Communicating Web Vessels: Improving the
Responsiveness of Mobile Web Apps with
Adaptive Redistribution

Kijin An and Eli Tilevich

Software Innovations Lab, Virginia Tech, USA
{ankijin,tilevich}@vt.edu

Abstract. In a mobile web app, a browser-based client communicates
with a cloud-based server across the network. An app is statically di-
vided into client and server functionalities, so the resulting division re-
mains fixed at runtime. However, if such static division mismatches the
current network conditions and the device’s processing capacities, app
responsiveness and energy efficiency can deteriorate rapidly. To address
this problem, we present Communicating Web Vessels (CWV), an adap-
tive redistribution framework that improves the responsiveness of full-
stack JavaScript mobile apps. Unlike standard computation offloading,
in which client functionalities move to run on the server, CWV’s redistri-
bution is bidirectional. Without any preprocessing, CWYV enables apps
to move any functionality from the server to the client and vice versa
at runtime, thus adapting to the ever-changing execution environment of
the web. Having moved to the client, former server functionalities become
regular local functions. By monitoring the network, CWV determines if a
redistribution would improve app performance, and then analyzes, trans-
forms, sandboxes, and moves functions and program state at runtime. An
evaluation with third-party mobile web apps shows that CWV optimizes
their performance for dissimilar network conditions and client devices.
As compared to their original versions, CWV-powered web apps improve
their performance (i.e., latency, energy consumption), particularly when
executed over limited networks.

Keywords: Mobile Web Apps - JavaScript - Dynamic Adaptation - Pro-
gram Analysis & Transformation - Web Frameworks

1 Introduction

Mobile web apps are fundamentally distributed: browser-based clients commu-
nicate with cloud-based servers over the available networks. Distribution assigns
an app component to run either on the client or on the server. Some distribution
strategies are predefined; for example, user interfaces must display on the client.
Other distribution strategies aim at improving performance; for example, a pow-
erful cloud-based server can execute some functionality faster than can a mobile

2 Kijin An and Eli Tilevich

device. Network communication significantly complicates the device/ cloud per-
formance equation. For a client to execute a cloud-based functionality, it needs
to pass parameters and receive results over the network. Transferring data across
a network imposes latency and energy consumption costs. For low-latency, high-
bandwidth networks, these costs are negligible. For limited networks, these costs
can grow rapidly and unexpectedly. The overhead of network transfer can not
only negate the performance benefits of remote cloud-based execution, but also
strain the mobile device’s energy budget. Operating over limited high-loss net-
works requires retransmission, which consumes additional battery power [17].
Hence, fixed distribution can hurt app responsiveness and energy efficiency.

Changing the locality of a software component can be non-trivial due to the
differences in latency, concurrency, and failure modes between centralized and
distributed executions [18]. Researchers and practitioners alike have thoroughly
explored the task of rendering local components remote. Cloud offloading moves
local functionalities to execute remotely in the cloud [9,4,15,19]. Nevertheless,
standard offloading is unidirectional: it can only move a client functionality to
run on a server. If mobile web apps are to flexibly adapt to the ever-changing
changing execution environment of the web, client and server functionalities may
need to adaptively switch places at runtime.

We address this problem by adaptively redistributing the client and server
functionalities of already distributed applications to optimize their performance
and energy efficiency. Our approach works with full-stack JavaScript apps, writ-
ten entirely (i.e., client and server) in JavaScript. By dynamically instrumenting
and monitoring app execution, our approach detects when network conditions
deteriorate. In response, it moves the JavaScript code, program state, and SQL
statements of a remote service to the client, so the service can be invoked as
a regular local function. To prevent cross-site scripting (XSS) or SQL injection
attacks, the moved code is sandboxed, creating a separate context with reduced
privileges for safe execution in the mobile browser. Thus, the same functionality
can be invoked locally or remotely as determined by the current execution envi-
ronment. To the best of our knowledge, our approach is the first one to support
bidirectional dynamic redistribution of distributed mobile web apps. Moreover, to
take advantage of our approach, a mobile app needs not be written against any
specific API or be pre-processed prior to execution.

We called the reference implementation of our approach—Communicating
Web Vessels (CWV)—due to its reminiscence of communicating vessels, a phys-
ical phenomenon of connected vessels with dissimilar volumes of liquid reaching
an equilibrium. CWYV balances mobile execution by adaptively redistributing
functionalities between the server and the client, thus optimizing app perfor-
mance for the current execution environment. Our contribution is three-fold:

1. A novel bidirectional redistribution approach that dynamically adapts dis-
tributed mobile apps for the current execution environment.

2. A reference implementation of our approach, CWV, that works with increas-
ingly popular full-stack JavaScript mobile apps. Requiring no pre-processing,

Communicating Web Vessels 3

CWYV dynamically adapts apps by redistributing their JavaScript code, pro-
gram state, and SQL statements at runtime.

3. A comprehensive evaluation with 23 remote services of 8 real-world apps. To
assess the effectiveness of CWV’s adaptations, we report on their impact on
execution latency and energy consumption.

The rest of this paper is structured as follows. Section 2 motivates and ex-
plains our approach. Section 3 describes the reference implementation of our
approach. Section 4 presents our evaluation results. Section 5 compares our ap-
proach to the related state of the art. Section 6 presents concluding remarks.

2 Approach

We first present a motivating example, then give an overview of CWV, and
finally discuss our performance model.

2.1 Motivating Example

Consider Bookworm!, an e-reader app for reading books on mobile devices. The

app also provides text analysis features that report various statistical facts about
the read books. The app is distributed: the client hosts the user interface; the
server hosts a repository of available books and a collection of text processing
routines. The current architecture of Bookworm is well-optimized for a typical
deployment environment: a resource-constrained mobile device and a powerful
server, connected to each other over a reliable network. For limited networks, the
performance equation can change drastically. Hence, to exhibit the best perfor-
mance for all combinations of client and server devices and network connections,
the app would have to be distributed in a variety of versions. Even if developers
were willing to expend a high programming effort to produce and maintain all
these versions, network conditions can change rapidly while the app is in op-
eration, necessitating a different client/server decomposition. Clearly, achieving
optimal performance under these conditions would require dynamic adaptation.

Our framework, CWV, can adapt Bookworm, so its remote text processing
routines could migrate to the client at runtime for execution. CWV monitors
the network conditions, migrating server-side functions to the client and revert-
ing the execution back to the server, as determined by the network conditions.
The app can start executing with all the text processing routines running on
the server. Once the network connection deteriorates, a portion of these routines
would be transferred over the network to the client, so they could execute locally.
CWYV’s static and dynamic analyses determine the dependencies across server
functions and their individual computational footprints. This information pa-
rameterizes CWV’s performance model, which determines which part of server
functionality needs to migrate to the client under the current network conditions.
! http:/ /bookworm-data-insights.herokuapp.com

4 Kijin An and Eli Tilevich

Full-Stack App Client

CWV
Enhancement

>
Server|

Fig. 1: Conceptual View of Communicating Web Vessels (CWYV)

2.2 Approach: Communicating Web Vessels

To optimize the performance of mobile web apps for the current network condi-
tions, CWV continuously applies the two operations depicted in Fig. 1:

1. fr =insource(/service r): The client requests that the server transfer the
remote functionality(/service r)’s partition f, to the client.

2. revert(f,): The client stops locally invoking the insourced partition f,, and
starts remotely invoking its original server version /service r.

2.3 Reasoning about Responsiveness

Responsiveness is a subjective criteria: application is responsive if the user per-
ceives the time taken to execute app functionalities as “short”. For this reason,
we define the responsiveness of a remote execution as the total execution time
that elapses between the client invoking a remote functionality and the results
presented to the user. We define the response time of a remote functionality f,. as
RT(f.). The RT(f.) mainly depends on the “server speed” and “network speed”
parameters. We simplify the responsiveness of f,. by means of the execution time
fr on the server Tseryper(fr) and the remaining remote execution overheads. The
resulting Round Trip Time (RTT) is highly affected by the current network con-
ditions. To estimate the network conditions, CWV utilizes the RTT™¢! metrics,
detailed in Section 3.3.

Tserver(fr) + RTT™ remote exec.,

Tclient(fr) local exec.

RT(f;) = { (1)
If f, is executed locally, the responsiveness becomes the execution time f,
on the client Tepient(fr)-

3 Reference Implementation

To move a server-side functionality to the client at runtime, one has to migrate
both the relevant source code and program state, which has to be captured and
restored at the client. JavaScript has a powerful facility, the eva1 function, which
executes a JavaScript program passed to it as a string argument. One could
simply duplicate the entire server-side code and its state, passing them to a
client-side eva1. However, such a naive approach would incur unacceptably high

Communicating Web Vessels 5

performance and security costs. Hence, our approach applies advanced program
analysis and automated transformation techniques to minimize the amount of
code to be transferred to and executed by the client (Sections 3.1 and 3.2).
Furthermore, our approach establishes an efficient protocol for the transformed
app to switch between different execution modes (Section 3.3), transferring the
relevant code correctly and safely (Sections 3.4 and 3.5).

3.1 Analyzing Full-Stack JavaScript App

Server code comprises business logic and middleware libraries. The server-side
business logic can include database access routines. The portion that needs to be
insourced is business logic only. In other words, business logic must be reliably
separated from all middleware-related functionality. To that end, CWV identifies
the entry and exit statements of the business logic portion and then extracts all
the code executed between these statements, converting that code to a new
regular JavaScript function. All the dependent code of this new function is also
extracted and transferred, thus producing a self-sufficient execution unit.

The specific steps are as follows. First, CWV normalizes the server code to
facilitate the process of separating its business logic from middleware functional-
ity. Then, CWYV locates the statements that “unmarshal” the client parameters
and “marshal” the result of executing the business logic. CWV automatically
identifies these statements by capturing the client server HT'TP traffic and in-
strumenting code at the server and at the client (Fig. 2-(a)). To that end, CWV
uses Jalangi [14], a state-of-the-art dynamic analyzer for JavaScript. CWV mod-
ifies the built-in Jalangi’s callback API calls to be able to detect the events that
correspond to the “unmarshal/marshal” statements. By following these steps,
CWYV identifies the specific lines of code and variables that correspond to the
entry and exit points of remote invocations, both at the server and the client.
The statements executed between these points comprise the server-side business

FullStack ;;Generate Facts sAnalyze Program ;;Construct Graph on Marshal
JavaScript App of Server Program frDr_n Rules 5 Stmits
i ajt_(sy, WATA) PointTo {>- app.g. trfualf, finctionmeq
w i ajt (s2,t/0) Analysis sresRa2 [a=3,s.pasams;
i ajt_(s,/ e) : -
- s=»RaZ /_e =WAT A[t/0];
l““;‘;_‘f;ﬁ‘f}{;‘ -t/0) > Extract Function N ;’.(Ra2t/1=/e;
man (s, /€) (23 Datalog Engine) -resjsonmt/ 1% +Em ted
HTTP trafic 4 (b)Generate CWV Obj (solving constraints) [Save |ee=m
o o Snapshot
Code maa(s,, tR1, 0x2) obj
i Facts for
II en‘ D Marshaling Stmts ||L- :drv:r,fcﬁent‘ '.\ b p—
Hooking Program Detect E;r;i:'n":‘: Remu}! = ‘{ Obj
Events Un/Marshal Mezsclud
(idlang callback} Local Vessel Templates CWV-enabled App
(a) Identify marshaling points (c) Transform Original Program

Fig. 2: Automated Program Transformation for enabling CWV

logic and its dependent program states that may need to be moved to the client
at runtime. To identify a subset of statements that satisfies a pair of entry/exit

6 Kijin An and Eli Tilevich

statements, CWYV follows a strategy similar to that of other declarative pro-
gram analysis frameworks that analyze JavaScript code by means of a datalog
engine [16,2]. CWYV encodes the declarative facts that specify the behavior of
JavaScript statements of server program: 1) declarations of variables/functions,
2) their read/writes operations, and 3) control flow graphs. The dependency
analysis query constructs a dependency graph between statements. Then, CWV
solves constraints describing these points with the z3 engine [5] and then extracts
them into a CWV-specific object that is movable between vessels (Fig. 2-(b)).

Some server-side program statements use third-party APIs, whose libraries
and frameworks are deployed only at the server. CWV provides domain-specific
handling of the statements that interact with relational databases. In particu-
lar, some statements interacting with a server-side relational database cannot
be directly migrated to the client. As a specific example, consider the statement
mysql_server.query(SQL_STATEMENT), Which queries the server-side MySQL database en-
gine. Mobile clients can also use relational databases, but of a different type, a
browser-hosted SQL engine. Hence, the database-related statement above should
be replaced with a_mobile_engine(sqL_sTaTEMENT). TO identify such database-related
statements, CWV instruments all function invocations whose arguments are
SQL commands by using callback API of Jalangi. Despite the fragility of relying
on the usage of SQL commands, our approach presents a practical solution for
supporting domain-specific server-to-client migrations.

Finally, CWV transforms the identified entry/exit points at the client and
server sides to insert the CW'V functionality with the local and remote vessels
respectively that we explain in the next section (Fig. 2-(c)).

3.2 Transforming Programs to Enable CWV

CWYV enhances application source code to enable its transformation as follows.

Client Enhancements CWYV transforms the identified HTTP invocation in
the client program to be able to CWV’s functionality as follow. The CWV-
enabled client can operate and switch between these two modes: Original and
Local. In Original mode, the app operates the original remote execution and
can switch to Local mode by means of Insourcing. The Local mode designates
that the local version of the insourced remote functions is to be invoked and can
revert to the original mode by means of Reverting (See Fig. 3). To switch to a
mode, the client invokes fuzzMode(mode) that simply fuzzes a certain parameter of
the HTTP command that invokes the original remote service name. For instance,
the client can dynamically fuzz a remote service "/a_service" (Original Request)
into "/a_service?Cimode=Local" (Local). And the app initiates the movement of the
relevant remote server code and execution states rcwv to the client by fuzzing
the original invocation into "/a_service?CilVmode=Insourcing" (Insourcing Request).

Insourcing CWYV moves a set of received server statements into a client’s
container, referred to as the local vessel. Initially, the local vessel is empty. When
the client device determines to switch from the Original mode into the Local

Communicating Web Vessels 7

mode, the app issues the Insourcing Request and then invokes the moveToLocalvessel
(rewv) call, only then adding received server code and state to the local vessel. The
client and server share all the referenced names for global entries added to the
local vessels. To that end, CWV also adds a special-purpose global object for the
client, lcwv. CWYV defines the object’s properties, initially contain nothing. This
object is used for storing functions and other JavaScript objects received from the
server?. Finally, the app fuzzes the HTTP command into Local "civmode-Local" to
change the current mode. After that, invoking the rebalance) function compares
the local replica’s execution time with that of its original remote version.

Reverting If the local execution stops being advantageous, the app with Local
mode reverts to Original mode and clears the local vessel with cilearLocalvesse1(),
overriding the local vessel into the empty function again. And then, the app
switches the mode by fuzzing HTTP command into the original mode.

Server Enhancements In a CWV-enabled app, the server part can oper-
ate in one of three modes to respond the client’s requests: Original, Insourcing,
and Local. With the detected entry/exit points of a remote functionality, CWV
transforms it to be able to detect the mode switching queries and switch to the
client-requested modes. The Original mode refers to the original unmodified ex-
ecution, with the exception for the profiling of the time taken to execute the pro-
gram statements that implement business logic Tsepyer(fr) of the Equation (1).
The client uses resulting performance profiles to ascertain the current network
conditions RTT™ from the measured response time RT(f,.). And Tserper(fr)
will be used to determine a threshold when to switch modes.

In the Insourcing mode, the server responds to the client’s special insourc-
ing query by serializing the relevant portions of a given remote functionality
into a JSON string. To that end, CWV calls saveSnapshot(f,), whose invo-
cation creates a snapshot of the remote functionality f.. CWV adds to the
server part a special-purpose global object, rcwv, which represents a remote ves-
sel. This object’s properties contain the extracted functions, rcwv.main, rcwv.
ftns[0],-- -, rcwv. ftns[k] and their corresponding saved states for global vari-
ables rcwv.gvars[0],- -+, rcwv.gvars[l]. To migrate f, with database dependent
statements, CWYV takes a snapshot of database’s table in terms of SQL com-
mands to enable restoration in the client rcwwv.sql[0], - - - , rcwv.sql[m]. To imple-
ment saveSnapshot(f.), CWV instruments 1) the declarations of global vari-
ables and 2) Call Expressions of embedded SQL statements extracted by the
constraints solving phrase. Finally, in the Local mode, the server executes no
business logic, but responds to periodic pings from the client. Based on the
roundtrip time of these pings, the client monitors the network conditions to de-
tect if the Local mode execution no longer provides any performance advantages
and then switches the app to the Original mode.

2 The properties of lcwv are the same as of the remote object rcww

8 Kijin An and Eli Tilevich

3.3 Updating Modes and Cutoff Latency

The transition diagram in Fig. 3 shows how an app can transition between differ-
ent modes. CWV-enabled client always starts in the Original mode. An insourc-
ing request issued in the Original mode can be either fulfilled (i.e., switching to
the Local mode) or declined (i.e., continuing to execute remotely in the Orig-
inal mode), with the latter incurring a large performance overhead. To avoid
this overhead, the system determines the optimal time window for issuing “In-
sourcing Request” as soon as the app is automatically initialized with a couple
of original executions. The procedure that determines the window is as follows.
First, the client profiles both RT'(f,) and Tseryer(fr) by means of multiple “Orig-
inal Requests” during the initialization (Section 3.2). After that, the procedure
invokes the “Insourcing Request” and extrapolates how much time it would take
to execute the same business logic locally Teyient(fr)-

Estimating Network Delay CW V-enabled mobile clients continuously mon-
itor the underlying network conditions. The client collects the RTT'! metric
that represents raw network delay. Specifically, the client is continuously moni-
toring the RTT*! by subtracting T'(f,) from RT(f,), which are obtained from
the server. Since the raw roundtrip is subject to sudden spikes [8], CWV filters
out such temporary fluctuations by applying an adaptive filter [11], which cal-
culates the covariance matrices and noise values for RTT%¢! and then estimates
the RTT™* metric in Equation (1).

(init)--.. Input: raw network delay RTT %!

raw?’
RTTnet < CutOff

NET(k
- current mode m*) and current cutoff T (k)
RTT™t = estimateRTT() cutof f

Output: next cutoff FNETRFD with a margin

/V cutof f
LOCAI,I&& and next mode m(**t1) for CWV-enabled Client
RTT™] < CutOff ICutOff || [RTT™t > CutOff //Rer:leotve spike by adaptive Kalnréltan Filter
fuzzMode(ORIGIN) €OGeened = insourcingREQ() RTT = eStlmatﬁgg(z)(RTme)
T IVessel(codeserver) t (k) —— iai
rcnuol\l/)effo ocares;s:ncc:()e if RTT}lz(;tered > Teutof f &&m == Q'rzgzn then
CutOfffey = setMargin(ORIGIN) //Profiling the difference for execs T : rebalance
i NET (k+1
Insourcing T B ETY e Tacpper(Fr) = Tetient (fr);
/Reverting //Set margin to the next cutoff condition
. + X
RTTet< CutO! && (CONDITION) margin < (1 - 0) . RTT?’iitered’

RTT"et > CutOff NET(k+1) . NET (k+1) .
clearLocalVessel() p — min(r.,; ,margin);
CutOffyny = setMargin(LOCAL) fuzzMoffe(LOCAL) < (ACTION) cuk Df1f cutof f

v mEtD Local;
\
\ end
NET (k) k) __
RTT"t > CutOff if RTTszltered < Teutof f &&m() == Local then
—> insourcing RTTe! = estimateRTT() //Set margin to the next cutoff condition
© 7P Reverting margin < (1+0) - RTTﬁiiered;
NET (k41 NET(k .
. . . Tcutof(f R max(fwtof(f),ma'rgzn);
Fig. 3: Insourcing/Reverting mEHD) Origing
to transition between modes in end
CWV-enabled Client Algorithm 1: Updating Cutoffs and Modes

Cutoff network latency The resulting difference between the local and remote
execution times is used as the threshold that determines when switching to the
Local mode would become advantageous from the performance standpoint. In

Communicating Web Vessels 9

other words, the difference value is compared with the overhead of network com-
munication, and when the latter starts exceeding the former, the app switches
to the Local mode. We define this network condition as cutoff network latency,
ng§f. Thus, a CWV-enabled app obtains this threshold as soon as it start
executing, and then stays in the Original mode until reaching the cutoff. Then,
it tries switching to the Local mode. Because this request is executed only upon
reaching the cutoff, it is more likely to be fulfilled as offering better performance.

Since switching between modes incurs communication and processing costs,
frequent switching in response to insignificant network changes should be pre-
vented. To that end, the margin parameter expresses by how much the network
conditions need to change and remain changed. Algorithm 1 explains how the

margin and the current cutoff latency chii%k) determine the next cutoff latency

T(ZtEOZ:;k—Fl). The margin parameter 6 prevents switching in response to insignifi-

cant rjffo?}’” changes. After switching to the Local mode, the app periodically

pings the network to determine if the current conditions are advantageous for
reverting to the Original remote mode.

3.4 Synchronizing States

Some remote services can be invoked by means of HT'TP POST, PUT, DELETE,
which are all state-modifying operations. Invoking an insourced stateful remote
service locally modifies its state, which must be synchronized with its original
remote version via some consistency protocol.

Mobile apps are operated in volatile environments, in which mobile devices
become temporarily disconnected from the cloud server. To accommodate such
volatility, CWV’s synchronization is based on a weak consistency model. As an
implementation strategy, we take advantage of a proven weak consistency solu-
tion, Conflict-Free Replicated Data Types (CRDT), which provide a predefined
data structure, whose replicas eventually synchronize their states, as the replicas
are being accessed and modified. In CRDTs, the concurrent state updates can
diverge temporarily to eventually converge into the same state, as long as the
replicas manage to exchange their individual modification histories [7].

Specifically, CWV wraps the replicated ‘database’ and ‘global variables’ of
cwv objects into the ‘CRDT-Table’, and ‘CRDT-JSON’ of CRDT templates?, re-
spectively. To keep track of changes and resolve conflicts, these CRDT-structures
provide the API calls getchanges and appiychanges. By continuously applying/trans-
mitting the reported changes, the device-based clients and the cloud-based server
maintain their individual modification histories and exchange them, thus even-
tually converging to the same state. To that end, the cloud server periodically
sends its state changes on rcwv to each client, while each client starts sending
its state changes on lcwv to the cloud server, as soon as this client reverts to
executing remotely.

3 https://github.com/automerge /automerge

10 Kijin An and Eli Tilevich

3.5 Sandboxing Insourced Code

Whenever code needs to be moved across hosts, the move can give rise to vul-
nerabilities unless special care is taken. The issue of insourcing JavaScript code
from the server to the client is security sensitive. Server-side code has several
privileges that cannot be provided by mobile browsers. In addition, as it is being
transferred, the insourced code can be tempered with to inject attacks. Finally,
the transferred segments of server-side database can be accessed by a malicious
client-side actor. To mitigate these vulnerabilities, the insourced code is granted
the least number of privileges required for it to carry out its functionality. To that
end, we sandboz the insourced code. Specifically, CWV’s sandboxing is applied
to the entire local vessel. The insourced functionality has exactly one entry point
through which it can be invoked. The sandbox guards the insourced execution
from performing operations that require escalating privileges. Finally, because
the insourced database data cannot be accessed directly, malicious parties would
not be able to exfiltrate it. As a specific sandboxing mechanism, we take advan-
tage of iframe, which has become a standard feature of modern browsers. An
iframe creates a new nested browser context, separate from the global scope. Op-
erating in a separate context precludes any shared state between the insourced
code and the original client-based code. In addition, HTML5 supports the sandbox
attribute to further restrict what iframes are allowed to execute®. It protects the
client from the vulnerability related to client XSS. For instance, a sandboxed
iframe is prohibited from accessing window.localStoragel..].

4 Evaluation

Our evaluation seeks answers to the following questions:

— RQ1l:—Redistribution Adaptivity for different Devices: How beneficial is
CWV’s redistribution for different mobile devices?

— RQ2:—Redistribution Adaptivity for Networks: How beneficial is CWV’s
redistribution for different networks?

— RQ3:—Energy Savings: How does CW V’s redistribution affect the energy con-
sumption of mobile devices?

— RQ4:—Overheads: When integrated with mobile apps, what is the impact of
CWYV on their performance?

4.1 Device Choice Impact

Dataset Our evaluation subjects are 23 remote services of 8 full-stack appli-
cations, 5 real-world full-stack mobile JavaScript applications, and 3 JavaScript
distributed system benchmarks [19]. These subject apps use different middle-
ware frameworks to implement their client /server (tier-1/-2) communication and
database (tier-3), with these frameworks being most popular in the JavaScript
ecosystem.

4 https://developer.mozilla.org/en-US /docs/Web/HTML/Element /iframe

To that end, we searched the results
based on combinations of keywords for

Communicating Web Vessels

11

Table 1: Subject Remote Services

; . Subject Remote ngléoﬂ' TE,%DH
popular server and client HTTP middle- | tiers,# of files | Services| (msec) | (msec)
_ /ladypet| 176ms | 421ms
ware frameworks, .curated by the commu Jthedea | 1120ms| 2332ms
nity. For server-side keywords, we used Bookworm /thered| 158ms | 424ms
. . AngularJS, i
‘Express’, ‘KO&’, ‘Restlfy’, etc., while (Angular /tl.lcgl'ft 97ms | 120ms
) . Cxe s Express, /bigtrip| 146ms | 224ms
for client-side keywords we used ‘Ajax’, 729 files) /offshore| 619ms |1528ms
¢ P P ; /wallp| 146ms | 458 ms
fetch’, .reactJS., Angular’, etc. Table 1 Jthecask| 90ms | 102ms
summarizes their names and the number [TpohutShop /Donut|0.66ms | 1.54ms
of source files; 4 subject applications con- (Ajax,Expr- |/ D;’E“tﬂld g.géms 12323ms
. mpls . ms . ms
tain database-dependent code. To answer :S;;kgf"’) /Empls:id| 0.81ms | 1.23ms
. . €es
RQ1, we tested how the introduced net- Tracio B 5
. . recipebook recipe| U./ms -boms
work delays affect different devices. At (An;ﬂasz /recipe:id|0.68ms | 1.1ms
launch time for each device, CWV au- | ExpressMy- |/ ‘/I:f%ts?:}j J-82ms | 2.3ms
. Irs/ . ms .Ams
tomatically calculates the cutoff network | SQL,8k files)
latency and applies it when scheduling pstgr-sql /user|1.33ms | 2.71ms
R L. . . (axios,restify Juser:id | 1.72ms | 2.92ms
mode switches to minimize the switching - '
. ostgres,
overhead. For example, CWV determined 1k files)
the cutoff network latency for the remote chem-rules Thbone| 26ms | 59ms
service “/hbone” as 26ms for device 1 (D1) (fetch, koa, /molec| 131ms | 202ms
. . . knex, 2.8k files)
in Table 1, having profiled the execution enchmark in [19] (Ajax, Expross,117 files)
time at the server (Tserve’r‘(“/hbone”)) str-fasta /str-fasta| 656ms |1424ms
. D1 « 5 fannk /fannk |[2576ms | 4982ms
and the client (T);,,,,(“/hbone”)) as 14ms horm Tsnorm | 1896ms | 4873ms

and 40ms, respectively. Device 1 is a Qual-
comm Snapdragon 616 (8 x 1.5GHz, An-
droid), and Device 2 is an A8-iphone 6 (2 x 1.4GHz, i0S); Device 1 outperforms
Device 2. The server is an Intel desktop (i7-7700 4 x 3.6 GHz, Ubuntu 16.04). We
natively build the subject web apps (JavaScript, html, and CSS) for iOS and An-
droid by using Apache Cordova, a cross-platform development framework. Table
1 demonstrates that the cutoff latency of Device 2 (Tﬁfo f f) is always larger than
that of Device 1 (12}, 7f)-

C

4.2 Network Latency Impact

To answer RQ2, we set up a test-bed for evaluating network latency impact (See
Fig. 5-(a)). Even though, network latency can be changed by controlling RSSI
levels, we change network conditions explicitly by means of an application-level
network emulator®. Then, we examine how CWYV reacts by redistributing the
running applications. In these experiments, the server and the mobile device are
connected with a wireless router. We establish a high-speed wireless link between
the router and the device (-55dBm or better). By configuring the router to
different delays, we simulate different network conditions in the increasing order
of delay. Our test-bed has a minimum delay of about 100ms for the simulator’s

% https://github.com/h2non /toxy

12 Kijin An and Eli Tilevich

zero delay. Therefore, our starting point is 100ms, with the delays increased in
the increments of 20m, 50ms, and 100ms, based on the amount of cutoff network
latency for each subject. For each increment, we measure the average delay in
the execution of our subject applications (response time or responsiveness of
a functionality), run in two configurations: (1) the original unmodified version
(Before), (2) dynamically redistributed with CWYV version (CWV). Fig. 4
shows the performance results.

Response| Response | 700 Response . Resppnse |
[Time{ms]| .+ 1.5k Time[ms] Time[ms] | Time[ms] o Timdms] |
- - - |
X - .-
I

500

300 R
- £ (] 1k et OO
2063 | =D=cwv +.d..Before 500 | =DmCWV 3000 LT e Before
| e Before 500 ! [Before 5
| 200 301 k), 15k ! |
100 0 105 100#7300,500, 800, , 1.1k 1 0
cutoff RTT[ms] cutoff RTT[ms] cutoff RTT[ms] (cutofff 200 300 RTT [ms] cutoff RTT [ms]

(a) /ladypet (b) /thedead (c) /offshore (d) /thegift (e) /big

Response i K Response
Time[ms] Time[ms]

Response i - Response
Time[ms] | ...-" 500 Time[ms]
"

I
D
3k R 2%

= CWV

WV
. { -+ Before

! ++t+Before
400 600 800 1k 100 1k 2k,) 3k
cutoff RTT[ms] cutoff RTT[ms]

(f) /wallpaper (g) /string-fas (h) /fannkuch (i) /spectral-n (j) /recipe/:id

1k

I
1k ok 28k i
cutoff RTT[ms] {cutoff|100 300 RTT[ms]

1004

Fig. 4: Client’s Responsiveness Comparisons. Cutoff equals to 72}, ¢¢ in Table 1.

Across all experimental subjects, the CWV-enabled configuration consis-
tently outperforms the original version, once the network latency surpasses the
cutoff network latency mark. Once the network delay reaches the cutoff network,
the difference in performance starts increasing by a large margin, as accessing any
remote functionality becomes prohibitively expensive. Before reaching the cutoff
network mark, the majority of CWV-enabled apps and their original version
exhibit comparable performance since two versions are operated in remote exe-
cution. When operating over a high-speed network, CWV-enabled apps remain
in the original mode due to the remote execution’s performance advantages.
Some subjects consistently exhibit better performance when executed locally.
These subjects with their relatively low utilization of server resources are better
off not making any remote invocations, as the overhead of network delays is not
offset by the server’s superior processing capacity.

4.3 Energy Consumption

Next, we evaluate how much energy is consumed by a mobile device executing
CWV-enabled and original versions of the same subjects (RQ3). We profile
the energy consumption of Android devices with a Qualcomm’s Trepn-Profiler.
We executed each subject 100 times and collected the profiled results for power
(mW). Fig. 5 shows the obtained samples of the power measurements over time.
To test the consumed energy under a low speed network environment, we placed

Communicating Web Vessels 13

the Android client device far from the wireless router, so the signal strength
level (RSSI) was -75dBm. The resulting energy profiles in Fig. 5 show that
CWYV always uses more power than the original version despite shortening the
execution time. Remote execution consumes no device power for executing the
business logic, even if it takes much longer for the client to receive the results. By
removing the need to communicate with the server, our approach shortens the
overall execution time. Compared to the original version, our approach improves
energy efficiency by as much as from 9.7J to 74J for a poor network condition.
This result is not unexpected, as a large RT'T causes longer idle periods between
TCP windows [6]. Even tough, the device switches into the low power mode
during the idle states, the longer execution consumes more energy overall.

Server
! Native A
(Node.js) Router, \\(ative Abp)
2" Android
5/ orios

CWV- ¢
enabledJ A1

»eay

N

Apach:
Control Latency dovdova
= £

Network RSSI CWV-enabled
Emulator Levels Src (*.js,*.html,..)

(a) Testbed:Latency Control

Wireless Client 5000

bled

4000

3000 Before
2000 i
1000

0 i i
[mw] 53.7s 126s

(b) /str-f (v74J)

5000
4000

3000 | CWV-enabled

Before
2000]

1000
0
[mw] 97.05s 15192

(c) /thed (v24J)

5000
4000
3000
2000 TETTT
1000 i

0
[mW] 2s 16s

(d) /nbon (v31J)

Fig. 5: Testbed and Consumed Energy

4.4 Communication Overhead

To insource server execution, CW'V serializes relevant code and state to transfer
and reproduce at the client. To evaluate the resulting communicating overhead
(RQ4), we compared the amount of network traffic during the regular remote
execution for unmodified version (T'r.4) vs. the additional traffic resulting from
CWYV insourcing server execution (T7cyy)-
Among our subjects, the Bookworm app ex-

hibits the largest of T7opiy, as this app’s remote .o e Over e o
services need to transfer not only the book content 10000 | ‘ ‘
but also the statistical information extracted from 100
that content. Whereas, the med-chem app shows 10
the largest of Ty, as CWYV needs to replicate
all server-side DB entries. However, the transmit-
ting overhead is occurred only once at initialization
as these services are stateless. The resulting overall
overhead ratio Tr ey / T'ryeqg turned out to be 2.4 on
average for our subjects (Fig. 6). To quantify the
benefits of CWV’s insourcing transferring only the necessary code and state,
we also measured the overhead of the naive approach, which transfers the entire
server code and state to the client. The performance overhead of transferring ev-
erything is about two orders of magnitude slower than CWV an unacceptable
slowdown for any practical purposes (Fig. 6).

0.1

Fig.6: CWV’s Overhead

14 Kijin An and Eli Tilevich

5 Related Work

Program Synthesis and Transformation: CWYV automatically identifies a
remote service’s business functionality that satisfies the client’s input and server’s
output constraints, akin to program synthesis systems, concerned with producing
a program that satisfies a given set of input/output relationships. CodeCarbon-
Reply [15] and Scalpel [4] support for programmer this functionality by means of
manually annotating the code regions to integrate the transferred functionality.
In contrast, CWYV is both fully automated and dynamic, integrating program
code and state at runtime. CanDoR [1] fixes the bug in the centralized variant
version with existing tools, then CanDoR applies the resulting fixes to the orig-
inal distributed app by using program transformation.

Executing Code in a Mobile Browser: Ours is not the only approach that
moves server-side components and data to the client. Meteor [13] transparently
replicates given parts of a server-side MongoDB at the client, so these parts can
be used for offline operations. Browserify enables a browser to use modules in
the same way as regular Node.js modules at the server.

Adaptive Middleware: Several middleware-based approaches have been pro-
posed to reduce the costs of invoking remote functionalities. APE [12] defers
remote invocations until some other apps switch the device’s state to network ac-
tivation. DR-OSGi [10] enhances middleware mechanisms with resilience against
network volatility. D-Goldilocks [3] adapts distributed web apps to adjust their
distribution granularity to improve both performance and invocation costs. CWV
is yet another middleware, albeit tailored for the realities of adapting mobile apps
by transforming their code at runtime.

6 Conclusions and Future Work

This paper has presented Communicating Web Vessles (CWV), a dynamic adap-
tation approach that improves the responsiveness of mobile web apps under the
ever-changing execution environment of the web. The CWV’s reference imple-
mentation offers full automation and a low performance overhead. By featuring
dynamic program analysis and transformation to ensure both correctness and
efficiency, CWV adapts to dissimilar execution conditions by moving app func-
tionalities from the server to the client and vice versa at runtime. As a future
work direction, we plan to apply our approach to address the resource constraints
and execution volatility of edge computing applications.

Acknowledgments: This research is supported by the National Science Foun-
dation through the Grant # 1717065.
References

1. An, K., Tilevich, E.: Catch & release: An approach to debugging distributed full-
stack JavaScript applications. In: Web Engineering. pp. 459-473 (2019)

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

Communicating Web Vessels 15

. An, K., Tilevich, E.: Client insourcing: Bringing ops in-house for seamless re-

engineering of full-stack javascript applications. In: Proceedings of The Web Con-
ference 2020. pp. 179-189 (2020)

An, K., Tilevich, E.: D-goldilocks: Automatic redistribution of remote functionali-
ties for performance and efficiency. In: Proceedings of the 27th IEEE International
Conference on Software Analysis, Evolution and Reengineering(SANER) (2020)
Barr, E.T., Harman, M., Jia, Y., Marginean, A., Petke, J.: Automated software
transplantation. In: Proceedings of the 2015 International Symposium on Software
Testing and Analysis. pp. 257-269. ISSTA 2015 (2015)

. De Moura, L., Bjgrner, N.: Z3: An efficient smt solver. In: International conference

on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337—
340. Springer (2008)

Ding, N., Wagner, D., Chen, X., Pathak, A., Hu, Y.C., Rice, A.: Characterizing
and modeling the impact of wireless signal strength on smartphone battery drain.
In: ACM SIGMETRICS Performance Evaluation Review. pp. 29-40 (2013)
Gomes, V.B., Kleppmann, M., Mulligan, D.P., Beresford, A.R.: Verifying strong
eventual consistency in distributed systems. Proceedings of the ACM on Program-
ming Languages 1(OOPSLA), 1-28 (2017)

Jacobsson, K., Hjalmarsson, H., Méller, N., Johansson, K.H.: Estimation of rtt
and bandwidth for congestion control applications in communication networks. In:
IEEE CDC, Paradise Island, Bahamas. IEEE (2004)

Kwon, Y.W., Tilevich, E.: Power-efficient and fault-tolerant distributed mobile
execution. ICDCS ’13, IEEE (2013)

Kwon, Y.W., Tilevich, E., Apiwattanapong, T.: DR-OSGi: Hardening distributed
components with network volatility resiliency. In: Bacon, J.M., Cooper, B.F. (eds.)
Middleware 2009. pp. 373-392. Springer (2009)

Marchthaler, R., Dingler, S.: Kalman-Filter, vol. 30. Springer (2017)

Nikzad, N., Chipara, O., Griswold, W.G.: APE: an annotation language and mid-
dleware for energy-efficient mobile application development. In: Proceedings of the
36th International Conference on Software Engineering. pp. 515-526. ACM (2014)
Robinson, J., Gray, A., Titarenco, D.: Getting started with meteor. In: Introducing
Meteor, pp. 27-41. Springer (2015)

Sen, K., Kalasapur, S., Brutch, T., Gibbs, S.: Jalangi: A selective record-replay
and dynamic analysis framework for JavaScript. In: Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering. pp. 488-498 (2013)
Sidiroglou-Douskos, S., Lahtinen, E., Eden, A., Long, F., Rinard, M.: CodeCarbon-
Copy. In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. pp. 95-105 (2017)

Sung, C., Kusano, M., Sinha, N., Wang, C.: Static DOM event dependency analysis
for testing web applications. In: Proceedings of the 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering. pp. 447-459 (2016)
Tsaoussidis, V., Badr, H., Ge, X., Pentikousis, K.: Energy /throughput tradeoffs of
tcp error control strategies. In: Proceedings ISCC 2000. Fifth IEEE Symposium
on Computers and Communications. pp. 106-112. IEEE (2000)

Waldo, J., Wyant, G., Wollrath, A., Kendall, S.: A note on distributed computing.
In: International Workshop on Mobile Object Systems. pp. 49-64. Springer (1996)
Wang, X., Liu, X., Zhang, Y., Huang, G.: Migration and execution of javascript
applications between mobile devices and cloud. In: Proceedings of the 3rd annual
conference on Systems, programming, and applications: software for humanity. pp.
83-84 (2012)

