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Abstract—As a solution to the sensor data deluge, edge
computing processes sensor data by means of local devices.
Many of these devices are resource-scarce in terms of the
available processing capabilities and battery power. To achieve
the required design trade-offs of edge applications, developers
must be able to understand the performance and resource
utilization of data processing algorithms. An increasing number
of edge-based applications use machine learning (ML) as their
key functionality. However, the performance and resource
utilization of ML algorithms remain poorly understood, thus
hindering the system design of edge-based ML applications. In
addition, developers often cannot access real-world edge-based
test beds during the design phase. To address this problem,
we present an approach for estimating the performance of
edge-based ML applications, with a particular application to
clustering. To that end, we first comprehensively evaluate the
performance and resource utilization of widely used clustering
algorithms deployed in a representative edge environment.
Second, we identify which properties of these algorithms
are correlated with their performance and resource utiliza-
tion. Finally, we apply our findings to create STARGAZER,
a Deep Neural Network that given a clustering algorithm’s
computational load and input data size, estimates how this
algorithm would perform and utilize resources in an edge-
based application. Our tool provides viable decision-making
support for addressing the multifaceted design challenges of
edge-based ML applications.
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I. INTRODUCTION

Machine learning (ML) has become an important building
block for modern computing applications. As mobile, [oT,
and wearable sensors collect ever-increasing volumes of
data, ML models need to be continuously trained on that
data. The resulting sensor data deluge renders cloud-based
processing impractical, due to the privacy concerns and
transfer constraints of wide-area networks. These realities
give rise to edge-based ML training, as it eliminates network
transmission bottlenecks and helps ensure data privacy!.
Because edge resources are limited, edge-based ML ap-
plications must achieve high performance while utilizing
resources efficiently. To that end, developers must under-
stand how their source code translates into the performance
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and resource utilization of deployed edge-based ML appli-
cations [1], [2]. In this work, we focus on clustering as one
of the most widely used ML technique. We put forward
a new approach that estimates an edge-based clustering
application’s performance and resource utilization from its
source code.

The performance and resource utilization of edge appli-
cations are hard to estimate. Therefore, developers cannot
easily estimate how their edge-deployed code would perform
under different workloads, a particularly important issue due
to the resource scarcity of edge environments [3]. Specifi-
cally, to estimate the performance of edge-based clustering,
developers need to understand not only the intrinsic proper-
ties of clustering algorithms, but also the expected resource
utilization trade-offs. In addition, due to cost limitations,
reduced repeatability, and lack of controlled environments,
developers cannot always access real test beds [4].

The design of edge-based applications can substantially
impact their performance and resource consumption [5].
The design process is driven by multiple considerations,
with each design choice leading to the computational power,
available memory, and energy scarcity trade-offs. For exam-
ple, consider designing a mobile app that employs ML for
facial recognition. The choice of an ML algorithm affects
not only how much processing power and memory the app
would utilize, but also how much energy it would consume.
Failing to recognize such trade-offs can negatively impact
the user experience.

To accurately estimate an edge application’s performance,
developers must understand how the underlying algorithm’s
characteristics would affect the resulting performance and
resource utilization. The most performance-affecting char-
acteristics of the edge-application source code are computa-
tional complexity and input data size, which must be linked
to performance and resource consumption (e.g., CPU usage,
memory utilization, energy consumption, and task execution
time) [3], [6].

Use Case: Collecting and Processing Volcanic Data

Consider a developer designing an application that col-
lects and clusters volcanic data to predict eruptions [7].
Multiple energy harvesting devices are located at the base
of a volcano to collect their region’s sensor data (e.g.,



temperature, pressure, humidity, vibration, etc.). Each device
is located at a hard-to-access location, with limited network
access and energy resources. Due to resource constraints,
the software and hardware stacks are optimized to minimize
memory utilization, CPU usage, and energy consumption.
In addition, for budgetary reasons, it would be infeasible to
set up a test bed for the application under design. Given the
source code of a clustering algorithm and the estimated size
of the data to be collected at the edge nodes, the developer
needs to be able to estimate the energy consumption, task
duration, CPU usage, memory utilization, transactions per
second, and block reads per second of the application once
it is deployed in the target environment.

Contributions

This paper discusses our approach for estimating the
performance of edge-based clustering applications. After
presenting the background and related work (Section II),
we describe an empirical study with an edge-based clus-
tering application, whose four application variants differed
in their algorithms (Section III). We used a state-of-the-
art approach for ascertaining each clustering algorithm’s
asymptotic complexity [8]; we identified the correlations
between the collected metrics via multiple linear and polyno-
mial regression (Section IV). We used the collected metrics
to train a Deep Neural Network (DNN) to be able to
estimate the performance and resource utilization of an ML
application under design (Section V). Finally, we discuss our
conclusions and future work directions (Section VI).

The contributions of this paper are as follows:

1) We put forward a methodology for estimating the

performance of edge-based ML applications.

« We empirically evaluate four popular clustering
algorithms deployed at the edge, in terms of their
performance and resource utilization.

« We identify how the observed performance and
resource utilization correlate with each other,
computational complexity, and data set size.

2) We introduce STARGAZER, a tool that reifies the
methodology above.

II. BACKGROUND & RELATED WORK

We describe different approaches for estimating the per-
formance of edge-based systems and computational com-
plexity as well as explain regression models and deep
learning in the context of our work.

A. Deep Learning and Performance Estimation

Deep Learning [9], [10] (DL) is an ML methodology
that uses artificial neural networks (ANN), inspired by
the structure of neurons in the human brain. DNNs have
become indispensable tools in fields including image and
video recognition, natural language processing, etc. DNNs
combine the advantages of DL and neural networks and can

solve nonlinear problems more satisfactorily compared to
conventional ML algorithms. Prior work has applied ML
techniques to estimate the performance of edge devices [11]
and applications [12], [13]. DL has been applied widely to
solve problems in multiple domains [14]-[16]. DL methods
can deliver performance and accuracy greater than those
of ML ones [17], [18]. STARGAZER’s prediction heuristic
is driven by DL to estimate the performance of devices
executing clustering algorithms in the edge.

The performance of edge applications has been estimated
using simulators [4], [19] as well as static and dynamic pro-
gram analyses [20]—[22]. Our approach differs by not relying
on simulation, but instead estimating performance from the
source code via a DNN. In addition, STARGAZER estimates
not only energy consumption, but also additional perfor-
mance metrics (e.g., % CPU usage, % memory utiliza-
tion, etc.). To ascertain the complexity of ML tasks under
evaluation, STARGAZER uses Singularity in a black-box
fashion [8]. To find the correlations in the collected data sets
to train STARGAZER, this work uses linear and polynomial
regression models. A linear regression model applies linear
predictor functions to estimate model output parameters
from the data [23]. A polynomial model regression fits a
nonlinear relationship between the data and corresponding
output parameters via an n*” degree polynomial [24].

B. Clustering

Clustering refers to techniques that group a set of items
with similar attributes [25]. Clustering has been the subject
of numerous research efforts: a Google Scholar search for
the word “Clustering” returns over 770,000 publications
only since 2015. With its primary application to exploratory
data mining, clustering is used in domains including pattern
recognition, image analysis, and information retrieval [26].

Despite a wide variety of clustering algorithms, our
exploration focuses on the ones most widely used and
offering dissimilar performance characteristics. Specifically,
we study K-Means, an unsupervised learning technique
that assigns n elements to k clusters, thus allocating each
element to the cluster with the nearest mean value [27];
Farthest First Clustering, a variant of K-Means, based on
heuristics, that chooses centroids and assigns the elements
in the cluster at the farthest point from the existing cluster
center within the data area [28]; Expectation-Maximization
(EM), a probability-based technique, that assigns elements to
clusters based on a probability model rather than a distance
metric, like in K-Means. EM partially assigns elements
to different clusters [29]; Density-Based Spatial Clustering
of Application with Noise, a density-based technique, that
identifies clusters by analyzing the concentration (higher
point density) of data points, often resulting in arbitrarily
shaped clusters, as compared to K-Means [30]. This work is
not concerned with distributing, scaling, or optimizing clus-
tering algorithms. Our goal is to understand the performance



characteristics of existing clustering algorithms deployed in
the edge.

III. EMPIRICAL STUDY

In this section, we present our empirical study’s moti-
vation, system overview, implementation, methodology, and
results. The data collected in this Section is analyzed in
Section IV and used to train STARGAZER in Section V.

A. Study Overview, Objectives, and Methodology

We deploy and benchmark the KMeans, EM, FF, and
DBSC clustering algorithms in different variants of an edge-
based application. We have chosen KMeans, EM, FF, and
DBSC as previous works in the literature compare the
performance of these algorithms [31]-[34]. Our study’s
objective is to determine how the evaluated variants differ
in their respective performance & resource utilization at
the edge. In particular, we obtain the performance metrics
of % CPU usage, % memory utilization, block read per
second, transactions per second, energy consumption, and
task duration. The privacy and security issues are considered
as out of scope in this study.

Our ultimate goal is to be able to understand the impact
of choosing a particular ML algorithm on the overall system
performance. The measurements collected herein can inform
developers about the expected behavior of future edge-
based ML applications under different requirements (see
Section V).
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Figure 1. Experimental workflow on the edge.

The workflow diagram in Figure 1 shows our experimental
edge-based clustering system that can be parameterized with
any clustering algorithm. Its variants take random (z,y)
coordinates as input. (1) Edge processing devices read their
respective datasets. (2) Each edge processing device applies
the clustering algorithm under evaluation to compute the
coordinates of its unique centroid. (3) Each edge processing
device notifies the orchestrator device that it has finished its
execution. (4) Lastly, the orchestrator device requests that
all edge processing devices perform the next run.

The study’s methodology is to execute the four variants
under the same load sets and collect the observed per-
formance and resource utilization metrics. The system is
composed of nine (eight edge processing devices and an

orchestrator) Raspberry Pis 3 Model B, with Quad-Core 1.2
GHz and 1 GB RAM running Raspbian OS version 3.0.1.
To measure energy consumption, we use a ‘“watts up?
Pro” [35]. This setup is representative of edge computing
setups performed on commodity devices>3*.

B. System Implementation

We implemented our system in Java 1.8, the Weka li-
brary version 3.7.17 [36], and the LipeRMI [37] library
for device-to-device communication. Due to our empirical
study’s scope, we implemented four edge processing device
variants. Each variant uses a different clustering algorithm
in step 2 of Figure 1. For our evaluation, we selected
the K-Means, Farthest First, EM, and Density-Based Scan
(DBSC) Weka clustering algorithms due their popularity, as
a Google Scholar search shows 3,180,000 results for K-
Means, 40,300 results for Farthest First, 1,150,000 results
for EM, and 157,000 results for Density-Based Scan. We
profiled each variant with Singularity [8] and decided to use
the reported average asymptotic complexity, as, according
to Singularity, more than one of the clustering algorithms
shared the same performance values (e.g., FF and EM). The
reproducibility package (Section VII) includes all the source
code, performance measurements, and generated data.

C. Results
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Figure 2.  Average duration task per variant in seconds. X axis is the
dataset size in MB.

Figure 3 and 4 show the average % CPU usage and %
memory utilization of edge processing devices respectively.
We observed the highest % CPU usage value, around 23%,
with EM algorithm while operating on input data set size
81 MB per device. We observed the highest % memory

Zhttps://datacenterfrontier.com/facets-of-the-edge-the-raspberry-pi-as-an-
edge-ai-device/

3https://www.techrepublic.com/article/25-raspberry-pi-add-on-gets-you-
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utilization, around 93%, with EM algorithm while operating
data set size 35 MB per device. In terms of the number of
transactions per second, we observed that variant FF the val-
ues were was considerably lower than compared to the other
variants. FF had at most 25 transactions per second (tps) for
the dataset of size 116MB, while EM had the highest with at
more than 250 tps for the dataset of size 116MB. For energy
consumption, variant EM had consumed on average the most
joules, while variant FF consumed the least. We observed
that the variant FF had the shortest execution time and
that KMeans had the longest (see Figure 2), additionally,
as expected, we observed that a close relationship between
duration and energy consumption (see Section IV for more
details). Regarding block reads per second (breadps), we
observed that variant DBSC had the highest values with
more than 6,000 breadps while operating on data set 116
MB, while the other variants had values under 3,500 for
the same data set. The reproducibility package includes all
graphs generated in this study.

D. Measurements Highlights

The EM variant consumes more energy than the other
variants on average because it makes heavier usage of
the CPU and memory resources of the edge processing
devices than the other variants. The FF variant consumes
less energy and requires less time to complete its operations

than the other variants, which is due to its lower asymptotic
complexity.

E. Threats to Validity

Internal Threats: We implemented all the systems
used in our experiments. It is possible that some other
implementations would have yielded different performance
characteristics. Nevertheless, our implementation strategies
followed widely acceptable principles by using known open-
source solutions for distributed interactions.

External Threats: In terms of time for completion,
processes running in parallel may have influenced the re-
sults. To mitigate this threat, we terminated all background
processes before running our experiments; then, we executed
multiple runs, averaging the results, so as to effectively
approximate the amount of energy consumed by each test.
Weka and Raspbian OS? are updated continuously, so newer
versions may be better optimized than the one used in
our experiments. In terms of time, different hardware con-
figurations may offer dissimilar transmission latencies and
response times. In terms of the accuracy of our power
measurement procedures, our readings are directly related
to the accuracy of the power monitoring devices used in
our experiments. Finally, our findings may not be directly
applicable to other clustering algorithms not covered in our
evaluations. Nevertheless, if the performance of the actual
clustering algorithms improves, the observed measurements
are likely to change as well.

IV. DATA ANALYSIS
A. Motivation and Research Questions

With the increasing popularity and scale of edge-based
applications, developers have to take into account a growing
number of complex factors and requirements in their de-
signs. One of the hardest system design issues is estimating
how an algorithmic choice would translate into the actual
performance metrics in an implemented and deployed sys-
tem. To make inroads in tackling this issue, we analyse the
data collected in Section III for the presence of correlations
between the performance metrics, code properties, and input
data size, thus seeking answers to the following questions:

o« MQI1: Are code complexity and input data size corre-
lated with the collected metrics?
e MQ2: Which collected metrics are cross-correlated?

B. Methodology

To answer MQ1, we developed six multilinear regression
models, one for each performance metric that use as input
dataset size and algorithmic complexity. To answer MQ2,
we apply polynomial regression models to identify whether
the collected performance metrics are correlated with each
other. Each model targets a different performance estimator

Shttps://www.raspberrypi.org/downloads/noobs/



from a given input data. We used the t-statistic data obtained
from regression analysis to determine if the dependent
variables were influential in describing the variation of the
dependent variable. We used coefficient determination (R?),
F-test, and root mean squared error (RMSE) to determine
the accuracy of the regression model. R? is a statistical
measure of how close the data are to the regression line.
F-test checks if the variances of two populations are the
same, by comparing the ratio of the variances. An F-test of
1 indicates that two populations are the same. The RMSE
represents the differences between estimated and observed
values. Additionally, it measures the model’s accuracy. We
used the measurements gathered from the empirical study
(Section III) for the regression model. Additionally, we used
Singularity [8] to analyse the asymptotic complexity the
clustering algorithms. In total we used 7201 data points
from the empirical study, please refer to the Availability
section III-B for the data. For the regression model, we
divided the data in two sets, 80% (5761) of the data set was
used for training model and the remaining 20% (1440) for
testing. We adhere to a higher model accuracy than prior
research on modeling performance in distributed applica-
tions [38]. A regression model is considered successful only
if its accuracy exceeds 60%.

C. MQ1: On Complexity, Data Set Size, and Performance
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Figure 5. Regression line for duration.

We observed that task duration, and energy consump-
tion are directly correlated to data set size per device,
and asymptotic complexity. Figure 5 and Figure 6 show
the regression lines for duration and energy consumption,
respectively. We observed the following indicators for the
multilinear regression models task duration R? 0.95 MSE
708.50; energy R? 0.97 & MSE 1857.16; We observed a
small correlation between to the input data for % CPU us-
age, %memory utilization, tps, and breadps. We observed
the following values for accuracy and mean square error: %
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Figure 6. Regression line for energy consumption.

CPU usage — R? 0.33 & MSE 36.24, % memory utilization
— R? 0.60 & MSE 135.57, breadps — R? 0.29 & MSE 1.39
Kb; tps R? 0.34 & MSE 2384.04;

D. MQ2: Correlations Between Performance Metrics

We observed that the following correlations for perfor-
mance metrics: % memory utilization is correlated to
energy consumption, duration, asymptotic complexity,
and data set size, as a 6th degree polynomial regression
model has accuracy of 0.68 (R?) and mean square error of
111.03. We observed a correlation between % CPU usage
and asymptotic complexity, duration, and % memory uti-
lization, in 5th degree polynomial regression. We observed
a accuracy of 0.84 R? and mean square error of 8.75.

Regarding transactions per second (tps), we observed the
accuracy of 0.90 R? and mean square error of 350.69, when
using a 4th degree polynomial regression model that receives
as input %memory utilization, asymptotic complexity,
duration, % CPU usage, and block reads per second. For
block reads per second (breadps), we observed the accuracy
accuracy of 0.88 R? and mean square error of 243.40
Bytes, when using a 4th degree polynomial regression model
that receives as input %memory utilization, asymptotic
complexity, duration, % CPU usage, and tps.

E. Summary of the Results

We developed six regression models by means of lever-
aging the t-statistic data obtained from regression analysis,
it was determined if the dependent variables are influential
in describing the variation of the dependent variable. The
accuracy of the regression models was determined using
coefficient determination (R?), F-test, and root mean squared
error (RMSE). The developed regression models for energy
consumption, duration, % CPU usage, % memory utilization,
transactions per second, and block reads per second are
available in the reproducibility package (Section VII).



The following box summarizes the answers to our moti-
vating questions:

MQ1:

o duration and energy consumption are correlated
to asymptotic complexity and data set size.

MQ2:

e % memory utilization is correlated to data set
size, duration, asymptotic complexity, and energy
consumption.

e % CPU usage is correlated to % memory uti-
lization, energy consumption, duration, complexity,
and data set size.

o tps is correlated to % memory utilization, en-
ergy consumption, duration, asymptotic complex-
ity, data set size, block reads per second, and %
CPU usage.

o breapds is correlated to % memory utilization,
energy consumption, duration, asymptotic com-
plexity, data set size, tps, and % CPU usage.

V. STARGAZER

STARGAZER is a DNN that estimates the performance
of four clustering ML algorithms. While traditional per-
formance estimation approaches require that the code be
deployed and executed, STARGAZER estimates the expected
performance and resource utilization of edge-based ML
applications from the code properties of the given ML
clustering algorithm and data input size. Developers provide
the input according to how their intended system will
operate, and STARGAZER estimates total and per second
performance of the system. That is, values for block reads
per second (breadps), transactions per second (tps), per-
centage of memory utilization (memory), duration in sec-
onds (duration), CPU percentage usage (CPU), and system
energy consumption in joules.

A. Training
Table 1
LAYERS OF THE NEURAL NETWORK
layer Layer Size Activation Function

input layer 12 neurons Rectified Linear Unit
hidden layer #1 24 neurons  Scaled Exponential Linear Unit
hidden layer #2 36 neurons Rectified Linear Unit
hidden layer #3 96 neurons Exponential Linear Unit
hidden layer #4 96 neurons  Scaled Exponential Linear Unit
hidden layer #5 32 neurons Rectified Linear Unit
hidden layer #6 24 neurons  Scaled Exponential Linear Unit
hidden layer #7 1 neurons Linear

We trained the Keras Sequential model [39] by mini-
mizing the Mean-Squared-Error between the predicted and
ground truth on CPUs. The stochastic gradient descent

variant Adam was applied as the optimizer [40]. We use
11,955,031 data vectors, totaling 5.4GB of data to train the
DNN for the estimation of a per-second performance and
7,201 data vectors for estimation of average system perfor-
mance. Both training sets were collected by our empirical
study (Section IIT). We used the training/validation split of
80%/20%. When updating global models, we selected the
following hyper-parameters by optimizing them throughout
the empirical analysis: 128 for batch size and 200 for
epochs. We supplemented these vectors with the complexity
of clustering algorithms, obtained by running Singularity
on the original versions of these algorithms. Table I shows
the architecture of the DNN. We optimized the activation
methods through trial and error, systematically experiment-
ing with different configurations, activation methods, and
numbers of neurons per layer to maximize the prediction
accuracy for all metrics.

We used the insights we gained from Section IV to train
the DNN. To predict total task duration, we use as input
data set size and algorithmic complexity. For total energy
consumption, we use as input data set size, algorithmic
complexity, and duration. For % memory utilization pre-
diction, we use as input data set size, complexity, and
duration. For % CPU usage prediction, we use data set
size, complexity, energy, duration, and memory. For tps we
use as input data set size, complexity, memory, duration,
energy, and breadps. For breadps, we use as input data set
size, complexity, memory, duration, energy, and tps.

B. Results
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Figure 7. Estimated and observed system’s average %CPU usage. Y axis
is the % CPU usage, X is the index of the test in the validation dataset.

To estimate performance metrics in a per second arrange-
ment, we use a training/validation split of 80% (9,564,025
data points) / 20% (2,391,006 data points), resulting in:
energy accuracy values are 0.9999 (R?), mean square error
of 0.0340, and mean absolute error 0.28. For total duration
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Figure 8. Estimated and observed system %CPU usage at a given second.
Y axis is the % CPU usage, X is the index of the test in the validation
dataset.

task accuracy values are 0.98 (R2), mean square error of
214.92, and mean absolute error 0.47. For memory accuracy
values are 0.67 (R?), mean square error of 106.87, and mean
absolute error 0.00. For CPU accuracy values are 0.89 (R2),
mean square error of 5.33, and mean absolute error 0.01.
For tps accuracy values are 0.79 (R2), mean square error of
326.50, and mean absolute error 0.00. For breadps accuracy
values are 0.83 (RQ), mean square error of 197.85 Bytes,
and mean absolute error 4.18. Figure 8 shows predicted and
observed values estimating the average % CPU usage of the
system at a given second.

To estimate average performance metrics, we also use a
training/validation split of 80% (5,761 data points) / 20%
(1,440 data points), resulting in: for energy estimation the
accuracy values are 0.99 (R?), mean square error of 7.98,
and mean absolute error 0.14. For total task duration esti-
mation the accuracy values are 0.98 (R2), mean square error
of 221.47, and mean absolute error 0.24. For % memory
utilization estimation the accuracy values are 0.79 (R?),
mean square error of 68.34, and mean absolute error 0.00.
For % CPU usage estimation the accuracy values are 0.98
(R?), mean square error of 0.99, and mean absolute error
0.01. For tps estimation the accuracy values are 0.88 (R?),
mean square error of 410.50, and mean absolute error 0.00.
For breadps estimation the accuracy values are 0.98 (R?),
mean square error of 49.23 bytes, and mean absolute error
0.0. Figure 7 shows the estimated and the observed average
% CPU usage of the system. Refer to the reproducibility
package (Section VII) for the DNN source code and datasets.

C. Results Discussion

From operating STARGAZER, we derived the follow-
ing insights. First, the STARGAZER is more accurate at
estimating the application’s average performance than at
estimating the same metrics at a given timestamp. Second,

as we identified in Section IV, it is impossible to accurately
estimate some metrics in isolation; interconnected metrics
should be evaluated in concert. For example, % CPU usage
is dependent on % memory utilization.

D. Use Case Revisited

Recall the volcanic data use case in Section I. Energy
harvesting devices collect and locally process volcanic data.
The hardware capabilities of these devices (e.g., low-power,
energy harvesting, and heat dissipation) are known to ap-
plication developers. In addition, based on the frequency
of sensor readings, one can approximate the size of the
volcanic data to be collected. However, for budgetary rea-
sons, it would be infeasible to set up a test bed for the
application under design. Assume that due to environmental
temperatures, developers need to optimize the CPU usage
to be under 15%, as heat dissipation is not optimal. Finally,
developers know which clustering algorithm is best suited
for the task. How can developers verify that once the
application is deployed, its % CPU usage would be under
15%?

By using STARGAZER, developers can not only estimate
the designed application’s performance and resource utiliza-
tion but also identify early on whether or not it would meet
the requirements. For example, developers would parameter-
ize STARGAZER with data as follows for an average system
energy consumption and % CPU usage:

Input — Data set size per device — 12MB; ML
algorithm complexity— Singularity’s Complexity Re-
port for KMeans; duration — 0.27 seconds; Output
— average energy consumption — 0.04 joules

Input — Data set size per device — 12MB; ML al-
gorithm complexity— Singularity’s Complexity Report
for KMeans; % memory utilization— 50%; duration
— 0.27 seconds; average energy consumption — 0.04
joules; Output — % CPU usage — 11%;

In the example above, developers learn that one device
running the application would, on average, consume 0.04
joules, utilize 11% of its CPU capacity, and take 0.27
seconds to process 12MB of volcanic data. Assume that
having obtained these values, developers become concerned
with the possibility of the application taking too long to
execute the task, as it would imply additional energy costs
and CPU usage, hence more heat dissipation.

Developers would use STARGAZER to estimate the per-
formance at a timestamp, different than 0.27 seconds (e.g., 3
seconds). To that end, they parameterize STARGAZER with
data as follows to estimate the % CPU usage at the 3 seconds



timestamp to verify if the % CPU usage will be under the
15% requirement:

Input — Data set size per device — 12MB; ML
algorithm complexity— Singularity’s Complexity Re-
port for KMeans; Estimate % memory utilization—
50%; time stamp — 3 seconds; average energy con-
sumption — 0.04 joules; Output — % CPU usage —
7%

As reported by STARGAZER, developers would become
aware that if the execution lasts for more than 3 seconds,
the CPU usage is likely to reduce to 7%. This estimate
shows that the designed application would meet the design
constraints, thus avoiding costly deployments on a test bed.

Improving Guidelines Utility

To come up with a widely applicable and comprehensive
estimation model for understanding the performance of
different clustering algorithms at the edge, one would have
to study numerous combinations of setups and clustering
algorithms. Our study is only the first step in this process.
Our hope that our findings can bootstrap many additional
studies in this important area. By collating the results of such
studies, one can define actionable information that would
become a valuable asset in the decision-making process of
system designers.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we put forward STARGAZER, a DNN that
estimates the performance of edge-based clustering applica-
tions. To arrive at the prediction model, we performed an
empirical study, in which we benchmarked four variants of
an edge-based clustering application. Additionally, we used
regression techniques to identify correlations between the
collected metrics. We have identified several possible future
work directions. First, we would like to extend our prediction
models to support settings other than edge-based architec-
tures. Second, we would like to identify if our findings are
also applicable to cloud architectures. Finally, we would like
to deploy STARGAZER to measure its usefulness in real-
world software development settings.

VII. AVAILABILITY

The project’s source code, datasets, and collected met-
rics are available in the following online repository:
https://github.com/brenodan/stargazer.
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