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Role of APS reductase in biogeochemical sulfur
isotope fractionation
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Shawn E. McGlynn 2,5

Sulfur isotope fractionation resulting from microbial sulfate reduction (MSR) provides some

of the earliest evidence of life, and secular variations in fractionation values reflect changes in

biogeochemical cycles. Here we determine the sulfur isotope effect of the enzyme adenosine

phosphosulfate reductase (Apr), which is present in all known organisms conducting MSR

and catalyzes the first reductive step in the pathway and reinterpret the sedimentary sulfur

isotope record over geological time. Small fractionations may be attributed to low sulfate

concentrations and/or high respiration rates, whereas fractionations greater than that of Apr

require a low chemical potential at that metabolic step. Since Archean sediments lack

fractionation exceeding the Apr value of 20‰, they are indicative of sulfate reducers having

had access to ample electron donors to drive their metabolisms. Large fractionations in post-

Archean sediments are congruent with a decline of favorable electron donors as aerobic and

other high potential metabolic competitors evolved.
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Sulfate is quantitatively the most abundant water-soluble
electron acceptor for biological respiration on the planet1,
and its reduction to sulfide by microorganisms accounts for

more than half of the global anaerobic degradation of organic
matter2,3. The sulfide produced by microbial sulfate reduction
(MSR) readily reacts with iron to form iron sulfide and in turn
pyrite, a redox sink for sulfur and iron4. Thereby, this metabolism
provides a linkage between the global sulfur cycle with those of
carbon, oxygen, and iron. Given the presence of four stable sulfur
isotopes (32S, 33S, 34S, and 36S), MSR discriminates against heavy
isotopes, resulting in isotope signatures which can be recognized
in modern aquatic environments and are also preserved in sedi-
mentary sulfate and sulfide phases over geologic time5. Sulfur
isotope fractionation has thus been used both as a diagnostic
marker for sulfate reduction and as a tool to reconstruct the early
evolution of sulfur metabolisms and ocean redox chemistry6–10.
In particular, small 34S/32S fractionations between sulfate and
sulfide before the great oxidation event (GOE) have been con-
sidered to reflect low-sulfate concentrations in the Archean
oceans11,12. Such interpretations are grounded in the results of
extensive culture experiments over the last half-century, which
have revealed a set of relationships between microbial respiration
rates, sulfate concentrations, and the kinetic and equilibrium
isotope effects controlling net fractionation13–24. A complete
mechanistic understanding of the variables that control sulfur
isotope fractionation has yet to be achieved, however, in part due
to a lack of information on the individual intracellular processes
which cumulatively give rise to net sulfur isotope fractionation
between sulfate and sulfide.

Kinetic isotope fractionation between sulfate and sulfide is, in
theory, dependent on the isotope effects of the enzymes involved,
the relative rates of each enzymatic reaction25,26, and fluxes
through potential branch-points27. The enzymatic isotope effect
is typically a reflection of the transition state formed during the
reaction, and flux through a pathway and its branch-points is a
complex function of physiological state and environmental con-
ditions. To date, a few experimental constraints on metabolic
sulfur fluxes have been imposed either by using the oxygen iso-
tope exchange between sulfite and water20–24 or by measuring the
sulfur isotope compositions of metabolic intermediates in the
MSR pathway28. Those studies illustrated the principles under-
lying physiological variations in sulfur isotope fractionation, but
did not give a quantitative measure of the degree of fractionation:
it is the enzyme-specific isotope effects which represent the end-
members of the kinetic isotope fractionation range. Knowledge of
these values will allow for a quantitative interpretation of sulfur
isotope fractionation arising from sulfate reduction and a linkage
of isotope fractionation to the physiological state of the cell.

MSR to sulfide is carried out by three different enzymes: sulfate
adenylyltransferase (Sat; EC 2.7.7.4), adenosine phosphosulfate
(APS) reductase (Apr; EC 1.8.99.2), and dissimilatory sulfite
reductase (Dsr; EC 1.8.99.5) (Fig. 1), and the assignment of
kinetic isotope fractionation factors at the different steps has been
based on values derived from culture experiments and equili-
brium calculations25,26. Recently, Leavitt et al.29 conducted the
first enzyme-specific sulfur isotope fractionation measurements,
using DsrAB, a partial enzyme complex of dissimilatory sulfite
reductase, and found the produced thiosulfate and trithionate to
be depleted in 34S by 15‰ at the reduced sulfur S0 position of
those compounds relative to the reactant sulfite. Although this
reaction system lacked the DsrC subunit required to achieve full
conversion of sulfite to sulfide30, the measured fractionation was
much smaller than the previous theoretical value of ca. 50‰26,
revealing possible discrepancies between experimental and
indirect fractionation estimates and further motivating the need
for the experimental assessment of enzymatic isotope effects.

Remaining to be determined is the sulfur isotope fractionation by
Apr, the first reductive enzyme in the MSR pathway, as well as for
the full DsrABC complex. Fractionation by the Apr enzyme is
predicted to exert greater control on the overall fractionation of
the whole pathway as the Apr step becomes rate limiting at fast
respiration rates25,26,31. So far, a normal isotope effect of 25‰ has
been inferred for Apr26, but this value has never been measured.

To evaluate the contribution of Apr to microbial sulfur isotope
fractionation, we determine the in vitro 34S/32S fractionation of
the Apr enzyme for the first time. We incorporate the newly
estimated value into a modified model of Wing and Halevy31,
modulating the redox potential of the electron donating half-
reaction and interpreting the model results in a bioenergetic
context. The results enable us to propose a new sulfur isotopic
constraint on the biochemistry and physiology of sulfate-reducing
microbes and in doing so link growth characteristics of sulfate-
reducing microbes in both modern and ancient environments to
the enzymatic determinants of isotope fractionation.

Results and discussion
Kinetic isotope effect of the Apr enzyme. 34S/32S isotope frac-
tionation during the in vitro reduction of APS to sulfite was
determined at two different temperatures, 20 and 32 °C, using
purified APS reductase isolated from the mesophilic deltaproteo-
bacteria Desulfovibrio vulgaris Miyazaki32. APS reduction was
coupled to the oxidation of the electron donor methyl viologen,
and the reaction at 32 °C was nearly five times faster than at 20 °C
(Fig. 2a). As the reaction proceeded, remaining APS became
enriched in 34S (Fig. 2b), consistent with a normal kinetic isotope
effect. Regression analysis of δ34S values of APS and sulfite based
on the Rayleigh distillation model yielded a straight line at both
temperatures (Fig. 2c, d), indicating that the reactions were uni-
directional without significant back reaction, and that the sulfur
isotope effect remained unchanged over the course of the
experiment (Supplementary Note 1, Supplementary Fig. 1). From
the slope of the line, sulfur isotope effects for the reaction cata-
lyzed by Apr (34εApr) were calculated to be 20.3 ± 0.5‰ and
20.1 ± 0.8‰ at 32 and 20 °C, respectively. This is the first
experimental constraint on sulfur isotope fractionation by Apr,
and is about 5‰ smaller than the previously inferred value of
25‰25,26 that was based on the equilibrium sulfur isotope frac-
tionation between sulfate and sulfite at a physiologically relevant
temperature26. Because the equilibrium isotope effect for rever-
sible reactions equals the difference between kinetic isotope
effects for forward and backward reactions33, the assumption of a
25‰ fractionation value is equivalent to assuming no kinetic
fractionation in the backwards reaction. Our new measured value
of 20‰ for the forward (reductive) direction suggests that Apr
likely exhibits a small, inverse isotope effect when operating in the
reverse (oxidative) direction. We note that an enzymatic pre-
ference toward heavy isotopes, while rare, has been previously
reported in other reactions, e.g., for nitrite oxidation34–36.

The almost identical fractionations at two different tempera-
tures may have implications for whole cell-derived isotope
fractionation, as well as for the mechanism of enzymatic catalysis.
APS reduction is thought to be a multistep reaction, which begins
with nucleophilic attack on the sulfur of APS by the flavin
cofactor FAD, followed by loss of AMP during collapse of
the covalent APS-flavin adduct37. While many enzymatic
reactions display weak temperature dependence of the kinetic
isotope effect at the actual catalytic step, the steps in the reaction
which precede or follow the catalytic step might contribute to the
temperature dependence of the observed isotope effect38–40. The
similarity of the measured sulfur isotope effects at 20 and 32 °C
despite the nearly quintupled rate therefore indicates that
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the catalytic bond-breaking step is nearly rate-limiting for APS
reduction, rather than substrate binding or product release. In
contrast, fractionation of sulfur isotopes in whole cell studies has
been found to change with temperature17,41 and also to
be inversely correlated to the cell-specific sulfate reduction
rate (csSRR)13,15,18. These differences between enzyme- and

cellular-level fractionations suggest that the relationships between
physiology and sulfur isotope fractionation are not rooted in the
kinetics of an individual enzyme, but are instead expressed by the
overall sulfate reduction pathway. We explore this next with the
aid of a recently established model framework31 and our
quantitative constraint on the sulfur isotope effect of Apr.
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Impact of Apr on sulfur isotope fractionation during MSR.
Since MSR is a reversible multistep process, models attempting to
describe the associated sulfur isotope fractionation have focused
on which intermediates build up along the pathway and to what
extent the enzymatic reactions interconnecting those metabolites
are reversible25,26,31. The less reversible the reaction, the less
isotope effects of the subsequent reactions will be expressed.
Reversibility can be recognized as a measure of the relative degree
of rate limitation at different steps in a pathway, which is ulti-
mately set by the thermodynamic conditions of the reaction42,43:

Reversibility Xð Þ ¼ b=f ¼ eΔG=RT; ð1Þ

where b and f denote backward and forward rates, R is the gas
constant, T the temperature, and ΔG is the free energy change
associated with the reaction. As the value of ΔG strongly depends
on the concentrations of involved reactants and products, Wing
and Halevy31 proposed a model with intracellular metabolite
levels as the central determinant of reversibility and thus sulfur
isotope fractionation. We updated their model to include the
newly determined value for 34εApr and used it to explore varying
redox potentials of the electron donating half-reaction at constant
sulfide concentration (Fig. 3). The modified model captures how
both sulfate concentration and the identity of electron donors can
affect the overall sulfur isotope fractionation, because the mid-
point potential of the electron donor regulates the balance
between reduced and oxidized forms of physiological electron
carriers such as the NADH/NAD+ ratio44,45. Sulfate-reducing
microorganisms can utilize a wide array of electron donors,
whose potentials span the entire range of E’ values employed in
our model18, and with fixed sulfate concentration and csSRR the
predicted isotope fractionation increases sigmoidally as the redox
potential of electron donating reaction increases (Fig. 3a). The

sharp rise from one plateau to the other represents the point at
which the Apr reaction changes from irreversible to reversible.
Sulfate levels and csSRRs modulate the sulfur isotope fractiona-
tion primarily by altering the reversibility of sulfate uptake; as
sulfate levels decrease or cells respire faster, less sulfate leaks back
out of the cell, thereby drawing the isotope effect away from the
large equilibrium value (Fig. 3b). Since we recently verified this
reservoir effect by measuring the sulfur isotope composition of
intracellular sulfate relative to ambient sulfate28, both modeling
and experimental data suggest that sulfur isotope fractionation
smaller than the 20‰ isotope effect of APS reductase can be
attributed to either low-sulfate concentrations or high-respiration
rates. In contrast, the modeled fractionation never exceeds the
20‰ isotope effect of APS reductase so long as the redox
potential of the coupled electron transfer reaction is low enough
to maintain the APS reduction step as irreversible (Fig. 3b). Sulfur
isotope fractionation greater than 20‰ requires increasing the
reversibility of the APS reduction step and, thus, this step exerts
significant control over the expression of net isotopic fractiona-
tion by the MSR pathway31.

Our model predicts that the minimum sulfur isotope
fractionation which can be expected when intracellular sulfate
concentrations are unlimited is 20‰. This threshold established
by Apr is close to the fractionation limit of ca. 17‰ measured at
high metabolic rates in continuous cultures with lactate as the
limiting nutrient19 and in marine sediments46. Because this
minimum fractionation is also similar to the value of 15‰
obtained in the experiment with DsrAB, sulfite reduction was
previously proposed as a rate-limiting step at fast respiration
rates29. However, since sulfite reduction follows APS reduction in
the metabolism, the overall sulfur isotope fractionation in the case
of Dsr-imposed rate limitation should be the sum of the Dsr
kinetic isotope effect and the Apr equilibrium isotope effect.
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Given the equilibrium sulfur isotope fractionation of 25‰
between sulfate and sulfite26, Leavitt et al.29 postulated that the
formation and reduction of APS might be kinetically fast and
impart a smaller sulfur isotope fractionation than commonly
presumed. However, our measurement of 34εApr= 20‰ negates
that possibility. Thus, APS reduction—rather than sulfite
reduction—appears to limit in vivo dissimilatory sulfate reduction
at fast respiration rates. This is supported by the existing
empirical observations. From experiments where reaction rates
and isotope fractionation were measured using resting and cell
extracts, Kemp and Thode47 concluded that the rate determining
steps of sulfate reduction were prior to the final reduction of
sulfite. Consistent with this rate difference, recent measurements
of intracellular sulfur metabolite concentrations showed that APS
—the substrate of Apr—was present at nearly ten times the
concentration of sulfite within the sulfate-reducing bacterium
Desulfovibrio alaskensis during exponential growth28. On the
other hand, APS reduction is not always the rate-limiting step in
MSR as shown by previous culture experiments with 18O or 17O-
spiked water20–22,24,48–50. Since the half-life of direct oxygen
isotope exchange between sulfate and water is about 109 years at
physiological temperatures51 and potential kinetic oxygen isotope
effects are negligible compared to the amount of spike added, the
primary mechanism controlling the oxygen isotope ratio of
remaining sulfate is isotope exchange between sulfite and water,
followed by the re-oxidation of sulfite back to sulfate23,52,53. In
those studies, MSR was found to mediate rapid oxygen isotope
exchange between sulfate and water when the accompanying
sulfur isotope effect exceeded 20‰24 (Supplementary Fig. 2). This
pattern is consistent with our model prediction that sulfur isotope
fractionation greater than the Apr sulfur isotope effect of 20‰
requires a reversible, thus not necessarily rate-limiting, APS
reduction step (Fig. 3).

The energy conservation and electron transfer pathways during
MSR have yet to be fully elucidated, but since the reaction
energies directly control reversibility and therefore the isotope
effect (Eq. (1)), it may be possible to relate 34εApr values to
bioenergetic processes in the cell. For example, if the Apr reaction
releases energy (ΔGrxn) greater than −5 kJ mol−1, the resulting
reversibility is as small as 0.1 (Eq. (1)) and should limit isotope
fractionation to 20‰ across csSRR values (Fig. 3b). Because the
ΔG of the Apr reaction should have near-zero values to
accommodate the wide range of naturally occurring fractionation,
Wenk et al.54 recently proposed that sulfate respiration relies
primarily on electron carriers with modestly negative redox
potential such as menaquinone (MQH2/MQ, E°′=−75mV).
Although such a small difference between the redox potentials of
electron carriers and APS (APS/HSO3

−, E°′=−60 mV) can
contribute to maintaining reversibility in APS reduction and
thereby produce larger isotope fractionation, such low energy
yields make it difficult to account for the energy needed to
generate a proton gradient that is presumed to be coupled to the
oxidation of membrane-bound electron carriers55,56. However, if
electron flow from physiological carriers to APS or sulfite were to
be directly coupled to proton motive force generation, the
reaction energies of these processes would be added to the
expected energies of the APS or sulfite reduction. Because ion
translocation to the outside of a chemiosmotically charged
membrane is endergonic, the reversibility of a directly coupled
APS or sulfite reduction step would increase as a result of the
additional energy requirement (less negative ΔG in Eq. (1)). The
small free energy change for the Apr and Dsr reactions, predicted
by the sulfur isotope modeling, could then be interpreted to be a
consequence of energy conservation during sulfate respiration
with a resulting low net energy of the coupled reaction. Because
the additional energy requirement would shift the isotope

fractionation pattern visualized in Fig. 3 toward more negative
redox potentials (but leave the shape of the curve unchanged),
candidate electron carriers would not necessarily be limited to
those with moderate redox potentials57. Future experiments that
relate the energy state of the cell as measured by intracellular
metabolite concentrations to sulfur isotope fractionation can help
resolve these uncertainties and build an understanding of
bioenergetic processes through isotopic analyses.

The experimental determination of Apr sulfur isotope
fractionation is an important step toward a quantitative model
relating the magnitude of microbial isotope fractionation to their
environmental and physiological controls, but also highlights the
need for further investigations into cellular processes involved in
sulfate respiration. For example, the branching of APS to the
PAPS assimilatory pathway58 is not included in the current
model. It is also intriguing to consider whether the value for
34εApr measured here from a single species can be applied more
broadly to other sulfate-reducing microorganisms or if the
isotope effects of homologous enzymes might vary significantly
among different lineages.

Constraints on the physiological state of ancient cells. Over the
last 6 decades, nearly 100 published studies have examined sulfur
isotope fractionations between sulfate and sulfide across a range
of modern environments, compiling over 700 measurements in
total (Fig. 4a). A wide range of sulfur isotope fractionations have
been reported; however, it is clear that sulfur isotope fractiona-
tions smaller than 20‰ are quite rare in the natural environment,
constituting only one tenth of the entire data set. Focusing on
marine environments, the number shrinks further to only 6% of
all measurements ≤20‰. Smaller sulfur isotope fractionations are
more common in terrestrial environments characterized by
widely variable sulfate levels, and often reflect closed-system
behavior11,59,60. Even in these habitats, about four fifths of the
data are greater than 20‰. The largest sulfur isotope fractiona-
tions occur mostly in marine environments, and this is indicative
of a low-energetic driving force leading to greater reaction
reversibility and isotopic fractionation as discussed above. The
asymmetric distribution of environmental data around the sulfur
isotope effect of Apr thus implies that electron donor availability
strongly regulates MSR fractionation, whereas sulfate concentra-
tions play an ancillary role in most modern environments.

In contrast to modern environments, sulfur isotope fractiona-
tions between sulfate and sulfide rarely exceed 20‰ in rocks older
than 2.5 Ga (Fig. 4b). Such small sulfur isotope fractionations
have conventionally been interpreted to represent closed-system
effects of sulfate limitation11,60 or muted isotopic fractionation by
MSR12,62, with low-environmental sulfate concentrations as the
root cause of both. In the anoxic early oceans, however, water
column sulfate reduction (open system) would likely account for
a substantial fraction of pyrite formation, like those in some
modern euxinic basins63. More importantly, neither scenario
explains why the maximum sulfur isotope fractionation during
the Archean would be so similar to the sulfur isotope effect of
APS reductase without exceeding it.

Not only sulfate concentration but also electron donors, such
as organic matter or H2, play a role in controlling the expression
of sulfur isotope fractionation. Previous culture studies have
demonstrated qualitatively that decreasing availability and
reactivity of electron donors leads to larger sulfur isotope
fractionation15,18,19, and our experimental determination of
the Apr kinetic isotope effect provides quantitative support for
these qualitative arguments. Based on the results above, we
consider the possibility that the availability of more favorable
electron donors was responsible for reduced sulfur isotope
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fractionation during the Archean. In an anoxic ocean harboring
other microorganisms competing for reductants, using sulfate as
an electron acceptor would have been a major evolutionary
innovation. Sulfate-reducing microbes would likely have out-
competed ancient methanogens and acetogens for common
electron donors such as H2, because sulfate reduction provides a
greater free energy yield than CO2 reduction64–66. Considering
H2 as an electron donor, at 100 µM concentration of sulfate and
10 nM H2, hydrogen oxidation coupled to sulfate reduction still
yields −43.5 kJ mol−1, while methanogenesis provides only
−13.7 kJ mol−1; acetogenesis is unfavorable at +20.4 kJ mol−1.
In addition to the thermodynamic favorability of sulfate
reduction when considering common electron donors, sulfate-
reducing microorganisms would be able to utilize higher potential
(lower energy yielding) reductants for respiration, again by virtue
of delivering electrons onto sulfate, although these low-energy
electron donors would likely have been utilized only if high-
energy ones were substantially consumed. Competition with iron
reducing microorganisms could also be considered. However,
limited access to iron-bearing detrital phases yields lower rates of
iron reduction in the water column67, and sulfate reduction often
precedes iron reduction even in the low-sulfate freshwater
sediments68. The absence of sulfur isotope fractionations greater
than 20‰ is thus consistent with the hypothesis that privileged
access to electron donors would be able to drive the Apr reaction
irreversibly. A similar scenario could explain, at least in part, why
sulfur isotope fractionation larger than 20‰ became widespread
after 2.5 Ga, when the GOE, triggered by the rise of oxygenic
photosynthesis, made O2 available as an electron acceptor69. With
increasing oxygen concentrations, aerobic microorganisms could
outcompete sulfate reducers for access to electron donors,
relegating sulfate reducers to lower net energy environments.
Adaptation to this thermodynamically less favorable lifestyle may
have made the MSR reaction more reversible, leading to larger
fractionation.

This hypothesis is yet speculative, and is not exclusive of other
effects such as those from low-sulfate concentration. Indeed,
simultaneous loss of electron donors and increasing sulfate
concentration, both as a result of increasing atmospheric O2, also
seems plausible in accounting for the rise in sulfur isotope
fractionation values after the GOE. Regardless though, it is now
clear that the electron donor is a contributing determinant to
isotope fractionation during MSR, with the Apr-catalyzed
reaction exerting significant control on the observed fractiona-
tion. Consequently, differences in δ34S values of sulfate and pyrite
cannot be used as a quantitative constraint on sulfate concentra-
tion, e.g., in the Archean oceans11,12, without additional
information about the reductant pool.

Methods
Enzymatic assay. APS reductase enzyme was purified from Desulfovibrio vulgaris
Miyazaki as previously described32,70, flash frozen in 75 mM Tris-HCl buffer (pH
7.5), and stored at −80 °C for later assay. All chemicals, except for APS, were used
as received from the manufacturer without further purification. The APS sodium
salt was obtained from Sigma-Aldrich (CAS No. 102029-95-8), and given the
relatively low-purity grade (85%) it often contained >10% sulfate (mol/mol) as
impurity. The stock solution of APS (~40 mM) was prepared using degassed
deionized water, split into a series of 250 μl aliquots, and stored at −80 °C until
needed. Upon thawing, 50 μl of 0.2 M BaCl2 solution was added to each aliquot,
and precipitated BaSO4 was removed by centrifugation. Excess Ba2+ was elimi-
nated from solution by adding 100 μl of 0.1 M Na3PO4 solution, and again, the
insoluble Ba2(PO4)3 was removed by centrifugation. After dilution, the final APS
concentration in the working stock solution was set to 7.5 mM. A few tens of mM
phosphate would be present in this working stock, which was not quantitatively
significant because more than ten times larger amount of phosphate was added to
the reaction mixture to buffer the pH (Supplementary Table 1). The in vitro APS
reduction assay was carried out with methyl viologen reduced by equimolar Ti
(III)-NTA as an electron donor. The reaction mixture was under anoxic and pH
neutral conditions, containing 33 mM potassium phosphate, 3 mM methyl violo-
gen, 250 µM APS, and about 10 µg ml−1 of enzyme in a total volume of 15 ml
(Supplementary Table 1). Mixtures were incubated for 72 and 36 min at 20 and
32 °C, respectively. At every sampling point, a 2 ml subsample was extracted,
preserved in a final solution of 60 mM zinc acetate71, flash frozen in liquid N2, and
stored at −80 °C until the next step. Parallel control experiments without APS
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sedimentary samples. a Histogram showing the distribution of sulfur isotope fractionation values reported from modern terrestrial (open bars) and marine
environments (filled bars) (Supplementary Data 1). Most of the measured fractionations from both environments exceed the 20‰ sulfur isotope effect of
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reductase were run simultaneously, confirming that the concentration of APS
remained constant (Supplementary Table 2). Since sulfite is readily oxidized to
sulfate in air in the absence of preservatives such as formaldehyde72, APS and
sulfate, instead of sulfite73, were determined on a Dionex DX 500 ion chromato-
graph (IC) equipped with an AS11-HC column (Dionex, Sunnyvale, CA, USA),
using a gradient elution with KOH as mobile phase28. The concentrations deter-
mined by IC are subject to an error of ±5%. For isotope analysis, the eluant
fractions corresponding to sulfate and APS were collected, and APS was quanti-
tatively converted to sulfate via hydrolysis at 65 °C for 12 h.

Sulfur isotope analysis. The samples containing dissolved sulfate were dried on a
hot plate and diluted in 5% nitric acid to a sulfate concentration of 20 µM to match
the in-house working standard. Isotopic analysis was conducted on a Thermo
Fisher Scientific Neptune Plus multi-collector inductively coupled plasma mass
spectrometer (MC-ICP-MS), operated in medium resolution following the method
previously described74. Samples were introduced to plasma via an ESI PFA-50
nebulizer and Cetac Aridus II desolvator. Sulfur isotope ratios of the sample and
working standard were measured in 50 alternating cycles, and instrumental blank
was estimated after each sample block. The mean blank value was subtracted from
the measured signal for each mass. The measured 34S/32S ratio was calibrated using
a linear interpolation between the two bracketing standard values. Sulfur isotope
ratios are reported here using the conventional delta notation:

δ34S ¼ 34Rsample=
34RVCDT � 1; ð2Þ

where 34Rsample and 34RVCDT are the 34S/32S ratios of sample and Vienna-Cañon
Diablo Troilite (VCDT), respectively. Our working standard was calibrated against
the IAEA S-1 reference material (δ34SVCDT=−0.3‰) and has a δ34S value of
−1.55‰ ± 0.16 (2σ) on the VCDT scale. Analytic reproducibility for δ34S has been
previously evaluated as ±0.2‰ (2σ)74. Measured concentrations and isotopic
compositions of APS and sulfate were summarized in Supplementary Table 2.
Isotopic mass balances were estimated by using a simple mixing model for a closed
system:

δ34S TOTð Þ ¼ δ34S APSð Þ � APS½ � þ δ34S SO4ð Þ � SO4½ �� �
= APS½ � þ SO4½ �ð Þ; ð3Þ

where δ34S(x) is the sulfur isotopic composition of the total, APS, or sulfate sulfur
pools, and [APS] and [SO4] are their molar concentrations. Calculated isotopic
compositions of total sulfur varied within 10% of that of the beginning, which is a
threshold value commonly used in isotope studies75. Closure of isotope mass
balance indicates that assumption of a closed system is valid, and no unknown
sulfur pool was present in our experiments. As shown in Supplementary Table 2,
despite the thorough purification of APS stock solution, a trace amount of sulfate
was present in the initial reaction mixture, leading to the deviation of the δ34S value
of accumulated sulfate from that of sulfite produced during the assay. Given that no
additional sulfate evolved in the control experiments, the contribution from an
initial sulfate pool was removed via isotope mass balance:

δ34S SO3ð Þ ¼ δ34S SO4ð Þ � SO4½ � � δ34S SO4ð Þ0� SO4½ �0
� �

= SO4½ � � SO4½ �0
� �

; ð4Þ

where δ34S(SO3) is the isotopic composition of produced sulfite, δ34S(SO4) and
δ34S(SO4)0 are sulfur isotope compositions of the accumulated and initial sulfate,
and [SO4] and [SO4]0 are sulfate concentrations at the time of sampling and at time
zero. Errors from isotope analysis via ICP-MS (0.2‰) and concentration mea-
surement via IC (±5%) were propagated via first-order Taylor series expansion,
resulting in an uncertainty estimate for δ34S(SO3) values of better than 0.5‰.
Sulfur isotope fractionation factor (34εApr) was calculated using an approximate
solution to the Rayleigh distillation equations76:

1000 � ln 1þ δ34S APSð Þ=1000� � ¼ 1000 � ln 1þ δ34S APSð Þ0=1000
� �� 34εApr � ln f ;

ð5Þ

1000 � ln 1þ δ34S SO3ð Þ=1000� � ¼ 1000 � ln 1þ δ34S APSð Þ0=1000
� �þ 34εApr � f � ln fð Þ= 1� fð Þ;

ð6Þ

where f is the fraction of the remaining APS, δ34S(APS)0 and δ34S(APS) are sulfur
isotope compositions of the initial and remaining APS, respectively, and δ34S(SO3)
is isotopic composition of produced sulfite. Using linear regression analysis, values
of 34εApr were obtained from the slope of -lnf versus δ34S(APS) and (f·lnf)/(1− f)
versus δ34S(SO3). All analytical errors were propagated via Monte Carlo simulation
(n= 5000).

Model for sulfur isotope fractionation during MSR. To determine the role of APS
reductase in controlling the overall isotope fractionation, the estimated isotope effect
of APS reductase was applied to the quantitative model for microbial sulfur isotope
fractionation. While the previously published model predicted the overall fractiona-
tion as a function of the concentrations of extracellular sulfate and sulfide and the
specific rate of sulfate reduction31, we ran the model with a constant sulfide con-
centration but varied redox potential for the electron carriers coupled to the MSR

pathway (Supplementary Note 2, Supplementary Table 3). The sensitivity of the
model results to changing sulfide levels was tested (Supplementary Figs. 3 and 4).

Free energies of hydrogenotrophic metabolisms. Calculations were done
using “eQuilibrator” at pH 7 and other reactants in those calculations were
set at 100 μM77.

Sulfur isotope data compilations. Sulfur isotope data from modern environ-
ments, shown as a histogram in Fig. 4, were obtained from previous compila-
tions19,60,78 with addition of the recent environmental studies79–84. The data are
binned and recalculated in Supplementary Data 1. The δ34S values of post-Archean
sedimentary sulfate and sulfide are taken primarily from two previous compila-
tions5,61. Recent advances in the analysis of sulfur isotope ratios, including the use
of MC-ICP-MS and secondary ion mass spectrometry, have facilitated the inves-
tigation of mass-independent sulfur isotope signatures (Δ33S) in the Archean rocks.
Since the proliferation of Archean 33S studies has also yielded a record of the ratio
between the more abundant isotopes, 34S and 32S, we supplement the existing
compilation with the Archean δ34S data collected during the last decade (Supple-
mentary Data 2).

Data availability
Data supporting the findings of this study are available within the paper and in the
supplementary information file or are available from the corresponding author
upon reasonable request.
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