 4.11. $i(p
∗,w∗) ≤ max{νi(p∗,w∗), ε} for all i.

Claim 4.12. If ε is sufficiently small, then there is a player i ∈ F(p∗) with
w∗i > ε.

As we shall see, we set ε = ρn+1/n, where ρ is defined in Claim 4.13
below.
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Proof of Lemma 4.4. If ν(p∗,w∗) is not in Wε, then ν(p∗,w∗) 6= w∗, which
implies maxh

∑
j p
∗
jui(A

(j);h) 6=
∑

j p
∗
jui(A

(j); i) for some i. So p∗ is not an
envy-free allocation, which implies that for all i ∈ F(p∗),

maxh
∑

j p
∗
jui(A

(j);h)∑
i′ maxh

∑
j p
∗
jui′(A

(j);h)
<

∑
j p
∗
jui(A

(j); i)∑
i′
∑

j p
∗
jui′(A

(j); i′)
. (3)

By Claim 4.12, we know that there is a player i∗ ∈ F(p∗) with w∗i∗ > ε.
Therefore, by (3) and (2), νi∗(p

∗,w∗) < w∗i∗ . By Claim 4.11, $i∗(p
∗,w∗) ≤

max{νi∗(p∗,w∗), ε} < w∗i∗ , contradicting $i∗(p
∗,w∗) = w∗i∗ . The result

follows.

The proof of Claim 4.11 follows readily from the definition of proj.

Proof of Claim 4.11. For simplicity, let x∗ = $(p∗,w∗) and y∗ = ν(p∗,w∗).
So we need to show x∗i ≤ max{y∗i , ε} for all i.

By (1), x∗ = projWε
y∗ means x∗ is the result of the following opti-

mization program: minx
1
2‖x − y∗‖2 such that x ∈ Wε. Note that Wε =

{(w1, · · · , wn)|
∑

iwi = 1 and wi ≥ ε}. So, x∗ is the optimal solution for the
following convex program:

min
x

1

2
‖x− y∗‖2

s.t.
∑

ixi = 1 and for all i, xi ≥ ε

The Lagrange form is 1
2‖x− y

∗‖2 − λ(
∑

i xi − 1)−
∑

i βi(xi − ε). From the
KKT conditions, we know that x∗i − y∗i − λ − βi = 0, βi ≥ 0, x∗i ≥ ε, and
βi(x

∗
i − ε) = 0; also

∑
i x
∗
i = 1. By (2), the definition of ν(p∗,w∗), we know

that
∑

i y
∗
i =

∑
iw
∗
i = 1. By summing the KKT condition x∗i−y∗i−λ−βi = 0

over all i, we obtain λ = − 1
n

∑
i βi ≤ 0. If x∗i = ε then the result holds.

Otherwise, βi = 0 as βi(x
∗
i − ε) = 0; this implies x∗i = y∗i +λ ≤ y∗i , as λ ≤ 0,

and again the result holds.

The proof of Claim 4.12 uses the following additional claim.

Claim 4.13. Let p ∈ P(w) be a Pareto Efficient allocation. Let

ρ =
1

2
min
h,i,j

ui(A
(j);i)<ui(A

(j);h) and

uh(A
(j);i)<uh(A

(j);h)

ui(A
(j);h)− ui(A(j); i)

uh(A(j);h)− uh(A(j); i)
,

if such h, i, and j exist; otherwise, ρ =
1

2
.

Then, if wh ≤ ρwi, player i will not envy player h.
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The intuition for this claim is that if player i’s weight is sufficiently larger
than player h’s weight, and if we maximize the sum of the weighted utilities,
then player i will not envy player h. The proof will use the anonymity
property, namely that all permutations of an allocation are feasible and
switching the allocations of two players doesn’t alter anyone else’s utilities.
One point to note is that ρ is well defined and positive as the total number
of allocations is finite.

Proof. Consider A(w) as defined in Claim 4.5. We show by contradiction
that for any pure allocation in this set, player i will not envy player h. The
result follows, for then player i will not envy player h in the mixed allocation
p ∈ P(w).

So suppose player i envies player h in an allocation A(j). Then, since
j ∈ A(w),

wi · ui(A(j); i) + wh · uh(A(j);h) ≥ wi · ui(A(j);h) + wh · uh(A(j); i).

Thus

wh

[
uh(A(j);h)− uh(A(j); i)

]
≥ wi

[
ui(A

(j);h)− ui(A(j); i)
]
. (4)

Since player i envies player h,

ui(A
(j); i) < ui(A

(j);h). (5)

From (4), (5) and the fact that w is strictly positive,

uh(A(j); i) < uh(A(j);h).

Therefore

ρ =
1

2
min
h,i,j

ui(A
(j);i)<ui(A

(j);h) and

uh(A
(j);i)<uh(A

(j);h)

ui(A
(j);h)− ui(A(j); i)

uh(A(j);h)− uh(A(j); i)
,

as the minimum is over a non-empty set of (h, i, j).
Since wh ≤ ρwi, by (4),

ρ
[
uh(A(j);h)− uh(A(j); i)

]
≥ ui(A(j);h)− ui(A(j); i),

which contradicts the definition of ρ.

Given Claim 4.13, Claim 4.12 can be shown by making ε small enough.

18



Proof of Claim 4.12. We set ε = ρn+1

n . Therefore, there is a ξ such that
1
n ≥ ξ > ε and, for every i, wi lies outside the interval [ξ, ξρ). Consequently,
we can separate all the players into two sets D = {i|w∗i < ξ} and U =
{i|w∗i ≥

ξ
ρ}. So for every player i in U , w∗i > ε. Note that D ∩ U = ∅,

D ∪ U = {1, 2, · · · , n}, and U is not empty since there exists one player i
with wi ≥ 1

n . Since p∗ ∈ P(w∗), by Claim 4.13, we know that players in U
will not envy players in D, and by Claim 4.8 we know that the envy graph
is acyclic, thus there must be a player in U that is envy-free, i.e. in F(p∗).
The result follows.

5 The Communication Complexity Lower Bound

In order to prove Theorem 3.5, we make a reduction to the Disjointness
problem.

Disjointness problem Suppose there are two players. Each player has a
string of bits of length L. Suppose xi is player i’s string. The players want
to determine if there exists a j such that x1j = x2j = 1. The complexity
question asks how many bits they need to communicate in order to determine
the result.

Theorem 5.1 ([20, 31]). Any protocol for the Disjointness problem needs
to communicate Ω(L) bits.

Proof of Thereom 3.5. We follow a similar approach to [30]. We give a re-
duction to the Disjointness problem.

Suppose there are m = 2q items and two players. Each player receives a
string of bits. Let x1 and x2, respectively, be the strings Player 1 and Player

2 receive and suppose they satisfy |x1| = |x2| = 1
2

(
2q
q

)
.

The feasible allocations comprise all possible allocations. The utility
functions we define mostly depend just on the size of the allocation, but
for the following subset T of allocations the dependence is more delicate.
T = {T1, T2, · · · , Tr} is a set of allocations which allocate q items to each

player, where r = 1
2

(
2q
q

)
and Tj = (Tj1, Tj2). Informally speaking, Tj1 is

a subset of q items which includes item 1 and Tj2 contains the remaining q

items. It’s easy to verify that in total there are 1
2

(
2q
q

)
possible choices
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of Tj1; this is the reason that r = 1
2

(
2q
q

)
. Formally, Tj = (Tj1, Tj2) is an

allocation such that Tj1∪Tj2 = {1, 2, · · · , 2q}, Tj1∩Tj2 = ∅, |Tj1 | = |Tj2 | = q,
1 ∈ Ti1 and for any j 6= l, Tj1 6= Tl1.

Then, given xi, player i’s utility function is defined as follows:

ui(S) =


3|S| if |S| < q

3q if |S| > q

3q if S = Tji for some j and xij = 1

3q − 1 otherwise.

In the next few paragraphs, we prove the following lemma.

Lemma 5.2. If (x1, x2) is a no-instance of the Disjointness problem, then
for all Pareto Efficient and envy-free allocations, the sum of utilities, u1+u2,
will equal 6p. Otherwise, if (x1, x2) is a yes-instance, then for all Pareto
Efficient and envy-free allocations, the sum of utilities will be no larger than
6p− 1.

This lemma actually shows that the communication cost of calculating
the utility of the Pareto Efficient and envy-free allocation is at least the

communication cost of the Disjointness problem with L = 1
2

(
2q
q

)
, which

is exponential in m, the number of items, as m = 2q. Note that the com-
munication cost of calculating the utility of an allocation is no larger than
the communication cost of calculating the allocation, as, without additional
communication cost, one can easily calculate the utility from the allocation.
Therefore, this statement proves that the communication cost of calculating
the Pareto Efficient and envy-free allocation is exponential in m.

Proof of Lemma 5.2. If (x1, x2) is a no-instance of the Disjointness problem,
then there exists a j such that x1j = x2j = 1. This implies there exists a
Pareto Efficient and envy-free allocation: Player 1 gets Tj1 and Player 2 gets
Tj2. In this case, both players will have utility 3p. Since the most utility
any player can get is 3p, any allocation which is Pareto Efficient must give
both players 3p utility. This implies that for any allocation which is Pareto
Efficient and envy-free, the sum of the utilities, u1 + u2, will be 6p.

If (x1, x2) is a yes-instance of the Disjointness problem, then for any j,
x1j = 0 or x2j = 0. A simple observation is that any allocation in which the
items are not fully allocated is not Pareto Efficient. Then we look at any
deterministic fully allocated allocation (A1, A2). For any j, if Aj = Tj1 and
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x1j = 0 then u1(A1) = 3q−1 and u2(A2) ≤ 3q. So u1(A1)+u2(A2) ≤ 6q−1.
The same is true if A2 = Tj2 and x2j = 0. Otherwise, either |A1| < q or
|A2| < q and then u1(A1) + u2(A2) ≤ 6q − 3.

The final thing to do is to check that this utility function is a sub-
modular utility function. It’s easy to see that our utility function satis-
fies the submodular condition that for any X ⊆ Y and any element e,
u(X ∪ {e})− u(X) ≥ u(Y ∪ {e})− u(Y ).

The result follows.

6 Discussion

In this paper, we showed that for any partition-based utility functions, a
Pareto Efficient and envy-free allocation always exists if each possible allo-
cation remains feasible under any permutation. We also showed by example
that we could weaken the anonymity constraint at the cost of some limita-
tion on the envy-free property. The problem remains open in the divisible
case. For our proof cannot be simply generalized to the divisible case. This
is because our ε might equal 0 as ρ might be 0 in the divisible case, in which
case P(w) will no longer ensure Pareto Efficiency as for some i, wi could be
0, whereas in the indivisible case we knew wi ≥ ε.

One issue is that an envy-free allocation may not appear particularly
fair. For example, in Example 1.1, the second Pareto Efficient envy-free
allocation seems less fair than the first one. One natural notion of fairness is
provided by an allocation given by a CEEI equilibrium; but we don’t know
whether such an equilibrium always exists. Other fairness notions, for exam-
ple maximizing Nash Social Welfare (the product of the agents’ utilitilies)
or max-min fairness, are guaranteed to always exist, but then the solutions
need not be envy free (as we show in Lemma A.5 in the appendix). One
refinement of the Pareto Efficient envy-free criteria is to ask for a solution
among all Pareto Efficient envy-free allocations that maximizes a fairness
notion such as Nash Social Welfare or max-min fairness. In the case of Ex-
ample 1.1, the resulting Pareto Efficient envy-free allocation is the first one
given in the example.

Another open problem concerns communication complexity. One simple
fact is that if all players have linear utility functions, then there exists a
protocol which requires a polynomial number of bits. However, the commu-
nication complexity is unknown for larger classes of utilities, such as gross
substitutes.
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A Missing Proofs

Lemma A.1. The CEEI equilibrium in Example 1.1 is unique.

Proof. Suppose the prices for the items are pA, pB, and pC ; and suppose
there is an equilibrium other than pA = pB = pC = 4

3 . WLOG, we assume
pC ≥ pB ≥ pA and pA + pB + pC = M in this equilibrium, where M is the
total money spent in the market.

We first prove that M = 4. If M < 4, then one player must buy their
favorite bundle (the bundle with highest value) with probability 1, in which
case he or she doesn’t want to spend more money. Since 0 ≤ pA ≤ pB ≤ pC ,
Player 1 must be one of the people who obtain their favourite bundle with
probability 1. When Player 1 obtains his/her favourite bundle {A,B} in
full, Players 2, 3 and 4 will only be able to divide item C in this CEEI
allocation. The only possible solution in this case is to set pC = ∞, which
violates the market equilibrium condition.

Therefore, M = 4. In this case, if there is another equilibrium, then it
satisfies pC > pA. An immediate conclusion is that

pC >
4

3
(6)

as the total money in the market is M = 4. Since Player 4 cannot obtain
item A or B with probability 1, as Player 1 is only interested in the bundle
{A,B}, Player 4 should put no money on item C, as the price for item C
is higher than the price of item A. This implies that the total money spent
on items A and B will be at least 2, for Player 1, who wants bundle {A,B},
will also put all his/her money on items A and B. Thus,

pA + pB ≥ 2.

Additionally, If pA < 1, then pB > pA as pA + pB ≥ 2. Then, Player 4
will hold item A with probability 1 as pA < pB ≤ pC . But Players 1 and
3 will also seek to buy some of item A, causing the demand to be greater
than 1, meaning this is not an equilibrium. Therefore,

pB ≥ pA ≥ 1. (7)

Now we look at item C. Player 3, who wants bundle {A,C}, will spend
pC

pA+pC
on item C, and Player 2, who wants bundle {B,C}, will spend pC

pB+pC
on item C. As the total spending on item C equals its price in every equilib-
rium, it follows that pC

pA+pC
+ pC
pB+pC

= pC , which implies 1 = 1
pA+pC

+ 1
pB+pC

.
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By (6) and (7), the RHS is smaller than 1
1+ 4

3

+ 1
1+ 4

3

< 1, which is a contra-

diction.
Therefore the prices are unique and in addition the allocation is unique.

Lemma A.2. There does not exist a bundle pricing supporting a Pareto
Efficient and envy-free allocation for the setting in Example 1.2.

Proof. We start by observing that any Pareto Efficient and envy-free allo-
cation is some combination of the following four allocations:

• Allocation 1: Player 1 receives {A}, Player 2 receives {B}, Player 3
receives {C}, and Player 4 receives {D,E};

• Allocation 2: Player 1 receives {B}, Player 2 receives {A}, Player 3
receives {C}, and Player 4 receives {D,E};

• Allocation 3: Player 1 receives {A}, Player 2 receives {B}, Player 3
receives {C,D}, and Player 4 receives {E};

• Allocation 4: Player 1 receives {B}, Player 2 receives {A}, Player 3
receives {C,D}, and Player 4 receives {E}.

We let p1, p2, p3 and p4, resp., denote the probabilities of Allocations 1, 2,
3 and 4 in a Pareto Efficient and envy-free allocation.

Claim A.3. For any Pareto Efficient and envy-free allocation, p2 = p4 = 0,
p1 ≥ 1

5 and p3 ≥ 1
7 .

Proof. The fact that p2 = p4 = 0 is easy to see as Allocations 2 and 4 are
Pareto dominated by the following random allocation: Allocation 1 with 1

2
probability and Allocation 3 with 1

2 probability.
Since p2 = p4 = 0, p1 + p3 = 1. By the envy-free condition:

14p1 + 9(1− p1) ≥ 6p1 + 11(1− p1) (Player 1 doesn’t envy Player 2)

9p1 + 16(1− p1) ≥ 11p1 + 4(1− p1) (Player 2 doesn’t envy Player 1)

By calculation, 1
5 ≤ p1 ≤

6
7 . The result follows.
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Note that Allocation 1 uses the first partition and Allocation 3 uses
the second partition. So, both partitions appear with non-zero probability.
One important observation is in both Allocations 1 and 3, Player 1 always
receives item A and Player 2 always receives item B.

Now, we show there do not exist prices supporting any PEEF allocation.
We prove this by contradiction. Suppose there exists a Pareto Efficient
and envy-free allocation and there exists a bundle price which supports this
allocation.

The first observation is that Player 1 and Player 2 both spend all their
money. For if Player 1 still had money in hand, then in the second partition,
Player 1 would always want to buy item B instead of item A. An analogous
argument applies to Player 2. Therefore, the prices for item A and item B
will be the same and equal to 1, the budget of each player.

However, if the prices are the same, then Player 1 will always want item
B instead of item A in the second partition, which is a contradiction.

Lemma A.4. All Pareto Efficient and envy-free allocations in the larger
game in Example 3.3 have all men allocated to men-places and women to
women-places.

Proof. First, note that if Ha is allocated some set other than one of its
preferred sets, then performing a swap strictly improves its utility without
harming that of the other player. And similarly for Hb. Thus, in any Pareto
Efficient allocation, men and women are allocated men-places or women-
places only.

If a man is allocated a woman-place, then there is a woman who is
allocated a man-place. This is because the number of places provided to men
and women matches the number of men and women. Therefore, swapping
their allocations strictly improves their utility without harming the utility
of any other player.

The lemma follows.

Lemma A.5. There exist allocation problems such that an optimal solution
under either the Nash Social Welfare or max-min fairness criteria are not
envy free.

Proof. For the Nash Social Welfare there are two items A and B and two
players, 1 and 2. Player 1 has utilities 2 and 1 for A and B resp., and Player
2 has utilities 1 and 0. Then the optimal allocation is to give item A to
Player 2 and item B to Player 1. Clearly Player 2 envies Player 1.
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For max-min fairness, there is one item and two players. Player 1 has
value 2 for the item and Player 2 has value 1. The optimal allocation gives
the item to Player 1 with 1

3 probability and to Player 2 with 2
3 probability.

Clearly Player 1 envies Player 2.

Discussion of Lemma A.5 One might argue that the max-min con-
struction is contrived. If one rescaled so that each player had utility 1 for
this item, then the optimal solution would give each of them the item with
probability 1

2 , and then there would be no envy. However, this is just side-
stepping the issue of the meaning of inter-agent comparison of utilities which
is needed for the max-min fairness notion.
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